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Insights from the largest diverse ancestry
sex-specific disease map for genetically
predicted height

Check for updates

A. Papadopoulou 1, E. M. Litkowski2,3, M. Graff 4, Z. Wang 5,6, R. A. J. Smit 5,6,7,8, G. Chittoor9,

I. Dinsmore10, N. S. Josyula 9, M. Lin11, J. Shortt11, W. Zhu12, S. L. Vedantam13,14, L. Yengo 15,

A. R. Wood 16, S. I. Berndt17, I. A. Holm 18, F. D. Mentch 19, H. Hakonarson 19, K. Kiryluk 20,

C. Weng21, G. P. Jarvik22, D. Crosslin23, D. Carrell24, I. J. Kullo 25, O. Dikilitas 25, M. G. Hayes 26,

W. -Q. Wei 27, D. R. V. Edwards28, T. L. Assimes 29, J. N. Hirschhorn14,30,31, J. E. Below12, C. R. Gignoux11,

A. E. Justice 9, R. J. F. Loos 5,6,8,32, Y. V. Sun 33,34, S. Raghavan2,3, P. Deloukas 1,36, K. E. North 4,36 &

E. Marouli 1,35,36

We performed ancestry and sex specific Phenome Wide Association Studies (PheWAS) to explore

disease related outcomes associatedwith genetically predicted height. This is the largest PheWASon

genetically predicted height involving up to 840,000 individuals of diverse ancestry. We explored

European, African, East Asian ancestries and Hispanic population groups. Increased genetically

predicted height is associated with hyperpotassemia and autism in the male cross-ancestry analysis.

We report male-only European ancestry associations with anxiety disorders, post-traumatic stress

and substance addiction and disorders. We identify a signal with benign neoplasm of other parts of

digestive system in females. We report associations with a series of disorders, several with no prior

evidence of association with height, involving mental disorders and the endocrine system. Our study

suggests that increased genetically predicted height is associated with higher prevalence of many

clinically relevant traits which has important implications for epidemiological and clinical disease

surveillance and risk stratification.

Adult height is an easilymeasured anthropometric trait that is complex and
highly heritable1,2. Several factors contribute to adult height including both
genetic and environmental, such as nutrition, socio-economic status, and
physical activity3–7.

Several observational studies have been performed to better under-
stand the associationbetweenheight anddisease. In individuals of European
ancestry, increased height has been associated with a reduced risk of several
circulatory diseases, including coronary artery disease (CAD), aortic valve
stenosis (AS), heart failure (HF), hypertension and stroke6. In addition to
these observational studies, increased genetically predicted height has been
associated with decreased risk of hypertension, diaphragmatic hernia, and
gastro-esophageal reflux disease (GERD)6. A recent study in the Million
Veteran Program (MVP) used a polygenic score based on 3290 height-
associated Single Nucleotide Polymorphisms (SNPs)2 to show that
increased genetically predicted height is associated with an increased risk of
atrial fibrillation (AF) and decreased risk of CAD, hypertension, hyperli-
pidemia. They also reported potential novel associations with peripheral

neuropathy and infections of the skin and bones, both in European and
African ancestries individuals8. Furthermore, increased genetically pre-
dicted height has been associated with longer PR interval and QRS
duration9, venous thromboembolism6,10, AF, intervertebral disc disorder,
hip fracture, vasculitis, breast cancer6,11 and colorectal cancer6,12 in European
ancestry.

The Genetics of Anthropometric Traits - (GIANT) - consortium has
performed increasingly larger meta-analyses of genome-wide association
studies (GWAS) of height over the years2,13,14. In the present study we are
using a multi-ancestry polygenic score (PGS) for height in six study
populations of diverse ancestries to explore the association with a com-
prehensive set of health-related outcomes. The PGS for height was con-
structed using genetic variants taken from the most recent GIANT GWAS
for adult height, excluding data from23andMe14.We employed aPhenome-
WideAssociationAnalyses (PheWAS) approach; ahypothesis-freeanalysis,
with no prior assumptions, to detect phenotypes associated with the height
PGS15,16, followed by meta-analysis (meta-PheWAS) of the individual
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PheWAS in each study population both within and across-ancestry
groupings, to potentially identify new diseases associated with genetically
predictedheight. Sex-stratified cross-ancestry analyseswere also considered.

Results
We performed a PheWAS in each cohort using the PGS of height as
exposure and tested its association with disease outcomes available in each
of them (Methods). The sex-combined cross-ancestrymeta-PheWAS in up
to 839,872 participants, interrogating 1768 traits (available in at least 2
cohorts), yielded254 significant associationsbelowBonferroni threshold (p-
value = 2.83E-05) (Table 1, Fig. 1). All phecode categories harboredmultiple
significant associations with the tested height PGS; circulatory system (62),
congenital anomalies (4), dermatologic (17), digestive (18), endocrine/
metabolic (35), genitourinary (8), hematopoietic (11), infectious diseases
(6), injuries & poisonings (10), mental disorders (7), musculoskeletal (29),
neoplasms (16), neurological (11), respiratory (7), sense organs (6) and
symptoms (7) (Supplementary Data 6).

