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Local-photon model of the momentum of light
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Recently we introduced a local photon approach for modeling the quantized electromagnetic field in position
space. Using this approach, we define the momentum of light in this paper as in quantum mechanics as the
generator for spatial translation. Afterward, we analyze the momentum dynamics of photonic wave packets
which transition from air into a denser dielectric medium. Our analysis shines new light onto the Abraham-
Minkowski controversy, which highlights the intricacies involved in the characterization of the momentum of
the electromagnetic field. Although our results align with Minkowski’s theory and with the definition of the
canonical momentum of light in quantum electrodynamics, there are also some crucial differences.
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I. INTRODUCTION

In standard electrodynamics, the total energy of the elec-
tromagnetic (EM) field in a one-dimensional, nondispersive,
and homogeneous dielectric medium with permittivity ε and
permeability μ is given by

Heng = A

2

∫ ∞

−∞
dx[ε ‖E(x)‖2 + μ ‖H (x)‖2]

= A

2

∫ ∞

−∞
dx

[
1

ε
‖D(x)‖2 + 1

μ
‖B(x)‖2

]
. (1)

Here, A denotes the area occupied by the light in the y-z plane
when traveling along the x axis, and E(x) and B(x) denote the
local (real) electric and magnetic field vectors. The vectors
D(x) = ε E(x) and H (x) = B(x)/μ denote the (real) dis-
placement and magnetising field vectors, respectively. From
looking at Eq. (1) above, it is not clear whether either E(x)
and H (x) or D(x) and B(x) are the fundamental field vectors
for light in a dielectric medium. It is therefore not surprising
that there are different definitions for the momentum of light
in classical electrodynamics.

Currently, there are two main definitions of the momentum
of the EM field, both of which date back to the beginning of
the 20th century. According to Minkowski [1], the momentum
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of light p should be written as

pMin x̂ = A
∫ ∞

−∞
dx D(x) × B(x), (2)

where x̂ is a unit vector pointing in the direction of the positive
x axis. Abraham [2,3], on the other hand, suggested that p
should be written as

pAb x̂ = A

c2
0

∫ ∞

−∞
dx E(x) × H (x) (3)

with c0 denoting the speed of light in air. In the following c =
1/(εμ)1/2 will denote the speed of light in a dielectric medium
whilst n = c0/c will denote its refractive index. Using this
notation, one can show that pMin and pAb differ by a factor of
n2, and the controversy over this disparity has become known
as the Abraham-Minkowski controversy [4–14]. It has been
pointed out, meanwhile, that classical electrodynamics allows
for many other possible definitions of the momentum of light
in a dielectric medium [15].

Importantly, the different points of view lead to differ-
ent predictions when considering light transitioning from air
into a denser dielectric medium with n > 1. For example,
Abraham’s expression leads to a decrease of the momentum
of the incoming light by a factor of n [2,3] while Minkowski’s
expression predicts an increase by a factor of n [1]. Although
these predictions seem inconsistent, strong arguments have
been made in favor of each. The Abraham momentum, for
instance, can be derived in an “Einstein box” experiment
which considers the conservation of the mass-energy center
as light propagates through the dielectric medium [16–18].
Alternatively, Abraham’s momentum arises when the me-
chanical momentum of the medium is separated from the
total momentum of the field and dielectric [19,20]. In this
regard, the Abraham momentum is usually associated with
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the flow of energy, and moreover leaves the electromagnetic
energy-momentum tensor fully symmetric. The Minkowski
momentum, on the other hand, takes into account the response
[21], and in the quantum picture can be associated with the de
Broglie wavelength of a photon [16].

In more recent investigations, it has been proposed that
both the Abraham and the Minkowski momentum can be
expressed as a consistent part of the same physical theory
[11,18]. In Refs. [22,23], for instance, the Abraham and the
Minkowski momentum are associated with the kinetic and the
canonical momentum of light, respectively, although it has
also been claimed that this resolution cannot hold in all inertial
reference frames [24]. Unfortunately, the experimental tests
designed to determine the momentum of light have also not
been able to provide a clear resolution to the controversy, as
observations of both the Abraham [25,26] and the Minkowski
momentum have been reported. In photon drag [13,27,28] or
radiation pressure experiments [29,30], such as in the Jones
and Leslie experiment [31] which measured the force on a
mirror suspended in a fluid, the Minkowski momentum is
usually determined [32]. New proposals for an experimental
resolution, however, may be successful in the future [33].
Nevertheless, often it is possible to justify both forms of the
momenta provided that the EM forces on the material are
properly accounted for [34].

In this paper we therefore take an alternative approach to
identifying the momentum of light inside a homogeneous di-
electric medium. To do so, we notice that recently introduced
local photon approaches [35–38] allow us to assign not only a
state vector |ψ〉 but also a wave function ψ (x, t ) to individual
photons. By taking into account the position wave func-
tion of a photon, we can identify operators representing the
Hamiltonian and momentum of light in the same way as we
would in quantum mechanics. According to the Schrödinger
equation, the Hamiltonian of a quantum system is the genera-
tor of time translations. In the following, we therefore define
the dynamical Hamiltonian Hdyn of light such that

Hdyn |ψ〉 = ih̄
∂

∂t
|ψ〉. (4)

Similarly, the momentum of a quantum mechanical point par-
ticle is the generator for spatial translations. Hence, we define
the dynamical momentum pdyn of the quantized EM field such
that

pdyn |ψ〉 = −ih̄
∂

∂x
|ψ〉. (5)

Without a wave function ψ (x, t ) for individual photons, the
spatial derivative on the right-hand side of Eq. (5) would
remain meaningless [39]. For more detailed discussions of
previous difficulties with defining single-photon wave func-
tions see Refs. [40–44].

Proceeding as described in Refs. [36–38] and using the
same momentum space photon annihilation and creation op-
erators, ãsλ(k) and ã†

sλ(k), it can be shown that the dynamical
Hamiltonian Hdyn is given by

Hdyn =
∑
s=±1

∑
λ=H,V

∫ ∞

−∞
dk h̄ck ã†

sλ(k) ãsλ(k) (6)

FIG. 1. As recently shown in Refs. [36,37], the introduction of
a wave function for individual photons requires a doubling of the
standard Hilbert space of the quantized EM field. In the extended
Hilbert space we label monochromatic plane-wave photons by three
quantum numbers: s, k, and λ, with s = ±1, k ∈ (−∞, ∞), and λ =
H, V. The frequency and the wave number of these photons are given
by ω = ck and by sk respectively, while λ denotes their polarization.
Different from standard theories, we now have photons with positive
(orange) and with negative (blue) frequencies.

in the momentum space representation. Here, s and λ char-
acterize the direction of propagation and the polarization of
monochromatic photons while k varies between plus and
minus infinity (see Fig. 1). A closer look at Eq. (6) imme-
diately shows that Hdyn has positive and negative eigenvalues.
Our formalism therefore distinguishes between positive- and
negative-frequency photons. This applies since for every pho-
tonic wave packet of light there is another wave packet that
travels in the opposite direction and carries field vectors that
also solve Maxwell’s equations [45,46]. Since the generators
of time translations for these two wave packets must differ
by a minus sign, a complete description of the quantized EM
field requires a Hamiltonian with an equal number of positive
and negative eigenvalues. Only in the case of monochromatic
waves with positive frequencies ω = ck do the above expres-
sions coincide with the standard expression for the energy
observable [47]. The importance of including negative fre-
quency photons in the modeling of photonic devices, however,
is currently becoming more and more recognized [48–56].

