
This is a repository copy of Cross-IDE remote debugging of model management programs
through the Debug Adapter Protocol.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/224013/

Version: Accepted Version

Proceedings Paper:
García-Domínguez, Antonio orcid.org/0000-0002-4744-9150 and Kolovos, Dimitris
orcid.org/0000-0002-1724-6563 (2024) Cross-IDE remote debugging of model
management programs through the Debug Adapter Protocol. In: Proceedings:MODELS
2024 - ACM/IEEE 27th International Conference on Model Driven Engineering Languages
and Systems: Companion Proceedings. 27th International Conference on Model Driven
Engineering Languages and Systems, MODELS Companion 2024, 22-27 Sep 2024
Proceedings: MODELS 2024 - ACM/IEEE 27th International Conference on Model Driven
Engineering Languages and Systems: Companion Proceedings . Association for
Computing Machinery, Inc , AUT , pp. 21-25.

https://doi.org/10.1145/3652620.3687783

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Cross-IDE remote debugging of model management programs
through the Debug Adapter Protocol

Antonio García-Domínguez
a.garcia-dominguez@york.ac.uk

University of York
York, United Kingdom

Dimitris Kolovos
dimitris.kolovos@york.ac.uk

University of York
York, United Kingdom

Abstract

Eclipse Epsilon is an open-source family of model management

languages and tools, which has seen significant use in industry and

academia. Epsilon programs have been used in a variety of scenar-

ios, from being simply run in the Eclipse IDE, to being embedded

in Eclipse plugins, Java programs, web services, Ant workflows,

and Gradle build scripts. When one of these embedded Epsilon

programs showed unexpected behaviour, debugging it required

running it from the Eclipse IDE: reproducing the behaviour was

complicated if it also required recreating a complex environment.

Likewise, users asked for supporting debugging from other IDEs

beside Eclipse, as its market share has dropped in the last years. In

this demo, we will show a new feature in Epsilon 2.6 which allows

for remote debugging of Epsilon programs in a broader range of

scenarios, using the Microsoft Debug Adapter Protocol. We will

also demonstrate how this remote debugging support can be reused

from other IDEs (specifically, Microsoft Visual Studio Code), with

minimal effort compared to re-implementing a dedicated debugger.

CCS Concepts

· Software and its engineering → Integrated and visual de-

velopment environments; Domain specific languages.

Keywords

Remote debugging, Debug Adapter Protocol, Eclipse, Visual Studio

Code, Epsilon, model management languages

ACM Reference Format:

Antonio García-Domínguez and Dimitris Kolovos. 2024. Cross-IDE remote

debugging of model management programs through the Debug Adapter

Protocol. In ACM/IEEE 27th International Conference on Model Driven Engi-

neering Languages and Systems (MODELS Companion ’24), September 22ś27,

2024, Linz, Austria. ACM, New York, NY, USA, 5 pages. https://doi.org/10.

1145/3652620.3687783

1 Introduction

The Eclipse Epsilon family of model management languages [12]

has seen significant use across industry1 (having been embedded

1https://eclipse.dev/epsilon/users/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MODELS Companion ’24, September 22ś27, 2024, Linz, Austria

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0622-6/24/09
https://doi.org/10.1145/3652620.3687783

inside commercial solutions such as Rolls-Royce’s CaMCoA Stu-

dio [2]) and education2. As its userbase has broadened, demand has

grown for debugging Epsilon programs running in a variety of envi-

ronments and from different integrated development environments

(IDEs).

Epsilon programs are often executed outside of an IDE: they

can be run from Ant and Gradle workflows, and from programs

written in JVM-compatible languages (as a form of scripting for

model management). These embedded Epsilon programs may need

debugging as well. Up to the current stable version of Epsilon (2.5),

debugging support was limited to programs running from Eclipse

launch configurations: this meant that users of embedded Epsilon

programs had to find a way to reproduce their setup from Eclipse,

which was non-trivial in scenarios with significant customisations

to the environment.