The traits that displayed the strongest associations with height PGS are
shown in Table 2. The results from the PheWAS performed in each cohort,
along with the full results from the meta-PheWAS, are presented in Sup-
plementary Data 7– Supplementary Data 14 and Supplementary Data 6,
respectively.

From the cross-ancestry meta-PheWAS analysis, six traits exhibited
evidence of heterogeneity (defined as when the p-value of the Cochran’s
heterogeneity test is below Bonferroni threshold) as shown in Table 3,
Supplementary Figs. 1–7. For example, in cardiac dysrhythmias (427) the
signal indicated strong evidence for association in European ancestry (p-
value = 1.29 × 10–91) but not in the other ancestral groups (Supplementary
Data 4).We also observedevidence of heterogeneity of effects across cohorts
forCardiac dysrhythmias (Supplementary Fig. 3). Another notable example
of heterogeneity was for Chronic ulcer of skin (707) (Supplementary Fig. 5).

Cross-ancestry analyses revealed 30 additional signals that were not
present in the European ancestry meta-analyses (Supplementary Data 5,
Supplementary Fig. 8).

We further performed sex-specific meta-PheWAS analyses in the
UKB,MVP, BioVU and BioMe cohorts (males: SupplementaryData 21, 23,
25, 27 and females: Supplementary Data 32, 34, 36, 38). Themeta-PheWAS
analysis for males in up to 471,395 participants, interrogated 1582 traits
(available in at least two cohorts) and yielded 173 statistically significant trait
associations below the Bonferroni threshold (p-value = 3.16 × 10–5)
(Table 1) (Supplementary Data 19). The identified categories included the
circulatory system (50), congenital anomalies (4), dermatologic (14),
digestive (10), endocrine/metabolic (22), genitourinary (6), hematopoietic

Fig. 1 | PhenomeWide Association Study (PheWAS).Manhattan plot showing the significant phecodes per category for the sex-combined cross-ancestry PheWASmeta-

analysis of European (EUR), African (AFR), East Asian (EAS) ancestries and Hispanic (HIS) population groups.

Table 1 | Sample size and number of traits in the cross-
ancestry meta-PheWAS

Population Sample Number of
traits

Significant
traits

Bonferroni
threshold

Sex-combined 839,872 1768 254 2.83 × 10–5

Males 471,395 1582 173 3.16 × 10–5

Females 267,576 1499 56 3.34 × 10–5
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(6), infectious diseases (5), injuries & poisonings (6), mental disorders (8),
musculoskeletal (21), neoplasms (5), neurological (7), respiratory (3), sense
organs (3) and symptoms (3). In total, 10 traits, spanning across different
categories, were significant only in the male cross-ancestry meta-PheWAS
and not in the sex-combined cross-ancestry meta-PheWAS (Supplemen-
tary Data 42). For example, increased genetically predicted height was
associatedwithdecreased risk ofHyperpotassemia (276.13) (OR = 0.95, 95%
CI [0.93, 0.97], p-value = 1.23 × 10–6, het p-value = 9.46 × 10–1) in males but
showed a null association in females (Supplementary Data 42).

Looking at the ancestry level, 10 traits were significant
(p-value < 3.16 × 10–5) only in European ancestry males but not in the male
cross-ancestry analysis; 3 of them from the mental disorders category, with
increased height PGS having a decreased risk of: Anxiety disorders (300),
Posttraumatic stress disorder (300.9) and Substance addiction and disorders
(316) (Supplementary Data 16) (Fig. 2). In the other populations, Drusen
(degenerative) of retina (362.27) and Fracture of lower limb (800) were sig-
nificantly associated with increased height PGS in the male African
(decreased risk) andHispanic (increased risk) populations, respectively, but
not in the cross-ancestry analyses (Supplementary Data 17 and 18).

The meta-PheWAS analysis in up to 267,576 female individuals,
interrogated 1499 traits (available in at least two cohorts) and yielded 56
significant associations below Bonferroni threshold (p-value = 3.34 × 10–5)
(Table 1) (Supplementary Data 30). The identified categories included the
circulatory system (23), dermatologic (2), digestive (7), endocrine/

metabolic (6), genitourinary (1), hematopoietic (1), musculoskeletal (5),
neoplasms (8) and neurological (3). Only 1 association identified as sig-
nificant in the females meta-PheWAS and was not observed in the sex-
combinedmeta-PheWAS;Benignneoplasmof other parts of digestive system
(211) (OR = 0.95, 95% CI [0.92, 0.97], p-value = 1.53 × 10–5, het p-
value = 5.48 × 10–1) (Supplementary Data 41). Seven associations were
significant in European ancestry but not in the cross-ancestry analysis,
mainly from musculoskeletal and infectious diseases categories, such as
Osteoporosis (743.1) and Dermatophytosis / Dermatomycosis (110),
respectively (Supplementary Data 29).

