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Theoretical framework for enhancing or enabling cooling of a mechanical resonator
via the anti-Stokes or Stokes interaction and zero-photon detection
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We develop a theoretical framework to describe how zero-photon detection may be utilized to enhance
optomechanical laser cooling via the anti-Stokes interaction and, somewhat surprisingly, enable cooling via
the Stokes interaction commonly associated with heating. Our description includes both pulsed and continuous
measurements as well as optical detection efficiency and open-system dynamics. For both cases, we discuss how
the cooling depends on the system parameters such as detection efficiency and optomechanical cooperativity,
and we study the continuous-measurement-induced dynamics, contrasting with single-photon-detection events.
For the Stokes case, we explore the interplay between cooling and heating via optomechanical parametric
amplification, and we find the minimum efficiency required to cool a mechanical oscillator via zero-photon
detection. This work serves as a companion article to our recent experiment [E. A. Cryer-Jenkins et al., Phys.
Rev. Lett. 134, 073601 (2025)], which demonstrated enhanced laser cooling of a mechanical oscillator via
zero-photon detection on the anti-Stokes signal. The cooling techniques developed here can be applied to a
wide range of areas including nonclassical state preparation, quantum thermodynamics, and avoiding the often
unwanted heating effects of parametric amplification.
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I. INTRODUCTION

In quantum mechanics, the act of measurement funda-
mentally affects the state of a system, unlocking capabilities
beyond what is classically achievable across a wide range
of areas including computing [1], metrology [2], and com-
munication [3]. Over the past few decades, measurement
strategies employing single-photon detection have been a vital
component in the development of many facets of experimen-
tal quantum optics, in particular, single-photon sources via
spontaneous parametric down-conversion [4,5] and the tele-
portation of optical qubits [6–8]. Single-photon detection has
also proved to be a crucial resource in the engineering of
non-Gaussian quantum states with applications in quantum
sensing [9] and investigations of fundamental physics [10]. In
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purely optical systems, single-photon measurements, together
with the beam-splitter and two-mode squeezing interactions,
have been used to prepare nonclassical quantum states of
light via photon subtraction [11–13] and addition operations
[14–16], respectively. Notably, in the field of optomechanics,
driving the anti-Stokes and Stokes scattering processes nat-
urally enables the same form of beam-splitter and two-mode
squeezing interactions between an optical field and a mechani-
cal resonator [17,18]. Using these interactions, optomechanics
now provides a platform to achieve single-phonon addition
and subtraction operations [19]. Experimentally, such addition
and subtraction operations have been performed on ther-
mal mechanical states, which increases the mean mechanical
occupation [20], and multiphonon operations to generate me-
chanical non-Gaussianity have also been performed [21,22].
Additionally, higher-order phonon coherences [23] and non-
classical correlations are now being investigated [24–26].

In the experiments described above, single-photon de-
tection is employed; however, the absence of a photon at
the photon counter also provides valuable information that
can be utilized in a variety of applications. In particular,
the detection of zero photons enables probabilistic noiseless
attenuation and amplification for quantum communication
[27–31], optical state reconstruction [32–36], Gaussifica-
tion protocols for entanglement distillation [37–39], nonlocal
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ghost-displacement operations for covert information sharing
[40], and a range of quantum state preparation protocols
[41–43]. Moreover, the role of measuring “nothing” in sys-
tems that are continuously monitored has implications more
broadly in quantum science [44]. For example, beyond purely
optical systems, zero-photon detection can drive atoms to-
wards decoherence free subspaces in cavity QED [45,46],
dark-state preparation in atomic systems [47], developing
enhanced quantum sensing techniques [48,49], speeding up
simulations of photon-counting experiments [50], and under-
standing the thermodynamics of nonequilibrium systems [51].
Excitingly, zero-photon detection has been recently used to
modify optical states [52,53] and the nonclassicality of such
states can also be investigated via zero-photon detection [54].

Here we theoretically explore how zero-photon detection
can be used to cool a mechanical oscillator. First, we discuss
how the mechanical mode can be cooled via zero-photon de-
tection following the anti-Stokes interaction. For any nonzero
detection efficiency, we show that this heralded mechani-
cal cooling outperforms standard laser-cooling techniques as
experimentally demonstrated in the companion work to the
present paper, Ref. [55]. Second, we investigate the Stokes
scattering process, which is typically associated with paramet-
ric amplification and heating of the mechanical mode [18,56].
However, we show that zero-photon detection on the Stokes
signal can also enable mechanical cooling and we determine
the detection efficiency requirements to achieve cooling in
this scenario. Intuitively, for either the anti-Stokes or Stokes
interaction, larger mechanical excitations are more likely to
scatter photons into the output optical mode. Thus, such states
are less likely to yield a zero-photon-detection event, leading
to a cooling effect of the mechanical mode when heralded by
zero-photon detection. Our theoretical description of mechan-
ical cooling via zero-photon detection is developed for both
pulsed measurements and continuous monitoring, where the
latter incorporates the influence of both photon counting and
open-system dynamics [57]. As zero-photon detection forms
the complementary event to photon detection, the heralding
probability for our scheme shows a more favorable heralding
probability compared to photon-detection-based approaches
in quantum optics, owing to the dominance of the zero-photon
component in the output photon-number distribution. Indeed,
the zero-photon component of the photon-number distribution
is highest for any zero-mean Gaussian state [58]. As the
anti-Stokes and Stokes processes may be realized through-
out a wide range of optomechanical systems, including both
radiation-pressure-based and Brillouin-scattering-based op-
tomechanics, our scheme for enhanced mechanical cooling is
widely applicable. Beyond heralded cooling of a mechanical
oscillator, the methods introduced here will impact the devel-
opment of key areas such as reaching the quantum ground
state, thermometry and quantum thermodynamics [59], and
mechanical-state tomography [60].

II. PULSED MECHANICAL COOLING VIA
ZERO-PHOTON DETECTION

In this section we study the heralded state preparation of
a mechanical oscillator via a single zero-photon-detection
event. The mechanical state is prepared by driving the

FIG. 1. (a) Schematic for enhancing or enabling mechanical
cooling via zero-photon detection. Here a vacuum optical mode
|0〉l interacts with a mechanical mode via the anti-Stokes (UaS) and
Stokes (US) interactions before impinging on a photon counter. The
total optical loss after the cavity and measurement efficiency are
modeled using a beam-splitter model for loss with transmission
coefficient η. Here the initial state of the optical environment is
the vacuum state |0〉v and one output of the beam splitter is traced
over. These optomechanical interactions can take place in a wide
range of architectures including (clockwise from top left of the inset)
whispering-gallery-mode microresonators, levitated nanoparticles,
bulk acoustic resonators, and moving-end-mirror cavities. (b) De-
piction of the anti-Stokes and Stokes interactions, where red wavy
lines indicate optical photons, blue wavy lines indicate mechanical
phonons, and dashed lines indicate vacua. In the anti-Stokes process,
an excitation can be coherently swapped from the mechanical to the
optical field, while in the Stokes process, pairs of optomechanical
excitations are generated.

anti-Stokes or Stokes scattering process with a pulse of light,
which is then followed by a photon-counting measurement,
as illustrated in Fig. 1(a). We focus on mechanical state
preparation via short optomechanical interactions, in which
the pulse duration τ is much smaller than the mechanical
coherence time, and so the mechanical open-system dynamics
may be ignored. An open-quantum-system approach with
continuous driving and monitoring is considered in Sec. III.
Important to this work, we consider the effect of optical
detection inefficiencies on the ability to cool the mechanical
oscillator via zero-photon detection.