Additionally, as core developers of Eclipse Epsilon, we have

seen increased demand for improved support in other IDEs besides

Eclipse. Recent Stack Overflow developer surveys [19] have shown

that Eclipse’s market share has been steadily declining: while 15.87%

of the 82,277 responses used Eclipse in 2021, this dropped to 12.57%

out of 71,010 responses in 2022 and then 9.9% out of 86,544 re-

sponses in 2023. A community member developed a Visual Studio

Code extension [11] (the most popular IDE in the 2023 Stack Over-

flow survey, selected by 73.71% of the responses) to provide syntax

highlighting for Epsilon programs, with an embedded language

server for syntactic validation. While it was possible to reuse the

existing Gradle and Maven support in VS Code to run Epsilon pro-

grams through Epsilon’s Ant tasks, the debugging facilities present

in Eclipse were not available.

We present a new feature that will be incorporated in the upcom-

ing 2.6 release of Eclipse Epsilon: support for remote debugging of

Epsilon programs through the Microsoft Debug Adapter Protocol

(DAP) [16]. This new feature addresses the two problems above: it

allows for debugging Epsilon programs running outside of an IDE,

and reduces the effort involved in supporting debugging from other

IDEs besides Eclipse. Specifically, the demonstration will show how

remote debugging can be performed from the Eclipse and VS Code

IDEs, obtaining consistent user experiences thanks to the use of

the same debugging codebase.

The rest of the paper is structured as follows: Section 2 presents

background knowledge, in the form of an overview of DAP and its

currently available implementations. Section 3 discusses the tool to

be demonstrated: the new DAP-compliant debug adapter in Epsilon.

Section 4 presents related work around remote debugging, with a

specific focus on its support across model management languages.

2https://eclipse.dev/epsilon/users/education/

MODELS Companion ’24, September 22–27, 2024, Linz, Austria García-Domínguez et al.

Figure 1: Communication between DAP client, DAP server,

and Epsilon program

Finally, Section 5 offers some general conclusions and an overview

of our plans for further development.

2 Background

This section provides a general overview of the Debug Adapter Pro-

tocol, and discusses the types of DAP-related software to consider.

2.1 The Microsoft Debug Adapter Protocol

Implementing debugging support for a language involves two as-

pects: i) writing the additional code needed to control the execution

flow of its programs (e.g. setting breakpoints and stopping/contin-

uing execution) and inspecting its state (e.g. listing the running

threads, their stack traces, and the available variables in each stack

frame), and ii) creating the appropriate tooling so the user can ac-

cess these facilities. While i) ideally only needs to be developed

once for the language, the traditional approach for ii) was to write

new debugging extensions from scratch for every IDE, requiring

significant duplication of effort.

To avoid this, Microsoft released the Debug Adapter Protocol

(DAP) specification [16], which describes how a development tool

(e.g. an IDE) exchangesmessages back and forthwith a tool-agnostic

debug adapter that translates the specifics of the language’s debug-

ging APIs to a generic set of JSON-based messages. The goal of DAP

is to enable reusing the same generic DAP-compliant debugging UI

for every language that has a DAP debug adapter. This is similar

in spirit to how the Microsoft Language Server Protocol (LSP) [17]

aims to decouple the IDE from the details of editing programs in a

specific language (e.g. syntax checking, code completion). Figure 1

shows how the DAP approach translates to Epsilon: the DAP-based

debuggers in Eclipse and VS Code talk to the Epsilon debug adapter,

which talks to the running Epsilon program.

DAP only requires maintaining two streams of bytes: one from

the DAP client (the IDE) to the DAP server (the debug adapter), and

another in reverse. These streams could come from the two sides

of a TCP connection (typically used when attaching to a running

program), or from the standard I/O of a process (commonly used

when launching a program for debugging). DAP supports request-

response communication from the client to the server (e.g. łset

these breakpointsž), as well as the sending of events from the server

(e.g. łthe program has stopped at a breakpointž).

2.2 DAP implementations

As mentioned above, DAP essentially requires that the development

tool has a compliant debugging UI, and that the language has a

debug adapter. It only specifies the JSON messages and does not

require using a specific set of client or server libraries: either side

can be implemented in the most appropriate technical stack. This

has allowed a broad variety of implementations to appear, some of

which are listed in the official DAP homepage [15]. On the client

side, these include desktop-based IDEs such as Eclipse (via the

LSP4E [8] project) and Visual Studio Code, web-based IDEs such as

Theia, and editors like Neovim. On the server side, there are debug

adapters for most popular languages (e.g. JavaScript, Python, Java,

C#, or C++).