Since localized photons with a well-defined direction of
propagation s travel at the speed of light, it is not surprising
that the generator for time translations Hdyn and the generator
for spatial translations pdyn have many similarities. As we
shall see below, pdyn equals

pdyn =
∑
s=±1

∑
λ=H,V

∫ ∞

−∞
dk h̄sk ã†

sλ(k) ãsλ(k) (7)

in its momentum space representation. A monochromatic pho-
ton with frequency ω = ck and direction of propagation s,
therefore, has the momentum h̄sk. For positive k, this mo-
mentum is the same as the canonical momentum of light
[10,57]. This too is not surprising since quantum electrody-
namics usually maps the energy observable of the quantized
electromagnetic field onto a harmonic oscillator. Once this
link is established, one can identify the canonical momentum
of light with the expression for the momentum of a quantum
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mechanical point particle which does not contain its mass m.
Moreover, in most situations the sign of k can be ignored when
momentum conservation is applied as dielectric interfaces
do not convert photons with positive frequencies k > 0 into
photons with negative frequencies k < 0 and vice versa [36].
Nevertheless, in general Eqs. (6) and (7) should be used.

By definition, the dynamical Hamiltonian Hdyn is not only
the generator of translations in time but also represents the
energy of the quantized EM field [58]. Whilst the eigenvalues
of the dynamical Hamiltonian Hdyn must necessarily take both
positive and negative values [36,37], the eigenvalues of the
energy observable Heng usually only take positive values. In
this paper, therefore, we assume that

Hdyn =
{−Heng for k < 0,

+Heng for k � 0,
(8)

thereby ignoring the energy of the vacuum state, i.e., the
zero-point energy of the EM field, which has no dynamics. By
taking this into account we show in this paper that the energy
observable Heng equals

Heng = A

4

∫ ∞

−∞
dx

[
ε E†(x) · E (x) + 1

μ
B†(x) · B(x)

]
(9)

with E†(x) and B†(x) denoting the complex electric and
magnetic field vector observables, respectively. Similarly, we
show in this paper that the dynamical momentum pdyn of light
can be written in the form

pdyn =
{−p for k < 0,

+p for k � 0 (10)

with p defined such that

p x̂ = εA

4

∫ ∞

−∞
dx [E†(x) × B(x) − B†(x) × E (x)]. (11)

Comparing this equation with Eq. (2) shows that p has many
similarities with Minkowski’s momentum of light [1]. The
only differences are that the real electric and magnetic field
vectors E(x) and B(x) have been replaced by an Hermitian
combination of their complex counterparts, namely, E†(x) and
B(x), and a factor 1/4 has been added.

In order to compare the energy and the momentum of light
before and after transitioning from air into a denser dielectric
medium, we shall derive a locally acting mirror Hamilto-
nian Hmir which is a special example of the locally acting
Hermitian mirror Hamiltonian in Ref. [36]. The dynamics
associated with Hmir describe light scattering by a partially
transparent mirror surface, conserve photon numbers, and can
be analyzed in a relatively straightforward way. By consid-
ering the reflection and transmission rates of light that are
consistent with Stokes’ relations and Fresnel’s coefficients
[59], we find that the energy of any incoming photons is
conserved, but there is a change in momentum. When we look
only at the eventually transmitted contribution, the increase
is by a factor n, in agreement with Minkowski’s theory [1].
However, overall, the momentum expectation value 〈pdyn〉
changes in an unexpected way which is different from pre-
vious predictions.

Quantum optics approaches which only consider positive
frequency photons (see, e.g., Ref. [47] and references therein)

are widely used in the literature and have been highly suc-
cessful in explaining experiments. This is not surprising, since
single-photon experiments usually employ unidirectional
monochromatic photons which are much longer than their
wavelengths [60,61]. This makes it easy to describe them
using momentum space annihilation operators which do not
seem to depend on s. However, an incomplete description
of the electromagnetic field makes it impossible to assign
wave functions and position operators to single photons, as
required by wave particle duality [36–38]. Moreover, as we
illustrate in the following, the construction of locally acting
mirror Hamiltonians requires locally acting, bosonic field an-
nihilation operators asλ(x), which are the Fourier transforms
of the above-mentioned ãsλ(k) operators. Due to the locality
of physical interactions, the results presented here are likely
to provide useful tools for the modeling of complex photonic
devices, including dielectric media with dispersion [62] and
space and time varying dielectric media [14,55,63].

This paper is structured as follows. Section II outlines the
classical equations for light propagation in a homogeneous
dielectric medium, which are pivotal for obtaining a local
quantum theory of the EM field. Section III extends our free
space model to the experimental setups in Fig. 2 with the
same or different media on either side of a partially transparent
mirror surface. Afterward, in Sec. IV, we derive expressions
for the energy and the dynamical momentum of the quantized
EM field, thereby confirming Eqs. (8)–(11). Once this is done,
we study the dynamics of their expectation values within
the local photon framework and gain new insight into the
Abraham-Minkowski controversy. Finally, we summarize our
results in Sec. V.

II. LOCAL PHOTONS IN A HOMOGENEOUS
DIELECTRIC MEDIUM

In this section we review a recently introduced local photon
model of the quantized EM field in free space [36–38]. To
motivate this approach we shall first have a closer look at the
classical dynamics of light in free space before quantizing the
EM field in position space in Sec. II B. When transforming
the position space operators into momentum space operators
in Sec. II C, we see that the local photon approach requires
a doubling of the usual number of photon degrees of free-
dom that appear in the standard description of the quantized
EM field [47], as illustrated in Fig. 1. Local photons are
therefore not the same as spatial-temporal or temporal modes
[35,64,65], although there are some similarities.

A. The classical dynamics of photonic wave packets

For simplicity, we restrict ourselves in the following to
light propagating along the x axis. In the presence of a
homogeneous, nondispersive dielectric medium, Maxwell’s
equations tell us that

∇ · E (x) = 0, ∇ × E (x) = − ∂

∂t
B(x),

∇ · B(x) = 0, ∇ × B(x) = 1

c2

∂

∂t
E (x). (12)
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FIG. 2. (a) An illustration of light scattering by a partially transparent interface in the x = 0 plane with the same medium on both sides.
Here, rs and ts denote the reflection and transmission rate of a blip which travels initially in the s direction. As we shall see below, energy
conservation and symmetry arguments impose certain conditions onto these rates. (b) An illustration of light scattering on the surface of a
dielectric medium with a refractive index n > 1 on the right-hand side of the x = 0 plane.

The usually considered real electric and magnetic field vectors
E(x) and B(x) are given by the real parts of the complex
vectors in Eq. (12). After eliminating either E (x) or B(x) in
Eq. (12) we find the following wave equations:(

∂2

∂x2
− 1

c2

∂2

∂t2

)
O(x, t ) = 0, (13)

which act independently on each component of O = E,B. As
pointed out by d’Alembert, it is useful to write the quadratic
operator in the above wave equation as the product of two
linear operators showing that there are different types of solu-
tions Osλ(x, t ), each satisfying(

∂

∂x
+ s

c

∂

∂t

)
Osλ(x, t ) = 0, (14)

where s = ±1. By solving this first-order differential equa-
tion one may further show that

Osλ(x, t ) = Osλ(x − sct, 0), (15)

which demonstrates that Maxwell’s equations support pho-
tonic wave packets with polarization λ that propagate at the
speed of light in the direction of either the positive or the
negative x axis [45,46]. The orientations of the electric and
magnetic field vectors E sλ(x, t ) and Bsλ(x, t ) depend on both
s and λ. The only difference between light propagation in air
and in a dielectric medium is the respective speed at which the
light is propagating.