The anti-Stokes process is described by the optomechani-
cal beam-splitter Hamiltonian

HaS = h̄G(ab† + a†b), (1)
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where a (b) is the annihilation operator of the optical (mechan-
ical) mode and G is the linearized optomechanical coupling
rate. Similarly, the Stokes process is described by the optome-
chanical two-mode squeezing Hamiltonian

HS = h̄G(a†b† + ab). (2)

The anti-Stokes and Stokes scattering processes, graphi-
cally depicted in Fig. 1(b), can be experimentally realized
throughout a wide range of optomechanical systems, from
whispering-gallery-mode microresonators to levitation-based
optomechanics and from bulk acoustic resonators to movable-
end-mirror cavities [17], as indicated in Fig. 1(a).

In the absence of open-system and cavity dynamics, driv-
ing the anti-Stokes interaction for a pulse duration τ realizes
the optomechanical unitary UaS = e−iHaSτ/h̄ and driving the
Stokes interaction achieves US = e−iHSτ/h̄. Notably, the opti-
cal and mechanical field operators can be characterized by the
underlying SU(2) and SU(1,1) Lie algebras for the anti-Stokes
and Stokes interactions, respectively [61]. These underlying
group structures enable the unitaries UaS and US to be de-
composed into other compact and convenient forms [62],
which are utilized in Secs. II A and II B. Furthermore, in what
follows we consider the effect of these unitary interactions,
followed by photon-counting measurements, on an initial ther-
mal mechanical state described by the density operator

ρn̄ = 1

1 + n̄

∞∑
m=0

(
n̄

1 + n̄

)m

|m〉 〈m| , (3)

with initial thermal occupation n̄.

A. Pulsed anti-Stokes interaction

Following the anti-Stokes interaction described by UaS , a
photon-counting measurement is performed. The detection
of n photons makes a projective measurement of the optical
mode onto the nth Fock state |n〉l , where the label l indi-
cates the optical mode. Thus, driving the anti-Stokes process
for a pulse duration τ followed by an n-photon-detection
event can be described by the measurement operator ϒ (aS)

n =
l〈n|UaS |0〉l . Here we also assume that the initial anti-Stokes
mode is the optical vacuum state |0〉l , which is valid in
the linearized regime of both radiation-pressure-based op-
tomechanics and Brillouin-scattering-based optomechanics.
Explicitly, the measurement operator ϒ (aS)

n may be written as

ϒ (aS)
n = (−R∗)n

√
n!

T b†bbn, (4)

where T = cos(Gτ ) and R = −i sin(Gτ ), which may be con-
firmed using the following decomposition for the SU(2)
group: UaS = T b†be−R∗a†beRb†aT −a†a [63]. Notably, the oper-
ator bn in Eq. (4) describes the operation of n-fold phonon
subtraction. By itself, this operation increases the initial oc-
cupation of a mechanical thermal state from n̄ to (n + 1)n̄
[64–66]. However, we will now analyze the action of the
full measurement operator ϒ (aS)

n operation including T b†b.
Crucially, Eq. (4) includes terms beyond first order in G and
so the action of T b†b is nontrivial.

After the anti-Stokes interaction and photon-number
measurement, the mechanical state is described by the

mapping ρ (aS)
n = ϒ (aS)

n ρn̄ϒ
†(aS)
n /P (aS)

n , where P (aS)
n =

tr(ϒ†(aS)
n ϒ (aS)

n ρn̄) is the probability of detecting n photons.
Using Eq. (4), one finds that

ρ (aS)
n =

(
1 + n̄ sin2(Gτ )

1 + n̄

)n+1

×
∞∑

m=0

(
n̄ cos2(Gτ )

1 + n̄

)m(
m + n

n

)
|m〉 〈m| (5)

and

P (aS)
n = [n̄ sin2(Gτ )]n

[1 + n̄ sin2(Gτ )]n+1
. (6)

The occupation of the mechanical state ρ (aS)
n can then be

calculated via Eq. (5), which gives

tr
(
b†bρ (aS)

n

) = (n + 1)n̄(aS)
0 , (7)

where n̄(aS)
0 = n̄ cos2(Gτ )/[1 + n̄ sin2(Gτ )]. For n = 0, we

may therefore conclude that n̄(aS)
0 in Eq. (7) differs from n̄

because of the operator T b†b in Eq. (4). Thus, the operator
T b†b acts to reduce the mean phonon number due to the
knowledge gained about the mechanical mode via the op-
tomechanical interaction and zero-photon measurement. This
Bayesian update from the operator T b†b is present for any n-
photon-detection event and competes with the n-fold phonon
subtraction operation bn, which increases the mechanical
occupation.

Cooling via zero-photon detection and the anti-Stokes interaction

We will now show how averaging over all photon-counting
measurement outcomes leads to laser cooling and compare
this to the enhanced cooling effect achieved via zero-photon
detection. The detection of zero photons after a pulsed anti-
Stokes interaction of duration τ corresponds to setting n = 0
in Eq. (5), which gives the mechanical state

ρ
(aS)
0 = 1

1 + n̄(aS)
0

∞∑
m=0

(
n̄(aS)

0

1 + n̄(aS)
0

)m

|m〉 〈m| . (8)

Here ρ
(aS)
0 takes the form of a thermal state and n̄(aS)

0 is the
occupation of the thermal state following the interaction and
measurement.

This heralded cooling of the mechanical mode via zero-
photon detection can be compared to deterministic laser
cooling, which corresponds to no optical measurement being
made after the anti-Stokes interaction described by ρLC =∑

n P (aS)
n ρ (aS)

n . Equation (5) and the associated probabilities
P (aS)

n can be used to show that ρLC is also a thermal state but
with thermal occupation now given by n̄LC = n̄ cos2(Gτ ). For
this model, for Gτ = (2k + 1)π/2 with k ∈ N one has n̄(aS)

0 =
n̄LC = 0, which corresponds to a full state swap between the
optics (initially in vacuum) and the mechanical thermal state,
whereas at Gτ = kπ with k ∈ N one has n̄(aS)

0 = n̄LC = n̄ and
so, for k > 0, all the population has been transferred back
onto the mechanics. However, for all other values of Gτ , one
has n̄(aS)

0 < n̄LC and thus conditional cooling via zero-photon
detection exceeds the limits of standard laser cooling as shown
in Fig. 2(a).
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FIG. 2. Pulsed zero-photon-heralded cooling and the effect of optical detection inefficiencies. (a) Mechanical cooling via zero-photon
detection on the anti-Stokes signal as a function of time for various detection efficiencies η. Here n̄(aS)

0 is the mechanical occupation after
zero-photon detection, n̄ is the initial mechanical occupation, G is the optomechanical coupling rate, and η = 0 corresponds to standard laser
cooling. The improved measurement-enhanced cooling with increasing η is observed and is indicated by the blue shaded region. At times when
Gτ is an odd multiple of π/2, a full state swap has occurred between the vacuum state and the mechanical mode and hence n̄(aS)

0 = 0 for all
η. Likewise, when Gτ is an even multiple of π/2, the population is transferred back onto the mechanical oscillator and so n̄(aS)

0 = n̄ for all η.
(b) Zero-photon detection on the Stokes signal as a function of time for various detection efficiencies. Here n̄(S)

0 is the mechanical occupation
after zero-photon detection and η = 0 corresponds to mechanical heating via optomechanical parametric amplification. Measurement-enabled
mechanical cooling is achieved when η is above the value of η∗ = 1/(1 + n̄) and the mechanical occupation tends to (1 − η)/η as Gτ increases.
The measurement-enabled cooling region is shaded light blue and the region where heating occurs is shaded light red. In both (a) and (b) the
occupation of the initial thermal state prior to the optomechanical interaction is n̄ = 500, which gives a threshold efficiency of η∗ ≈ 0.002 for
the Stokes interaction.

