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Abstract
Peatlands are some of the world’s most carbon-dense ecosystems and release substantial quantities
of greenhouse gases when degraded. However, conserving peatlands in many tropical areas is
challenging due to limited knowledge of their distribution. To address this, we surveyed soils and
plant communities in Colombia’s eastern lowlands, where few peatlands have previously been
described. We documented peat soils>40 cm thick at 51 of more than 100 surveyed wetlands. We
use our data to update a regional peatland classification, which includes a new and possibly
widespread peatland type, ‘the white-sand peatland,’ as well as two distinctive open-canopy
sub-types. Analysis of peat bulk density and organic matter content from 39 intact peat cores
indicates that the average per-area carbon densities of these sites (490–1230 Mg C ha−1, depending
on type) is 4–10 times the typical carbon stock of a (non-peatland) Amazonian forest. We used
remote sensing to upscale our observations, generating the first data-driven peatland map for the
region. The total estimated carbon stock of these peatlands of 1.91 petagrams (Pg C) (2-sigma
confidence interval, 0.60–4.22) approaches that of South America’s largest known peatland

© 2025 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/1748-9326/adbc03
https://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/adbc03&domain=pdf&date_stamp=2025-4-15
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-9048-9342
https://orcid.org/0000-0002-9694-2195
https://orcid.org/0000-0001-5477-9580
https://orcid.org/0000-0003-2098-3510
https://orcid.org/0000-0003-2314-590X
https://orcid.org/0000-0003-1812-9622
https://orcid.org/0000-0003-2103-7390
https://orcid.org/0000-0001-9405-0508
https://orcid.org/0000-0002-3251-1679
https://orcid.org/0000-0001-7568-0838
https://orcid.org/0000-0001-6026-0275
https://orcid.org/0000-0001-6843-4663
https://orcid.org/0000-0002-8993-6168
https://orcid.org/0000-0002-8738-2659
https://orcid.org/0000-0002-2831-4066
https://orcid.org/0000-0002-3547-2425
https://orcid.org/0000-0002-7483-7773
https://orcid.org/0000-0003-1299-691X
https://orcid.org/0000-0001-7029-1972
https://orcid.org/0000-0003-0813-5084
mailto:scwinton@ucsc.edu
http://doi.org/10.1088/1748-9326/adbc03


Environ. Res. Lett. 20 (2025) 054025 R S Winton et al

complex in the northern Peruvian Amazon, indicating that substantial peat carbon stores on the
continent have yet to be documented. These observations indicate that tropical peatlands may be
far more diverse in form and structure and broadly distributed than is widely understood, which
could have important implications for tropical peatland conservation strategies.

1. Introduction

Tropical peatlands are among theworld’smost carbon
dense ecosystems[1–3], and their ongoing degrada-
tion and destruction is exacerbating the climate crisis
[4–8] and impacting peoples’ livelihoods [9, 10].
Peatland protection is regarded as one of the more
cost-effective natural climate solutions [11, 12], but
despite their importance to global climate, the extent
and distribution of peatlands throughout many parts
of the global tropics remains highly uncertain 13, 14].

One of the more enigmatic peatland regions is
the Colombian lowlands in northern South America
[15]. In Colombia, peatland accounting is extremely
uncertain with published estimates of peat volume
and area differing by orders of magnitude. At
one extreme, the algorithmic Global Wetland Map
product predicts roughly 50 000 km2 of peatlands
throughout the country’s climatically and geologic-
ally diverse lowland regions, with peat thicknesses of
up to 10 m, representing approximately 200 km3 of
peat [16]. In contrast, a synthesis based on soil maps
shows only a few modest areas of mapped Histosols
(710 km2) accounting for just 0.3 km3 of peat [1].
Colombia is emerging from five decades of civil con-
flict and many rural areas have been inaccessible for
scientific investigation until recently [17], so it is pos-
sible that extensive peatlands have eluded field detec-
tion. Furthermore, the region is facing acute envir-
onmental degradation [18], raising the prospect that
peatland loss may be outpacing peatland detection.
Field investigations are therefore crucial to determ-
ine whether peatlands are scarce or ubiquitous in
Colombia’s lowlands, how much carbon they hold,
and more generally, to assess the accuracy of global
peatland mapping products [16, 19, 20] in under-
surveyed tropical regions.