Comparing males to females, the meta-PheWAS yielded 126 sig-
nificant associations only in males, primarily from the circulatory system,
endocrine/metabolic and musculoskeletal categories (Supplementary Data
44). Ninety-three percent of the traits had concordant effect sizes and were
larger for males. On the other hand, comparing females with males, the
meta-PheWAS yielded 13 significant associations in females only, with the
digestive and neoplasms categories including the most traits (Supplemen-
taryData 43). Ninety-two percent of the traits were concordant in direction,
and the effect sizes in females were larger. Examining the heterogeneity
between males and females in the cross-ancestry meta-PheWAS, 7 asso-
ciations were identified; 4 of them from the musculoskeletal category, such
as Acquired foot deformities (735) (Supplementary Data 40).

We performed a meta-PheWAS analysis excluding UKB in the cross-
ancestry sex-combined meta-PheWAS (Supplementary Data 46) and the

Table 2 | Top 20 significant hits from the sex-combined cross-ancestry PheWAS meta-analysis of EUR, AFR, EAS, HIS

phecode Description Category OR Lower Upper P-value pval het

427.2 Atrial fibrillation and flutter Circulatory system 1.16 1.15 1.17 1.08 × 10–226 4.50 × 10–4

427.21 Atrial fibrillation Circulatory system 1.15 1.14 1.17 1.24 × 10–158 1.27 × 10–3

454.1 Varicose veins of lower extremity Circulatory system 1.16 1.15 1.18 2.87 × 10–109 4.17 × 10–2

454 Varicose veins Circulatory system 1.15 1.14 1.17 1.23 × 10–108 5.85 × 10–2

427 Cardiac dysrhythmias Circulatory system 1.07 1.06 1.07 5.68 × 10–87 3.63 × 10–10

272.1 Hyperlipidemia Endocrine/metabolic 0.94 0.94 0.95 4.04 × 10–86 1.34 × 10–4

272 Disorders of lipoid metabolism Endocrine/metabolic 0.94 0.94 0.95 7.13 × 10–86 1.28 × 10–4

707.2 Chronic ulcer of leg or foot Dermatologic 1.19 1.17 1.21 6.29 × 10–84 7.27 × 10–3

735.21 Hammer toe (acquired) Musculoskeletal 1.18 1.16 1.20 9.23 × 10–79 3.12 × 10–3

401.1 Essential hypertension Circulatory system 0.95 0.94 0.95 1.51 × 10–78 1.29 × 10–3

401 Hypertension Circulatory system 0.95 0.94 0.95 2.20 × 10–77 1.31 × 10–3

356 Hereditary and idiopathic peripheral neuropathy Neurological 1.15 1.13 1.16 3.71 × 10–74 1.21 × 10–1

707 Chronic ulcer of skin Dermatologic 1.14 1.12 1.16 1.19 × 10–72 1.05 × 10–5

286.2 Encounter for long-term (current) use of anticoagulants Hematopoietic 1.13 1.12 1.15 4.40 × 10–71 8.36 × 10–4

427.22 Atrial flutter Circulatory system 1.17 1.15 1.19 1.96 × 10–69 1.18 × 10–1

700 Corns and callosities Dermatologic 1.15 1.13 1.17 7.51 × 10–69 2.42 × 10–5

456 Chronic venous insufficiency [CVI] Circulatory system 1.16 1.14 1.18 2.04 × 10–64 6.65 × 10–2

411.8 Other chronic ischemic heart disease, unspecified Circulatory system 0.93 0.92 0.94 6.38 × 10–59 2.80 × 10–1

411 Ischemic Heart Disease Circulatory system 0.95 0.94 0.95 1.03 × 10–56 6.53 × 10–3

411.4 Coronary atherosclerosis Circulatory system 0.94 0.94 0.95 5.14 × 10–55 2.07 × 10–3

Table 3 | Heterogeneous traits in the cross-ancestry meta-PheWAS analysis

phecode Description Category OR Lower Upper p-value pval het I2

351 Other peripheral nerve disorders Neurological 0.97 0.96 0.97 6.52 × 10–17 1.15 × 10–17 88.3%

427 Cardiac dysrhythmias Circulatory system 1.07 1.06 1.07 5.68 × 10–87 3.63 × 10–10 81.9%

700 Corns and callosities Dermatologic 1.15 1.13 1.17 7.51 × 10–69 2.42 × 10–5 73.2%

707 Chronic ulcer of skin Dermatologic 1.14 1.12 1.16 1.19 × 10–72 1.05 × 10–5 73.3%

735 Acquired foot deformities Musculoskeletal 1.06 1.05 1.07 1.11 × 10–37 2.62 × 10–10 82.1%

735.2 Acquired toe deformities Musculoskeletal 1.10 1.09 1.11 1.32 × 10–47 1.93 × 10–5 72.4%
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sex-specific ones for males and females (Supplementary Data 50 and 54).
For the sex-combined (Supplementary Fig. 9, Supplementary Data 46) and
the males (Supplementary Fig. 10, Supplementary Data 50) meta-PheWAS
the estimates are concordant as presented in the plots. In the cross-ancestry
female meta-PheWAS (Supplementary Fig. 11, Supplementary Data 54)
three traits were identified as discordant: Benign neoplasm of other parts of
digestive system (211), Other disorders of circulatory system (459), Gastritis
and duodenitis (535).