The inclusion of optical detection inefficiencies allows one
to observe the transition between these two cooling strategies,
namely, when the detection efficiency is zero, which effec-
tively traces out the output optical mode, we have the laser
cooling case. To describe such detection losses we employ
a beam-splitter model for loss [67]. In this model, a beam
splitter B with intensity transmission coefficient η couples
the output optical mode to an environmental vacuum mode,
labeled by v, just before photon counting. Following this
beam-splitter interaction, a trace operation is performed over
the environmental mode to describe the attenuation of the
anti-Stokes signal as is shown in Fig. 1(a). Thus, we may
calculate the mechanical state in the presence of detection
inefficiencies according to

ρ
(aS)
0 (η) =

∑∞
m=0 ϒ

(aS)
0,m ρn̄ϒ

†(aS)
0,m∑∞

m=0 tr
(
ϒ

†(aS)
0,m ϒ

(aS)
0,m ρn̄

) , (9)

where the measurement operator ϒ
(aS)
0,m represents the oper-

ation on the mechanics resulting from zero photons being
detected and m photons being lost to the vacuum envi-
ronment. This measurement operator is given by ϒ

(aS)
0,m =

v〈m| l〈0|BUaS |0〉l |0〉v and, by decomposing the beam-splitter
unitary B using the same decomposition formula for the
SU(2) group as above, one finds that the state ρ

(aS)
0 in

Eq. (9) is a mechanical thermal state with an occupation now
given by

n̄(aS)
0 (η) = n̄ cos2(Gτ )

1 + ηn̄ sin2(Gτ )
. (10)

In Fig. 2(a) we plot Eq. (10) as a function of pulsed in-
teraction strength Gτ for various values of η. Hence, we
confirm that at η = 0, or Gτ = (2k + 1)π/2, kπ with k ∈ N,
n̄(aS)

0 = n̄LC . Also, for all other values of Gτ and 0 < η � 1,
one has that n̄(aS)

0 (η) < n̄LC < n̄. Thus, the heralded cooling

effect from a zero-photon-detection event is stronger than
standard laser cooling even in the presence of detection inef-
ficiencies. The probability for a zero-photon-detection event
is given by P (aS)

0 (η) = ∑∞
m=0 tr(ϒ†(aS)

0,m ϒ
(aS)
0,m ρn̄) = 1/[1 +

ηn̄ sin2(Gτ )] [cf. Eq. (9)]. It is also interesting to note here
that the heralded state has mean zero in phase space and
has the same form as a thermal state, which is unusual for
measurement-based protocols without feedback.

B. Pulsed Stokes interaction

The unconditional evolution of the mechanical mode
during the Stokes interaction corresponds to heating via
optomechanical parametric amplification. By performing
photon-counting measurements on the output Stokes signal,
phonon-addition operations can be heralded [19], which also
increase the mean mechanical occupation of an initial thermal
state. Here we discuss how utilizing zero-photon-detection
events helps to suppress the heating effects of the Stokes in-
teraction and even provides measurement-enabled mechanical
cooling.

Driving the Stokes interaction US for a time τ and then
detecting n photons is described by the measurement operator
ϒ (S)

n = l〈n|US |0〉l , which is explicitly given by

ϒ (S)
n = Rn

√
n!
T −(b†b+1)(b†)n, (11)

where T = cosh(Gτ ), R = −i sinh(Gτ ), and the
decomposition formula for the SU(1,1) group US =
eRa†b†/T T −(a†a+b†b+1)eRab/T was used [68]. The me-
chanical state following the Stokes interaction and
n-photon-detection event is ρ (S)

n = ϒ (S)
n ρn̄ϒ

†(S)
n /P (S)

n , where
P (S)

n = tr(ϒ†(S)
n ϒ (S)

n ρn̄) is the probability to detect n photons.

023516-4



THEORETICAL FRAMEWORK FOR ENHANCING OR … PHYSICAL REVIEW A 111, 023516 (2025)

Using Eq. (11) then allows one to arrive at

ρ (S)
n =

(
[cosh2(Gτ ) + n̄ sinh2(Gτ )]n+1

n̄n(1 + n̄) cosh2(Gτ )

)

×
∞∑

m=n

(
n̄

(1 + n̄) cosh2(Gτ )

)m(
m
n

)
|m〉 〈m| (12)

and

P (S)
n = [(1 + n̄) sinh2(Gτ )]n

[1 + (n̄ + 1) sinh2(Gτ )]n+1
. (13)

The mean occupation of ρ (S)
n can then be calculated via

Eq. (12), which gives

tr
(
b†bρ (S)

n

) = (n + 1)n̄(S)
0 + n, (14)

where n̄(S)
0 = n̄/[1 + (n̄ + 1) sinh2(Gτ )]. The non-Gaussian

operation of n-fold phonon addition increases the initial ther-
mal occupation from n̄ to (n + 1)n̄ + n [14,66], which is
equivalent to Eq. (14) when n̄(S)

0 is replaced with n̄. Thus,
the mathematical difference between n-phonon addition and
n-photon detection on the Stokes signal originates from the
operator T −b†b in Eq. (11).

1. Cooling via zero-photon detection and the Stokes interaction

Detecting zero photons after a pulsed Stokes interac-
tion produces the mechanical state in Eq. (12) with n = 0,
which is

ρ
(S)
0 = 1

1 + n̄(S)
0

∞∑
m=0

(
n̄(S)

0

1 + n̄(S)
0

)m

|m〉 〈m| . (15)

Once again, ρ (S)
0 takes the form of a thermal state with thermal

occupation n̄(S)
0 . In the absence of optical loss, for Gτ > 0 the

thermal occupation n̄(S)
0 is always less than the initial thermal

occupation n̄. Thus, even when the mechanical mode is driven
by the Stokes interaction, which unconditionally heats the
mechanics via the optomechanical two-mode squeezing inter-
action, zero-photon detection enables conditional mechanical
cooling.

The unconditional heating of the mechanical mode via the
Stokes interaction is described by the density operator ρT MS =∑

n P (S)
n ρ (S)

n . Similar to the anti-Stokes case, Eq. (12) and the
expression for P (S)

n can be used to show that ρT MS is also
a thermal state with a thermal occupation n̄T MS = n̄ + (n̄ +
1) sinh2(Gτ ). As in Sec. II A, the effect of optical detection
inefficiencies on mechanical cooling via zero-photon detec-
tion can also be calculated via a beam-splitter model for loss.
In this way, the mechanical state after a zero-photon-detection
event in the presence of detection inefficiencies is

ρ
(S)
0 (η) =

∑∞
m=0 ϒ

(S)
0,mρn̄ϒ

†(S)
0,m∑∞

m=0 tr
(
ϒ

†(S)
0,m ϒ

(S)
0,mρn̄

) , (16)

where the measurement operator is now given by ϒ
(S)
0,m =

v 〈m| l 〈0| BUS |0〉l |0〉v . By following the same steps outlined
above for the anti-Stokes case, one can show that ρ

(S)
0 in

Eq. (9) is a mechanical thermal state with occupation

n̄(S)
0 (η) = n̄ + (1 + n̄)(1 − η) sinh2(Gτ )

1 + η(1 + n̄) sinh2(Gτ )
(17)

and the associated probability for a zero-photon-detection
event is P (S)

0 (η) = ∑∞
m=0 tr(ϒ†(S)

0,m ϒ
(S)
0,mρn̄) = 1/[1 + η(n̄ +

1) sinh2(Gτ )]. Hence, we confirm that for η = 0 one recov-
ers the result n̄(S)

0 = n̄T MS . In Fig. 2(b) we plot Eq. (17)
as a function of time for various values of η. Interestingly,
we find that there exists a threshold value for η given by
η∗ = 1/(n̄ + 1) where the effects of parametric amplification
and cooling via zero-photon-detection balance. When η is
above this value, the cooling effect via zero-photon detec-
tion outweighs the deterministic heating contribution and the
mechanical state is cooled conditionally via zero-photon de-
tection. Notably, for mechanical systems with n̄ 	 1, η∗ ≈ 0
and so conditional mechanical cooling via zero-photon de-
tection on the Stokes signal is readily achievable for typical
room-temperature mechanical oscillators. However, for me-
chanical systems approaching the ground state, where n̄ is
close to zero, η∗ tends to unity. Hence, conditional cooling
via the anti-Stokes signal becomes more favorable than via the
Stokes signal for near-ground-state systems when the optical
detection efficiency is a limiting factor. Finally, we note that
for η > 0, as Gτ → ∞, n̄(S)

0 (η) → (1 − η)/η, which is finite
despite n̄T MS → ∞.