Tropical peat soils often occur beneath distinct-
ive wetland-adapted plant communities [21–23] and
thus peatland ecosystem classification serves as a
foundation for understanding peatland spatial distri-
butions necessary for carbon stock estimations. Such

ecosystem-peat soil linkages have not yet been estab-

lished for Colombia; in fact, nearly all studies of trop-

ical South American lowland peatland ecology to date
have been conducted in Peru. Ecological peat clas-
sification systems for Peru [24] may not apply to
parts of Colombia’s lowlands where climate, soils,
and geology are dramatically different, such as in the
highly seasonal savanna region of the Orinoco basin
(the Llanos Orientales), or among the nutrient-poor

white sand forests of the Guiana shield—two eco-
regions with little Peruvian analogue. An ecological
classification of Colombian peatlands based on veget-
ation surveys and soil sampling is needed because,
as in similarly inaccessible locations, the high cost
of collecting field data in lowland Colombia means
that peat accounting must depend upon remotely
sensed ecosystem information in order to upscale
from scarce field data and infer peatland distributions
on a regional scale [25, 26].

To advance our empirical understanding of the
distribution, ecology and carbon stock of peatlands in
the Colombian lowlands, we embarked on a series of
field campaigns in search of potential peatlands. We
used multispectral Landsat imagery to identify pro-
spective peat-forming wetlands [27, 28] and in the
field, when peat was encountered, we sampled soils
and plant communities to support classification into
different types. We analyzed 39 extracted peat cores
for organic matter (OM) content to estimate below-
ground ecosystem carbon densities. Finally, to gener-
ate a peat map and estimates of total peat area and
carbon stock, we used remote sensing products and a
random forest (RF) machine learning algorithm [29]
to predict the distributions of peat-forming ecosys-
tems throughout the region.

2. Materials andmethods

2.1. Field campaigns
We undertook a series of field campaigns in
Colombia’s Eastern lowlands between October 2020
and February 2023 to search for peatlands among a
variety of wetland types. The Global Wetlands Map
V3 [16] helped us identify regions of interest, which
were further investigated using Landsat false color
imagery of infrared and near-infrared bands and
digital elevation models to look for wetland areas
similar in appearance to known peatland sites in

Peru (figure S1). Security and logistical limitations
prevented us from visiting some promising regions,
such as the middle and lower Rio Caquetá. Within
our regions of interest, we visited the sites with the
most convenient access by road or boat to efficiently
visit wetlands and sample as many distinct poten-
tial peatland sites as possible. Altogether we assessed
more than 100 discrete wetland sites across seven
Colombian departments.

At each wetland site we first determined whether
peat was present, with a depth of 40 cm as a min-
imum following the USDA histosol definition [30].
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If we determined a site to be a mineral soil wet-
land, we carried out a rapid survey of vegetation
(noting dominant species and classifying the com-
munity type), hydrologic indicators and soil texture
and color before moving on to search elsewhere. If
we encountered at least 40 cm of peat, we established
a transect up to 600 m long through the site tak-
ing rapid surveys with measurements of peat thick-
ness, canopy height and density, and hydrologic and
plant community observations every 100m.At a cent-
ral point on each transect we completed one detailed
survey of a peatland that included a 0.1 ha floristic
inventory, identifying and measuring all trees of at
least 10 cm diameter at breast height (DBH), as well
as extraction of an intact peat core in 50 cm sections
using a Russian style peat auger until a core section
overlapped with underlying mineral material (figure
S2).

2.2. Laboratory analysis
All peat core sections were transferred to 4 cm PVC
half tubes and wrapped in plastic wrap in the field,
labeled, stored immediately in coolers and then trans-
ferred to freezers in the nearest town until the end
of the regional campaign. At the end of each cam-
paign cores were transferred frozen to Pontificia
Universidad Javeriana in Bogota for processing. Each
core was thawed and then sliced into 10 cm sections
before being oven dried at 80 ◦C and weighed for cal-
culation of dry bulk density (dry weight (g)/volume
(cm3)). We performed loss on ignition assays from 39
cores at 10 cm intervals along each peat profile for a
total of 1046 analyses in a muffle furnace for 4 h at
450 ◦C. Since conversion factors from soil OM to soil
organic carbon vary substantially between soil types
[31, 32], we analyzed a subset of 42 samples for total
carbon at the Environmental Measurements Facility
at Stanford University using a ThermoScientific Flash
elemental analyzer to generate a conversion factor
specific to our data set.