B. The position representation

The discussion in the previous subsection demonstrates
that it is possible to decompose wave packets of light not only
into monochromatic waves, but also into local building blocks
which travel at the speed of light. In the following we refer
to these local quantized building blocks as blips, which stands
for bosons localized in position. As we shall see below, blips

are the carriers of electric and magnetic fields, in a similar
way as to how massive objects, e.g., planets, are carriers of
gravitational fields [36,37]. Each blip is characterized by a
position x ∈ (−∞,∞), a polarization λ = H, V specifying
the orientation of the fields carried by the blip, and a direction
of propagation s = ±1. The corresponding blip annihilation
operators asλ(x) must obey the bosonic commutation relation

[asλ(x), a†
s′λ′ (x′)] = δss′ δλλ′ δ(x − x′), (16)

whilst all other commutators return zero. This relation guar-
antees that the single-blip states

|1sλ(x)〉 = a†
sλ(x) |0〉 (17)

correspond to pairwise orthogonal states when defined at dif-
ferent positions [36,37].

To find the dynamical Hamiltonian Hdyn [Eq. (4)] of
the quantized EM field in a dielectric medium, we shall
use the associated unitary time evolution operator Udyn(t, 0).
Transforming the blip annihilation operators asλ(x) into the
Heisenberg picture [66] with respect to t = 0, we obtain the
Heisenberg operators

asλ(x, t ) = U †
dyn(t, 0) asλ(x)Udyn(t, 0) (18)

with asλ(x, 0) = asλ(x). The time- and position-dependent op-
erators asλ(x, t ) describe blips with space-time coordinates
(x, t ) and polarization λ which travel at the speed of light c
in the s direction. Hence, consistency with Eq. (15) requires
that [36,37]

asλ(x, t ) = asλ(x − sct ). (19)

Next, we will show that the Hamiltonian

Hdyn = −ih̄
∑
s=±1

∑
λ=H,V

∫ ∞

−∞
dx sc a†

sλ(x)
∂

∂x
asλ(x) (20)
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generates these dynamics. Notice that the above Hdyn is
the same as the dynamical Hamiltonian which we recently
introduced in Refs. [36,37], but written here in a more
compact form.

By taking the time derivative of Eq. (18), the asλ(x, t )
operators evolve according to the von Neumann equation

∂

∂t
asλ(x, t ) = − i

h̄
[asλ(x, t ), Hdyn]. (21)

Subsequently substituting Hdyn in Eq. (20) into this equa-
tion and then using Eq. (19), we may show that

∂

∂t
asλ(x, t )

= −sc
∫ ∞

−∞
dx′ [asλ(x − sct ), a†

sλ(x′)]
∂

∂x′ asλ(x′)

= −sc
∫ ∞

−∞
dx′ δ(x − x′ − sct )

∂

∂x′ asλ(x′). (22)

This expression can then be simplified with the substitution
x̃ = x′ + sct in Eq. (22), which leads us to

∂

∂t
asλ(x, t ) = −sc

∫ ∞

−∞
dx̃ δ(x − x̃)

∂

∂ x̃
asλ(x̃, t ) (23)

and finally to

∂

∂t
asλ(x, t ) = −sc

∂

∂x
asλ(x, t ). (24)

This means that Hdyn is consistent with Eq. (19) and is there-
fore the dynamical Hamiltonian of the quantized EM field.

As shown in Refs. [36,37,49,50], the complex local electric
and magnetic field vectors E (x) and B(x) of photonic wave
packets can be written in the form

E (x) =
∑
s=±1

RsH(x) ŷ + RsV(x) ẑ,

B(x) =
∑
s=±1

s

c
[RsH(x) ẑ − RsV(x) ŷ] (25)

where ŷ and ẑ are unit vectors pointing along the direction
of the positive y and z axes, respectively. Moreover, Rsλ(x)
denotes the nonlocal annihilation operator

Rsλ(x) =
∫ ∞

−∞
dx′ R(x − x′) asλ(x′) (26)

with the distribution R(x − x′) given by [37]

R(x − x′) = −
(

h̄c

4πεA

)1/2 1

|x − x′|3/2
. (27)

As R(x − x′) is nonzero for any x �= x′, the complex field
operators E (x) and B(x) are the sum of contributions from
blips at all points along the x axis. As we shall illustrate in
the next subsection, the above choice of Rsλ(x) guarantees
Lorentz covariance [37]. Moreover, notice that the right-hand
side of Eq. (27) depends on parameters characterizing the
medium, like the area A that the fields occupy in the y-z plane.

C. The momentum representation

For later convenience, and since most readers will be more
familiar with it, we conclude this section with a review of the

momentum representation of the quantized EM field. When
transferring the blip annihilation operators asλ(x) into mo-
mentum space, we obtain the bosonic annihilation operators
ãsλ(k) for monochromatic photons. These relate to the asλ(x)
operators via a Fourier transform [36,37] and

ãsλ(k) = 1

(2π )1/2

∫ ∞

−∞
dx e−iskx asλ(x),

asλ(x) = 1

(2π )1/2

∫ ∞

−∞
dk eiskx ãsλ(k). (28)

These equations can be used to check that the momentum
space annihilation operators ãsλ(k) also obey bosonic com-
mutation relations and that

[ãsλ(k), ã†
s′λ′ (k′)] = δs,s′ δλ,λ′ δ(k − k′) (29)

with s = ±1, λ = H, V and k ∈ (−∞,∞). Consequently,
the single-excitation states |1sλ(k)〉 = ã†

sλ(k)|0〉 of monochro-
matic light are pairwise orthogonal.

To obtain the momentum space representation of the dy-
namical Hamiltonian Hdyn we now substitute Eq. (28) into
Eq. (20) and perform the x derivative, which gives

Hdyn = h̄c

2π

∑
s=±1

∑
λ=H,V

∫ ∞

−∞
dx

∫ ∞

−∞
dk

∫ ∞

−∞
dk′

× k′ e−is(k−k′ )x ã†
sλ(k)ãsλ(k′). (30)

Performing the x integration and then integrating over the
resulting delta function leads to Eq. (6), in which the above
Hamiltonian is diagonal. Notice, however, that the main
difference compared to the standard representation of the
quantized EM field (cf., e.g., Ref. [47]) is a doubling of the
usual Hilbert space. We now characterize photons not only by
a variable k ∈ (−∞,∞) and a polarization λ = H, V, but also
by the direction of propagation s = ±1. As one can see from
Eq. (6), the frequency ω of monochromatic photons equals
ω = ck, which can be positive and negative.

Lastly, we shall transform the complex electric and mag-
netic field vectors E (x) and B(x) in Eq. (25) into their
momentum space representations. Before we can do this we
must decompose the field observables into their different
(s, λ) contributions and write them as

O(x) =
∑
s=±1

∑
λ=H,V

Osλ(x) (31)

with O = E,B. By transforming the component Osλ(x) into
momentum space we obtain the complex electric and mag-
netic field vectors Ẽ (k) and B̃(k) with

Õ(k) =
∑
s=±1

∑
λ=H,V

Õsλ(k) (32)

and

Õsλ(k) = 1

(2π )1/2

∫ ∞

−∞
dx e−iskx Osλ(x),

Osλ(x) = 1

(2π )1/2

∫ ∞

−∞
dk eiskx Õsλ(k), (33)
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in analogy to Eq. (28). Combining Eqs. (25), (26), and (28)
with the above equations, we can now show, for example, that

Ẽ sH(k) = − 1

2π

(
h̄c

4πεA

)1/2 ∫ ∞

−∞
dk′

∫ ∞

−∞
dx

∫ ∞

−∞
dx′

× 1

|x − x′|3/2
e−is(kx−k′x′ ) ãsλ(k′) ŷ. (34)