III. CONTINUOUS MONITORING
AND OPEN-SYSTEM DYNAMICS

We now extend our description to a continuously mon-
itored optomechanical system, in which both mechanical
open-system and cavity dynamics are included as depicted in
Fig. 3. Here an optical cavity mode is driven by a continuous
pump laser to drive the anti-Stokes or Stokes interaction while
photon-counting measurements are made continuously at the
cavity output on the anti-Stokes or Stokes signal, respectively.
This situation is described by the stochastic master equa-
tion (SME) for the joint state ρ of the cavity and mechanical
mode,

dρ = − i

h̄
[H, ρ]dt + G[a]ρdN − ηκexH[a†a]ρdt

+ 2κex(1 − η)D[a]ρdt + 2κinD[a]ρdt

+ 2γ (N̄ + 1)D[b]ρdt + 2γ N̄D[b†]ρdt, (18)

which assumes the photon-counting duration is shorter than
all other relevant timescales [69]. To describe the anti-Stokes
or Stokes scattering processes, one chooses H = HaS or
H = HS in Eq. (18), respectively, and the superoperators
are given by G[O]ρ = OρO†/〈O†O〉 − ρ, H[O]ρ = Oρ +
ρO† − 〈O + O†〉ρ, and D[O]ρ = OρO† − 1

2 {O†O, ρ}. The
parameters characterizing the open-system and cavity dynam-
ics in Eq. (18) are shown in Fig. 3, which are the occupation of
the mechanical thermal environment N̄ , the amplitude decay
rate of the mechanical mode γ , the external (intrinsic) ampli-
tude decay rate of the cavity mode κex (κin), and the detection
efficiency of photon counting η. Importantly, photon counting
is a stochastic process and so the stochastic increment may
take the value dN = 0 or dN = 1 for a zero-photon-detection
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FIG. 3. Open-system and cavity optomechanical dynamics in a
continuously driven system monitored by imperfect photon-counting
measurements. Here the optical (a) and mechanical (b) modes in-
teract in a cavity via the anti-Stokes or Stokes interaction with
optomechanical coupling strength G. The cavity couples to the op-
tical vacuum input |0〉l and the output field at rate κex . A photon
counter continuously measures the cavity output, which produces a
random string of outcomes comprised of zero- and single-photon-
detection events. The mechanical mode interacts at a rate γ with
a thermal environment with occupation N̄ and the optical cavity
mode additionally decays into a vacuum environment at a rate κin.
Meanwhile, detection inefficiencies are modeled via a beam-splitter
model for loss prior to photon counting.

or single-photon-detection event, respectively, and so dN2 =
dN . Zero-photon and single-photon detection occurs with
probabilities P0 = 1 − 2ηκex〈a†a〉dt and P1 = 2ηκex〈a†a〉dt
during each dt . To find the total probability of a particular
measurement record, one may then multiply the correspond-
ing probabilities at every instant in time. We note that in the
construction of Eq. (18) it is assumed that the measurement of
two or more photons during each dt occurs with probability
of order dt2 or higher, which therefore do not contribute to the
SME.

The equation describing the evolution of an expectation
value of an arbitrary operator O in a and b may be calculated
via Eq. (18) and d〈O〉 = tr(Odρ) [70], which gives

d〈O〉 = i

h̄
〈[H, O]〉dt +

( 〈a†Oa〉
〈a†a〉 − 〈O〉

)
dN

− ηκex[〈Oa†a〉 + 〈a†aO〉 − 2〈O〉〈a†a〉]dt

+ [2κ − 2ηκex]
[
〈a†Oa〉 − 1

2
〈Oa†a〉 − 1

2
〈a†aO〉

]
dt

+ 2γ (N̄ + 1)

(
〈b†Ob〉 − 1

2
〈Ob†b〉 − 1

2
〈b†bO〉

)
dt

+ 2γ N̄

(
〈bOb†〉 − 1

2
〈Obb†〉 − 1

2
〈bb†O〉

)
dt, (19)

where κ = κex + κin is the total amplitude cavity decay rate.

We would like to remark here that from a thermodynamic
perspective, the average energy of the mechanical oscillator
may be defined as the ensemble average over all possible
measurement records of the SME. For such an average,
i.e., averaging over all photon-number-detection events,
the unconditioned state is recovered, which is the standard
laser-cooled state for the anti-Stokes interaction. However,
other thermodynamics concepts such as heat and work can be
defined along any measurement record. Thus, we can herald
on measurement records that cool the mechanical oscillator
for thermodynamics applications in addition to precooling
protocols for quantum state engineering.

A. Continuous anti-Stokes interaction

Here we choose H = HaS in Eq. (19) to select the
anti-Stokes scattering process, which enables an open-
quantum-system description of (i) mechanical laser cooling,
(ii) enhanced laser cooling via zero-photon detection, and (iii)
single-photon-detection events.

1. Laser cooling

Laser cooling is realized in the absence of photon count-
ing, which corresponds to setting η = 0 and dN = 0 for all
times in the equations of motion. By using the canonical
commutation relations [a, a†] = 1 and [b, b†] = 1, one may
use Eq. (19) to derive the closed set of coupled differential
equations describing laser cooling

i
d

dt
〈a†b − ab†〉 = 2G(〈a†a〉 − 〈b†b〉) − i(κ + γ )〈a†b − ab†〉,

(20)

d

dt
〈a†a〉 = −iG〈a†b − ab†〉 − 2κ〈a†a〉, (21)

d

dt
〈b†b〉 = iG〈a†b − ab†〉 − 2γ 〈b†b〉 + 2γ N̄ . (22)

To derive Eqs. (20)–(22), no assumptions need to be made
about the initial optical-mechanical state and these coupled
differential equations may be written as the first-order matrix
differential equation

V̇aS = AaSVaS + naS, (23)

where VaS = (i〈a†b − ab†〉, 〈a†a〉, 〈b†b〉)T, naS =
(0, 0, 2γ N̄ )T, and

AaS =

⎛
⎜⎝−(κ + γ ) 2G −2G

−G −2κ 0
G 0 −2γ

⎞
⎟⎠. (24)

The steady-state solution of Eq. (23) is

VaS (t → ∞) = −A−1
aS naS

=

⎛
⎜⎜⎜⎝

− 2GN̄γ κ

(γ+κ )(G2+γ κ )

N̄G2γ

(γ+κ )(G2+γ κ )

N̄γ [G2+κ (γ+κ )]
(γ+κ )(G2+γ κ )

⎞
⎟⎟⎟⎠. (25)

Note that when G2 � κ (κ + γ ) is satisfied, the last entry
of Eq. (25), which describes the steady-state mechanical
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occupation, is well approximated as N̄/(1 + C). Here C =
G2/κγ is the optomechanical cooperativity. Finally, the so-
lution of Eq. (23) with time for the initial condition VaS (0) is

VaS (t ) = −A−1
aS naS + eAaSt

[
VaS (0) + A−1

aS naS
]
. (26)

Note that the real parts of the eigenvalues of AaS are negative,
which ensures Eq. (26) is stable.