2.3. Carbon calculations
We found a strongly linear relationship between
% OM from loss on ignition and %C from
elemental analysis (figure S3; r2 = 0.98, p-
value < 0.001) and used the slope of the regression
line (%C = %OM ∗ 0.5591 − 1.64) to estimate car-
bon content of samples for which we only had %
OM data [32]. To calculate ecosystem belowground
carbon density we summed carbon in each 10 cm
layer of each of 39 fully processed peat cores using the
following equation:

EBCD=
N∑

n=1

(10×Dn × ρn ×Cn)

Where EBCD is ecosystembelowground carbondens-
ity in Gg C ha−1, Dn is thickness of the nth peat

layer in cm (usually 10 cm except in case of miss-
ing data, in which case we interpolated linearly), ρn
is dry bulk density of the nth peat layer in g cm−3,
and Cn is carbon content of the nth peat layer in %.
For peat thickness, we defined the peat core bottom
as the deepest sample containing at least 45% OM,
the threshold recommended by a systematic review
of peat classification systems in the context of extens-
ive organic-rich valley soil observations from trop-
ical Asia [30]. Because belowground ecosystem car-
bon densities were non-normally distributed, we used
a bootstrap resampling with replacement approach
to generate 100 000 simulated bootstrapped distri-
butions from which we extracted mean values and
95% confidence intervals. This is a slightly different
approach than in prior carbon estimates from Peru
where authors had non-overlapping observations of
peat bulk density, carbon content and thickness and
treated these as independent measurements [24, 33].
In this study we instead calculated the peat column
carbon of an intact core from each site and treated
those as independent measurements. This is prefer-
able in a setting where peat columns contain high
levels of mineral intrusions because the three vari-
ables of carbon content, thickness and bulk density
tend to be correlated rather than independent with
higher bulk densities associated with lower carbon
content and deeper peat columns.

To estimate peat carbon stock for each ecosystem
we used a Monte Carlo method of randomly select-
ing a value from bootstrap simulated distributions
of mean belowground ecosystem carbon density and
our two distributions of estimated area (as described
below) to multiply together to generate carbon stock
values. We repeated this process 107 times to generate
mean carbon stocks and 95% confidence intervals for
each peatland type.

2.4. Floristic analysis
We compared the floristic composition of the 53
0.1 ha Colombian plots to a wide range of RAINFOR
forest plots established in different ecosystem types
in north-western Amazonia [34–36]. The RAINFOR
dataset contains 116 forest plots of 0.1–1.0 ha in size,
with small plot sizes (0.1–0.5 ha) generally estab-
lished on low diversity ecosystems including peatland
ecosystems, such as open peatlands, palm swamps
and pole forests. Large plot sizes (1 ha) were gener-
ally used on more diverse ecosystems such as white-
sand forests, seasonally flooded forests, and Terra
Firme forests. Identification of all individuals with
DBH ⩾ 10 cm was done by comparing botanical
specimens collected in each plot with herbarium
vouchers [34]. Only plots with at least 75% of stems
identified to species level were selected.

We built a matrix of the species abundance of the
combined 169 plots. Scientific names of species were
standardized using the Taxonomic Name Resolution
Service online (Boyle et al [37], [38]). After removal
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of unidentified individuals, the matrix remained with
1698 species and 40 618 individuals. We transformed
the dataset using the Hellinger method and construc-
ted the floristic distance matrix using the Euclidean
distance in the ‘vegan’ package in R (Dixon [39]). This
distance matrix was used to create non-metric multi-
dimensional scaling ordinations optimized for three
axes to visualize floristic dissimilarity among ecosys-
tem types (figure S4). This ordination provides a way
of assessing how similar plots are to one another based
on the abundance of tree species.

2.5. Mapping and upscaling
To map peatlands, we took two steps. First, to lever-
age known linkages between ecosystem types and peat
presence in the tropics [24], we generated a land cover
classification to identify areas corresponding to eco-
systems with the potential for peat formation and
those not known to support peat soils. Second, to
capture spatial uncertainty of peat presence among
potentially peat-forming ecosystems [28], we assessed
the probability of peat soil presence within poten-
tially peat-forming ecosystems. For both classifica-
tions, we trained a RF classifier [29, 40] on 70%
of the samples (of those directly collected for this
study as well as some addition reference field samples
from [41–44]) using a stratified group k-fold cross-
validation (5 folds; see figure S5) and a maximum
depth of 300 estimators. Maximum features per split
were set to the square root of total number of features.
The remaining 30% of the samples were used for
independent validation. All spatial modeling was per-
formed using the python scikit-learn package [45].
For both classifiers we removed redundant variables
from a larger group of potential variables to avoid
overfitting, based on an assessment of partial depend-
ency and comparison of classifier results using dif-
ferent variables. While some of the selected variables
still show a cross-correlation, for example the wet
and dry season HH and HV backscatter products
(table S2), we used them in the classifier as they
were crucial in the separation of specific land cover
classes [46].

