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Rare disease gene association discovery in 
the 100,000 Genomes Project

Valentina Cipriani1,2,3,56 ✉, Letizia Vestito1,56, Emma F. Magavern1, Julius O. B. Jacobsen1, 

Gavin Arno2,4, Elijah R. Behr5,6, Katherine A. Benson7, Marta Bertoli8, Detlef Bockenhauer9,10, 

Michael R. Bowl11, Kate Burley12, Li F. Chan13, Patrick Chinnery14, Peter J. Conlon15, 

Marcos A. Costa2, Alice E. Davidson2, Sally J. Dawson11, Elhussein A. E. Elhassan15, 

Sarah E. Flanagan16, Marta Futema5,17, Daniel P. Gale10, Sonia García-Ruiz18,19,20, 

Cecilia Gonzalez Corcia21,22, Helen R. Griffin23, Sophie Hambleton23,24, Amy R. Hicks18,19,20, 

Henry Houlden25,26, Richard S. Houlston27, Sarah A. Howles28, Robert Kleta10, Iris Lekkerkerker29, 

Siying Lin2,4, Petra Liskova30,31, Hannah H. Mitchison19, Heba Morsy32, Andrew D. Mumford12, 

William G. Newman33,34, Ruxandra Neatu35, Edel A. O’Toole36, Albert C. M. Ong37,38, 

Alistair T. Pagnamenta39,40, Shamima Rahman19, Neil Rajan23,41, Peter N. Robinson42,43, 

Mina Ryten19,20,44,45,46, Omid Sadeghi-Alavijeh10, John A. Sayer47,48,49, Claire L. Shovlin50, 

Jenny C. Taylor39,40, Omri Teltsh7, Ian Tomlinson51, Arianna Tucci1,18, Clare Turnbull52, 

Albertien M. van Eerde29, James S. Ware50,53, Laura M. Watts39,54, Andrew R. Webster2,4, 

Sarah K. Westbury55, Sean L. Zheng50,53, Mark Caulfield1 & Damian Smedley1 ✉

Up to 80% of rare disease patients remain undiagnosed after genomic sequencing1, 

with many probably involving pathogenic variants in yet to be discovered disease–

gene associations. To search for such associations, we developed a rare variant gene 

burden analytical framework for Mendelian diseases, and applied it to protein-coding 

variants from whole-genome sequencing of 34,851 cases and their family members 

recruited to the 100,000 Genomes Project2. A total of 141 new associations were 

identified, including five for which independent disease–gene evidence was recently 

published. Following in silico triaging and clinical expert review, 69 associations were 

prioritized, of which 30 could be linked to existing experimental evidence. The five 

associations with strongest overall genetic and experimental evidence were 

monogenic diabetes with the known β cell regulator3,4 UNC13A, schizophrenia with 

GPR17, epilepsy with RBFOX3, Charcot–Marie–Tooth disease with ARPC3 and anterior 

segment ocular abnormalities with POMK. Further confirmation of these and other 

associations could lead to numerous diagnoses, highlighting the clinical impact of 

large-scale statistical approaches to rare disease–gene association discovery.

Rare diseases collectively affect 3.5% to 5.9% of people worldwide5. 

Despite advances in genomic sequencing, molecular diagnosis con-

tinues to elude 50% to 80% of patients presenting to genetic clinics1. 

Furthermore, fewer than half of the 10,000 rare Mendelian diseases 

in the Online Mendelian Inheritance in Man (OMIM) database6 have 

an established genetic basis. Diagnostic failure may arise because of 

a lack of routine screening for non-coding7 or structural variants1. 

However, it is likely that a substantial proportion of the pathogenic 

variants responsible for patients undiagnosed with rare disease (cases) 

reside in those yet to be discovered genes associated with (possibly 

very rare) disorders. The scale of rare disease sequencing studies, 

such as the Undiagnosed Disease Network8, Centers for Mendelian 

Genomics9, Deciphering Developmental Disorders10 and the 100,000 

Genomes Project (100KGP)2, offers expanded opportunities to provide 

insight into pathogenic mechanisms of inherited disease, including the 

possibility of establishing disease–gene associations through case– 

control analyses, akin to methods used previously to identify common 

genetic variants influencing the risk of complex disorders. Such an 

approach provides much-needed power to identify genes harbouring 

rare pathogenic variants.

To identify disease-associated genes, we recently developed a 

framework that analyses rare protein-coding variants identified by 

the Exomiser variant prioritization tool11, in a preliminary version of the 

100KGP data1, to conduct gene-based burden testing of single probands 

(first people in a family identified as affected by a rare genetic disease) 

and family members relative to control families. In silico triage in this 

previous study highlighted 22 new disease–gene associations, three 

of which have also been reported in independent studies12–14.

In this study, we have enhanced our gene burden analytical frame-

work with a refined rare variant filtering and change of statistical mod-

elling that are more tailored to Mendelian diseases and unbalanced 

case–control studies with rare events, extended it for generic applica-

tion to any large-scale, rare disease sequencing cohorts, complemented 

it with visualization scripts and released it as an open-source R ana-

lytical framework called geneBurdenRD. In addition, we report on the 

application of the approach to a larger cohort from the final 100KGP 
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data, including 34,851 families, 226 rare diseases and a starting pool of 

4,643,230 rare candidate variants with improved in silico and added 

clinical expert triage of 69 probable new disease–gene associations.

Gene burden analytical framework

We have developed an open-source R framework (https://github.com/

whri-phenogenomics/geneBurdenRD) allowing gene burden testing 

of variants in user-defined cases (sequenced probands affected by 

tested disease along with sequenced family members where available) 

versus controls from rare disease sequencing cohorts. The minimal 

input to the framework is (1) a file of rare, putative disease-causing 

variants obtained from merging and processing Exomiser output files 

for each of the cohort samples, (2) a file containing a label for each 

case–control association analysis to perform within the cohort and 

(3) a (set of) corresponding file(s) with user-defined identifiers and 

case–control assignment per sample. Cases and controls in a cohort 

could be defined in many ways, for example, by recruited disease cat-

egory as we have done for the application to the 100KGP below, by 

specific phenotypic annotations or by phenotypic clustering. The 

100KGP is perhaps atypical, compared with other projects, in hav-

ing a virtual panel-based approach for all types of rare disease that 

required detailed inclusion and exclusion criteria for recruitment  

to specific disease categories, allowing accurate case–control defi-

nitions. Phenotype-based selection strategies would be required  

when this is not the case and can overcome false recruitment but will 

require comprehensive and accurate phenotyping for maximum effec-

tiveness. As part of the variant quality control, the initial input of rare, 

puta tive disease-causing variants is further filtered down to remove 

possible false positive variant calls and/or relatively common variants 

in the project itself. Finally, for each case–control analysis, variants 

observed in cases are discarded if seen in at least one control to mimic 

a Mendelian, fully penetrant-like disease model. The framework then 

assesses false discovery rate (FDR)-adjusted disease–gene associations 

through a cohort allelic sums test (CAST) statistic used as covariate in a 

Firth’s logistic regression model (Methods). Genes are tested for enrich-

ment in cases versus controls of rare, protein-coding, segregating vari-

ants that are (1) predicted loss-of-function (LoF), (2) highly predicted 

pathogenic (Exomiser variant score at least 0.8), (3) highly predicted 

pathogenic and present in a constrained coding region (CCR)15 or  

(4) de novo (restricted to only trios or larger families where de novo call-

ing is possible and provided by the user) (Methods). As well as various 

output files annotating these case–control association tests, volcano 

plots are generated summarizing the FDR-adjusted P values of all the 

gene-based tests for each case–control association analysis, along with 

lollipop plots of the relevant variants in cases and controls and plots of 

the hierarchical distribution of the Human Phenotype Ontology (HPO) 

case annotations for individual disease–gene associations.