2. Anti-Stokes interaction and continuous-time
zero-photon detection

The observation of a string of zero-photon-detection
events is described by setting dN = 0 and 0 < η � 1
in Eq. (19). In what follows we will assume an initial

Gaussian optomechanical state [71] with zero-mean
amplitudes 〈a〉 = 〈a†〉 = 〈b〉 = 〈b†〉 = 0. Relevant examples
of optical-mechanical states satisfying this assumption are an
initial product of an optical vacuum and a thermal mechanical
state |0〉l l〈0| ⊗ ρn̄ and the laser-cooled optical-mechanical
state in Eq. (25). This zero-mean Gaussian assumption
enables the Isserlis-Wick theorem [72,73] to be employed,
which states that for a Gaussian state 〈ABCD〉 = 〈AB〉〈CD〉 +
〈AC〉〈BD〉 + 〈AD〉〈BC〉, where the expectation values of A,
B, C, and D are all zero. The Isserlis-Wick theorem may then
be applied to expectation values comprised of the optical and
mechanical field operators a, a†, b, and b† to arrive at the set
of differential equations for the second-order moments,

i
d

dt
〈a†b〉 = G(〈a†a〉 − 〈b†b〉) − i(κ + γ )〈a†b〉 − 2iηκex〈a†a〉〈a†b〉 − 2iηκex〈a†2〉〈ab〉, (27)

i
d

dt
〈ab†〉 = −G(〈a†a〉 − 〈b†b〉) − i(κ + γ )〈ab†〉 − 2iηκex〈a†a〉〈ab†〉 − 2iηκex〈a2〉〈a†b†〉, (28)

d

dt
〈a†a〉 = −iG〈a†b − ab†〉 − 2κ〈a†a〉 − 2ηκex〈a†a〉2 − 2ηκex〈a2〉〈a†2〉, (29)

d

dt
〈b†b〉 = iG〈a†b − ab†〉 − 2γ 〈b†b〉 + 2γ N̄ − 2ηκex〈ab†〉〈a†b〉 − 2ηκex〈a†b†〉〈ab〉, (30)

which are nonlinear owing to the act of measurement via
continuous zero-photon detection. Importantly, by assuming
an initial state |0〉l l〈0| ⊗ ρn̄, the terms 〈a2〉, 〈a†2〉, 〈ab〉, and
〈a†b†〉 in Eqs. (27)–(30) are zero for all times. More specifi-
cally, these moments are zero for the initial state |0〉l l〈0| ⊗ ρn̄

and, as shown in the Appendix, the moments 〈a2〉, 〈a†2〉, 〈ab〉,
and 〈a†b†〉 form a closed set of coupled differential equations,
which guarantees 〈a2〉 = 〈a†2〉 = 〈ab〉 = 〈a†b†〉 = 0 for all
times. With these terms equaling zero, the equations for 〈a†b〉
and −〈ab†〉, Eqs. (27) and (28), are now identical. Thus, if
at some initial time 〈a†b〉 = −〈ab†〉, such as for the initial
state |0〉l l〈0| ⊗ ρn̄, then 〈a†b〉 = −〈ab†〉 for all times. This
observation also allows us to simplify the first element of the
vector VaS as i〈a†b − ab†〉 = 2i〈a†b〉.

With these considerations in mind, the matrix differential
equation describing cooling via continuous zero-photon de-
tection is

V̇aS = AaSVaS + naS − ηκexZaS, (31)

where ZaS = (4i〈a†b〉〈a†a〉, 2〈a†a〉2
,−2〈a†b〉2)T, AaS and

naS are defined in and above Eq. (24), and now VaS =
(2i〈a†b〉, 〈a†a〉, 〈b†b〉)T. To obtain the second-order moments
as a function of time, we solve Eq. (31) numerically.

In Fig. 4(a) we plot the steady-state mechanical occupation
achieved via continuous zero-photon detection n̄(aS)

0 (t → ∞)
as a function of detection efficiency η and optomechanical
cooperativity C = G2/κγ for a mechanical thermal envi-
ronment with occupation N̄ = 5. In Fig. 4(b) we plot the
ratio of the continual zero-photon-detection-cooled mechan-
ical occupation n̄(aS)

0 (t → ∞) to the steady-state mechanical
occupation achieved via laser cooling n̄LC (t → ∞). Figure 4
therefore illustrates how zero-photon detection can be used

to enhance the level of cooling beyond what is realizable via
laser cooling. In particular, the region between C = 0 and
C = 5 demonstrates that continuous zero-photon detection
offers the greatest relative enhancement over laser cooling for
the parameter set investigated. Moreover, inspecting Fig. 4(b)
about the vertical line labeled n̄LC (t → ∞) = 1 shows that
conditional cooling via zero-photon detection can be utilized
to lower the laser-cooled mechanical occupation from a value
above 1 to a value below 1, thus enabling experiments to
probe deeper into the quantum regime. Figures 4(c) and 4(d)
plot the same quantities as Figs. 4(a) and 4(b), respectively,
but for a mechanical thermal environment with occupation
N̄ = 500. At this higher occupation of the mechanical ther-
mal environment, the relative enhancement in mechanical
cooling via zero-photon detection increases. Utilizing the
analysis described above, the steady-state mechanical occupa-
tions n̄(aS)

0 (t → ∞) may be solved numerically for a general
parameter set. However, for a strongly overcoupled cavity,
i.e., κ = κex, the analytic result for the ultimate limit of zero-
photon-detection-enhanced cooling presented in Ref. [55] is
recovered. Beyond the steady-state analysis presented here,
we would like to emphasize that for any length string of zero-
photon-detection events and nonzero detection efficiency,
the mechanical oscillator is cooled below the laser-cooled
value.

The plots in Fig. 4 are calculated in the limit t → ∞.
However, in practice, only a finite length string of zero-
photon-detection events can be observed, which also has a
finite heralding probability. To calculate the heralding proba-
bility to observe a string of zero-photon-detection events, first
recall that the probability to observe a zero-photon-detection
event is P0 = 1 − 2ηκex〈a†a〉dt during each dt . Therefore,
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FIG. 4. Mechanical cooling via the anti-Stokes interaction and continuous zero-photon detection. (a) Steady-state mechanical occupation
after continual zero-photon detection n̄(aS)

0 (t → ∞) as a function of detection efficiency η and optomechanical cooperativity C for N̄ = 5.
(b) Ratio between the steady-state mechanical occupations after continual zero-photon detection and unconditioned laser cooling n̄(aS)

0 (t →
∞)/n̄LC (t → ∞) for N̄ = 5. (c) and (d) Plots of the same quantities as in (a) and (b), respectively, but for N̄ = 500. To emphasize the effect
of cooling via zero-photon detection, all occupations above 100 are shown as a single color (dark red). The vertical dashed lines indicate
laser-cooled mechanical occupations n̄LC (t → ∞). The values of the other parameters used in the simulation are κ = κex = 40 and γ = 1.
Here all rates are normalized by γ .

the probability of observing a series of zero-photon-detection
events is found by multiplying together all the values of P0 at
each time step t → t + dt . As examples, consider continuous
zero-photon detection from the laser-cooled steady state for
C = 4 and η = 0.5 for the parameters given in Fig. 4. For
N̄ = 5, n̄(aS)

0 (t → ∞) = 0.892; however, with a probability of
44%, the mechanical resonator may be cooled to an occupa-
tion of 0.894. Similarly, for N̄ = 500, n̄(aS)

0 (t → ∞) = 29.6
and the mechanical resonator may be cooled to 30.0 with a
probability of 8%. See also the Supplemental Material of our
companion work [55] for further discussion and a plot of the
heralding probability with zero-photon-detection duration.