The land cover model was trained on a variety
of earth observation products and derivatives con-
ventionally used in digital peat mapping, including
mean wet-season andmean dry-season backscatter of
ALOS2 PALSAR2 L-band ScanSARHH and HV data;
Copernicus Sentinel-1 VV multi-temporal 5th per-
centile and standard deviation; Harmonized Landsat
Sentinel-2 (HLS) shortwave-infrared (SWIR) and
SWIR 2 bands [47], the normalized difference veget-
ation index [25], and the normalized difference wet-
ness index [48]. We also used the Copernicus GLO30
digital elevationmodel. To complement our field data
with additional samples of the other land cover types
(water, barren soil, urban, grassland, palm planta-
tion), we inferred random samples from the satellite
data or stratified by the Global SurfaceWater product

[49] and the World Settlement Footprint [50]. We
then applied this model to predict the land cover and
ecosystem classes for the entire study area.We applied
a two-fold post-classification morphological closing
to filter for a minimum size of 5 ha per classified
object.

We grouped the land cover classes of potential
peat (palm swamp, wet white-sand ecosystems, herb-
aceous/shrubwetland, and floodplain forest) together
for peat probability predictions. We included flood-
plain forest in this second analysis because of high
misclassificationswith the potential peat classes in the
land cover prediction and because it is likely that peat-
lands of this ecosystem type exist in Colombia (AGB
and JCBpersonal observations) and it has been repor-
ted in Peru [24].

The secondmodel, the peat classifier, constrained
to potential peat classes (figure S6), utilized the eco-
system type and peat presence/absence reference data
described in figure 1 as well as additional reference
points from other sources (figure S7). The peat clas-
sifier model was trained using the ALOS2 PALSAR2
dry season HH and wet season HV backscatter and
a flood fraction product derived from the HH backs-
catter time-series. We further included the Sentinel-1
VH multi-temporal standard deviation and the HLS
NDVI and NDWI. The output generated a peat prob-
ability for each pixel of peatland landcover types.

From this output we generated two estimates of
peatland area by ecosystem type following different
assumptions that create more inclusive or more con-
servative estimates. For the first, our ‘inclusive area
estimate,’ we multiplied the area of each pixel by the
peat probability (e.g. 0.30× 900m2= 270m2 of likely
peat area, for a 30 × 30 m pixel with an assigned
probability of 30%). This generates a large estim-
ate because of large areas with low probability for
peat cover, especially in the floodplain forest class.
Additionally, we generated an alternative more con-
servative estimate of peatland area, which discounts
areas with low probability to 0. For this ‘conservative
area estimate,’ we grouped the peatland probabilities
result into four modal categories (very low probab-
ility, low probability, medium probability and high
probability) as defined by local minima of the dis-
tribution function of probabilities. The conservative
estimate of peat area assumes peat is present within
the more probable modes of predicted peatland cover
(medium and high probability) and absent from the
low and lowest probability areas.

For each of these approaches to estimating area,
we generated 95% confidence intervals from the con-
fusion matrix of the classification to estimate map
estimation error and 95%confidence intervals of each
ecosystem type [51]. We used these 95% confidence
intervals to simulate a distribution of 1000 values of
area for each peatland type.

To estimate peat volume, we used a similar
bootstrap resampling approach as described above
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Figure 1.Map of new field observations of wetland soils from this study as well as prior information on predicted and confirmed
peatland locations in the eastern Colombian lowlands. Insets detail clusters of peatland-rich regions we identified: Rio Ariari
catchment in the Andean piedmont of the Amazon-Llanos ecological transition (A); the Rio Vaupés floodplain, a blackwater
Amazonian river that feeds the Rio Negro (B); lower Rio Inirida blackwater catchment near the confluence with the Rio Orinoco
(C); upper Rio Caquetá catchment in the Andean piedmont of the Amazon basin (D). Insets also detail regions with
concentrations of predictively mapped peatlands, but where we were unable to detect any peatlands: palm swamps and riparian
wetlands near the Rio Meta in the Llanos Orientales (E); upper Rio Guaviare floodplain, an Andean whitewater river tributary of
the Orinoco (F). Red-tinted regions in the south cover the only three Colombia departments within the study area (Amazonas,
Putumayo, Caquetá) with mapped histosols [1] or prior published peatland observations [43, 44] (figure S7). Base map is public
domain provided by Natural Earth (www.naturalearthdata.com/). Reproduced with permission from [https://www.
naturalearthdata.com/].

for estimating carbon stocks, except instead of
calculating ecosystem carbon densities, we simply
generated mean values and 95% confidence intervals
of depth for each peatland type. To estimate carbon
stock (as described above) for the floodplain forest
peatland class for which we lack soil cores, we sub-
stitute palm swamp soils data since these ecosystems
are most closely related ecologically.