Application to 100KGP

A rare variant gene burden analysis was performed on a cohort of 

34,851 single probands and larger families (72,690 genomes), filtered 

down from an initial total of 35,548 (Methods), available from the 

100KGP rare disease pilot and main programme (Data Release v.11) 

(Fig. 1 and Supplementary Table 1). The distribution of sex and geneti-

cally inferred ancestry in the overall cohort (Supplementary Table 1) 

is largely as expected from the reported ethnicity of the UK popula-

tion (86% people of European descent, 8% people of Asian descent, 

3% people of African/Caribbean descent, 2% mixed and 1% other in 

the 2011 census of England and Wales). A starting pool of 4,643,230 

rare, protein-coding, segregating and most predicted pathogenic  

(per gene) variants for the analysis was derived by running Exomiser for 

each single proband and family and applying the initial variant quality 

control. Our pipeline was then used to detect statistically significant 

gene-based enrichment in relevant variant categories (predicted LoF, 

highly predicted pathogenic, highly predicted pathogenic in CCR 

regions, de novo) for ‘cases’ in each of 226 ‘specific diseases’ used 

for patient recruitment by the 100KGP1 versus ‘controls’ who were 

defined as probands from any other 20 broad ‘disease groups’ in the 

project (for example, intellectual disability cases were compared with 

all non-neurological probands as controls). A pairwise phenotypic 

comparison (Supplementary Fig. 1) highlights that the highest levels 

of similarity between samples are within these ‘specific disease’ cate-

gories, with extensive similarity often seen to other diseases in the 

same broad group (excluded in our control strategy), and no or more 

modest levels to the control disease categories (note that when com-

bining all the control diseases, the median phenotypic similarity score 

between cases and controls was zero for all tested diseases). Applied 

cutoffs required at least five case probands per ‘specific disease’ and 

at least four probands (of which, at least two cases) with a relevant 

rare variant per disease–gene burden test. Overall, we performed 161 

case–control gene burden analyses. Only gene-based enrichments that 

were more frequent in cases than controls (putative ‘disease-causing’ 

as opposed to ‘protective’) were considered in the statistical correction 

for multiple testing (51,899 association tests) (Fig. 1 and Supplemen-

tary Table 2; Methods).

We identified 165 previously known and 141 new potential disease–

gene associations (Supplementary Table 3 and Extended Data Fig. 1), 

imposing a 0.5% FDR. At this threshold, we observed a reasonable recall 

(3.2%) and precision (47.4%) of currently known associations (using 

green genes in PanelApp16 only), a balanced number of known and new 

signals and no enrichment at all for synonymous variants (empirical 

negative control burden test). Not previously known (new) signals were 

initially defined, at the first round of analysis in March 2021, as having 

no documented evidence for an association within OMIM and absence 

from the ‘specific disease’ curated panel of high confidence (green) 

genes in PanelApp16. Enrichment of predicted LoF, highly predicted 

pathogenic, also in CCR and de novo variants was observed in 57%, 

17%, 10% and 16% of known and 47%, 50%, 1% and 2% of new associa-

tions respectively, revealing discovery was driven mostly by predicted 

pathogenic, missense variants.

Of our 141 new signals, 5 have had interim independent supporting 

evidence (relevant OMIM entry and/or green gene in PanelApp) emerge 

since our initial assessment was performed in 2021: mitochondrial 

disorders with MORC2 (ref. 17); craniosynostosis with SOX6 (ref. 18); 

osteogenesis imperfecta with COPB2 (ref. 19); cystic kidney disease 

with IFT140 (ref. 20) and epidermolysis bullosa with TUFT1 (ref. 21).

The remaining potential associations were further filtered and prior-

itized to 69 of 136 (57%) by removing (1) those in which the gene was a 

non-protein-coding RNA (12/136); (2) those for signals driven by domi-

nant, predicted LoF variants where the Genome Aggregation Database 

(gnomAD v.2.1.1)22 indicates there is no evidence for haplo-insufficiency 

(gnomAD observed/expected LoF at least 0.5) (19/136); or (3) those in 

which any of the cases driving the signals had already received an alter-

native genetic diagnosis (45/136) (Fig. 1 and Supplementary Table 4). 

It is possible but unlikely that criteria (3) will have removed genuine 

associations because of incorrect/partial diagnoses as the Genomics 

England diagnostic pipeline is fairly conservative, generally requiring 

predicted LoF, de novo or known pathogenic variants in well-established 

genes for a diagnosis. In comparison with the new association signals, 

163 of 165 (99%) of signals from known disease genes passed criteria 

from (1) and (2). Variants responsible for the 69 associations were clas-

sified automatically according to ACMG using Exomiser, including 

whether predicted LoF variants fulfilled the latest recommendations 

for PVS1 (ref. 23) (Supplementary Table 5).

An extensive review of the literature as well as the phenotype evi-

dence from Exomiser, in collaboration with members of the Genomics 

England Clinical Interpretation Partnerships (GeCIPs), was performed 

to identify supporting evidence from the biological function of each 

https://github.com/whri-phenogenomics/geneBurdenRD
https://github.com/whri-phenogenomics/geneBurdenRD
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of the 69 genes, known disease associations or the phenotypes of 

the gene-deficient mouse and/or other animal models. In silico 

analyses were also undertaken to identify high quality StringDB24 

protein–protein associations between the gene signal and any other 

genes known to be associated with the disease, or with highly specific 

expression in the most relevant tissue for the disease. This combined 

Further variant quality control per each case–control analysis

(case–control variant count filter that mimics Mendelian

fully penetrant-like disease model)

Rare variant gene-based burden testingb

(four types of burden test: LoF, zero80, ccr, denovo)

(1) At least five case probands per each disease tested

(2) At least four individuals (of whom at least two case probands) with a relevant

rare variant  per each disease–gene-type of burden test

(3) Only gene-based burden more frequent in cases than in controls

(putative disease-causing as opposed to protective)

51,899 case–control association tests over

161 different specific diseases

(disease–gene type of burden test)

Significant at 0.5% FDR

First in silico triage

(1) Non-protein-coding gene (12)

(2) gnomAD oe_lof ≥ 0.5 for AD (19)

(3) At least one case already solved with different gene (45)

69 new disease–gene signals

to triage further

Application of ClinGen framework for disease–gene validity

27

ClinGen

MODERATE

42

ClinGen

LIMITED

525 Supported by experimental evidence

(Score 7–11)

Anterior segment ocular abnormalities and POMK

Charcot–Marie–Tooth and ARPC3

Epilepsy and RBFOX3

Monogenic diabetes and UNC13A

Schizophrenia and GPR17

Five highlighted candidates

with best overall evidence including experimental

(Score < 7)

165 previously known

disease–gene signals

141 potentially new

disease–gene signals

Five interim supporting evidence

(green genes in PanelApp and/or OMIM)

Mitochondrial disorders and MORC2

(Guillen Sacoto et al.17, OMIM:619090)

Craniosynostosis syndromes and SOX6

(Tolchin et al.18, OMIM:618971)

Osteogenesis imperfecta and COPB2

(Marom et al.19, OMIM:619884)

Cystic kidney disease and IFT140

(Senum et al.20)

418 statistical tests, of which

306 unique disease–gene signals

Green genes in PanelApp or OMIM

34,851a families over 226 different specific diseases

and initial pool of 4,643,230 Exomiser candidate rare variants

Epidermolysis bullosa and TUFT1

(Jackson et al.21, OMIM:620415)

Fig. 1 | Rare variant gene burden analysis of 100KGP data. Flowchart of the 

rare variant gene-based analytical framework, including triaging of results. 
aAfter sample quality control. bCAST statistic within Firth’s logistic regression 

model adjusted for sex, age, family size and inferred genetic ancestry. AD, 

autosomal dominant; oe_lof, observed/expected LoF variants.
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curation highlighted 30 associations supported by experimental  

evidence: 21 from literature curation of a gene function fitting the likely 

disease mechanism with further lines of evidence for many, 5 on the 

basis of mouse models and other evidence for some, and 4 on protein–

protein evidence only (Fig. 1 and Supplementary Table 4 (highlighted 

in bold in the summary column)).