In order to simplify the work involved in supporting the DAP

protocol, a number of Software Development Kits (SDKs) have been

developed by the community. Microsoft’s implementations can be

considered to be the reference (e.g. their TypeScript-based library

for implementing and testing debug adapters). The Eclipse LSP4J [9]

open-source project provides an SDK for writing debug adapters in

Java, which is ideal for Epsilon as it is written in Java.

3 Tool: the Epsilon debug adapter

This section discusses the overall design of the Epsilon debug

adapter, and then illustrates various usage scenarios for it. The

examples are adapted from those in our sample project on GitHub3.

3.1 Overall design

As mentioned above, the new debug adapter in Epsilon 2.6 is writ-

ten on top of LSP4J, which takes care of the low-level details of

message (de)serialisation, connection management, and message

correlation. This allowed us to focus on the core task: to implement

remote debugging for the Epsilon languages4. This is a total of 12

different languages, each with their own specifics for debugging:

thankfully, they are all either based on a common language (the

Epsilon Object Language, or EOL), or are pre-processed into that

common language (templates written in the Eclipse Generation

Language are transformed on-the-fly to EOL). The debug adapter

mostly relies on the commonly available facilities, and delegates

to the languages themselves for language-specific details (e.g. to

verify whether a breakpoint location is valid or not).

Figure 2 shows a UML class diagramwith a high-level view of the

key components in this design. The Program running the Epsilon

program is responsible for creating and configuring the appropriate

IEolModule implementation (e.g. EolModule for EOL or EtlModule

for ETL): since the Epsilon APIs allow for the integration of models

from arbitrary technologies using its Epsilon Model Connectivty

APIs [7], this has been kept away from the responsibilities of the

EpsilonDebugAdapter. The debug adapter is therefore limited to

attaching to a pre-configured Epsilon program.

Having created and set up the IEolModule, the Program then

wraps the module into an instance of EpsilonDebugServer, which

abstracts away the details of setting up the EpsilonDebugAdapter

3https://github.com/eclipse/epsilon/tree/main/examples/org.eclipse.epsilon.
examples.eol.dap/epsilon
4Except for the Epsilon Wizard Language, which is only meaningful within a graphical
modelling tool.

Cross-IDE remote debugging of model management programs through the Debug Adapter Protocol MODELS Companion ’24, September 22–27, 2024, Linz, Austria

Program

EpsilonDebugServer

+EpsilonDebugServer(module, host, port)
+run()
+getResult(): Future<Object>

EpsilonDebugAdapter

«interface»

IEolModule

+getContext(): IEolContext
+createDebugger(): IEolDebugger

«interface»

IEolContext

+getFrameStack()
+getExecutorFactory()

«interface»

IEolDebugger

+verifyBreakpoint(request)
+step()
+stepOver()
+stepReturn()

ThreadState

«creates»

«creates»

«creates»

module

«creates»«returns»

*

module

debugger

Figure 2: Simplified UML class diagram of debug adapter

and exposing it via a TCP server. The EpsilonDebugAdapter can

track not only the initial module, but also other modules that may

be launched from this initial module (e.g. the EGX template or-

chestration language may launch EGL templates). As shown in the

figure, EpsilonDebugAdapter relies on generic interfaces that are

implemented by all Epsilon languages, allowing it to create the

appropriate IEolDebugger implementation and delegate to it for

language-specific breakpoint verification and execution control,

and to access the IEolContext that exposes the current frame stack

and the execution control facilities of the language.

The debug adapter makes use of the Epsilon Model Connectivity

layer as well. When stopped at a breakpoint, the debug adapter will

delegate to the reflective capabilities of the EMC driver to inspect

the properties of values that correspond to model elements. This

allows it to show model element properties in the same way that

they would be accessible from Epsilon programs.

3.2 Debugging Epsilon programs from Java

Having explained the high-level design, we can show the various

ways inwhich the debug adapter can be used. If the Epsilon program

is being executed from a piece of Java code, it can be changed to use

remote debugging by following the approach in Listing 1. The debug

Boolean flag is just for illustration: the exact way to choose between

regular execution and remote debugging is up to the developer.

When the debug server is run, it will wait for an attach request

from a debugger before starting the Epsilon program. After the

program finishes running and the server shuts down, it will get its

result or throw the exception that crashed the program, as usual.

It is worth noting that the EpsilonDebugServer class includes APIs

to allow developers to map arbitrary module URIs to filesystem

paths, in order to debug Epsilon programs that are loaded from

Listing 1: Running an Epsilon program in remote debugging,

compared to normal execution

1 // ... module creation and setup code ...