Replication analyses were performed in an independent sample of the
Colorado Biobank. Comparing the European ancestry meta-PheWAS with
the European PheWAS in Colorado biobank we observe that the ORs are
concordant in their majority; Colorado biobank has larger error bars due to
the smaller sample size than the meta-PheWAS analysis (Supplementary
Figs. 12–14). Colorado biobank also provided PheWAS results using both
weighted and unweighted PGS (Supplementary Figs. 15–17).

Discussion
We performed a large ancestrally diverse meta-PheWAS for height in six
cohorts including up to 840,000 individuals. Of the 1768 disease traits that
were in common across cohorts and were meta-analysed, we identified
254 significant PGS-trait associations (p-value = 2.83 × 10–5). The largest
number and most precise phenotypic associations were observed for the
circulatory system, endocrine/metabolic and musculoskeletal categories.

From the circulatory system category, increased genetically predicted
height was associated with an increased risk of Chronic venous insufficiency
(CVI) (456) (OR = 1.16 95% CI [1.14, 1.18], p-value = 2.04 × 10–64) (Sup-
plementaryData 6),withno evidence of heterogeneity across cohorts (het p-
value = 6.65 × 10–2). These findings were concordant with a recent study in

MVPwhich reported an associationbetween increasedgenetically predicted
height and increased risk of CVI in European American (EA) (OR = 1.366,
p-value = 1.6 × 10–35) and in African American (AA) individuals (OR=
1.469, p-value = 3.1 × 10–4)8. The effect was similar in both males and
females in our analyses. Failure of the femoral vein valves may lead to CVI,
with severe consequences. However, for the valves to be replaced, the
femoral vein diameter (FVD) must be known. A recent study by Keiler
et al.17 reported that height was positively correlated with FVD; this corre-
lation was attenuated when the sample was stratified by sex. In addition,
failure of the venous valve can lead to varicose veins17. In our study,
increased genetically predicted height was associated with increased risk of
Varicose veins (VV) (454) (OR= 1.15, 95% CI [1.14, 1.17], p-
value = 1.23 × 10–108) (Supplementary Data 6), with no evidence of hetero-
geneity across cohorts (het p-value = 5.85 × 10–2), again a finding in agree-
mentwith theMVPPheWAS8.Moreover,MendelianRandomisation (MR)
studies in European ancestry have supported a causal association between
genetically predicted height and VV18,19.

Within the circulatory system category, the strongest association was
forAtrialfibrillationandflutter (AF) (427.2) (OR = 1.16, 95%CI [1.15, 1.17],
p-value = 1.08 × 10–226) (Supplementary Data 6), with no evidence of het-
erogeneity across cohorts (het p-value = 4.50 × 10–4), and similar effect sizes
in the sex-stratified meta-PheWAS. The aforementioned MVP study
similarly reported an increased risk of AF in EA (OR = 1.381, p-
value = 5.70 × 10–84) and in AA (OR = 1.352, p-value = 3.3 × 10–4)8. Sig-
nificant causal associations from MR analysis have been reported in two
previous studies6,20.

Our study confirmed that increased genetically predicted height is
inversely associated with cardiovascular diseases21–23. Increased genetically

Fig. 2 | Estimates per ancestry in the male meta-

analysis of Phenome Wide Association Studies

(meta-PheWAS), for signals from the mental

disorders category that were identified as sig-

nificant only in the European males meta Phe-

WAS. SD standard deviation of the mean, PGS

polygenic score.
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predicted height was associated with decreased risk of hypertension (401)
(OR = 0.950, 95% CI [0.944, 0.955], p-value = 2.20 × 10–77) (Supplementary
Data 6), with no evidence of heterogeneity across cohorts (het p-
value = 1.31 × 10–3), and with similar effect sizes in males and females. This
finding is in accordancewith previous studies, although our effect sizes were
slightly attenuated, possible due to a lack of coding “hypertension” using
ICD codes8,24. According to World Health Organisation (WHO) “hyper-
tension is diagnosed if, when it is measured on two different days, the
systolic blood pressure readings on both days is ≥140mmHg and/or the
diastolic blood pressure readings on both days is ≥90mmHg”25. A study in
the Finnish population examining blood pressure found that shorter par-
ticipants had higher SBP than taller ones, and this could be partially the
reason for observing inverse association between height and cardiovascular
disease21. A study in the USA reported that height was inversely associated
with DBP in older males and females, in contrast to SBP that was positively
associated22. A recent systematic review concluded that there was a poten-
tially inverse association of stature and BP26. An MR analysis conducted in
European ancestry individuals showed that an increase in adult height was
causally associated with a lower risk of coronary heart disease, with one
potential mechanism including BP27.