ClinGen25 has developed a robust set of criteria to assess the evi-

dence for disease–gene associations and we applied these to our 69 

associations. Evidence of causality was moderate for 27 associations 

and limited for the remainder (Fig. 1 and Supplementary Table 4). Of 

the 69 new associations, we chose candidates with previous functional 

data for the gene fitting the likely disease mechanism (Supplementary 

Table 4) and a ClinGen classification score of at least 8 to restrict to a 

manageable size of five candidates for further highlighting here.

Monogenic diabetes with UNC13A

We identified a dominant association (ClinGen moderate score of 9)  

between variants in UNC13A and specific disease ‘diabetes with addi-

tional phenotypes suggestive of a monogenic aetiology’. The asso-

ciation is driven by rare predicted LoF variants in two singleton cases 

with the only recorded phenotypes being diabetes mellitus in both 

and one further phenotype in one: p.Ala53Serfs*50 and p.Gly44* 

(adjusted P value, 0.0005; odds ratio, 329.8; 95% confidence inter-

val, 58.2–1334.0; Fig. 2a and Supplementary Table 4). Both variants 

are absent from gnomAD v.4.1.0, classified as ‘likely pathogenic’ 

and predicted to undergo nonsense-mediated decay (NMD) (PVS1). 

The gene is depleted for rare LoF variants in gnomAD (observed/

expected LoF = 0.09 (0.05–0.16) and probability of being LoF intoler-

ant (pLI) = 1). UNC13A is a diacylglycerol and phorbol ester receptor 

gene with evidence for a role in the regulation of β cells3. Neonatal 

pancreatic β cells extracted from UNC13A-knockout mice and knock-in 

mice lacking the DAG binding domain show impaired second phase of 

insulin secretion in response to glucose stimulation4 and the heterozy-

gous mouse knockout model shows impaired glucose tolerance26. 

In addition, co-expression network analysis of UNC13A and known 

monogenic diabetes genes from PanelApp shows the most significant 

enrichment in the pancreas Genotype Tissue Expression (GTEx) v.6 

module (FDR-adjusted P value of 0.01), with UNC13A co-expressed 

with 6 out of 43 of the known genes. However, predicted LoF vari-

ants (three splice site, five stop gain or frameshift) were also seen in 

controls with no apparent history of diabetes indicating incomplete 

penetrance, later onset (year of birth of the two was 1973 and 1974 

compared with 1956–2007 (mean 1980) for controls), or that the vari-

ants in controls are not genuinely LoF.

Epilepsy with RBFOX3

We identified a dominant association (ClinGen moderate score of 11) 

between variants in RBFOX3 and specific disease ‘familial genetic gen-

eralized epilepsies’ (adjusted P value, 0.0023; odds ratio, 197.8; 95% 

confidence interval, 28.6–1,383.9; Fig. 2b and Supplementary Table 4). 

The association is driven by rare predicted pathogenic variants in two 

cases with seizure phenotypes: p.Asn105Asp in two affected sisters and 

p.Gln71* in a proband with further learning disability phenotypes; both 

variants absent from gnomAD v.4.1.0 and ClinVar and classified as vari-

ant of uncertain significance (VUS). A mouse model shows increased 

susceptibility to seizures27 and RBFOX3 is expressed specifically in the 

brain, particularly the cerebellum. A potential association between 

variants in RBFOX3 and epilepsy was published back in 201328 but no link 

is curated in OMIM or PanelApp and Gene Curation Coalition (GenCC) 

records limited evidence for the association. Our findings add strength 

to this association and a recent study has shown that RBFOX3 plays a 

critical role in the regulation of epilepsy and establishes it as a possible 

treatment path29.

Charcot–Marie–Tooth disease with ARPC3

We identified an association (ClinGen moderate score of 8) between 

variants in Actin Related Protein 2/3 Complex Subunit 3 (ARPC3) 

and specific disease ‘Charcot–Marie–Tooth (CMT) disease’. The 

association is driven by rare heterozygous variants in four cases: a 

p.Leu21Gln VUS observed in a duo and unrelated singleton case (allele 

frequency, 0.00001984 in gnomAD v.4.1.0 but in people of South 

Asian descent only), a p.Lys84dup disruptive inframe insertion VUS 

(absent from gnomAD v.4.1.0) in a singleton and a c.6 G>C VUS splice 

region variant (absent from gnomAD v.4.1.0) in a singleton (adjusted 

P value, 0.0015; odds ratio, 38.5; 95% confidence interval 9.6–144.6; 

Fig. 3a and Supplementary Table 4). The four cases show strong pheno-

typic similarity to each other (mean PhenoDigm score from pairwise, 

reciprocal, non-self hits was 0.84). Only 10 out of 1,000 randomly sam-

pled CMT sets of the same size achieved the same mean score or higher, 

indicating the ARPC3 families with common features of distal upper 

and lower limb muscle weakness and peripheral axonal neuropathy 

are phenotypically distinct from the other CMT cases. Protein–protein 

associations are observed with known CMT genes: DNM2 and SYT2. 

Actin filaments play a key role in the neuronal cytoskeleton, the dys-

regulation of which is associated with various neurological conditions 

including CMT30, and ARPC3 may regulate dendritic spine morphology 

downstream of miR-29a/b31. An ArpC3 conditional knockout mice fails 

to ensheath axons32.

Corneal abnormalities with POMK

We identified a dominant association (ClinGen moderate score of 9) 

between variants in POMK and specific disease ‘corneal abnormalities’. 

The association is driven by rare, predicted pathogenic variants (two 

predicted LoF, one missense) in three cases with recorded phenotypes 

collectively suggestive of anterior segment dysgenesis (ASD) (adjusted 

P value, 0.0001; odds ratio, 151.5; 95% confidence interval, 37.6–473.3; 