To simplify this expression, we replace the x′ integration by
an integration over ξ = x′ − x, which gives

Ẽ sH(k) = − 1

2π

(
h̄c

4πεA

)1/2 ∫ ∞

−∞
dk′

∫ ∞

−∞
dx

∫ ∞

−∞
dξ

× 1

|ξ |3/2
e−is(k−k′ )x eisk′ξ ãsλ(k′) ŷ. (35)

Now we can perform the x integration followed by the k′
integration to show that

Ẽ sH(k) = ζ (k) ãsH(k) ŷ, (36)

where ζ (k) is the solution to the integral

ζ (k) = −
(

h̄c

4πεA

)1/2 ∫ ∞

−∞
dξ

1

|ξ |3/2
eiskξ

=
(

2h̄c

εA

)1/2

|k|1/2. (37)

Analogously, one can also show that

Ẽ sV(k) = ζ (k) ãsV(k) ẑ,

−sc B̃sV(k) = ζ (k) ãsV(k) ŷ,

sc B̃sH(k) = ζ (k) ãsH(k) ẑ, (38)

in addition to Eq. (36). The operators Ẽ sλ(k) and B̃sλ(k) coin-
cide with the momentum space annihilation operators ãsλ(k)
up to a factor that is proportional to |k|1/2. The only difference
between air and any other dielectric medium are the values of
ε and μ, and therefore also of c.

III. LOCAL PHOTONS IN THE PRESENCE OF A
PARTIALLY TRANSPARENT MIRROR INTERFACE

The presence of an optical element, like a partially
transparent mirror, does not restrict the possible shapes, po-
larizations, and directions of propagation that a wave packet
of light may have at any given time. As a result, the Hilbert
space of the quantized EM field needs to remain the same,
even when a mirror interface is placed on the x axis as illus-
trated in Fig. 2. The only thing that changes is the dynamics
of any incoming wave packets. These split into transmitted
and reflected components when coming into contact with a
mirror surface. As we show below, this change in dynamics
can be accounted for by adding an interaction term Hint to the
dynamical Hamiltonian Hdyn of the quantized EM field. In the
presence of a mirror, the total Hamiltonian now equals [36]

Hmir = Hdyn + Hint. (39)

The purpose of this section is to obtain Hint for light scattering
by a dielectric medium.

A. Linear optics beam-splitter transformations

First let us have a closer look at how the linear optics
community describes light scattering by a beam splitter, i.e.,
by an infinitesimally thin partially transparent mirror, with the
same medium on both sides [see Fig. 2(a)]. In the following,
we denote the complex reflection and transmission rates by rs

and ts, where s indicates the direction of propagation of the
incoming wave packet. Placing the beam splitter in the x = 0
plane, the scattering operator S is defined such that [67,68](

S a†
−1λ(0) S†

S a†
1λ(0) S†

)
= U

(
a†

−1λ(0)

a†
1λ(0)

)
(40)

with the transition matrix U given by

U =
(

t−1 r1

r−1 t1

)
. (41)

The a†
sλ(0) on the right-hand side of Eq. (40) are the creation

operators of the incoming blips at the mirror surface, while
the Sa†

sλ(0, t )S† on the left are the creation operators of blips
that have already experienced the mirror surface. If there is
no absorption in the mirror surface, photon numbers must
be conserved. This applies when the transition matrix U is
unitary, i.e., when

r∗
−1t1 + t∗

−1r1 = 0, |r±1|2 + |t±1|2 = 1. (42)

In classical optics these relations are known as Stokes’
relations [59].

B. An infinitesimally thin mirror surface
with the same medium on both sides

Linear optics experiments show that the dynamics of in-
dividual photons are unaffected by the presence of other
photons: each photon travels independently through the mir-
ror interface [67,68]. This means that the dynamics of more
complex quantum states of light can be deduced from the
dynamics of the single-excitation states of the EM field.
Therefore, we focus in the following on these states. In ad-
dition, we notice that the time evolution operator Umir (t, 0)
of the mirror Hamiltonian in Eq. (39) must evolve the state
|1sλ(x)〉 as it would in free space, that is, as

Umir (t, 0) |1sλ(x)〉 = |1sλ(x + sct )〉, (43)

if the blip does not reach the x = 0 plane within the time
interval (0, t ). If the incoming blip does reach the mirror
surface, however, then we require that

Umir (t, 0) |1sλ(x)〉 = ts |1sλ(x + sct )〉
+ rs |1−sλ(−x − sct )〉. (44)

To generate the dynamics described in Eqs. (43) and (44), Hint

needs to convert left-moving into right-moving blips at x = 0
and vice versa. In the remainder of this subsection we show
that the Hamiltonian

Hint =
∑

λ=H,V

h̄� a†
−1λ(0) a1λ(0) + H.c. (45)

with a complex mirror coupling constant � has these prop-
erties. The above interaction Hamiltonian is Hermitian by
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construction. Moreover, for symmetry reasons, � cannot de-
pend on s or on λ. As we shall see below, � depends
on ts and rs and on the speed of the incoming wave
packets.

To derive the time evolution operator Umir (t, 0), we de-
note the free space time evolution operator by Udyn(t, 0). In

addition, we employ a Dyson series expansion, which is
obtained after first moving into the interaction picture with
respect to H0 = Hdyn and t = 0 and then evaluating the time
evolution operator in the interaction picture with help of the
usual Dyson series expansion. Proceeding in this way and
returning into the Schrödinger picture, one can show that

Umir (t, 0) = Udyn(t, 0) − i

h̄

∫ t

0
dt1 Udyn(t, t1) Hint Udyn(t1, 0)

+
(

− i

h̄

)2 ∫ t

0
dt2

∫ t2

0
dt1 Udyn(t, t2)Hint Udyn(t2, t1) Hint Udyn(t1, 0) + · · ·

+
(

− i

h̄

)n ∫ t

0
dtn . . .

∫ t2

0
dt1 Udyn(t, tn) Hint Udyn(tn, tn−1) . . . Hint Udyn(t1, 0) + . . . . (46)

When applying Umir (t, 0) to a single-blip excitation state |11λ(x)〉 that does not arrive at the mirror interface within the time
interval (0, t ), only the first term in Eq. (46) contributes to its dynamics. All higher-order terms return zero since

Hint Udyn(t1, 0) |11λ(x)〉 = h̄� |1−1λ(0)〉〈11λ(0)|11λ(x + ct1)〉
= h̄� |1−1λ(0)〉 δ(x + ct1) (47)

equals zero in this case. Consequently, the blip does not experience Hint and evolves exactly as requested in Eq. (43). Similarly,
one can show that

HintUdyn(t1, 0)|1−1λ(x)〉 = h̄�∗|11λ(0)〉 δ(x − ct1) (48)

for a blip initially propagating to the left. Thus, an outgoing left-moving blip also evolves as if in free space, consistent with
Eq. (43).

Next, we have a closer look at the dynamics of a blip initially prepared in |1sλ(x)〉 and arriving at x = 0 within (0, t ). Now all
terms in Eq. (46) contribute to the time evolution of the initial state. For example, when using Eq. (47), the first-order contribution
gives

− i

h̄

∫ t

0
dt1 Udyn(t, t1) Hint Udyn(t1, 0) |1sλ(x)〉 = −i�(∗)

∫ t

0
dt1 |1−sλ(−sc(t − t1))〉 δ(x + sct1) (49)

since Udyn(t, t1) |1−sλ(0)〉 = |1−sλ( − sc(t − t1))〉. Here, we take �(∗) to denote � when s = 1 and �∗ when s = −1. To perform
this time integration we substitute x1 = −sct1, which leads us to

− i

h̄

∫ t

0
dt1 Udyn(t, t1) Hint Udyn(t1, 0) |1sλ(x)〉 = i�(∗)

sc

∫ −sct

0
dx1 |1−sλ(−x1 − sct )〉 δ(x − x1)

= − i�(∗)

c
|1−sλ(−x − sct )〉. (50)

To calculate the nth-order contribution to the time evolution of |1sλ(x)〉 with n � 2 we proceed in analogy to Eqs. (47)–(50) and
show that (

− i

h̄

)n ∫ t

0
dtn . . .