3. A single-photon-detection event

A single-photon-detection event at time t may be de-
scribed by setting dN = 1 and dt = 0 in Eq. (19). Here we
again assume that before the single-photon-detection event,
the optomechanical state is Gaussian, which enables the
Isserlis-Wick theorem to be employed. At the instant of the

single-photon-detection event, the relevant second-order mo-
ment transformations are

i〈a†b〉 → 2i〈a†b〉 + i
〈a†2〉〈ab〉

〈a†a〉 , (32)

i〈ab†〉 → 2i〈ab†〉 + i
〈a2〉〈a†b†〉

〈a†a〉 , (33)

〈a†a〉 → 2〈a†a〉 + i
〈a†2〉〈a2〉

〈a†a〉 , (34)

〈b†b〉 → 〈b†b〉 + 〈a†b〉〈ab†〉 + 〈ab〉〈a†b†〉
〈a†a〉 . (35)

As in the previous section, we show in the Appendix that for
the conditions considered here 〈a2〉, 〈a†2〉, 〈ab〉, and 〈a†b†〉 are
zero for all times, which then implies 〈a†b〉 = −〈ab†〉 for all
times too. Thus, a single-photon-detection event is described
by the change

VaS → VaS + OaS, (36)

where again VaS = (2i〈a†b〉, 〈a†a〉, 〈b†b〉)T and OaS =
(2i〈a†b〉, 〈a†a〉,−〈a†b〉2

/〈a†a〉)T.

023516-8



THEORETICAL FRAMEWORK FOR ENHANCING OR … PHYSICAL REVIEW A 111, 023516 (2025)

Notably, a single-photon-detection event produces a non-
Gaussian optomechanical state. Thus, immediately after a
single-photon-detection event the Isserlis-Wick theorem is
invalid and so Eq. (31) cannot be used to straightforwardly
describe a zero-photon-detection event following a single-
photon-detection event. Instead, one must utilize higher-order
moments to describe this scenario. Fortunately, however, no
such approximations were made deriving the laser-cooling
differential equation and so we may examine the second
moments during laser cooling after a single-photon-detection
event using Eq. (26). Equation (31) may then be used to
describe zero-photon-detection events a sufficiently long time
after the single-photon-detection event, when the optome-
chanical system has returned to a Gaussian state.

When κex dominates over all other relevant rates, the cavity
field may be adiabatically eliminated (ȧ 
 0). In this case,
it may be readily shown that −〈a†b〉2

/〈a†a〉 
 〈b†b〉 and so
Eq. (36) becomes VaS → 2VaS . Notably, for an initial thermal
mechanical state, this implies that a single-photon-detection
event leads to a doubling of the mechanical occupation, i.e.,
n̄ → 2n̄.

B. Continuous Stokes interaction

If one instead drives the Stokes scattering process, this may
be described by setting H = HS in Eq. (19), and we consider
(i) optomechanical parametric amplification, (ii) mechanical
cooling via zero-photon detection, and (iii) single-photon
detection.

1. Optomechanical parametric amplification

One may use Eq. (19) to derive a closed set of coupled
differential equations describing the dynamic evolution of the
optomechanical system, which, for this Stokes process, is

i
d

dt
〈a†b† − ab〉 = −2G(〈a†a〉 + 〈b†b〉 + 1)

− i(κ + γ )〈a†b† − ab〉, (37)

d

dt
〈a†a〉 = −iG〈a†b† − ab〉 − 2κ〈a†a〉, (38)

d

dt
〈b†b〉 = −iG〈a†b† − ab〉 − 2γ 〈b†b〉 + 2γ N̄ . (39)

One may note that the joint optical-mechanical moments in-
volved in this closed system differ between the anti-Stokes
and Stokes scattering processes due to the correlations gen-
erated by their respective Hamiltonians and open-system
dynamics. The source term −2G (which comes from the +1
in the first set of parentheses) is also now present in Eq. (37),
which is responsible for the parametric amplification com-
monly associated with Stokes scattering and is not present in
Eq. (20).

As before, these coupled equations without measurement
may be written compactly in matrix form as

V̇S = ASVS + nS, (40)

where VS = (i〈a†b† − ab〉, 〈a†a〉, 〈b†b〉)T, nS =
(−2G, 0, 2γ N̄ )T, and

AS =
⎛
⎝−(κ + γ ) −2G −2G

−G −2κ 0
−G 0 −2γ

⎞
⎠. (41)

The steady-state solution of Eq. (40) is

VS (t → ∞) =

⎛
⎜⎜⎜⎜⎝

− 2Gγ κ (N̄+1)
(γ+κ )(γ κ−G2 )

G2γ (N̄+1)
(γ+κ )(γ κ−G2 )

N̄γ [κ (γ+κ−G2 )]+G2κ

(γ+κ )(γ κ−G2 )

⎞
⎟⎟⎟⎟⎠, (42)

and the solution with time for the initial condition VS (0) may
be calculated in the same manner as Eq. (26). Note that,
unlike anti-Stokes scattering, the eigenvalues of AS are not
negative definite and the optomechanical fields are amplified
exponentially for G2 � γ κ as well as displaying a dynamic
instability [74,75]. Henceforth, we will restrict ourselves to
the regime where G2 < γκ when the steady-state solution in
Eq. (42) is valid.

2. Stokes interaction and continuous-time zero-photon detection

Considering a string of zero-photon-detection events, mea-
sured with efficiency 0 < η � 1, and beginning with the
optomechanical system in Gaussian states, we again make use
of Isserlis-Wick theorem and evaluate Eq. (19) with dN = 0
to obtain

i
d

dt
〈a†b†〉 = −G(〈a†a〉 + 〈b†b〉 + 1) − i(κ + γ )〈a†b†〉 − 2iηκex〈a†a〉〈a†b†〉 − 2iηκex〈a†2〉〈ab†〉, (43)

i
d

dt
〈ab〉 = G(〈a†a〉 + 〈b†b〉 + 1) − i(κ + γ )〈ab〉 − 2iηκex〈a†a〉〈ab〉 − 2iηκex〈a2〉〈a†b〉, (44)

d

dt
〈a†a〉 = −iG〈a†b† − ab〉 − 2κ〈a†a〉 − 2ηκex〈a†a〉2 − 2ηκex〈a〉2〈a†2〉, (45)

d

dt
〈b†b〉 = −iG〈a†b† − ab〉 − 2γ 〈b†b〉 + 2γ N̄ − 2ηκex〈ab†〉〈a†b〉 − 2ηκex〈a†b†〉〈ab〉. (46)

Using the same reasoning as for the anti-Stokes case, the
moments describing correlations not generated by the inter-
play of unitary dynamics and Lindbladian dissipation, such

as 〈a2〉, 〈a†2〉, 〈ab†〉, and 〈a†b〉, remain zero for states where
they are zero at t = 0. As this is true for the initial states
discussed here, we may neglect these terms and again obtain a
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FIG. 5. Mechanical cooling via the Stokes interaction and continuous zero-photon detection. (a) Mechanical occupation after continual
zero-photon detection n̄(S)