3. Results and discussion

3.1. Wide distribution of peatlands
Our results demonstrate that peatlands are widely
distributed throughout Colombia’s eastern lowlands.
During 8 field campaigns spanning five Colombian
departments, we visited 104 potentially peat-forming
wetlands, finding 51 sites with peat soils >40 cm
thick (figure 1, table S1). These peatlands exist
within a variety of hydrogeochemical, geomorpholo-
gic and climatic settings, occurring on both whitewa-
ter and blackwater/clearwater floodplain terraces; in
the Andean piedmont as high as 400m elevation; and

overlying gray clayey sediment and white-sand soils
derived from the Guiana Shield formation. We find
peatlands to be present hundreds of kilometers away
from any previously published locations [43, 44] or
mapped Histosols [52] and within regions and bio-
mes not recognized to be conducive to peat forma-
tion, such as riparian vegetation within savannas or
shrublands and in white-sand forests (figure S8). In
addition to their wide spatial distribution, peatlands
in the Colombian lowlands are ecologically diverse,
occurring among seven different ecoregions [53].

3.2. Classification
We classified the surveyed lowland Colombian peat-
lands into two types based on our field observations
of vegetation (figure 2) and subsoils (figure 3): palm
swamp peatlands and white-sand peatlands. The two
types differ in their hydrogeomorphic setting and
geologic context, and their peats differ in their typ-
ical ranges of OM content and thickness. Each type
can occur as a closed-canopy ‘forest’ or as a sparsely-
treed ‘open’ ecosystem with a dense herbaceous cover
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Figure 2.We describe two types of peatlands in the Colombian lowlands based on plant community with two sub-types based on
physiognomy (A). Palm swamps with dominance of theMauritia flexuosa palm and white-sand peatlands with a distinctive pole
forest community of thin, short trees often including latex (Hevea sp.) among other characteristic taxa (B). Both types are
commonly closed-canopy forests but may also be encountered as herbaceous/shrub swamps or ‘open’ ecosystems. PS is an
abbreviation for Palm Swamp and OWS is an abbreviation for Open White-Sand. Note that site PLL_CUN contains four species
which are not abundant in the dataset (Enterolobium schomburgkii, Calophyllum brasiliense, Macrolobium acaciifolium and
Montrichardia arborescens) and is placed tentatively within the Open PS class due to its structural similarity and the observation
ofM. flexuosa present at the site outside the 0.1 ha plot. We also note that Hevea species encountered in white sand peatland plots
lacked reproductive parts, making species level determinations tentative (see SI for further comment).

of grass/sedge. This ecosystem classification system
extends and overlaps with a previously developed sys-
tem for Peruvian Amazonia [24].

3.2.1. Vegetation
Palm swamps peatlands are the most readily
encountered and widely distributed peatland type
in lowland Colombia. Although they are easily recog-
nized by the dominance of theMauritia flexuosa palm
(figure 2), many sites (38 out of 68 surveyed) did not
support peat soils, despite having forest structures
and plant communities indistinguishable from those
of palm swamp peatlands. Non-peat-forming min-
eral soil palm swamps are known from perennially
humid Peru [54], but in Colombia they appear to be
more prevalent, especially in the seasonally flooded

savannas of the Llanos Orientales where a highly
seasonal climate with low precipitation creates less
favorable hydrologic conditions for peat formation.

We also found peat in inundated white-sand
ecosystems, named for their white sandy substrates
[55], which we refer to as ‘white-sand peatlands’
from hereon. This finding was unexpected as peat
has not been previously reported in these South
American ecosystems. Floristically and structurally,
white-sand forests—whether peat-forming or not—
differ markedly from palm swamps, exhibiting a
pole forest structure of dense, thin-stemmed and
often stunted trees. Although structurally similar,
Colombian white-sand peatlands are floristically dis-
tinct from ‘peatland pole forests’ described from
Peru [23] (figure S4) and are typically dominated
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Figure 3. Profiles of organic matter (OM) content from loss on ignition sampled at 10 cm intervals from peat cores of the
Colombian lowlands sorted by plant community (A). The vertical lines at 45% OM indicate our threshold for delimiting peat for
the purposes of defining the core bottom and mineral intrusions [30] following Wust et al [30]. Inset B shows ecosystem carbon
density as calculated by organic matter content and bulk density for each site’s peat column. Horizontal black bars indicate mean.
Core gaps (e.g. open palm swamp site PLL-ISL) represent water filled horizons at sites with floating peat mats. OWS is an
abbreviation for Open White-Sand. Site details are listed in table S1.