∫ t2

0
dt1 Udyn(t, tn) Hint Udyn(tn, tn−1) . . . Hint Udyn(t1, 0) |1sλ(x)〉

= (−iA(�))n
∫ t

0
dtn . . .

∫ t2

0
dt1 |1±sλ(±sc(t − tn))〉 δ(sc(tn − tn−1)) . . . δ(sc(t2 − t1)) δ(−sct1 − x). (51)

Here, A(�)n = |�|n for even n and A(�)n = |�|n−1�(∗) for odd n. The delta functions in this equation account for the fact that
blips experience Hint only when positioned at x = 0; at all other positions they are not in contact with the mirror interface. Above,
the plus sign applies when n is even and the negative sign applies when n is odd. After substituting xi = −scti with i = 1, . . . , n
in order to replace all time integrations by integrations in space we see that(

− i

h̄

)n ∫ t

0
dtn . . .

∫ t2

0
dt1 Udyn(t, tn) Hint Udyn(tn, tn−1) . . . Hint Udyn(t1, 0) |1sλ(x)〉

=
(

iA(�)

sc

)n ∫ −sct

0
dxn . . .

∫ x2

0
dx1 |1±sλ(±(sct + xn))〉 δ(xn − xn−1) . . . δ(x2 − x1) δ(x1 − x)

= 2

(
− iA(�)

2c

)n

|1±sλ(±(sct + x))〉. (52)
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The above calculation takes into account that all integrations—with the exception of one—cover only half a δ function. Using
Eq. (46) and combining all higher-order terms, we therefore find that

Umir (t, 0) |11λ(x)〉 =
[

1 + 2
∞∑

n=1

(
− i|�|

2c

)2n
]
|11λ(x + ct )〉 − i�

c

∞∑
n=0

(
− i|�|

2c

)2n

|1−1λ(−x − ct )〉,

Umir (t, 0) |1−1λ(x)〉 =
[

1 + 2
∞∑

n=1

(
− i|�|

2c

)2n
]
|11λ(x − ct )〉 − i�∗

c

∞∑
n=0

(
− i|�|

2c

)2n

|11λ(−x + ct )〉. (53)

This equation is of the same form as Eq. (44). In the case of
reflection, the original blip is replaced by its mirror image,
which seems to come from the opposite side of the interface.
A transmitted blip, however, evolves as it would in the absence
of the mirror.

For |�| < 2c we can perform the above summations and
calculate the reflection and transmission rates rs and ts of the
partially transparent mirror interface in Fig. 2(a). Doing so,
we find that

t±1 = 1 − (|�|/2c)2

1 + (|�|/2c)2
. (54)

This expression is real and can assume any value between 0
and 1. For � = 0 we get t±1 = 1, as one would expect. In
addition, both transmission rates become zero when |�| tends
to its maximum value of 2c. The complex reflection rates r±1

are given by

r−1 = − i�∗/c

1 + (|�|/2c)2
, r1 = −r∗

−1. (55)

The phases of these rates depend upon the phase of the com-
plex mirror coupling constant �.

As mentioned already above, photons do not interact with
each other—they only interfere. To show that this is indeed the
case, suppose |0〉 denotes the vacuum state of the quantized
EM field. Then, one can show that

Umir (t, 0) [a†
sλ(x)]n |0〉

= [Umir (t, 0) a†
sλ(x)U †

mir (t, 0)]n|0〉, (56)

which takes into account that U †
mir (t, 0) |0〉 = |0〉 and

Umir (t, 0)U †
mir (t, 0) = 1. When substituting Eq. (44) into

Eq. (56), we therefore find that

Umir (t, 0) [a†
sλ(x)]n |0〉

= [ts a†
sλ(x + sct ) + rs a†

−sλ(−x − sct )]n|0〉, (57)

which describes the independent scattering of all incoming
blips. To show that the mirror Hamiltonian Hmir also produces
the expected dynamics for any possible initial state |ψ (0)〉,
we should write |ψ (0)〉 as a function of creation operators
[a†

sλ(x)]n applied to |0〉, where n is an integer. Fortunately, this
is always possible [67,68], and hence Hint in Eq. (45) is indeed
the interaction Hamiltonian of a partially transparent mirror
surface.

C. An infinitesimally thin mirror surface
with a different medium on either side

Next we have a closer look at the case where the mirror
surface appears as a result of placing a dielectric medium
along the positive x axis, as is illustrated in Fig. 2(b). Again,
the total Hamiltonian Hmir of the quantized EM field is the
sum of two terms, Hdyn and Hint [cf. Eq. (39)]. As before,
the dynamical Hamiltonian Hdyn describes the propagation
of light in the absence of the interface. The only difference
between the situations depicted in Figs. 2(a) and 2(b) is that
light now travels at different speeds on either side of x = 0.
To account for this, we replace Eq. (20) in the following by

Hdyn = −ih̄
∑
s=±1

∑
λ=H,V

∫ 0

−∞
dx sc0 a†

sλ(x)
∂

∂x
asλ(x)

− ih̄
∑
s=±1

∑
λ=H,V

∫ ∞

0
dx sc a†

sλ(x)
∂

∂x
asλ(x) (58)

with c0 = nc. It is tempting to assume that the interaction
term—which accounts for the presence of a mirror surface—
remains the same as in Eq. (45). Unfortunately, this is not
the case. From Eqs. (54) and (55), we see that the complex
coupling constant � depends on how fast the light approaches
the mirror surface and this speed is now no longer the same
on both sides.

Nevertheless, is it possible to describe the situation in
Fig. 2(b) using a Hermitian locally acting mirror Hamiltonian.
All we need to do is to map the situation which we consider
here onto the situation which we considered in the previous
subsection. Suppose the annihilation operators bsλ(x) are de-
fined such that

bsλ(x) =
{

asλ(x) for x � 0,

asλ(x/n)/
√

n for x > 0.
(59)

Using Eq. (16), one can easily check that these operators too
obey bosonic commutation relations:

[bsλ(x), b†
s′λ′ (x′)] = δss′ δλλ′ δ(x − x′). (60)

Most importantly, the dynamical Hamiltonian Hdyn in Eq. (58)
can now be written as

Hdyn = −ih̄
∑
s=±1

∑
λ=H,V

∫ ∞

−∞
dx sc0 b†

sλ(x)
∂

∂x
bsλ(x). (61)

When modeled by the bsλ(x) operators, light seems to ap-
proach the mirror surface at x = 0 at the same speed, as in
the situation in Fig. 2(a).
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In addition, we notice that the photon number operator N
does not depend on whether we count photons using the asλ(x)
or the bsλ(x) operators since

N =
∑
s=±1

∑
λ=H,V

∫ ∞

−∞
dx a†

sλ(x)asλ(x)

=
∑
s=±1

∑
λ=H,V

∫ ∞

−∞
dx b†

sλ(x)bsλ(x) (62)

by construction. As the calculations from the previous sub-
section have shown, the mirror interaction Hamiltonian Hint,
written now as

Hint =
∑

λ=H,V

h̄� b†
−1λ(0) b1λ(0) + H.c. (63)

in analogy to Eq. (45), combined with the dynamical
Hamiltonian in Eq. (61), conserves photon numbers. To model
light scattering into and out of a homogeneous dielectric
medium, we should therefore use Hdyn and Hint in Eqs. (61)
and (63), but with the physical states of any incoming wave
packets of light generated by the asλ(x) operators in Eq. (59).