Epidemiological and genetic studies suggest that increased height is
associated with decreased risk of CAD6,23,28. In a meta-analysis of European
ancestry participants, genetically predicted increased height was associated
with decreased risk of CAD (OR = 0.88, 95% CI [0.82, 0.95], p-
value < 1.00 × 10–3)28. Similar findings were reported in several MR
studies6,23. CAD is a broad category includingdiseases suchas ischemicheart
disease, myocardial infarction and coronary atherosclerosis. For instance,
Ischemic heart disease (411) (OR= 0.948, 95%CI [0.942, 0.954], p-
value = 1.03 × 10–56, het p-value = 6.53 × 10–3), and Myocardial infarction
(MI) (411.2) (OR= 0.93, 95%CI [0.92, 0.94], p-value = 3.54 × 10–41, het p-
value = 1.32 × 10–1) (Supplementary Data 6) were identified as significant
among the cardiovascular diseases and with similar effect at the sex-
stratified meta-PheWAS; all these have been confirmed in previous
studies8,29.

In the endocrine/metabolic category, several health-related outcomes
were identified. Our study identified decreased risk of Hyperlipidemia
(272.1) (OR = 0.942, 95% CI [0.936, 0.947], p-value = 4.04 × 10–86, het p-
value = 1.34 × 10–4) andHypercholesterolemia (272.11) (OR = 0.946, 95%CI
[0.939, 0.953], p-value = 5.67 × 10–55, het p-value = 4.17 × 10–2) (Supple-
mentary Data 6), with similar effect at the sex-stratified meta-PheWAS.
These findings have also been reported by MVP8, and in a Korean
population30,31. Our meta-analysis confirmed the well-established associa-
tion between 1 SD increase in genetically predicted height and decreased
risk of Type 2 diabetes (T2D) (250.2) (OR = 0.98, 95% CI [0.97, 0.99], p-
value = 2.27 × 10–11, het p-value = 9.11 × 10–3) (Supplementary Data 6)32,33.
In addition, we observed an association between increased genetically
predicted height and the increased risk of Hypothyroidism (244) (OR=
1.022, 95% CI [1.014, 1.031], p-value = 8.58 × 10–8, het p-
value = 3.30 × 10–1) (Supplementary Data 6). This is an interesting insight
towards the known epidemiological links between hypothalamic-pituitary-
thyroid (HPT) axis dysregulation and stature34.

Several health outcomes from the musculoskeletal category were
associated with genetically predicted height.Acquired foot deformities (735)
(OR = 1.06, 95%CI [1.05, 1.07], p-value = 1.11 × 10–37) were associatedwith
higher genetically predicted height, with strong evidence of heterogeneity
across cohorts (het p-value = 2.62 × 10–10) (Supplementary Data 6). In the
present study, EA descent individuals presented the strongest signal in
MVP, followed by eMERGE and in AA only in MVP (Supplementary Fig.
6).We found this association inmalesonly,which is supportedby aprevious
study reporting foot deformities to be significantly more prevalent in male
veterans versus male non-veterans in USA35. In contrast, Osteoarthritis;
localized (740.1) (OR = 1.033, 95% CI [1.026, 1.039], p-value = 3.13 × 10–22,
het p-value = 4.88 × 10–2) (Supplementary Data 6) was found to have a
similar effect in both males and females. This finding is supported by the
MVP PheWAS8 and is widely supported in the epidemiological literature,

that taller individuals have an increased risk of knee osteoarthritis, that
remained significant for both sexes, after adjusting for confounders36. A
recent meta-analysis of GWAS studies for osteoarthritis, in Icelanders and
European ancestry from UKB, found that a large proportion of osteoar-
thritis risk variants are associated with height37.

We identified several notable associations in the neoplasms category.
There has been a significant body of literature studying the association
between height and risk of breast cancer (BC) and the results are con-
troversial. Several PheWAS and MR studies reported null associations
between height PGS and BC38,39. In contrast, several studies, including ours,
confirm the association of height and risk of BC. An observational study,
using data from EPIC and the Women’s Health Initiative (WHI) in the
USA, observed that for every 10 cm increase in height there was an 18%
increased risk of ER+ BC; null associationwas found forER-BC40. Another
observational study, analysing post-menopausal women from the Nether-
lands Cohort Study (1986-2006), observed that for every 5 cm increase in
height there was a 7% increased risk of BC (95% CI: 1.01–1.13); an asso-
ciation that remained significant for the ER+ BC but not for ER- BC41.

We observed an attenuated, non-significant association, between
increased genetically predicted height and Colorectal cancer (153) (OR=
1.02, 95% CI [1.00, 1.04], p-value = 2.19 × 10–2, het p-value = 6.89 × 10–1)
(Supplementary Data 6). This finding contrasts with the majority of Phe-
WAS and MR studies that describe an association between increased adult
height and increased risk of colorectal cancer11,12,42.