2 Object result;

3 if (debug) {

4 var server = new EpsilonDebugServer(module, port);

5 server.run();

6 result = server.getResult().get();

7 } else {

8 result = module.execute();

9 }

10 // ... module disposal code ...

Listing 2: launch.json configuration for remote debugging

via VS Code on port 4040

1 {

2 "type": "epsilon",

3 "request": "attach",

4 "name": "Debug program",

5 "port": 4040

6 }

Figure 3: Configuration for remote debugging an Epsilon

program on port 4040

other locations besides the local filesystem (e.g. packaged in a JAR

file).

Once the debug server is waiting for connections, the devel-

oper can employ any DAP-compliant client (e.g. VS Code and its

DAP-based debugger, or the Eclipse IDE after installing the LSP4E

debugger). In the case of VS Code, the developer would install

the community extension for Epsilon [11] and use the launch con-

figuration in Listing 2. For Eclipse, the developer would use the

new łRemote Epsilon Programž launch configuration type in Fig-

ure 3, which is based on the generic LSP4E launch configuration

for debugging, with some Epsilon-specific customisations such as

hyperlinks in the console for exception stack traces to the relevant

code locations.

MODELS Companion ’24, September 22–27, 2024, Linz, Austria García-Domínguez et al.

Listing 3: Debugging EOL from Gradle

1 task runEOL {

2 dependsOn tasks.setupEpsilonTasks

3 doLast {

4 ant.'epsilon.eol'(src: 'program.eol', debug: true,

debugPort: 4040)

5 }

6 }

3.3 Debugging Epsilon programs from Ant tasks

Epsilon provides Ant tasks for workflow automation, and there

was already functionality for debugging these programs so long

as they were run from the same JVM as the Eclipse IDE. The new

remote debugging capabilities remove this restriction, allowing for

debugging Ant workflows running in a different process. A user

only needs to set the debug option to true in their task:

<epsilon.eol ... debug="true" debugPort="4040"/>

Internally, the Epsilon Ant tasks rely on a Host interface that ab-

stracts away the differences between running inside and outside the

Eclipse IDE. The DefaultHost implementation is used when running

outside Eclipse, and it will use the same approach as in Listing 1,

where the port is specified by the debugPort task option: the user

will need to separately launch a DAP debugger that connects to the

same port. When running inside the Eclipse JVM, the EclipseHost

implementation will be used, which will programmatically create

and launch a łRemote Epsilon Programž launch configuration simi-

lar to that in Figure 3: in this case, debugPort can be omitted to allow

the server to choose any available TCP port from an ephemeral

range, which will be used in the launch configuration.

3.4 Debugging Epsilon programs from Gradle in

VS Code

Given that Gradle can reuse Ant tasks and that VS Code has strong

support for Gradle via an extension, the approach in Section 3.3 can

be adapted to debug Epsilon programs running via Gradle builds5.

Using Gradle over Ant has a number of advantages, namely in its

built-in dependency management, and the greater expressiveness

of Groovy/Kotlin compared to XML.

Starting from a Gradle buildfile such as the one in Epsilon’s

documentation6, the Gradle task to debug an EOL program would

look as in Listing 3. The EOL task is part of a Gradle doLast block,

to ensure that it is only run when explicitly invoked, and not in

the Gradle configure phase used by IDEs to list the available tasks.

Combined with a launch configuration such as Listing 2, debugging

such an Epsilon program would look as in Figure 4.

With just the launch configuration, debugging would require

two interactions: starting the Gradle build, and starting the remote

debugging session. To avoid this issue, VS Code allows for specify-

ing the label of a preLaunchTask inside the launch configuration, to

5Note that Maven can also reuse Ant tasks and is supported by a VS Code extension,
so this is applicable to Maven builds as well. Due to time constraints, we will only
demonstrate Gradle.
6https://eclipse.dev/epsilon/doc/articles/running-epsilon-ant-tasks-from-command-
line/#gradle

Listing 4: VS Code task definition for single-click launching

and debugging of an Epsilon program within a Gradle build

1 {

2 "type": "gradle",

3 "script": "runEOL",

4 "group": "other",

5 "buildFile": "${workspaceFolder}/build.gradle",

6 "workspaceFolder": "${workspaceFolder}",

7 "projectFolder": "${workspaceFolder}",

8 "args": "--info",

9 "problemMatcher": [

10 "$gradle",

11 "$epsilon-debug"

12],

13 "label": "epsilonDebug",

14 "isBackground": true

15 }

be executed before the debug session is started. The task would be

defined in a separate tasks.json file, such as the one in Listing 4. The

Epsilon VS Code extension [11] defines the $epsilon-debug problem

matcher that detects the logging messages from the Epsilon debug

server that indicate that it is waiting for connections, meaning that

the debugging session can be started.