Fig. 3b and Supplementary Table 4). ASD is a spectrum of develop-

mental disorders affecting the anterior segment of the eye, often with 

incomplete penetrance and/or variable expressivity33. Co-segregation 

was apparent in two trios where a heterozygous, splice acceptor vari-

ant c.-21-1G>A (gnomAD v.4.1 allele frequency, 0.000011) and a het-

erozygous, frameshift stop gain variant p.Arg339* (gnomAD v.4.1 allele 

frequency, 0.000001) are inherited from the affected mothers in the 

female probands (Fig. 3b). Both predicted LoF variants were classified 

as VUS, with no NMD (PVS1) assignment. A further heterozygous mis-

sense variant p.Thr79Arg (gnomAD v.4.1 allele frequency, 0.000011) 

was observed in a singleton case and classified as ‘likely benign’. In the 

independent cohort described in Supplementary Table 4, one rare 

(gnomAD v.4.1 allele frequency, 0.000038), heterozygous missense 

variant p.Arg86His was identified in a mother and a son from a family 

from the Czech Republic diagnosed with ASD. POMK is involved in the 

presentation of the laminin-binding O-linked carbohydrate chain of 

alpha-dystroglycan, which forms transmembrane linkages between 

the extracellular matrix and the exoskeleton. Given the absence of 

corneal-specific expression data in the GTEx Project, we interrogated 

publicly available bulk RNA sequencing (RNA-seq) datasets34,35, which 

showed expression across all corneal cell types analysed, with high-

est amounts detected in the corneal epithelium (Fig. 3b). Bi-allelic  

(predicted LoF) variants in POMK are associated with autosomal reces-

sive muscular dystrophy-dystroglycanopathy (congenital with brain 

and eye anomalies), type A, 12 (OMIM:615249)—a disease that also 

includes several ocular abnormalities (microphthalmia, buphthalmos, 

coloboma, retinal degeneration and cataract)—indicating that POMK 

plays a crucial role in ocular development36. Morpholino knockdown of 

the pomk gene in zebrafish has been reported to show several defects, 

including developmental ocular abnormalities36. Whether the identified 

rare variants here could induce ASD by POMK haplo-insufficiency, or by 
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exerting dominant gain-of-function effects, deserves future investiga-

tion. With POMK apparently LoF-tolerant (pLI = 0) and ASD not having 

been reported in carriers of muscular dystrophy-dystroglycanopathy 

type A, 12-associated variants, the latter seems more likely.

Schizophrenia with GPR17

We identified an association (ClinGen moderate score of 9) between 

variants in GPR17 and specific disease ‘schizophrenia plus additional 

features’. The association is driven by rare predicted LoF variants in 

two singleton cases with schizophrenia and other psychiatric phe-

notypes: a p.Trp6* VUS (gnomAD v.4.1 allele frequency, 0.00018) 

(in compound-heterozygosity with p.Arg248Gln; allele frequency,  

0.00032) and a heterozygous p.Glu129* VUS variant in the second 

case (allele frequency, 0.00001 in gnomAD v.4.1.0), both of which 

are predicted not to undergo NMD (adjusted P value, 0.0022; odds 

ratio, 189.7; 95% confidence interval, 29.1–882.0; Fig. 3c and Supple-

mentary Table 4). GnomAD evidence (observed/expected LoF = 0.79 

(0.45–1.46) and pLI = 0) does not support a haplo-insufficient mecha-

nism for this gene. This may be explained by the variants acting in a 

recessive manner, or the high observed/expected LoF may represent 

the later onset, incomplete penetrance aspects of the disease and/or 

a polygenic mechanism of disease—the latter being probably given 

the phenotype. Direct protein–protein associations are recorded in 
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StringDB for numerous other neurodevelopmental disorder genes: 

GABBR2, GNAI1, GNB1, GNB5, GPSM2, GRM1, PIK3CA, PIK3R2, PLCB1, 

PSAP, SPR and TRIO. Highly specific expression is observed in the brain, 

especially the cerebral cortex. Finally, GPR17 has been shown to regulate 

the oligodendrocyte differentiation and myelination that plays a role 

in several neurological diseases, including schizophrenia37.

Discussion

In this study, we have described a gene burden analysis of a large cohort 

of rare disease cases and identified 69 new disease–gene associations 

after triaging of the statistically significant signals. We highlight five 

with strong genetic and experimental evidence: monogenic diabe-

tes associated with UNC13A, epilepsy with RBFOX3, CMT disease with 

ARPC3, anterior segment ocular abnormalities with POMK and schizo-

phrenia with GPR17. However, further evidence is necessary before 

many of the new associations described here can be used clinically for 

diagnostics, counselling and management as a ClinGen classification 

of at least moderate evidence is required for inclusion in diagnostic 

genetic test panels38. For example, the addition of further strong func-

tional study evidence would increase the score of the 42 limited ClinGen 

classification evidence candidates shown in Supplementary Table 4, 

such that they would be re-classified as moderate. We have submitted 

our evidence on the 69 associations to the GenCC database39. We are 

also pursuing the identification of variants in further independent 

cases through GeneMatcher (and linked Matchmaker Exchange nodes) 

for all our highlighted candidates, so far without success. Collection 

of more affected family members for cases in collaboration with the 

original recruiting clinicians could also raise the ClinGen category, 

although this is likely to be more difficult (for example, for a dominant 

association at least two large families with five affected members are 

needed to add one point of evidence).

Rare variant gene burden approaches have been used originally in 

the context of complex genetics where a steadily increased number of 

(typically) unrelated individuals, now reaching hundreds of thousands, 

are tested for genetic associations often across several quantitative and/

or binary traits (genome-wide/phenome-wide association studies). 

In this context, variants that confer susceptibility to a certain disease 

are of interest and, also depending on the applied allele frequency 

threshold for variant filtering, people contributing several rare variants 

per gene are (typically) allowed in burden testing, this way increasing 

the chance to test variants with opposite effect (both protective and 

deleterious) in the same gene. Indeed, one of the main motivations 

behind the development of many of the existing gene burden tests 

beyond some basic implementations, for example, the CAST statistic 

used in our geneBurdenRD approach, is the need to tackle the presence 

of variants with different effect directions and/or effect sizes in the same 

gene40. Selection of the input rare variants is crucial in any gene burden 

approach and can affect the statistical power, and becomes paramount 

in the context of Mendelian diseases, where we are not after several 

susceptibility variants (in any effect direction), but rather a single puta-

tive disease-causative variant (or pair of variants in a compound het-

erozygous genotype). Therefore, a scenario where someone (whether 

case or control) contributes several rare genotypes to the same gene 

burden should not be contemplated. Our analytical framework (gene-

BurdenRD) is based on a convenient use of the established Exomiser 

variant prioritization tool for rare Mendelian diseases to perform the 

non-trivial step of variant annotation, scoring and segregation (using 

variant call format (VCF) files from single probands or family-based 

VCF files from nuclear families) and selection of the most predicted 

pathogenic, rare, segregating (putative disease-causing) variant(s) per 

proband/family and each gene (and each compatible mode of inherit-

ance). geneBurdenRD also provides case–control variant count filter-

ing that mimics a Mendelian fully penetrant-like disease model with 

variants seen in controls not included in the analysis.

Among state-of-the-art software for whole-genome regression mod-

elling of genome-wide/phenome-wide association studies is REGENIE41, 

which has been shown to be substantially faster than other similar 

approaches such as FastGWA42, BOLT-LMM43 and SAIGE44. In addition 

to several statistical tests that are relevant mostly to complex genetics, 

such as single-variant, gene–gene and gene–environment interac-

tion tests as well as conditional analyses, REGENIE and some of the 

other related software can perform various gene burden tests, for 

example, tailored tests to binary traits in both unbalanced and bal-

anced case–control studies with rare variants, such as the saddle point 

approximation (SPA) approach45 and Firth’s logistic regression model46  

(our statistical model of choice). Notably, both the SPA and the Firth’s 

correction have been shown to provide good control of Type 1 error, but 

the SPA approach implemented in SAIGE resulted in inflated effect-size 

estimates—a feature that was not observed with the Firth’s logistic 

regression in REGENIE41. Despite the ability to handle most commonly 

used input genetic and phenotypic files such as, for example, BGEN or 

PLINK/PLINK2, and tackle population structure and relatedness, REG-

ENIE and similar approaches are not natively tailored to the analysis 

of rare, putative disease-causing, segregating variants within families 

for rare Mendelian diseases. The crucial and often cumbersome step of 

annotation, scoring and selection of the pool of relevant rare variants 

to test for gene burden is left to the user as a preliminary step with the 

suggestion to use external tools such as snpEFF or VEP. Our analytical 

framework geneBurdenRD overcomes this limitation and covers an 

important need for more tailored gene burden analytical tools for the 

analysis of rare Mendelian diseases, with approaches such as REGENIE 

remaining to be preferred for complex genetics analyses, across several 

quantitative and/or binary traits in (typically) unrelated people.