We identified a significant association between increased genetically
predicted height and decreased risk of Hyperpotassemia (276.13) (OR=
0.95, 95% CI [0.93, 0.97], p-value = 1.23 × 10–6, het p-value = 9.46 × 10–1)
(Supplementary Data 19) in males. Additionally, increased genetically
predicted height was associated with 3 traits from the mental disorders
category in the males meta-PheWAS: Pervasive developmental disorders
(313) (OR = 1.06, 95% CI [1.03, 1.09], p-value = 6.11 × 10–6, het p-
value = 5.25 × 10–3),Attention deficit hyperactivity disorder (ADHD) (313.1)
(OR = 1.06, 95% CI [1.03, 1.09], p-value = 2.35 × 10–5, het p-
value = 3.93 × 10–1) andAutism (313.3) (OR = 1.215, 95% CI [1.222, 1.316],
p-value = 1.64 × 10–6, het p-value = 2.58 × 10–1) (Supplementary Data 19).
Similarly, the traits were concordant in the sex-combined meta-PheWAS
but showed null association in the female meta-PheWAS. Previous Phe-
WAS provided suggestive support of these findings, with the exception of
autism8. A study by Yackobovitch-Gavan et al.43 employing data from Israel
Clalit Health Services, reported that drug treatment for ADHD was asso-
ciated with greater decline of height z-score in boys than girls, with 66% of
the participants being boys. Additionally two studies in the US, one for
children44, and one for both children and adolescents45, confirmed a decline
of height z-scores for patients using stimulants and it is confirmedby a study
in Netherlands46. However, these studies have examined the case in which
the participants are medicated. Nevertheless, there is evidence suggesting
that there are more males diagnosed than females, which is in accordance
with our results. Our results relating to autism are in accordance with the
literature; a study in Spanish pre-school children showed that autism
spectrum disorder (ASD) had increased height in contrast to children with
typical development47. Additionally, in Australia, male babies with ASD
were born smaller, but grew taller in comparison to children with typical
development48. Therefore, for these disease traits, it seems that males drive
the association.

In males, 10 phenotypes displayed significant associations with height
PGS in European descent individuals only; 3 of them belong to the mental
disorders category: Anxiety disorders (300) (OR= 0.98, 95% CI [0.97, 0.99],
p-value = 3.21 × 10–5, het p-value = 1.40 × 10–1), Posttraumatic stress dis-
order disorders (300.9) (OR = 0.97, 95% CI [0.96, 0.98], p-
value = 2.08 × 10–7, het p-value = 2.86 × 10–1) and Substance addiction and
disorders (316) (OR = 0.96, 95% CI [0.95, 0.98], p-value = 5.85 × 10–6, het p-
value = 9.10 × 10–1) (Supplementary Data 16).

Seven traits were identified as significant in the female meta-PheWAS
for European descent individuals and not in the cross-ancestry analysis.
Amongst them, increased height PGS was associated with decreased risk of
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Osteoporosis (743.1) (OR = 0.93, 95% CI [0.90, 0.96], p-value = 6.58 × 10–6,
het p-value = 9.65 × 10–1) (Supplementary Data 29). Post-menopausal
European ancestry females had an increased risk of osteoporotic fractures,
in contrast to African and Asian ancestries49,50.

Our study had several important limitations. Although we used the
recently published cross-ancestry GWAS from GIANT, the study popula-
tionswerepredominantly ofEuropean ancestry. Thus,weobserved apoorer
prediction performance of the height PGS in our study populations that
were ancestrally diverse, diminishing the power in populations with sub-
stantial non-European admixture. It is also possible that some of the signals
observed may be driven by differences in phenotype prevalence across
cohorts. The differences in sample size by sex and ancestry complicate
interpretation of differences across these strata. This limitation is not new
for genetic studies but likely limits our inference on true sex and ancestry
differences in the phenotype associations with genetically predicted height
at phenome-wide significance. We included all available cohort data as a
discovery meta-analysis to increase power. Trait associations with geneti-
cally predicted height may be particularly influenced by indirect genetic
effects and assortative mating. A recent study showed that population
estimates are larger than within-sibship meta-analysis GWAS estimates for
height51. The authors presented strong evidence of polygenic adaptation on
taller height in European ancestry individuals, suggesting that demographic
effects, such as assortative mating, could vary between populations51,52.
Additionally, previous work in the UKBiobank has reported an association
between stature and socio-economic status in both sexes, therefore this
could serve as amediator of the reported associations rather than the actual
direct effect of height6. Lastly, we did not consider obvious reasons for
differences across studies, sex, and ancestry. Social factors have a powerful
influence on many of the phenotype-genetically predicted height associa-
tions described herein. By including data fromdiverse populations in future
investigation of the role of genetically predicted height across the phenome,
future researchmight be able to address the limitationsof this study. Itmight
be possible to better understand the genetic and environmental factors that
affect height by more broadly interpreting the results. The study’s power
would be enhanced, and more precise results would be produced by
expanding the sample size and providing more in-depth information on
lifestyle factors. Finding associations between height and disease using data
from different ancestries would improve the generalizability of our findings
and offer amore thorough understanding of the genetic and environmental
factors affecting height and disease risk. Additional approaches could
include carrying out population-specific studies, which would enable the
investigation of height-disease relationships in particular ethnic groups.
This could be accomplished by enlisting volunteers from particular ethnic
groups and gathering thorough data on disease outcomes, height, and other
pertinent covariates like lifestyle variables. In the process of creating new
treatments and preventative measures for a variety of diseases, this could
assist in the identification of novel genetic variants and pathways.