Suppose that at t = 0 a single blip has initially been placed
at a position x < 0 while the EM field is in its vacuum state
everywhere else. In addition, we assume that the blip travels to
the right and reaches the x = 0 plane within the time interval
(0, t ). Repeating the calculations from the previous subsection
for the initial state

|ψin(0)〉 = a†
1λ(x)|0〉 = b†

1λ(x)|0〉, (64)

but now with the speed of light c and all a operators replaced
by c0 and by the b operators, respectively, one can show that
the state vector |ψout (t )〉 = Umir (t, 0)|ψin(0)〉 of the EM field
at time t equals

|ψout (t )〉 = t1 b†
1λ(x + c0t )|0〉 + r1 b†

−1λ(−x − c0t )|0〉 (65)

with the photon transmission and reflection rates, t1 and r1, of
the b operators given by

t1 = 1 − (|�|/2c0)2

1 + (|�|/2c0)2
, r1 = − i�/c0

1 + (|�|/2c0)2
. (66)

After replacing the above b operators in Eq. (65) with a
operators, this equation leads us to

|ψout (t )〉 = (t1/
√

n) |11λ((x + c0t )/n)〉
+ r1 |1−1λ(−x − c0t )〉 (67)

with |1sλ(x)〉 = a†
sλ(x)|0〉. The factors 1/

√
n and 1/n in this

equation come from Eq. (59) and ensure that photon numbers
are conserved. The blip density of the incoming light changes
accordingly upon interaction with the mirror surface.

Next, we consider a single left-moving blip on the right-
hand side of the x = 0 plane which transitions from the
dielectric medium into air while there is vacuum everywhere
else. In this case, the initial state |ψin(0)〉 of the EM field
equals

|ψin(0)〉 = a†
−1λ(x)|0〉 = √

n b†
−1λ(nx)|0〉 (68)

with x > 0. Proceeding as above, we now find that the mirror
Hamiltonian Hmir evolves this state into

|ψout (t )〉 = √
n t−1 b†

−1λ(nx − c0t )|0〉
+ √

n r−1 b†
1λ(−nx + c0t )|0〉 (69)

if the blip reaches the mirror interface within the time interval
(0, t ). The transmission and reflection rates in this equa-
tion are now given by

t−1 = t1, r−1 = −r∗
1 (70)

with t1 and r1 given in Eq. (66). By again making use of
Eq. (59), we now find that

|ψout (t )〉 = √
n t−1 |1−1λ(nx − c0t )〉

+ r−1 |11λ(−x + c0t/n)〉 (71)

for sufficiently large times t . Looking at Eqs. (67) and (71),
one might get the impression that the dynamics of incoming
wave packets are no longer unitary. However, both Hamil-
tonians, Hdyn and Hint in Eqs. (61) and (63), are Hermitian.
The mirror Hamiltonian Hmir in Eq. (39) is therefore also
Hermitian.

IV. THE ENERGY AND THE MOMENTUM DYNAMICS
OF THE QUANTIZED EM FIELD

Unfortunately, the analysis in the previous section does
not reveal how the transmission and reflection rates rs and ts
depend on the refractive index n of the dielectric medium. This
applies since so far we have only exploited one conservation
law, namely, photon number conservation. In order to identify
the dependence of rs and ts on n, an additional constraint is
needed. In this section we therefore impose continuity of the
electric field vector on the mirror surface and derive the Fres-
nel coefficients of classical optics [59]. In addition, we obtain
explicit expressions for the energy and the momentum of the
quantized EM field and confirm the validity of Eqs. (8)–(11)
in the Introduction. When studying the dynamics of the ex-
pectation values of both observables for wave packets which
transition from air into a homogenous dielectric medium, we
find that energy is always conserved but the momentum of
light changes. If we only consider the transmitted contribu-
tion, the dynamical momentum seems to increase by a factor
n, in agreement with Minkowski [1], since the wave number
k increases by a factor n. However, overall, the expectation
value 〈pdyn〉 changes in an unexpected way which is different
from previous predictions.

A. Energy and momentum observables

From quantum optics experiments, we know that a single
atom generates exactly one photon upon emission [60]. Since
the energy of the emitted photon is the same as the energy
now missing from the atom, a monochromatic photon with
frequency ω = ck must have the energy h̄|ω| = h̄c|k|. Hence,
the energy observable Heng of the quantized EM field needs to
equal

Heng =
∑
s=±1

∑
λ=H,V

∫ ∞

−∞
dk h̄c|k| ã†

sλ(k)ãsλ(k). (72)
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This observable is different from the energy observable that
we obtained in our earlier papers [36,37] after applying the
correspondence principle to the usual expression for the en-
ergy of the EM field in classical electrodynamics. Instead, the
above operator has been constructed such that its eigenvectors
have the expected energy eigenvalues while unphysical cross
terms are avoided. Moreover, comparing Heng in Eq. (72) with
the dynamical Hamiltonian Hdyn in Eq. (6), we notice that Heng

and Hdyn share their eigenstates, but some of their eigenvalues
differ by a minus sign, as was pointed out in Eq. (8). In other
words, the dynamical Hamiltonian Hdyn is indeed a measure
for the energy of the quantized EM field [58]. The sign differ-
ence is important, since it ensures that left- and right-moving
wave packets do not have the same dynamics, even when they
have the same energy.

To be able to write Heng in Eq. (72) as a function of the
complex electric and magnetic field observables E (x) and
B(x), we now use Eqs. (31) and (32) to show that∫ ∞

−∞
dx O†(x) · O(x)

= 1

2π

∑
s,s′=±1

∑
λ,λ′=H,V

∫ ∞

−∞
dx

∫ ∞

−∞
dk

∫ ∞

−∞
dk′

× e−is(k−k′ )x e−i(s−s′ )k′x Õ†
sλ(k) · Õs′λ′ (k′) (73)

for O = E,B. For s = s′, the x integration yields a delta
function in k − k′ which can be used to further simplify the
above operator. For s �= s′ this is not possible. After taking
into account contributions from both the electric and magnetic
fields in Eq. (9), however, the s �= s′ terms cancel and do not
contribute to the total energy. Hence, we find that∫ ∞

−∞
dx O†(x) · O(x)

=
∑
s=±1

∑
λ,λ′=H,V

∫ ∞

−∞
dk Õ†

sλ(k) · Õsλ′ (k). (74)

Using Eqs. (36)–(38), one can therefore show that Heng in
Eq. (72) can indeed be written as in Eq. (9) in the Introduc-
tion. For monochromatic waves with positive frequencies, the
complex electric and magnetic field vectors contribute equally
to the energy and Eq. (9) coincides on average with the energy
observable which we usually associate with the quantized EM
field [47]. In general, however, both expressions are not the
same and Eq. (9) should be used.