Although our approach applied to a large, rare disease cohort has suc-

cessfully highlighted numerous known associations and indicated many 

previously unreported associations, it is not without limitations, point-

ing towards opportunities for future developments and re-analysis. 

For example, although we considered only single-nucleotide vari-

ants and small insertions or deletions in protein-coding genes in the 

current study, the inclusion of non-coding rare variation as well as 

structural variants may help unveil further molecular diagnoses and 

disease mechanisms. Despite the large-scale size of the 100KGP, 29 of 

the 226 diseases observed in this analysis have fewer than five cases 

and a further 36 did not pass our testing criterium of at least two same 

disease cases with relevant variants in a certain gene. This highlights the 

current limited power in discovering new (ultra-)rare monogenic dis-

ease associations and the need for even larger rare disease sequencing 

efforts. As the input to the statistical testing of each gene in our analyti-

cal framework is simply a matrix recording the presence or absence of 

a proband’s genotype passing each criterion for each case and control, 

one possibility to increase statistical power is federated analysis across 

rare disease sequencing projects as such (preferably, Exomiser-based) 

processed data should be sharable under most ethical and legal frame-

works. Finally, whereas our focus was rare Mendelian, monogenic fully 

penetrant associations, further analytical developments and research 

are needed to uncover those missing genetic etiologies because of 

incomplete penetrance and/or variable expressivity as well as digenic 

and/or polygenic effects in rare diseases.

An alternative to our frequentist approach is offered by a Bayesian 

method for rare diseases called BeviMed47 (Bayesian evaluation of vari-

ant involvement in Mendelian disease), in which disease risk depends 

on the genotypes at rare variants in a locus, a latent mode of inheritance 

and a latent partition of variants into pathogenic and non-pathogenic 

subsets. BeviMed was used in a recent analysis of approximately the 

same cohort of rare disease patients in this study, where 241 known 

but only 19 new associations were found48. Indeed, 113 out of 165 of 

our known, and only 4 out of 141 of the potentially new (before triage), 

signals were also detected by BeviMed: TUFT1 associated with epider-

molysis bullosa; SRP9 associated with ductal plate malformations, 
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MORC2 associated with mitochondrial disorders and ARPC3 associated 

with CMT disease. Although a direct comparison is not straightforward 

because of the differences in the case–control selection strategies (the 

BeviMed study analysed 269 case sets as opposed to 161 that passed 

our testing criteria), let alone in the statistical approach, the relatively 

small overlap in signals highlights a possible complementarity of the 

two methods to discover new disease–gene associations from the same 

cohort.

There are 553 cases with no molecular diagnosis but with variant(s) 

contributing to one of the known disease–gene association signals 

that had not already been considered and classified as VUS or benign 

in the diagnostic report, giving an upper bound on the increase in diag-

nostic yield from review of these variants of 1.6% (553 of 34,851 cases 

analysed). Furthermore, 155 molecularly unsolved cases had a variant 

contributing to one of the 69 new associations giving an upper bound 

on the potential increase in diagnostic yield of 0.4% (155 of 34,851 cases 

analysed), if all genes were confirmed and the variants considered 

penetrant enough to be deemed pathogenic rather than just predic-

tive. By making our analytical framework openly available for wider 

application to similar cohort data globally, we hope to substantially aid 

disease–gene discovery and new molecular diagnoses in rare Mendelian 

diseases in numerous other cohorts.
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Methods

Rare disease genomes from the 100KGP

The Health Research Authority Research Ethics Committee East of 

England—Cambridge South (Ref. 14/EE/111) gave ethical approval for 

the 100KGP. Patients with rare diseases and affected and unaffected 

family members were enrolled to the 100KGP through 1 of the 13 NHS 

Genomic Medicine Centres across England, Northern Ireland, Scot-

land and Wales2. Consent was obtained from all participants to the 

100KGP. The recruiting clinicians assigned each proband to a specific 

disease (according to a hierarchical disease classification available in 

the project described below) and provided patient’s phenotypic data 

according to the HPO49. An initial cohort of 74,061 genomes (35,548 

single probands and larger families) from the rare disease pilot and 

main programme of the 100KGP (data release v.11) was available for 

analysis (March 2021). Genomes were sequenced using the TruSeq DNA 

polymerase-chain-reaction-free sample preparation kit (Illumina) on 

a HiSeq 2500 sequencer, which generates a mean depth of 32× (range, 

27–54) and a depth greater than 15× for at least 95% of the reference 

human genome. Whole-genome sequencing reads were aligned to 

either the Genome Reference Consortium human genome build 37 

(GRCh37) for the minority of earlier samples, or build 38 (GRCh38), 

with the use of Isaac Genome Alignment Software. Family-based vari-

ant calling of single-nucleotide variants and insertions or deletions 

for chromosomes 1 to 22, the X chromosome, and the mitochondrial 

genome (mean coverage, 2,814×; range, 142–16,581) was performed 

with the use of the Platypus variant caller50. Quality control performed 

by Genomics England highlighted that 81 of the probands had been 

recruited and sequenced twice and these duplicates were removed from 

our cohort. In addition, the required data for our Exomiser-based gene  

burden analysis, for example, recruited disease category and phe-

notypic terms, was not available for 16 families and these were also 

excluded from our cohort. The demographics of the cohort, presented 

in Supplementary Table 1, were obtained using Labkey in the Genom-

ics England Research Environment. Genetic ancestry inference was 

performed by Genomics England by principal component analysis. 

A random forest model was subsequently trained to predict ancestry 

across five super-populations (European, African, Admixed American, 

South Asian, East Asian), with people assigned to ancestries on the 

basis of a probability threshold of greater than 0.8 (https://re-docs.

genomicsengland.co.uk/ancestry_inference/).

Pool of rare, putative disease-causing variants for gene burden 

testing

The variant prioritization tool Exomiser11 (v.12.1.0 with default settings 

and latest 2007* ( July 2020) databases) was then run on all available 

35,451 single proband and family-based VCF files to obtain a pool of rare, 

protein-coding, segregating and most predicted pathogenic (per gene) 

variants to use in an rare variant gene-based burden testing analysis 

for the discovery of new rare Mendelian disease–gene associations as 

described below. For each proband/family and each gene, Exomiser 

selected a single configuration of contributing variants, that is, the 

most predicted (REVEL and MVP) pathogenic, rare (less than 0.1% 

autosomal/X-linked dominant or homozygous recessive, less than 2% 

autosomal/X-linked compound-heterozygote recessive; using publicly 

available sequencing datasets including gnomAD) protein-coding 

homozygous/heterozygous variant or compound-heterozygote vari-

ants that segregated with disease for each possible mode of inheritance. 

Coding variants (including canonical splice acceptor and donor and 

splice region (bases one to three of exon to three to eight of intron)) 

were selected by Exomiser by removing all those classified as FIVE_

PRIME_UTR_EXON_VARIANT, FIVE_PRIME_UTR_INTRON_VARIANT, 

THREE_PRIME_UTR_EXON_VARIANT, THREE_PRIME_UTR_INTRON_VAR-

IANT, NON_CODING_TRANSCRIPT_EXON_VARIANT, UPSTREAM_GENE_

VARIANT, INTERGENIC_VARIANT, REGULATORY_REGION_VARIANT, 

CODING_TRANSCRIPT_INTRON_VARIANT, NON_CODING_TRAN-

SCRIPT_INTRON_VARIANT and DOWNSTREAM_GENE_VARIANT. The 

Exomiser analysis did not return any candidate variants for 29 families, 

generally for larger families with several affected people where no rare, 

putative disease-causing variants remained after filtering, leading to 

an interim dataset size of 35,422 single probands and larger families. 