by latex-producing Hevea sp. (figure 2). The pres-
ence of a white-sand substrate beneath up to two
meters of peat soil is counterintuitive since sandy
soils should have a poor water holding capacity and
be unlikely to support peatland hydrology. Although
we were unable to directly observe deep soil lay-
ers, we suspect the presence of an impermeable bed-
rock or cement ortstein layer beneath the white-sand
as is present in hydromorphic spodosols to which
Amazonian white-sand ecosystems are often mapped
[55]. Interestingly, peat soils atop white sandy sub-
strates have been described in Kerangas heath forests
of Southeast Asia [56–58] and a few studies describe
thick humus or organic soil layers in inundated white
sand ecosystems from other tropical South American
countries [59–61], suggesting this may be an under-
recognized, but broadly distributed peatland type.

The herbaceous/shrub or ‘open’ peatlands we
encountered, although structurally alike, share a
primary affinity with their principal forest type,
rather than each other, in terms of both species com-
position (figure 2(B)) and soil profiles (figure 3). The
distinction between forested and open canopy types is
often a gradient or patchwork within structurally het-
erogeneous peatland complexes and may reflect suc-
cessional trajectories [21]or local disturbance regimes
from fire or other yet-to-be studied mechanisms.

The peatland community typology we describe
may be expanded in the future, as there are
still regions in which wetlands have not been
well-surveyed, especially in the southern part of
the Colombian Amazon. Two types of peatlands

described in Peru, ‘open peatlands’ and hardwood
swamp forested peatlands, have not yet been cata-
logued in Colombia (though one site, PLL_CUNmay
be a candidate for a non-palm ‘open peatland’). Initial
fieldwork in the flooded savannas of the Guiana
Shield and in flooded forests of the Orinoco basin
(JCB and AGS, personal observation) suggests that
these may also constitute distinctive, undescribed
peatland ecosystems, with characteristic flora and
soil properties, or perhaps end-members of poorly
studied ecological gradients.

3.2.2. Soil profiles
Our analysis of peat column OM reveals a wide
range of peat depths and patterns of organic content
among Colombian peatlands, with clear differences
between palm swamp peatlands and white-sand peat-
lands (figure 3). Because palm swamp peatlands are
often associated with abandoned branches or flood-
plain terraces of whitewater rivers [21, 62, 63], his-
torical flood pulses have deposited mineral mater-
ial episodically [64, 65], leading to dramatically fluc-
tuating OM content down core. In contrast, white-
sand peatlands lack mineral intrusions and maintain
extremely high OM content throughout most of their
profiles, a difference that reflects settings where black-
water flood waters carry little to nomineral sediment.

Palm swamp peats have amean belowground eco-
system carbon density that is more than double that
of white sand peatlands (1230 versus 490 Mg C ha−1)
because of their deeper peat depths (mean of 2.40
versus 1.38 m) and higher bulk density (mean
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Figure 4. Summary of peatland types in Colombia’s eastern lowlands with associated plant communities, vegetation structure, soil
organic matter content and ecosystem carbon density based on field observations of 51 peatland sites and lab analyses of 39 intact
peat cores in the region. Palm swamp and white sand peatlands may be closed-canopy forests or open-canopy ecosystems with
scattered trees and herbaceous cover. Soil profiles reflect the tendency of palm swamps to occur on whitewater floodplains and
receive mineral intrusions, whereas white sand peatlands lack mineral inputs and have high concentrations of organic matter
throughout their peat profiles. Profiles shown are examples from site PLO-SPB near Puerto Lopez, Meta and site PIG-TA2 near
Puerto Inirida Guainía (figure 3).

of 0.19 versus 0.09 g cm−3). For context, these
peatland belowground carbon densities are four to
ten times greater than aboveground carbon dens-
ity of Amazonian Terra Firme forests (roughly
125 Mg C ha−1) [24]. Although these relationships
between peat depth and ecological community help
constrain regional carbon stocks (figure 4), variability
and uncertainty remain substantial and further field
investigations will yield further improvements in peat
carbon accounting within and beyond Colombia.