3.5 Unifying local and remote debugging in

Eclipse

After implementing remote debugging, it was noted that it had a

number of advantages over the original debugging codebase which

was tied to Eclipse APIs: its decoupling from UI concerns made it

easier to automatically test, and it used LSP4E-based UIs that would

benefit from contributions from a broader community beyond the

Epsilon userbase. For those reasons, it was decided to use DAP for

the original local debug configurations as well: the launch delegates

were updated to use the approach in Listing 1 and delegate to LSP4E

for debugging.

Given the positive experiencewith DAP and its support across VS

Code and Eclipse, we are considering re-engineering other compo-

nents of the Epsilon tooling to be based on generic implementations

compliant with popular specifications. This would further reduce

the effort of supporting newer IDEs in the future. The VS Code

extension for Epsilon includes an LSP language server which could

be reused for syntax checking and other language support details

in Eclipse and other IDEs, as well as TextMate [14] grammars for

syntax highlighting. TextMate grammars work on many other IDEs,

such as Eclipse (using TM4E [10]), or IntelliJ IDEA.

4 Related work

Remote debugging is a common feature in general-purpose pro-

gramming languages. Some examples include the Java Debug Wire

Protocol (JDWP) [18], the gdbserver for C/C++ [1], or pydevd for

Python [21] (which was originally a debugger for the Python sup-

port in Eclipse, and has been reused since in other IDEs such as

PyCharm and VS Code).

Cross-IDE remote debugging of model management programs through the Debug Adapter Protocol MODELS Companion ’24, September 22–27, 2024, Linz, Austria

Figure 4: Screenshot of the VS Code debugger stopped at a breakpoint inside an EOL program

Remote debugging appears to be less common in domain-specific

languages (including those dedicated to model management). There

is a Github project providing DAP support to the Rascal metapro-

gramming language [20]. TheAcceleomodel-to-text languagemoved

to LSP-based editors and DAP-based debugging in version 4, back

in 2020 [13], but we have not found any documentation on using

Acceleo outside the Eclipse IDE. We searched łlspž through the

QVTo 3.10.8 sources [3] and could not find any mentions of LSP4J

or the DAP protocol. We similarly inspected the sources of Eclipse

OCL 6.21.0 [5], ATL 4.10.0 [4], and VIATRA 2.8.1 [6], and could not

find any mentions of LSP4J or DAP.

5 Conclusions and future work

We have presented the new remote debugging capabilities in the

Eclipse Epsilon languages for its upcoming 2.6 release, describing

the design used to support its languages in a maintainable way, and

the user experience in two IDEs (Eclipse and VS Code) and two

build systems (Ant and Gradle). We plan to continue this line of

work on re-engineering Epsilon on top of common specifications in

order to reduce the work involved in supporting newer IDEs, with

the adoption of the Epsilon LSP language server in the VS Code

extension into the main codebase, and the redesign of the current

Eclipse-based editors on top of the LSP4E and TM4E projects.

Acknowledgments

This research on remote debugging ofmodel management programs

was funded by the SCHEME InnovateUK project (#10065634).

References
[1] Gary Benson. 2015. Remote debugging with GDB. https://developers.redhat.

com/blog/2015/04/28/remote-debugging-with-gdb Last accessed: 2024-07-03.
[2] Justin Cooper, Alfonso De la Vega, Richard Paige, Dimitris Kolovos, Michael

Bennett, Caroline Brown, Beatriz Sanchez Pina, and Horacio Hoyos Rodriguez.
2021. Model-Based Development of Engine Control Systems: Experiences and
Lessons Learnt. In 2021 ACM/IEEE 24th International Conference on Model Driven

Engineering Languages and Systems (MODELS). IEEE, Fukuoka, Japan, 308ś319.
https://doi.org/10.1109/MODELS50736.2021.00038

[3] Eclipse Foundation. 2023. Eclipse QVTo 3.10.8 sources. https://git.eclipse.org/c/
mmt/org.eclipse.qvto.git/tag/?h=3.10.8 Last accessed: 2024-07-03.