Methods
PheWAS is used to identify the effects of genetic variation already associated
with a trait of interest across a larger arrayofphenotypes, using ahypothesis-
free approach, with no prior assumptions53. We employed Bonferroni
correction to determine statistical significance. Despite this, our large
sample size facilitated the replication of known associations and even the
discovery of new ones54.

To assess the associationsof thePGSwithhospital-recorddata,weused
the PheWAS library53 implemented in R55. The package converts Interna-
tional Classification of Diseases (ICD) codes to ‘PheWAS codes’ or phe-
codes, which represent 1866 phenotypes in total formed from grouped ICD
codes using the “Phecode Map 1.2 ICD-10-CM” (https://phewascatalog.
org/phecodes_icd10cm). Each phenotype case is accompanied by accurate
controls,meaning participants who have similar diseasewith the phenotype
case are excluded. For instance, if the phenotype case under investigation is
T2D, then participants who have T1D are excluded from the control group.
This built-in exclusion feature, that prevents contamination of the controls,

is essential to preserve statistical power to identify associations53,56. The
phecodes are divided in 17 distinct categories: circulatory system, endo-
crine/metabolic, mental disorders, neurological, respiratory, infectious
diseases, neoplasms, hematopoietic, sense organs, digestive, genitourinary,
pregnancy complications, dermatologic, musculoskeletal, congenital
anomalies, symptoms and injuries & poisonings56. Next, binary logistic
regressionmodels are employed to examine the association of the exposure,
the PGS of height (independent variable), with the trait of interest with each
phecode. As covariate adjustments in each study population, we used age,
sex, genotype batch, to reduce model variability. Each study population
(described in Supplementary Information) also adjusted for principal
components for ancestry to control for confounding via population strati-
fication (details per study on ancestry determination and exclusion in
Supplementary Data 1A).

Details regarding compliance with all relevant ethical regulations
including the Declaration of Helsinki can be found in the information and
references for each participating cohort below. The PheWAS and meta-
PheWAS summary statistics results that are discussed in themanuscript are
included in the Supplementary Data 3–57.

Polygenic score
Weperformed a conditional and joint analysis (GCTA-COJO) to select
quasi-independent height-associated SNPs for the construction of the
PGS57,58. A stepwise procedure was used for SNP selection and the joint
effects of all selected SNPs were estimated after the model was opti-
mized. The genetic variants are still genome-wide significant, inde-
pendent and the variance explained by them is larger than considering
only the leading SNP at each locus. This conditional analysis was
performed in the recent cross-ancestry GWAS for adult height,
excluding data from 23andMe14, using 50,000 unrelated and randomly
sampled European participants of UKB as the LD reference panel. We
performed analyses using p-value threshold p = 5 × 10–9 to declare a
genome-wide significant hit. Also, SNPs with allele frequency differ-
ences larger than 0.2 as compared to a UKB reference panel, were
excluded from the analysis along with SNPs having MAF ≤ 0.001. The
GCTA-COJO analysis resulted in a list of 6797 SNPs. As covariate
adjustments we used age, sex, genotype batch, to reduce model varia-
bility. We also adjusted for principal components for ancestry to
control for confounding via population stratification (Supplementary
Data 1B). The PGS of height was constructed as the unweighted sum of
the height-increasing alleles within each study (Supplementary Data 1)
and afterwards is was scaled (using scale function in R).

All herein reported ORs are per one standard deviation
increase in PGS.

Meta-analysis
Meta-analysis is a popular statistical technique used to increase the power to
detect new effects by combining the information from independent studies.
In addition, heterogeneity among the studies can be assessed, employing the
beta estimates and standard errors from each study. For a small number of
similar studies, the most common technique is the fixed-effect inverse
variance weightedmeta-analysis, which uses as a hypothesis that a common
underlying effect exists for all studies59,60. We performed a meta-PheWAS,
combined in a fixed-effect meta-analysis for UKB, MVP, BioVU, BioMe,
MyCode and eMERGE cohorts, using the phecodes derived from the
PheWAS in each cohort (Supplementary Data 3- Supplementary Data 14).
For the sex-specific analysis,we employeddata from theUKB,MVP,BioVU
and BioMe (Supplementary Data 15–38). The examined ancestries were
European, African, East Asian ancestries and Hispanic population groups,
and the sample size per ancestry and per study are included in Table 4. For
more details the reader is referred to Supplementary Data 1 and 2.