To control for false positive variant calls and/or relatively common 

variants in the project itself, we further discarded variants on the basis 

of how often they were observed in the Exomiser master dataset itself 

(frequency greater than 2% for variants in a compound-heterozygote 

genotype, greater than 0.2% for mitochondrial DNA genome vari-

ants, greater than 0.1% for heterozygote/homozygote variants). This 

led us to discard data from a further 41 families. Finally, potentially 

digenic probands with more than one recruited disease category were 

discarded from the analysis, leaving a total of 35,008 probands. As 

part of the sample quality control, kinship coefficients were used to 

control for cryptic relatedness. Genomics England provided kinship 

coefficients only for 29,180 of the 35,008 probands. Therefore, we 

calculated a genetic variant overlap measure (number of variants in 

common in the Exomiser results for two probands per total number of 

variants in the Exomiser results for the two probands) for all pairwise 

combinations of the 35,008 probands, and demonstrated that this 

was correlated strongly with the available kinship coefficients (Sup-

plementary Fig. 2). Within each recruited disease category, we then 

identified genetically related probands (kinship coefficient greater 

than 0.088 corresponding to second-degree relatives or above, or an 

equivalent variant overlap score (0.1) threshold where kinship coeffi-

cient was not available). The proband in the pair with the most Exomiser 

results (less refined list of rare, putative disease-causing variants, 

usually from a smaller family size) was then dropped from all further 

analyses. This removed 157 probands/families, leading to a final input 

analysis dataset of 34,851 single probands and larger families (40,402 

probands and affected family members and 32,288 unaffected family 

members) and 4,643,230 Exomiser-based candidate heterozygote/

homozygote variants and compound-heterozygote genotypes (Sup-

plementary Table 1 and Fig. 1). Furthermore, for each case–control 

analysis (see case–control definition below), a further variant quality 

control was applied with variants seen in at least one case (as heterozy-

gote, homozygote or in a compound-heterozygote genotype) being 

discarded if seen in at least one control (as heterozygote/homozygote/

compound-heterozygote, homozygote/compound-heterozygote, 

homozygote/compound-heterozygote, respectively) to mimic a Men-

delian, fully penetrant-like disease model.

Exomiser-based rare variant gene burden testing for Mendelian 

diseases

A rare variant gene-based burden case–control analytical framework 

that exploits rare, putative disease-causing variants as annotated, fil-

tered and scored by the variant prioritization tool Exomiser was used 

to identify new rare Mendelian disease–gene associations. The annota-

tion of variants to genes comes from this Exomiser analysis using its 

default settings to identify the most damaging consequence to the set 

of Gencode-basic tagged Ensembl transcripts. The framework has been 

described previously1 and extended in this study (https://github.com/

whri-phenogenomics/geneBurdenRD). Briefly, as to the application of 

the analytical framework to the rare disease component of the 100KGP, 

cases and controls were defined exploiting the hierarchical disease clas-

sification in the project itself where the recruiting clinicians assigned 

each proband to any of 228 ‘specific diseases’ (level 4); the ‘specific 

diseases’ are in turn grouped into less specific 91 ‘disease sub-groups’ 

(level 3), each of which corresponds to 1 of 20 broad ‘disease groups’ 

(level 2) (Supplementary Table 6). Two specific diseases (pontine teg-

mental cap dysplasia and childhood onset leukodystrophy) were never 

used for recruitment in the end, leaving a final set of 226 level 4 disease 

categories. A case set was then defined as all probands recruited under 

https://re-docs.genomicsengland.co.uk/ancestry_inference/
https://re-docs.genomicsengland.co.uk/ancestry_inference/
https://github.com/whri-phenogenomics/geneBurdenRD
https://github.com/whri-phenogenomics/geneBurdenRD


each of the 226 level 4 disease categories and its corresponding control 

set as all recruited probands except those under the level 2 category 

containing the specific level 4 disease, for example, hypertrophic cardi-

omyopathy cases were compared with all non-cardiovascular disorders 

probands as controls. As with the gene burden testing, the gene-based 

enrichment of variants in cases versus controls was quantified using the 

cohort allelic sums test (CAST)51 statistic under four proband genotype 

scenarios (irrespective of the mode of inheritance): (1) presence of at 

least one rare, predicted LoF variant; (2) presence of at least one rare, 

highly predicted pathogenic variant (Exomiser variant score of at least 

0.8 (either predicted LoF or missense variants predicted to be patho-

genic)); (3) presence of at least one rare, highly predicted pathogenic 

variant in a CCR and (4) presence of a rare, de novo variant (restricted 

to only trios or larger families where de novo calling is possible and 

provided by the user). These CCR regions were defined previously by 

looking for the absence of variation in gnomAD15 at various levels of 

certainty and in the application to the rare disease component of the 

100KGP we used the 95% percentile download. Given that Exomiser 

selects by default a single configuration of ‘contributing’ variants for 

each proband/family, each gene and each possible mode of inheritance 

as compatible with available family-based data and we calculated the 

CAST statistic as the best observed irrespective of the mode of inherit-

ance, the CAST statistic corresponds to a sum test statistic40. The gene 

burden association is then assessed either using a binary case–control 

status versus the CAST statistic in a right-tailed Fisher’s exact test as 

in the original implementation of the analytical framework1, or using 

the CAST statistic as a covariate in a Firth’s logistic regression model46 

that is tailored to testing unbalanced case–control datasets with rare 

events. In the application to the rare disease component of the 100KGP, 

Firth’s logistic regression models were adjusted for age, sex, family size 

(single proband/duos/trios and larger families) and inferred genetic 

ancestry (Supplementary Table 1). To maintain statistical validity and 

power, the analysis was limited to those disease–gene associations 

where an arbitrary set of at least five cases exist for the specific disease 

tested and, for each of the four gene-based proband genotype scenarios 

above, where relevant variants in the gene were seen in at least four 

probands, of which at least two were cases (we would not follow up 

associations signals driven by single cases/families in the first instance). 

Only gene-based enrichments that were more frequent in cases than 

controls (putative disease-causing as opposed to protective) were con-

sidered in the statistical correction for multiple testing. The Benjamini 

and Hochberg method52 was used to correct for multiple testing; an 

overall FDR-adjusted P value threshold of 0.5% was used for claiming 

statistically significant disease–gene associations for further triaging.

Triaging

First in silico triage. The statistically significant associations were 

further filtered for those where (1) the gene was protein-coding as the 

Exomiser coding variant filtering settings also identified variants dis-

rupting non-protein-coding RNA genes (gene type definitions from the 

human gene nomenclature committee (HGNC) website); (2) for domi-

nant, LoF signals there was gnomAD evidence for haplo-insufficiency 

(gnomAD v.2.1.1 observed/expected LoF less than 0.5) and (3) none of 

the cases driving the signal were already assigned a molecular diagnosis 

in other genes as part of the 100KGP routine diagnostic pipeline.

Application of ClinGen framework for gene–disease validity.  