0 (t → ∞) as a function of detection efficiency η and optomechanical cooperativity C for N̄ = 5. To emphasize
the effect of cooling via zero-photon detection, all occupations above N̄ are shown as a single color (dark red). (b) Ratio between
the steady-state mechanical occupations after continual zero-photon detection and unconditioned optomechanical parametric amplification
n̄(S)

0 (t → ∞)/n̄T MS (t → ∞). The horizontal dashed line indicates the efficiency η∗, above which the mechanical mode is cooled via zero-
photon detection when the Stokes process is driven. For the simulation parameters, this efficiency is η∗ ≈ 0.17. (c) and (d) Plots of the same
quantities as in (a) and (b), respectively, but for N̄ = 500. Note that here η∗ � 0 and zero-photon detection with any finite efficiency results
in cooling and all occupations above 100 are again shown as a single color (dark red). The vertical dotted lines indicate the unconditioned
steady-state mechanical occupations when the Stokes process is continually driven n̄T MS (t → ∞). The values of the other parameters used in
the simulation are κ = κex = 40 and γ = 1. All rates are normalized by γ .

matrix differential equation including continuous zero-photon
detection given by

V̇S = ASVS + nS − ηκexZS, (47)

where ZS = (4i〈a†b†〉〈a†a〉, 2〈a†a〉2
,−2〈a†b†〉2)T, AS and nS

are defined in and above Eq. (41), and we redefine VS =
(2i〈a†b†〉, 〈a†a〉, 〈b†b〉)T. It should be noted that, as in
Sec. II B, a lower bound η∗ is found for the efficiency re-
quired for mechanical cooling via zero-photon detection while
driving the Stokes interaction to cool the mechanical state
below its initial occupation. In the presence of open-system
dynamics, η∗ is calculated numerically.

In Figs. 5(a) and 5(c) we plot the steady-state solution
of Eq. (47) for the mechanical occupation n̄(S)

0 (t → ∞) as
a function of the detection efficiency η and optomechani-
cal cooperativity C = G2/κγ for thermal environments with
mechanical occupations N̄ = 5 and N̄ = 500, respectively. In

Figs. 5(b) and 5(d) we plot these quantities divided by the un-
conditioned steady-state mechanical occupation realized via
continuous driving of the Stokes interaction n̄T MS (t → ∞).
As in Fig. 4, the vertical lines indicate unconditioned steady-
state mechanical occupations n̄T MS (t → ∞), which in this
case are all greater than the occupation of the mechanical bath
due to the heating effect of the Stokes interaction. However,
for any efficiency above the threshold efficiency η∗, contin-
uous zero-photon detection can used to cool the mechanical
occupation below the occupation of the bath. For the param-
eters chosen in Figs. 5(a) and 5(b), the threshold efficiency is
given by η∗ ≈ 0.17 for N̄ = 5. Meanwhile, in Figs. 5(c) and
5(d) the higher occupation of the mechanical environment of
N̄ = 500 produces a threshold efficiency η∗ � 0.

Similarly to the anti-Stokes case, the plots in Fig. 5 are
calculated in the limit t → ∞. Continuous zero-photon de-
tection over a finite duration occurs with a certain heralding
probability and yields a mechanical occupation larger than
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n̄T MS (t → ∞). As an example, consider continuous zero-
photon detection from the initial mechanical thermal state and
let C = 0.75, η = 0.5, and all other parameters be the same as
in the caption of Fig. 5. For N̄ = 5, n̄T MS (t → ∞) = 2.85;
however, a mechanical occupation of 3.44 can be reached
with a probability of 50%. Similarly, for N̄ = 500, n̄T MS (t →
∞) = 53.60 and with a probability of 10% a mechanical
occupation of 73.91 can be achieved.

3. A single-photon-detection event

Finally, the change in expectation values of the moments
considered previously can be calculated at the time of a single-
photon-detection event. For the zero-mean Gaussian states
considered here, the Isserlis-Wick theorem is valid and this
change is given by

i〈a†b†〉 → 2i〈a†b†〉 + i
〈a†2〉〈ab†〉

〈a†a〉 , (48)

i〈ab〉 → 2i〈ab〉 + i
〈a2〉〈a†b〉

〈a†a〉 , (49)

〈a†a〉 → 2〈a†a〉 + i
〈a†2〉〈a2〉

〈a†a〉 , (50)

〈b†b〉 → 〈b†b〉 + 〈a†b〉〈ab†〉 + 〈ab〉〈a†b†〉
〈a†a〉 . (51)

We again consider only those moments that are nonzero (see
the Appendix), giving the Stokes analog of Eq. (36) as

VS → VS + OS, (52)

where OS = (2i〈a†b†〉, 〈a†a〉,−〈a†b†〉2
/〈a†a〉)T.

Similarly to the anti-Stokes case, immediately after a
single-photon-detection event, the optomechanical state is
non-Gaussian. Thus Eq. (47), which assumes a Gaussian op-
tomechanical state, cannot be used at this time. However, one
may use Eq. (40) immediately after a single-photon-detection
event, which does not assume the optomechanical state is
Gaussian. Furthermore, in the adiabatic regime, Eq. (52) be-
comes VS → 2VS + (0, 0, 1)T. Hence, for an initial mechan-
ical thermal state, we recover that a single-photon-detection
event changes the mean occupation according to n̄ → 2n̄ + 1.

C. Comparison between the anti-Stokes and Stokes processes

In Fig. 6 we compare the results of Secs. III A and
III B. To ensure this comparison between the anti-Stokes
and Stokes scattering processes is fair and to highlight the
relevant effects of photon detection on the mechanical and
optical populations, we consider three experimentally rel-
evant cases in Figs. 6(a) and 6(b) comprising periods of
unconditional evolution, continuous zero-photon-detection,
and single-photon-detection events.

In case I, the laser-cooled or parametrically amplified
steady state is reached after a period of unconditioned evo-
lution and then a continuous string of zero-photon-detection
events is recorded. The unconditioned steady state illustrates
the usual features of the anti-Stokes and Stokes processes.
The former drives a state swap between the mechanical and
optical fields, laser cooling the mechanical mode. The latter
generates excitations in the mechanical and optical modes,
heating both until an equilibrium is reached where loss rates

balance optomechanical gain. Observing a continuous string
of zero-photon-detection events cools the mechanical state
for the anti-Stokes interaction and can surprisingly cool for
the Stokes interaction too. For this cooling to exceed heat-
ing while driving the Stokes interaction, the measurement
efficiency must exceed η∗. It is also worth noting that while
zero-photon detection during the anti-Stokes interaction al-
ways results in lower optomechanical occupations than the
Stokes interaction, as no mechanical excitations are created
during anti-Stokes scattering, the relative cooling of the state
is larger for zero-photon detection while driving the Stokes
interaction due to the “surprise” factor during the gain pro-
cess. This difference in the relative enhancement of cooling
by zero-photon detection may also be seen by comparing
Figs. 4(b) and 5(b).

In case II, the detection of a single photon during uncondi-
tioned evolution results in an increase in the occupation of
the optical cavity and mechanical modes for both the anti-
Stokes and Stokes interactions. In the limit of infinitesimal
measurement times used to derive the SME given in Eq. (18),
the optical occupation doubles for both the anti-Stokes and
Stokes interactions [cf. Eqs. (36) and (52)]. However, outside
the adiabatic regime, the mechanical occupation increases by
a factor less than 2 due to the interplay of the system decay
rates.

Finally, in case III, a continuous string of zero-photon-
detection events is followed by a single-photon detection and
then a period of unconditioned evolution. For the simula-
tion parameters used in Fig. 6, the optical and mechanical
populations illustrate a brief excursion above the steady-state
values reached via continuous zero-photon detection, before
then returning to their laser-cooled or parametrically amplified
steady state.