In quantum mechanics, the total momentum of a collection
of particles is the generator for spatial displacements. In the
following, we take an analogous approach and define the
free-space momentum of photonic wave packets pdyn as was
proposed in Eq. (5). Considering light with a well-defined di-
rection of propagation s and taking into account that it travels
at constant speed, it can be seen from Eq. (24) that the position
and the time derivatives of a state vector |ψ〉 differ by only a
constant factor sc. Hence, using the short-hand notation

Hdyn =
∑
s=±1

Hdyn(s), pdyn =
∑
s=±1

pdyn(s), (75)

Eqs. (4) and (5) imply that

pdyn(s) = (s/c) Hdyn(s). (76)

Combining this observation with Eq. (20) yields the dynami-
cal momentum

pdyn = −ih̄
∑
s=±1

∑
λ=H,V

∫ ∞

−∞
dx a†

sλ(x)
∂

∂x
asλ(x) (77)

in the position representation and Eq. (7) in the momentum
representation. Like Hdyn, the dynamical momentum pdyn has
an equal number of positive and negative eigenvalues. Nev-
ertheless, unlike the energy, pdyn has a different sign for
state vectors describing wave packets that travel in different
directions. This is illustrated in Fig. 1 which shows that the
frequency of monochromatic photons equals ω = ck while
their wave number is given by sk [36].

To identify the dependence of the dynamical momentum
pdyn on the complex electric and magnetic field vectors E (x)
and B(x), we now use Eqs. (31) and (33) to show that∫ ∞

−∞
dx E†(x) × B(x)

= 1

2π

∑
s,s′=±1

∑
λ,λ′=H,V

∫ ∞

−∞
dx

∫ ∞

−∞
dk

∫ ∞

−∞
dk′

× e−is(k−k′ )x e−i(s−s′ )k′x Ẽ†
sλ(k) × B̃s′λ′ (k′) (78)

in momentum space. Again, terms with λ �= λ′ do not con-
tribute to the vector product in the above equation because of
the orientations of the Ẽ sλ(k) and B̃sλ(k) vectors [cf. Eqs. (36)
and (38)]. Moreover, as in the previous subsection, the x
integration yields a delta function in k − k′ when s = s′; but
when s �= s′ this is not the case. By taking into account all
contributions in Eq. (11), however, we find that∫ ∞

−∞
dx E†(x) × B(x) + H.c.

=
∑
s=±1

∑
λ=H,V

∫ ∞

−∞
dk Ẽ†

sλ(k) × B̃sλ(k) + H.c. (79)

Substituting Eqs. (36)–(38) into this equation, we therefore
find that∫ ∞

−∞
dx

[
E†(x) × B(x) − B†(x) × E (x)

]
= 4

εA

∑
s=±1

∑
λ=H,V

∫ ∞

−∞
dk h̄s|k| ã†

sλ(k)ãsλ(k) x̂. (80)

The eigenvalues of the above vector operator are real and
positive for left- and real and negative for right-moving wave
packets. When comparing the above expression with the
dynamical momentum pdyn in Eq. (7), we can verify that
Eqs. (10) and (11) are satisfied.

B. The effect of the dielectric medium on expectation values

Next, we have a closer look at the situation in Fig. 2(b) and
study how energy and momentum expectation values change
when light transitions from air into a dielectric medium. For
simplicity and since energy and momentum are both additive,
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we consider only a single photon with a given polarization λ.
Assuming that the photon approaches the mirror surface from
both sides, we write its initial state vector |ψin(0)〉 as

|ψin(0)〉 =
∑
s=±1

∫ ∞

−∞
dx ψsλ(x) |1sλ(x)〉, (81)

which is normalized when∑
s=±1

∫ ∞

−∞
dx |ψsλ(x)|2 = 1. (82)

Suppose that the incoming light is initially far away from
the mirror surface, but is eventually scattered according to
Eqs. (67) and (71). Then, the state vector of the outgoing
photon equals

|ψout (t )〉 =
∫ ∞

−∞
dx [

√
n t−1 ψ−1λ(x) |1−1λ(nx − c0t )〉

+ r−1 ψ−1λ(x) |11λ(−x + c0t/n)〉
+ (t1/

√
n) ψ1λ(x) |11λ((x + c0t )/n)〉

+ r1 ψ1λ(x) |1−1λ(−x − c0t )〉] (83)

after a sufficiently large time t . In principle, we now know
everything we need to know to analyze the dynamics of ex-
pectation values. However, the following calculations are best
done in the momentum basis.

By transforming the above states with the help of Eq. (28)
into the momentum basis, we find that

|ψin(0)〉 =
∑
s=±1

∫ ∞

−∞
dk ψ̃sλ(k) |1sλ(k)〉, (84)

with the normalized wave function ψ̃sλ(k) given by

ψ̃sλ(k) = 1

(2π )1/2

∫ ∞

−∞
dx e−iskx ψsλ(x). (85)

Moreover, the state of the scattered photon equals

|ψout (t )〉 = 1

(2π )1/2

∫ ∞

−∞
dk

∫ ∞

−∞
dx

× [
√

n t−1 ψ−1λ(x) eik(nx−c0t ) |1−1λ(k)〉
+ r−1 ψ−1λ(x) eik(x−c0t/n) |11λ(k)〉
+ (t1/

√
n) ψ1λ(x) e−ik(x+c0t )/n |11λ(k)〉

+ r1 ψ1λ(x) e−ik(x+c0t ) |1−1λ(k)〉] (86)

in the momentum representation. After substituting Eq. (85)
into this equation, |ψout (t )〉 simplifies to

|ψout (t )〉 =
∫ ∞

−∞
dk[

√
n t−1 ψ̃−1λ(nk) e−ic0kt |1−1λ(k)〉

+ r−1 ψ̃−1λ(k) e−ic0kt/n |11λ(k)〉
+ (t1/

√
n) ψ̃1λ(k/n) e−ic0kt/n |11λ(k)〉

+ r1 ψ̃1λ(k) e−ic0kt |1−1λ(k)〉]. (87)

The above equation shows that scattering by a dielectric
medium does not change the sign of k. When the photon
transitions from air into the medium, k is multiplied by the re-
fractive index n, exactly as originally predicted by Minkowski
[1]. When propagating out of the medium, k is divided by n.

At times when the photonic wave packet is not in contact
with the mirror surface, i.e., well before and well after the
scattering has taken place, the energy and the momentum
observables of the quantized EM field can be approximated
by Heng and pdyn in Eqs. (6)–(8). Initially we shall consider
a photon approaching the medium from the left, through air.
Using Eq. (84), we find that the energy and momentum expec-
tation values 〈H in

eng〉 and 〈pin
dyn〉 of the incoming wave packet

equal

〈
H in

eng

〉 =
∫ ∞

−∞
dk h̄c0|k||ψ̃1λ(k)|2,

〈
pin

dyn

〉 =
∫ ∞

−∞
dk h̄k|ψ̃1λ(k)|2 (88)

in this case. Since the reflected and transmitted contributions
to the outgoing wave packet travel through air and the di-
electric medium, respectively, and since c = c0/n, Eq. (87)
implies that the expectation values 〈Hout

eng〉 and 〈pout
dyn〉 of the

outgoing light equal

〈
Hout

eng

〉 =
∫ ∞

−∞
dk h̄c0|k|

×
[ |t1|2

n2
|ψ̃1λ(k/n)|2 + |r1|2|ψ̃1λ(k)|2

]
,

〈
pout

dyn

〉 =
∫ ∞

−∞
dk h̄k

×
[ |t1|2

n
|ψ̃1λ(k/n)|2 − |r1|2|ψ̃1λ(k)|2

]
, (89)

which leads us to〈
Hout

eng

〉 = (|t1|2 + |r1|2)
〈
H in

eng

〉
,〈

pout
dyn

〉 = (n |t1|2 − |r1|2)
〈
pin

dyn

〉
. (90)

Considering only the eventually transmitted contribution, we
see that the momentum of light increases by a factor n.
This observation agrees with Minkowski’s prediction [1]
and shines some new light onto the so-called Abraham-
Minkowski controversy.