Classification of the disease–gene associations according to ClinGen 

criteria (https://clinicalgenome.org/docs/gene-disease-validity- 

standard-operating-procedures-version-10/) was applied using in 

silico approaches where possible. The case-level variant score was 

calculated from scoring and summing all case variants that support 

a particular mode of inheritance for a disease–gene association. LoF 

variants (stop gain, frameshift or splice acceptor/donor) scored 1.5 

points or 2 if de novo, whereas others scored 0.1 points or 0.5 if de novo. 

A case–control study score of 5 points for an odds ratio greater than 5, 4 

points for odds ratio greater than 3 or 3 points for odds ratio less than 3 

was assigned. The larger of the case-level variant score or case–control 

study score was used as the genetic evidence score, capped at a maxi-

mum of 12 for those associations that had many supporting case vari-

ants. Experimental evidence categories were calculated using a variety 

of sources. Existing evidence for a gene function fitting the likely disease 

mechanism was assessed using PubMed searches using the disease and 

gene name and the background knowledge of the experts in the various 

disease-specific GeCIPs. Scores of 0, 1 or 2 were awarded depending 

on whether there was no, some tenuous or lots of evidence. Gene ex-

pression was assessed using GTEx Project data through the web portal 

of the Human Protein Atlas (https://www.proteinatlas.org/ (ref. 53);  

and/or publicly available relevant RNA-seq datasets34,35 processed with 

STAR v.2.7.6a and Salmon v.1.4.0, and a score of 0, 1 or 2 assigned for no, 

widespread or solely specific expression in the relevant disease tissue. 

Defaults of one point for protein–protein association evidence (high 

quality, direct experimental interactions scoring greater than 0.7 in 

StringDB with genes on the disease panel from PanelApp16) and 2 points 

for mouse/zebrafish evidence (phenotypic similarity as calculated by 

Exomiser between the patient’s phenotypes and the mouse/zebrafish 

phenotypes where the orthologous gene was disrupted) were used. The 

rounded sum of genetic and experimental evidence points was used to 

assign the final ClinGen classification of the evidence for the associa-

tion as being limited (0.1–6 points), moderate (7–11 points) or strong 

(12–18 points). Definitive evidence for an association is considered 

to be a score of 12–18 as well as convincing replication of the result in 

more than two publications over more than 3 years. Therefore, none 

of our associations will be classified as definitive at this early stage.

Visual representation of variant location in lollipop plots

Visual representations of the variant locations in the protein were gen-

erated by extending the Mutplot software54. The x axis represents the 

amino acid chain and its annotated protein domain from UniProt. Each 

lolly indicates a variant by its protein change annotated on the MANE 

Select transcript or MANE Plus Clinical if a stronger impact is predicted 

(the transcript used is specified in the plot) and the frequency is shown 

on the y axis. Its shape indicates the genotype found in the proband. 

The colour indicates the type of variant and the variant’s functional 

annotation. If the variant has both a p. change annotation and a number 

in parenthesis it means that the original p. change was annotated on a 

different transcript and the amino acid position in parenthesis indicates 

the re-annotation on the selected transcript. If the only annotation 

available indicates a number in parenthesis it means that the variant 

was in the non-coding region for that transcript; therefore, the lolly 

was placed on the closest amino acid.

PhenoDigm patient similarity comparisons

During the assessment of some disease–gene associations, the pheno-

typic similarity between the probands driving the signal was calculated 

using their HPO term annotations and the Exomiser API to give a Phe-

noDigm55 score between 0 and 1. The mean of the pairwise, reciprocal, 

non-self hits was calculated and compared with those obtained from 

1,000 iterations when the same number of probands was selected at 

random from the set of cases with that disease.

Co-expression network analysis

Co-expression network analysis of our candidate genes and known 

genes linked to the potentially associated disease (green genes in Pan-

elApp v.1.120) was performed using GTEx v.6 tissue-specific modules 

and the CoExp tool accessible at https://rytenlab.com/coexp (ref. 56).

Peripheral blood mononuclear cell expression analysis

RNA-seq data from peripheral blood mononuclear cells collected from 

three volunteer donors was analysed (poly A-selected libraries, mean 

https://clinicalgenome.org/docs/gene-disease-validity-standard-operating-procedures-version-10/
https://clinicalgenome.org/docs/gene-disease-validity-standard-operating-procedures-version-10/
https://www.proteinatlas.org/
https://rytenlab.com/coexp
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of two replicates untreated and two replicates treated with cyclohex-

imide for 1 h to inhibit protein translation and mimic integrated stress 

response)57. In-house, R was used for DeSeq2 normalizations per library 

and calculation of the mean values for each transcript for the two rep-

licate libraries per donor per condition. For global evaluations, across 

all three donors, the mean base value, log2 fold change post cyclohex-

imide and Benjamini–Hochberg adjusted P value were then calculated.

Gene and variant look-up in independent rare disease cohorts

In a cohort of patients from the Irish Kidney Gene Project58 (278 cystic 

kidney disease and 141 chronic kidney disease cases), rare (gnomAD 

minor allele frequency less than 0.1%) LoF, missense, splicing or intronic 

variants were extracted for our new renal disease-associated genes.  

A further cohort of more than 3,000 Dutch renal patients was queried 

for likely pathogenic/pathogenic variants in those genes using the Alissa 

bioinformatics pipeline. Similarly, a sequencing cohort of 212 partici-

pants with inherited corneal diseases, recruited in the United Kingdom 

and Czech Republic and pre-screened for known genetic causes, was 

interrogated for any rare variants in the candidate gene POMK.

Reporting summary

Further information on research design is available in the Nature Port-

folio Reporting Summary linked to this article.

Data availability

Access to the genetic and phenotypic data for the 100KGP participants 

is open to all through the Genomics England Research Environment 

(GeL RE) and by application at https://www.genomicsengland.co.uk/

research/academic/join-gecip to become a member of the Genomics 

England Research Network. Multi-sample VCF files and PED files used 

to run Exomiser can be found under /genomes/analysis/rare_disease in 

the GeL RE file system. PanelApp gene panels and evidence of disease 

associations were obtained using the PanelApp API available at https://

panelapp.genomicsengland.co.uk/api/docs/ (March 2021). Data used 

for UNC13A gene in Fig. 2, UniProt accession code Q9UPW8; data used 

for RBFOX3 gene in Fig. 2, UniProt accession code A6NFN3 and dbGaP 

accession code phs000424.v10.p2; data used for ARPC3 gene in Fig. 3: 

UniProt accession code, O15145; data used for POMK gene in Fig. 3, 

UniProt accession code Q9H5K3; GEO accession code GSE41616 and 

ENA accession code PRJEB1439;data for GPR17 gene in Fig. 3, UniProt 

accession code Q13304.

Code availability

The Exomiser-based rare variant gene burden R-based framework 

 is available via Zenodo at https://doi.org/10.5281/zenodo.14500039 

(ref. 59) as well as https://github.com/whri-phenogenomics/gen-

eBurdenRD. The framework was developed using R v.4.2.1 (R pack-

ages: tidyverse v.2.0.0; data.table v.1.15.4; reshape2 v.1.4.4; biomaRt 

v.2.54.1; ggplot2 v.3.5.1; ggrepel v.0.9.5; httr v.1.4.7; drawProteins 

v.1.18.0; ensembldb v.2.22.20; AnnotationHub v.3.6.0; ontologyIndex 

v.2.12; ontologyPlot v.1.7). A script written in Perl (v.5.30.2) is provided 

to process the Exomiser output files and create the input file for the 

geneBurdenRD framework.
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Extended Data Fig. 1 | Rare disease gene discoveries from gene burden 

analysis of the 100,000 Genomes Project data. The gene burden testing 

identified 306 disease-gene associations at 0.5% False Discovery Rate (FDR) 

including 141 potentially new. Initial triage of the new signals identified 69 

signals for further investigation through in silico collection for additional 

evidence and clinical expert review. Statistical significance, expressed as 

-log10 of FDR-adjusted P value, is shown for each of the 306 disease–gene 

associations significant at 0.5% FDR, arranged by ‘disease group’. The 165 

known associations are in green, 69 triaged new signals in blue, 5 new 

associations that had interim independent supporting evidence are in 

turquoise and the (new) triaged out signals in grey.