The sample size and examined number of traits for the sex-combined
and sex-specific cross-ancestry meta-PheWAS are detailed in Table 1, and
for the specific ancestries in SupplementaryData 2. For themeta-analysiswe
employed the statistical software R 3.6.1 and the library metafor61.
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Replication
Replication analyses were performed in an independent sample of the
Colorado Biobank. We also performed a replication PheWAS in the same
biobank using a score weighted for the effects of the height-associated SNPs
in the GWAS meta-analysis. Details are provided in the Supplementary
Material.

UK Biobank (UKB). The UKB is a prospective cohort of 502,504 parti-
cipants, aged 40–69 years old, who were recruited between 2006 and
2010. The cohort includes information regarding a variety of phenotypes
like bloodmeasurements, clinical assessments, anthropometry, cognitive
function, hearing, arterial stiffness, hand grip strength, spirometry, ECG,
data on cancer and death registries, health and lifestyle medical condi-
tions, operations, mental health, sociodemographic factors, lifestyle,
family history, psychosocial factors and dietary intake, described inmore
detail elsewhere62. Hospital episode statistics (HES) is a database con-
taining details of all admissions at NHS hospitals in UK, which has been
linked to the UKB63.

Million Veteran Program (MVP). The Department of Veterans Affairs
(VA) created in 2011 a national cohort acrossUSA: theMVP. This cohort
was created as a representative, national and longitudinal study of
Veterans for genomic and non-genomic research, employing responses
to questionnaires, blood specimens and electronic health records (EHR).
The blood specimens were collected for genotyping, and these were
linked to the EHR, which coded the diagnosis in ICD9 and ICD10, up
until September 2019. As expected, most of the participants are males,
aged between 50 and 69 years old at recruitment. Regarding ethnicity,
European Americans and African Americans are well represented; His-
panics and Asian descent participants are also included64.

The MVP study from Raghavan et al. 8 uses different sample than the
one we are using in the current study.

BioVU. The Vanderbilt Institutional Review Board (IRB) approved the
creation of Vanderbilt DNA databank, that collected DNA samples from
2007 until 2010. During the past years, theVanderbilt UniversityMedical
Center has developed a comprehensive electronic medical record (EMR)
system that covers all inpatient and outpatient data, including labs, drug
ordering, and diagnostic imaging, including over 1.4 million records65.
Regarding ethnicity, there is large concordance between race assignment
and genetic ancestry for Europeans andAfricanAmericans, in contrast to
lower concordance for Hispanics, East Asians and South Asians66.

BioMe. The Icahn School of Medicine at Mount Sinai’s Institutional
Review Board approved in 2007 the construction of BioMe biobank. This
EMR-linked biorepository enrolls participants non-selectively from the
Mount SinaiHealth System,which serves a diverse group of communities
across the greater New York City area. At enrolment, participants pro-
vided informed consent to link their DNA and plasma sample to their
EMR. This is further complemented by a questionnaire on demographic
and lifestyle factors. At present, the cohorts comprise over 60,000 par-
ticipants. 58% of the participants are females; participants were aged
between 18 and 89+ years old at recruitment. Regarding ethnicity,

European Americans, African Americans and Hispanics are well
represented67.

Geisinger’s MyCode Community Health Initiative Study (MyCode).
The Geisinger Health System (GHS) includes a large percentage of stable
participants fromPennsylvania, frommore than 70 care facilities. In 2007
GHS initiated the MyCode Community Health Initiative (MyCode) to
create a biobank of blood, serum, DNA samples along with genotype and
exome sequence data. These data were linked to the EMR data for
research purposes. By 2015, MyCode reported more than 90,000 parti-
cipants and an ongoing monthly enrolment of around 2000, across the
age spectrum (0 to >89 years old). Regarding ethnicity, more than 95% of
the population are self-identified white or European American68.

Electronic Medical Records and Genomics (eMERGE) network. In
2007 the electronicMEdical Records andGEnomics (eMERGE)Network
is a National Human Genome Research Institute (NHGRI) created to
employ EHR for genomic research purposes. Today, eMERGE Network
includes nine research groups across US, that they have connected the
DNA samples to EHR. The majority of the studied participants have
European ancestry, but also African, Asian and Hispanic descent parti-
cipants are included in a smaller percent69,70.

Colorado Center for Personalized Medicine (CCPM Biobank). The
biobank at the Colorado Center for Personalized Medicine (CCPM
Biobank) was jointly developed by the University of Colorado Anschutz
Medical Campus and UCHealth to serve as a unique, dual-purpose
research and clinical resource accelerating personalized medicine. As a
resource comprising electronic health records (EHRs), genotype data,
and other integrated data sources (e.g., geocoded data and survey data),
the CCPM Biobank had more than 200,000 enrolled participants and
33,674 genotyped participants as of March 2022. The latter formed the
freeze 2 research dataset. More details about the CCPM Biobank are
described in Wiley et al. 71.

Data availability
Individual level data could be accessed upon request and approval from the
respective biobanks. The summary statistics results that are discussed in the
manuscript are included in the Supplementary Data.

Code availability
All code for the analysis employed in this paper is publicly available (GCTA-
COJO version: 1.93.0., PheWAS and metafor in R 3.6.1.).
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