[4] Eclipse Foundation. 2024. Eclipse ATL 4.10.0 sources. https://github.com/eclipse-
atl/atl/tree/v4.10.0 Last accessed: 2024-07-03.

[5] Eclipse Foundation. 2024. Eclipse OCL 6.21.0 sources. https://git.eclipse.org/c/
ocl/org.eclipse.ocl.git/tag/?h=6.21.0 Last accessed: 2024-07-03.

[6] Eclipse Foundation. 2024. Eclipse VIATRA 2.8.1 sources. https://github.com/
eclipse-viatra/org.eclipse.viatra/tree/2.8.1 Last accessed: 2024-07-03.

[7] Eclipse Foundation. 2024. The Epsilon Model Connectivity Layer (EMC). https:
//eclipse.dev/epsilon/doc/emc/ Last accessed: 2024-07-03.

[8] Eclipse Foundation. 2024. LSP4EGitHub project. https://github.com/eclipse/lsp4e
Last accessed: 2024-07-03.

[9] Eclipse Foundation. 2024. LSP4J GitHub project. https://github.com/eclipse-
lsp4j/lsp4j Last accessed: 2024-07-03.

[10] Eclipse Foundation. 2024. TM4E GitHub project. https://github.com/eclipse/tm4e
Last accessed: 2024-07-03.

[11] Sam Harris. 2024. GitHub project for the Eclipse Epsilon Languages Extension.
https://github.com/Arkaedan/vscode-epsilon/ Last accessed: 2024-07-03.

[12] Dimitrios S. Kolovos, R.F. Paige, and Fiona Polack. 2006. The Epsilon Object
Language (EOL). In Model Driven Architecture - Foundations and Applications,
Second European Conference, ECMDA-FA 2006, Bilbao, Spain, July 10-13, 2006,
Proceedings. Springer Berlin Heidelberg, New York, NY, USA, 128ś142. https:
//doi.org/10.1007/11787044_11

[13] Yvan Lussaud. 2020. Acceleo 4 ever. https://www.eclipsecon.org/2020/sessions/
acceleo-4-ever Last accessed: 2024-07-03.

[14] MacroMates Ltd. 2024. TextMate 1.5.1 documentation Ð Language Grammars.
https://macromates.com/manual/en/language_grammars Last accessed: 2024-07-
03.

[15] Microsoft Corporation. 2023. DAP Implementations. https://microsoft.github.
io/debug-adapter-protocol/implementors/adapters/ Last accessed: 2024-07-03.

[16] Microsoft Corporation. 2024. Debug Adapter Protocol homepage. https://
microsoft.github.io/debug-adapter-protocol/ Last accessed: 2024-07-02.

[17] Microsoft Corporation. 2024. Language Server Protocol homepage. https:
//microsoft.github.io/language-server-protocol/ Last accessed: 2024-07-02.

[18] Oracle Corporation. 2024. Java Debug Wire Protocol. https://docs.oracle.com/
javase/8/docs/technotes/guides/jpda/jdwp-spec.html Last accessed: 2024-07-03.

[19] Stack Overflow. 2023. Annual Developer Surveys. https://survey.stackoverflow.
co/ Last accessed: 2024-07-03.

[20] Jurgen Vinju, Davy Landman, et al. 2024. Rascal Language Servers Github
project. https://github.com/usethesource/rascal-language-servers Last accessed:
2024-07-03.

[21] Fabio Zadrozny. 2024. PyDev.Debugger Github project. https://github.com/
fabioz/PyDev.Debugger Last accessed: 2024-07-03.

	Abstract
	1 Introduction
	2 Background
	2.1 The Microsoft Debug Adapter Protocol
	2.2 DAP implementations

	3 Tool: the Epsilon debug adapter
	3.1 Overall design
	3.2 Debugging Epsilon programs from Java
	3.3 Debugging Epsilon programs from Ant tasks
	3.4 Debugging Epsilon programs from Gradle in VS Code
	3.5 Unifying local and remote debugging in Eclipse

	4 Related work
	5 Conclusions and future work
	Acknowledgments
	References