1

n
atu

re p
o

rtfo
lio

  |  rep
o

rtin
g

 su
m

m
ary

A
p

ril 2
0

2
3

Corresponding author(s): Damian Smedley

Last updated by author(s): Jan 8, 2025

Reporting Summary
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection STAR v2.7.6a; Salmon v1.4.0; no software was used for genetic data collection of the 100KGP participants (multi-sample VCF files were made 

available within the Genomics England Research Environment, GeL RE). Phenotypic and demographic data were retrieved using the desktop 

application and corresponding API Labkey within the GeL RE.

Data analysis Exomiser version 12.1.0 with default settings and latest 2007* (July2020) databases; Perl version 5.30.2; R v4.2.1 (R packages: tidyverse 

v2.0.0; data.table v1.15.4; reshape2 v1.4.4; biomaRt v2.54.1; ggplot2 v3.5.1; ggrepel v0.9.5; httr v1.4.7; drawProteins v1.18.0; ensembldb 

v2.22.20; AnnotationHub v3.6.0; ontologyIndex v2.12; ontologyPlot v1.7); open-source geneBurdenRD pipeline available at https://

github.com/whri-phenogenomics/geneBurdenRD; Mutplot (https://github.com/VivianBailey/Mutplot); CoExp (https://rytenlab.com/coexp).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Access to the genetic and phenotypic data for the 100KGP participants is open to all through the Genomics England Research Environment (GeL RE) and via 

application at https://www.genomicsengland.co.uk/research/academic/join-gecip to become a member of the Genomics England Research Network. Multi-sample 

VCF files and PED files used to run Exomiser can be found under /genomes/analysis/rare_disease in the GeL RE. PanelApp gene panels and evidence of disease 

associations were obtained using the PanelApp API available at https://panelapp.genomicsengland.co.uk/api/docs/ (March 2021). Data used for UNC13A gene in 

Figure 2: UniProt accession code: Q9UPW8; data used for RBFOX3 gene in Figure 2: UniProt accession code: A6NFN3 and dbGaP accession code: phs000424.v10.p2; 

data used for ARPC3 gene in Figure 3: UniProt accession code: O15145; data used for POMK gene in Figure 3: UniProt accession code: Q9H5K3; GEO accession code: 

GSE41616 and ENA accession code: E-MTAB-1498; data for GPR17 gene in Figure 3: UniProt accession code: Q13304.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 

and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Breakdown of phenotypic sex for the gene burden analysis cohort (n = 34,851) as available in the Genomics England Research 

Environment: 18,007 male and 16,844 female.

Reporting on race, ethnicity, or 

other socially relevant 

groupings

Breakdown of self-reported ethnicity for the gene burden analysis cohort (n = 34,851) as available in the Genomics England 

Research Environment is provided in Table S1 (63% 'White: British'/'White: Irish'/'White:Any other White background').  

Population characteristics Cohort of 34,851 rare disease probands plus their affected and unaffected family members (total participants: 72,690; 

recruited as described below). Mean age (and standard deviation) of probands: 30.3 years (22.8); ages ranged between 0 and 

99 with a median of 25.

Recruitment Patients with rare diseases and affected and unaffected family members were enrolled to the 100KGP through one of the 13 

NHS Genomic Medicine Centres (GMCs) across England, Northern Ireland, Scotland and Wales. The recruiting clinicians 

assigned each proband to a specific disease (according to a hierarchical disease classification available within the project (226 

‘specific diseases’ [level 4]; the ‘specific diseases’ are in turn grouped into less specific 91 ‘disease sub groups’ [level 3], each 

of which corresponds to one of 20 broad ‘disease groups’ [level 2]).

Ethics oversight The Health Research Authority (HRA) Research Ethics Committee (REC) East of England – Cambridge South (Ref 14/EE/111) 

gave ethical approval for the 100KGP. Consent was obtained from all participants to the 100KGP. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size The 100KGP is unique in its scale (i.e. one of the main goals was to achieve the sequencing of 100,000 genomes from rare disease and cancer 

patients). To our knowledge, formal sample size and power calculations were not performed for the 100KGP. Sample size and statistical 

power of gene burden analyses in rare diseases are difficult to determine and depend on many factors, including selection criteria for variants 

to test, background variation rates, locus heterogeneity, mode of inheritance, prevalence and penetrance. Guo et al. (AJHG, 2016) have shown 

that achieving 80% power in many scenarios - particularly those with high locus heterogeneity requires tens, hundreds, or even thousands of 

cases. However, there are scenarios where only a few cases, or even tens of cases, may be sufficient. We used an arbitrary threshold of at 

least five cases for the specific disease tested and at least four probands, of which at least two were a case, per each of the four gene-based 

proband’s genotype scenarios described in the main text and methods.

Data exclusions An initial cohort of 74,061 genomes (35,548 single probands and larger families) from the rare disease pilot and main programme of the 

100KGP (Data Release v.11) was available for analysis (March 2021). Quality control performed by Genomics England highlighted that 81 of 

the probands had been recruited and sequenced twice and these duplicates were removed from our cohort. In addition, the required data for 

our Exomiser-based gene burden analysis, e.g. recruited disease category and phenotypic terms, was not available for 16 families and these 

were also excluded from our cohort. The Exomiser analysis did not return any candidate variants for 29 families, generally for larger families 
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with multiple affected individuals where no rare, putative disease-causing variants remained after filtering, leading to an interim dataset size 

of 35,422 single probands and larger families. Further variant frequency filtering led us to discard data from 41 additional families as detailed 

in the main text. Potentially digenic probands with more than one recruited disease category were discarded from the analysis, leading to a 

dataset of 35,008 families (40,584 probands and affected family members and 32,434 unaffected family members). Finally, 157 probands with 

cryptic relatedness to other probands were removed, leading to a final input analysis dataset of 34,851 single probands and larger families 

(40,402 probands and affected family members and 32,288 unaffected family members) 

Replication Due to the unique features of the 100KGP, formal replication of the statistically significant signals from the whole-cohort gene burden analysis 

was not performed. The 0.5% FDR-adjusted disease-gene signals (306) were the object of a thorough in silico and clinical expert triage (165 

previously known; from 141 potentially novel - not reported in OMIM and not green genes in PanelApp, to: 27 ClinGen moderate, 42 ClinGen 

Limited), leading to 5 highlighted disease-gene associations which are detailed in the main text (plus 5 interim confirmations via collaboration 

or independent study). Gene and variant look up were performed in available independent rare disease cohorts for renal disease and corneal 

abnormalities associated genes as described in the methods and Table S4. 

Randomization Since recruitment and sequencing were performed concurrently across rare disease categories, the order in which individuals were 

sequenced with respect to phenotype was random. 

Blinding This is an observational genetic association study, not a clinical trial. Since sequencing followed enrolment, both the participants and any 

investigators were unaware of the participant's genotype produced by the 100KGP at the time of the enrolment.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies
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Palaeontology and archaeology

Animals and other organisms
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Dual use research of concern

Plants

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, 

gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the 

number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe 

the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor 

was applied.

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If 

plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to 

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism, 

off-target gene editing) were examined.
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