3.2.3. Mapping and extrapolation
We upscaled our field observations from Colombia’s
eastern lowlands to build a map of peatland cover-
age (figure 5) and generate a ‘best guess’ of peat-
land areal coverage of 19 230 km2. This ‘best guess’
is the mean of two separate estimates (9391 and
29 069 km2) of area generated using more ‘conservat-
ive’ or more ‘inclusive’ handling of large areas of wet-
lands with low predicted peat probabilities, respect-
ively (see methods). We suggest that the true peat-
land area for the study area likely lies somewhere
between 7370 and 36 200 km2, which includes the
95% confidence intervals of both conservative and
inclusive estimates. These area estimates are more
than an order of magnitude greater than one based
on mapped histosols (638 km2) [1], but substantially
less than estimates from some global peatland mod-
els (up to 58 000 km2) [16, 20] (table 1). Our estimate
of 46 km3 of peat volume (mean of volumes calcu-
lated from conservative and inclusive areal estimates

multiplied by mean depth of each peatland type) and
of 1.91 Pg carbon (from mean of conservative and
inclusive volume,mean bulk density andmean% car-
bon for each type [24]) also fall between widely diver-
gent prior estimates for the region (0.32–214 km3 and
0.02–10.8 Pg) [1, 16, 19, 20].

3.2.4. Implications and controlling factors
Our field peatland observations resolve the orders of
magnitude discrepancy between estimates for peat
area based on soils maps and those of more recent
model outputs in Colombia. Although we find that
peatlands aremuch scarcer and shallower throughout
the study area than the Global Wetland Map predicts
[16], we are able to corroborate its authors’ general
conclusion–that peatlands are more widespread in
the interior of tropical South America than is widely
understood. Peatlands were previously documented
in the Amazon of Colombia [43, 44] and Peru [24, 62,
67, 68], but the occurrence of peatlands in the highly
seasonal savanna ecoregion of the Llanos Orientales
greatly extends our understanding of geographic
range and environmental conditions under which
peatlands can form and persist in the neotropics
(though we note savanna peatlands from Venezuela,
Brazil and Bolivia documented in the paleoecology
literature [69–71]). The many wet white-sand peat-
lands we encountered near the Venezuelan border
in the Guainía department (figure 1(C)) confirms
peat presence in a region where peatlands have been
predicted but had not been previously documented
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Figure 5.Map of peatland density in the Colombian lowlands as predicted by a Random Forest algorithm trained with our field
observations as well as other previously published observations of peat and non-peat soils (figure S7) and using multiple remote
sensing products, such as Copernicus Sentinel-1 and−2 and PALSAR2 (see Methods). The map has been upscaled from
30× 30 m to 1× 1 km to improve visibility at the scale of the study area, with peat density representing the percentage of
30× 30 m peat sub-pixels within each 1× 1 km pixel. Black dots and polygons in the interior of the study region are table
mountains exceeding 400 m elevation, which might support peat soils [66], but which we exclude from our predictive mapping
since we lack field data from Colombia for such ecosystems.

Table 1. Estimates of peatland area, peat volume and carbon stock for the eastern lowlands of Colombia from this and previous studies.
Reported estimates of area for this study are (or are calculated from) means of ‘conservative’ and ‘inclusive’ approaches to areal
estimation (see Methods). Ranges in parentheses span 95% confidence intervals for both approaches.

Page et al [1] Gumbricht et al [16] Xu et al [20] Melton et al [19] This study

Area (km2) 638 (427–1263) 52 915 57 879 27 260 19 230
(7370–36200)

Volume (km3) 0.32 214 124b 58b 46 (16–94)
Carbon (Pg) 0.02 10.8a 6.2a 2.9a 1.91 (0.60–4.22)
a Carbon stock estimated from volume using mean percent carbon and bulk density from Page et al [1]
b Volume estimated from area using this study’s mean peat depth of 2.14 m
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[16, 19, 72]. This updated understanding of peatland
biogeography has important implications for conser-
vation planning and Earth system modeling, which
rely on accurate spatial distributions of critical wet-
land ecosystems.

3.2.5. Controls of peatland distribution
We found that peatlands in lowland Colombia can
form and persist well away from active river flood-
plains, which expands the scope of potential peat dis-
tribution on the South American continent to inter-
fluvial regions where they may occur in association
with springs, seepages or isolated depressions and
remain largelyoverlooked. Many of these peatlands
are likely to be groundwater-dependent, with shallow
water tables difficult to detect via satellite and which
might be excluded by global maps, in contrast to reg-
ularly flooded wetlands with more readily detected
standing surface water [73]. In the absence of con-
sistent year round rainfall or coastal tides, tropical
peatlands need natural depressions and/or a source
of groundwater to maintain the consistently satur-
ated soil conditions required for peat formation in
perennially warm settings [74]. Thus, a combina-
tion of rainfall patterns and hydrogeomorphology,
along with potential OM recalcitrance factors [75],
together impose fundamental constraints on where
tropical peatlands can form. In Colombia it is evid-
ent that groundwater allows for a wide distribution
of peatlands and the same is likely to be true for many
other tropical regions where peatlands have evaded
scientific detection.