For completeness, we also have a closer look at an incom-
ing wave packet that approaches the x = 0 plane from the
right and transitions from the medium into air. Now,

〈
H in

eng

〉 = 1

n

∫ ∞

−∞
dk h̄c0|k||ψ̃−1λ(k)|2,

〈
pin

dyn

〉 = −
∫ ∞

−∞
dk h̄k|ψ̃−1λ(k)|2. (91)

Again using Eq. (87) and proceeding as above, one can show
that the energy and momentum expectation values of the
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outgoing light are now given by

〈
Hout

eng

〉 =
∫ ∞

−∞
dk h̄c0|k|

×
[

n|t−1|2|ψ̃−1λ(nk)|2 + |r−1|2
n

|ψ̃−1λ(k)|2
]
,

〈
pout

dyn

〉 = −
∫ ∞

−∞
dk h̄k

× [n|t−1|2|ψ̃−1λ(nk)|2 − |r−1|2|ψ̃−1λ(k)|2], (92)

which implies that〈
Hout

eng

〉 = (|t−1|2 + |r−1|2)
〈
H in

eng

〉
,〈

pout
dyn

〉 = (|t−1|2/n − |r−1|2)
〈
pin

dyn

〉
. (93)

Since the single-photon reflection and transmission rates rs

and ts satisfy Stokes’ relations in Eq. (42), we immediately see
from the above equations that the energy of light is conserved.
This is not unexpected since the incoming photon evolves
unitarily according to a Schrödinger equation. However, with-
out knowing the dependence of the rates |ts|2 and |rs|2 on
n, we cannot decide whether or not the same applies to the
momentum of light.

C. Momentum dynamics from the Fresnel
coefficients of classical optics

The Fresnel coefficients Rs and Ts with s = ±1 of classical
electrodynamics are the reflection and transmission rates of
the electric field amplitudes for light scattering at the inter-
face between two dielectric materials [59]. They emerge from
the assumption that the electric field is continuous across
the mirror surface, which is only possible if electric field
amplitudes accumulate a minus sign upon reflection by an
optically denser medium. For the relatively simple case of
normal incidence, we therefore know that

R−1 = n − 1

n + 1
, R1 = −n − 1

n + 1
,

T−1 = 2n

n + 1
, T1 = 2

n + 1
(94)

for the experimental setup shown in Fig. 2(b). Equation (83)
moreover tells us how local field amplitudes ψsλ(x) change
upon reflection. Since the ψsλ(x) change by the same factor as
the local electric field amplitudes change upon reflection, we
can deduce that

rs = Rs (95)

for s = ±1. This means that the blip reflection rates rs are both
real and r1 is always negative, while r−1 must be positive.

As discussed in the beginning of Sec. III, Stokes’ relations
establish a relation between the mirror transmission and re-
flection rates ts and rs. Taking these into account, we therefore
also know that

t−1 = T−1/
√

n, t1 = √
n T1. (96)

Otherwise, Eq. (42) does not hold. As expected, the rates t−1

and t1 are therefore the same and real and given by

t±1 = 2
√

n

1 + n
. (97)

Moreover, using Eq. (66), one can now show that the value
of the coupling constant � that leads to these coefficients is
given by

� = −2ic0

√
n − 1√
n + 1

. (98)

For light scattering by an optically denser medium, � is purely
imaginary provided we fix the phase relation between electric
field vectors and blip annihilation operators as we did in
Sec. II.

As mentioned already above, the energy of an incoming
wave packet is conserved after scattering from either side
of the boundary. By substituting the above transmission and
reflection rates into Eqs. (90) and (93), we moreover find that
the momentum of light transitioning from air into a dielectric
medium with n > 1 changes upon scattering into〈

pout
dyn

〉 = (1 + 2r−1)
〈
pin

dyn

〉
. (99)

This equation implies a momentum increase by a factor

1 + 2r−1 = 3n − 1

n + 1
. (100)

For light approaching the boundary of the dielectric medium
from the right, the momentum decreases for n > 1 and〈

pout
dyn

〉 = (1 − 2r−1)
〈
pin

dyn

〉
(101)

with

1 − 2r−1 = 3 − n

n + 1
. (102)

These momentum changes are not surprising since the exper-
imental setup in Fig. 2(b) does not have the translational in-
variance required for momentum conservation [58]. Not only
does the mirror mark a position along the x axis as special,
the speed of light decreases inside the medium. The dynam-
ical momentum must therefore change, even in the presence
of reflection, in order to propagate the light at the correct
speed.

V. CONCLUSIONS

This paper introduces a general expression for the energy
Heng of light in a homogeneous dielectric medium and identi-
fies its dynamical momentum pdyn, which is the generator for
spatial translations of photonic wave packets. Equations (9)
and (11) show the dependence of Heng and pdyn on the com-
plex electric and magnetic field vector observables E (x) and
B(x). Notice that our equations do not coincide with the usual
expressions for the energy and the momentum of light [15,47].
They only become the same when only positive-frequency
photons are considered and time averages are taken. As one
can see from Eqs. (6) and (7), in general, monochromatic
photons with wave number sk and energy h̄c|k| have the mo-
mentum h̄sk. For light propagation in free space, the energy
and the momentum of light are always conserved as one would
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expect from the spatial and time translational symmetries that
are present in this case [58].

Another main result of this paper is the locally acting
Hermitian interaction Hamiltonian Hmir in Eq. (45), which
can be used to describe the dynamics of the quantized EM
field in the presence of a partially reflecting mirror interface.
Our analysis emphasises that light scattering is a surface ef-
fect. Moreover, we find that the mirror coupling constant �

depends on the speed at which light approaches and on the
optical properties of the mirror interface. In the case of light
scattering by a homogeneous dielectric medium, we obtain
an explicit expression for � as a function of its refractive
index n [cf. Eq. (98)]. When scattering light with a mirror of
finite thickness, there are at least two reflecting surfaces and
the effective overall transmission and reflection rates of the
mirror need to be derived by either adding terms to the sys-
tem Hamiltonian or by calculating these rates as in classical
optics when analyzing light propagation through a so-called
Fabry-Perot cavity [59].

Notice that the experimental setup in Fig. 2(b) does not
have the spatial invariance required for momentum conser-
vation [58]. Hence, when light transitions from air into a
dielectric medium with a higher refractive index, only energy
is conserved. In particular, whilst photonic wave packets lose
momentum when exiting the medium, wave packets transi-
tioning from air into the medium increase in momentum. This
observation can be explained by the slower speed of light
inside the medium. Inside the medium, the effective separa-
tion between points along the x axis is decreased and large
distances now appear very short. As a result, the dynamical
momentum must increase in the medium in order to translate

wave packets across the contracted distances. It is therefore
not surprising that, even in the presence of reflection, the total
momentum of an incoming wave packet is not conserved.

By constructing a dynamical momentum operator analo-
gous to the momentum operator of quantum mechanics and
studying the dynamics of its expectation values, our anal-
ysis shines some new light onto the Abraham-Minkowski
controversy. Our observed increase in momentum when light
transitions from air into a dielectric medium agrees with
Minkowski’s treatment of the situation [1]. Our analysis is
based on a local photon approach [36–38] and therefore al-
lows for a more straightforward and intuitive description of
light scattering than approaches based on infinitely spread
out monochromatic waves, which are difficult to normalize.
Furthermore, our paper provides new tools, for example, for
the modeling of light scattering in space and time-varying di-
electric media and in dielectric media with dispersion, which
is still a subject of ongoing research [14,55,63,65].
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