IV. CONCLUSION AND OUTLOOK

We have provided a theoretical description of mechanical
cooling utilizing the anti-Stokes or Stokes interactions and
zero-photon detection. Our analysis describes pulsed as well
as continuously monitored cavity optomechanical interactions
incorporating detection inefficiencies and mechanical open-
system dynamics. For both of these scenarios, we have shown
that mechanical cooling via zero-photon detection is enhanced
for the anti-Stokes interaction and surprisingly enabled for the
Stokes interaction. The results of Sec. III detail the anti-Stokes
interaction, which was experimentally explored in Ref. [55]
to enhance mechanical cooling via zero-photon detection be-
yond the limits of laser cooling. Importantly, the enhanced
cooling is realized for any nonzero detection efficiency and
thus the techniques introduced here can be readily utilized
across a wide range of current and future optomechanics
experiments. For the Stokes interaction, there is a compe-
tition between optomechanical parametric amplification and
cooling from zero-photon detection and we have determined
the minimum detection efficiency required for the cooling to
overcome the heating process.

Beyond zero-photon detection, the analysis presented here
also highlights contributions beyond first order in G to
the operation to the mechanical mode following a pulsed
optomechanical interaction and n-photon detection. More
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FIG. 6. Comparison between continuous mechanical cooling via zero-photon detection utilizing the anti-Stokes (solid lines) or Stokes
interaction (dashed lines) for three cases. In case I, a period of continuous laser cooling or parametric amplification is followed by continuous
zero-photon detection. In case II, a single-photon detection occurs in the middle of periods of unconditioned evolution, illustrating a transient
excursion from equilibrium. In case III, the quasiequilibrium reached after a continuous period of zero-photon detection is followed by a
single-photon detection and then an unmonitored evolution. (a) Effect of each case on the expectation value of the optical number operator
〈a†a〉. (b) Effect of the same measurement records on the mechanical occupation 〈b†b〉. The measurements made at each point in time are
indicated by the color of the bar between (a) and (b), detailed in the key. The values of the simulation parameters are N̄ = 10, κ = κex = 3,
γ = 1, G = 1, and η = 1. All rates are normalized by G.

specifically, n-photon detection does not directly correspond
to n-phonon addition or subtraction for the Stokes or anti-
Stokes scattering processes, respectively [cf. Eqs. (7) and
(14)]. Interestingly, these contributions are shown to be differ-
ent for the Stokes and anti-Stokes scattering processes, which
could be utilized in future works including thermometry [59],
quantum thermodynamics [76], and studies of open quantum
systems [77].

The zero-photon-detection-based techniques we have in-
troduced provide alternative routes to prepare mechanical
oscillators in higher-purity states. Building on the grow-
ing interest in optomechanics utilizing photon counting
[19–26,75,78–85], these zero-photon measurement tech-
niques may be readily employed in a range of physical
systems. In particular, when the Stokes process is driven for
single-phonon-addition operations [19] for nonclassical state
preparation, continuous zero-photon detection can be utilized
prior to single-photon detection to both avoid the mechanical
heating via parametric amplification and reduce the initial
thermal occupation. This can allow greater nonclassicality

to be generated without the need for a second anti-Stokes
interaction.
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APPENDIX: SIMPLIFYING THE DYNAMICS

Here we provide further details for the simplifications
made to the equations for the second-order moments in
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Sec. III. In particular, we focus on the equations describing
laser cooling, cooling via zero-photon detection, and
single-photon-detection events realized via the anti-Stokes
interaction and detail why 〈a2〉, 〈ab〉, 〈b2〉, and their
Hermitian conjugates are zero for all times. Notably,
analogous arguments apply for the equations describing
optomechanical parametric amplification, cooling via
zero-photon detection, and single-photon-detection events
realized via the Stokes interaction, which in this case imply
〈a2〉, 〈ab†〉, 〈b2〉, and their Hermitian conjugates are zero for
all times.

Before discussing the system dynamics, we will first note
some relevant properties of the assumed initial optomechan-
ical state. Here we assume an initially-phase-symmetric and
separable optical-mechanical state given by |0〉l l〈0| ⊗ ρn̄.
This initial state and all phase-symmetric states have reduced
density operators that are diagonal in the number basis and, as
a consequence,

〈a〉 = 〈a†〉 = 〈b〉 = 〈b†〉 = 0, (A1)

〈a2〉 = 〈b2〉 = 〈a†2〉 = 〈b†2〉 = 0. (A2)

Moreover, for a separable optical-mechanical state, Eq. (A1)
implies

〈ab〉 = 〈ab†〉 = 〈a†b〉 = 〈a†b†〉 = 0. (A3)

Notably, Eqs. (18) and (19) preserve the phase symmetry of
an initially-phase-symmetric optomechanical state.

1. Laser cooling and cooling via zero-photon detection

Equations (27)–(30) describe laser cooling (η = 0) and
cooling via zero-photon detection (0 < η � 1) for the mo-
ments 〈a†b〉, 〈ab†〉, 〈a†a〉, and 〈b†b〉. However, the mo-
ments in Eqs. (27) and (28) are Hermitian conjugates of
one another and thus Eqs. (27), (29), and (30) describe
the evolution of the three unique moments 〈a†b〉, 〈a†a〉,
and 〈b†b〉.

The three remaining unique second-order moments de-
scribing laser cooling and cooling via zero-photon detection
are 〈a2〉, 〈ab〉, and 〈b2〉, which evolve according to

d

dt
〈a2〉 = −2iG〈ab〉 − 2κ〈a2〉 − 4ηκex〈a†a〉〈a2〉, (A4)

d

dt
〈ab〉 = − iG(〈a2〉 + 〈b2〉) − (κ + γ )〈ab〉

− 2ηκex(〈ab〉〈a†a〉 + 〈a2〉〈a†b〉), (A5)

d

dt
〈b2〉 = −2iG〈ab〉 − 2γ 〈b2〉 − 4ηκex〈a†b〉〈ab〉. (A6)

Here the Isserlis-Wick theorem has been used to simplify the
terms proportional to ηκex, which originate from zero-photon
measurements. By inspecting Eqs. (A4)–(A6), it is clear that
if at time t = 0, 〈a2〉 = 〈ab〉 = 〈b2〉 = 0, then 〈a2〉 = 〈ab〉 =
〈b2〉 = 0 for all time too. Note that the equation describing
the evolution of 〈a†b†〉 is given by the Hermitian conjugate
of Eq. (A5).

2. A single-photon-detection event

Together, Eqs. (32)–(35) describe how the three unique
moments 〈a†b〉, 〈a†a〉, and 〈b†b〉 change due to a single-
photon-detection event. As in the preceding section, the three
remaining unique second-order moments are 〈a2〉, 〈ab〉, and
〈b2〉, which transform according to

〈a2〉 → 3〈a2〉, (A7)

〈ab〉 → 2〈ab〉 + 〈a†b〉〈a2〉
〈a†a〉 , (A8)

〈b2〉 → 〈b2〉 + 2〈a†b〉〈ab〉
〈a†a〉 , (A9)

during a single-photon-detection event. Here we have as-
sumed that the optomechanical state at time t is Gaussian such
that the Isserlis-Wick theorem can used to simplify the right-
hand sides of Eqs. (A7)–(A9). By inspecting these equations,
one may observe that if before the single-photon detec-
tion 〈a2〉 = 〈ab〉 = 〈b2〉 = 0, then after the single-photon
detection 〈a2〉 = 〈ab〉 = 〈b2〉 = 0 too. Note again that the
equation describing the evolution of 〈a†b†〉 is given by the
Hermitian conjugate of Eq. (A8).
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