Although global predictive maps show promise,
our data suggest that without field observations they
may have limited applicability. We find that some of
the larger wetland areas in the study area unanim-
ously classified to be peatlands in predictive maps
[16, 19, 20] may be largely, if not entirely, peat
free. Although such areas are flat and receive high
annual rainfall, peat formation is likely inhibited by
extreme hydrological seasonality. A long dry season
(figure S9) that exposes wetland soils to atmospheric
oxygen likely prevents peat accumulation because
of rapid decomposition, a phenomenon observed in
artificially drained peatlands globally [7, 76]—this
is likely the case in the climatically-extreme core of
the Llanos Orientales, which experiences little rainfall
from December to March in most years (figure 1(E))
[77]. In this very flat area of savanna landscape, a
lack of topographic gradients to support groundwa-
ter aquifers that could maintain spring-fed swamps
explains the lack of peat observations, in this study
and previously [78]. Another limit to peat formation
is that some river floodplains may be too dynamic for
peat formation. Overbank flooding may bury peat-
lands undermineral silts and clays faster than peat can
accumulate [79], and river meandering may excavate
and reprocess floodplain sedimentsmore rapidly than
the peat can form. River dynamics may explain the

apparent scarcity of peatlands along some whitewater
rivers, such as the upper Rio Guaviare (figure 1(F)).
The apparent absence of peatlands in some areas
likely reflects regional climatic or local hydrologic and
topographic limits that render these areas largely free
of peat.

Further research is needed to more fully assess
the occurrence of white-sand peatlands. Of the 29
inundated white-sand ecosystems we surveyed, just 9
supported surficial peat layers of >40 cm, suggesting
that white-sand peatlands may not be common; we
caution that all but one of these observations stem
from a single region (Inirida, Guainia) and may not
reflect patterns across the broader domain of white-
sand ecosystems in Amazonia. Despite their apparent
rarity, white-sand peatlands may be widely distrib-
uted, as descriptions of thick (>40 cm) organic hori-
zons atopwhite-sand soils fromBrazil [60], Suriname
[61] and Venezuela [59], meet tropical peatland
criteria [30] and span a wide swath of northern
South America [72]. Also in need of further research
are hardwood floodplain forest peatlands, which are
poorly known, difficult to detect, and have rarely
been recorded. Nonetheless, about three-quarters of
the forested wetlands in our study area are covered
in hardwood floodplain forest, so it is important to
determine precisely what proportion of this large area
of forest holds peat.

4. Outlook for conservation

Although our estimate of peatland carbon stocks for
the Colombian lowlands remains highly uncertain,
our central estimate of 1.91 Pg (mean of inclusive
and conservative estimates) is more than one-third
of that of the Pastaza-Marañon Foreland Basin (4.36
[26] to 5.4 Pg [33]), the largest known peatland com-
plex in South America, and roughly equivalent to
70 years of emissions from fossil fuels and industry
in Colombia [80]. This finding emphasizes the need
for further peatland research and carbon-motivated
conservation efforts in Colombia, as well as in other
global peatland hotspots identified by models, but
which lack field data. An important and urgent [18]
next step in Colombia will be an assessment of peat-
land threats, degradation and carbon losses, as has
recently been carried out in Peru [8, 33, 81, 82].
Anecdotally, we observed examples of palm swamp
felling and many of the open palm swamp peatlands
in the Llanos Orientales showed evidence of char-
ring on tree trunks, indicating a history of peatland
fires. It is possible that these peatlands may be well-
adapted to withstand anthropogenic fire regimes [83,
84] but, given the history of catastrophic peat fires
elsewhere [2, 5, 85], their sensitivity to fire should be
investigated.

Further socio-ecological research is needed to
systematically assess evidence for past destruction
and analyze ongoing threats. People that live among
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Colombian peatlands include farmers and ranchers as
well as indigenous communities, which place a spe-
cial cultural importance on water bodies [86]. Socio-
ecological research should be a priority to assess inter-
actions between local communities and peatlands,
and to identify potential threats as well as oppor-
tunities for their protection under an umbrella of
community-led sustainable development [87–89].

Data availability statement

All field data described in this manuscript as well as
codes used to generate figures will be archived in the
open access Dryad database. Plant specimens collec-
ted as part of this research are at the Herbario del
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The data that support the findings of this study are
openly available at the following URL/DOI: https://
doi.org/10.3929/ethz-b-000520816 [90].
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