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ABSTRACT: There are challenges associated with design and development of affinity
biosensors due to the complicated multiphysics nature of the system. Understanding
the binding interaction between target molecules and immobilized receptors and its
kinetics is a crucial step to develop robust and reliable biosensor technologies.
Evaluation of binding kinetics in biosensors becomes more important and challenging
for clinical samples with a complex matrix. Despite drastic advancements in biosensor
technologies, having a practical perception of the binding kinetics has remained a
critical bottleneck due to limited fundamental understanding. This Review aims to
provide a comprehensive discussion on concepts and advances developed so far for the
perception of binding kinetics in affinity biosensors. Here, modeling approaches and
measurement techniques are presented to characterize the binding interactions in
biosensor technologies, while the effect of fouling and secondary factors in the binding
interactions will be discussed in the concept of kinetics. This Review will investigate
the existing research gaps and potential opportunities in the perception of binding kinetics and challenges to develop robust and
reliable biosensors.

1. INTRODUCTION

Biosensors have been studied for several decades with
extensive applications for clinical treatment, biomedical,
pharmaceutical, and healthcare purposes. They are analytical
devices incorporating biological elements in conjunction with
physicochemical transducers to measure information about
specific biological reactions or changes. Biosensors consist of
four main components (or steps for detection), including (i)
medium as a platform to transfer considered biological samples
to a transducer, (ii) functionalized surface with immobilized
bioreceptors to adsorb biological samples, (iii) transducer to
measure biological reactions and (iv) computation to process
information and transmit it into a simple and easy-to-use
format. There have been extensive studies on these steps and
components to offer opportunities and highlighting challenges
to develop laboratory-based technologies and industrial
products, a few of which are, progress of technologies,1,2

novel wearable devices,3,4 and innovative designing ap-
proaches.5,6 While there has been great advancement in
biosensor components through novel detection strategies,
biomarkers, modeling techniques, and applications, the of pace
of progress has been different for such a complex system,
leading to various gaps between laboratory-based devices and
the requirement for on-the-spot sample analysis.7,8 The very
rapid advance in detection technologies with unique features,
such as high sensitivity, selectivity, and fast responses, left

functionalized surfaces and biomolecular interactions behind
to remain as new research questions for scientists. In this
regard, several areas can be specified, including nonspecific
molecules (as unknown molecules in clinical samples
interacting with the functionalized surfaces), uniformity of
receptors (their orientations and activities with target
biomolecules), and the binding interaction between receptors
and analytes. Some recent reviews have shed light on
nonspecific molecules and characteristics of receptors, known
as fouling in biosensors,7,9−11 while there has been limited
attention paid to the binding interactions and kinetics, their
roles in the biosensor performance, and challenges associated
with existing assumptions made for the technology develop-
ment.
This Review looks into the binding kinetics in affinity

biosensors through presenting the existing literature developed
so far to provide a better understanding of the biomolecular
interactions, highlighting existing challenges and suggesting
potential opportunities for future research studies. First, the

Received: November 4, 2024
Revised: January 9, 2025
Accepted: January 13, 2025
Published: January 27, 2025

Reviewhttp://pubs.acs.org/journal/acsodf

© 2025 The Authors. Published by
American Chemical Society

4197
https://doi.org/10.1021/acsomega.4c10040

ACS Omega 2025, 10, 4197−4216

This article is licensed under CC-BY 4.0

D
o
w

n
lo

ad
ed

 v
ia

 1
8
5
.7

8
.9

.2
3
8
 o

n
 F

eb
ru

ar
y
 2

7
, 
2
0
2
5
 a

t 
1
2
:2

3
:3

8
 (

U
T

C
).

S
ee

 h
tt

p
s:

//
p
u
b
s.

ac
s.

o
rg

/s
h
ar

in
g
g
u
id

el
in

es
 f

o
r 

o
p
ti

o
n
s 

o
n
 h

o
w

 t
o
 l

eg
it

im
at

el
y
 s

h
ar

e 
p
u
b
li

sh
ed

 a
rt

ic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Benjamin+McCann"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Brandon+Tipper"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sepeedeh+Shahbeigi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Morteza+Soleimani"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Masoud+Jabbari"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mohammad+Nasr+Esfahani"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mohammad+Nasr+Esfahani"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsomega.4c10040&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c10040?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c10040?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c10040?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c10040?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/acsodf/10/5?ref=pdf
https://pubs.acs.org/toc/acsodf/10/5?ref=pdf
https://pubs.acs.org/toc/acsodf/10/5?ref=pdf
https://pubs.acs.org/toc/acsodf/10/5?ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsomega.4c10040?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://http://pubs.acs.org/journal/acsodf?ref=pdf


fundamental thermodynamics of binding will be presented
with a discussion on important phenomena during the affinity
interactions. This will be followed by a review of the
mathematical approaches developed to model the binding
kinetics of biomolecules, mainly focusing on biosensors. After
that, the effect of fouling and secondary factors (i.e.,
nonspecific binding and testing medium) on the binding
interaction will be presented by evaluating their impacts on the
binding kinetics. Then, well-known and widely used
technologies to measure the binding kinetics will be discussed
by highlighting their strengths and limitations. This Review will
be concluded by discussing existing challenges in measurement
and modeling approaches and potential opportunities to
improve our perception of the binding kinetics for step
changes to transform affinity biosensors for point-of-care
applications.

2. THERMODYNAMICS OF BINDING

The existence of bioreceptors as probes to create an interaction
between analyte and transducer causes complexity in the
detection process. Such a system can be described through two
approaches. The first approach is to look into the interaction
between analytes and bioreceptors and analyze the system
from the perspective of molecular perception. The second
approach is to study the energies in the system, such as energy
barriers and binding energy leading to binding interactions.
Hence, thermodynamics plays an integral role in defining the
characteristics of biosensors. The binding interactions in
biosensors are a complex system with many factors affecting
the kinetics. This leads to difficulty in developing accurate
sensors, where both the receptor and transducer components
require thorough analysis before applications in a point-of-care
(POC) device. In the following, a breakdown of different types
of thermodynamic considerations and their influence on
specific sensors will be discussed. It is important to make
distinctions between the different types of energy present in
the system, which defines various theories to analyze the
binding interactions in a biosensor. Before discussing the
thermodynamics of biomolecular interaction, first let us
consider the binding interactions between analytes (A) and
receptors (B) to form a complex (AB) (Figure 1) in a
reversible reaction as

A B AB
k

k

off

on

+ H Ioo

(1)

In this interaction, {A} represents an analyte moving freely
in the solvent, and {B} is the binding site, known as the
receptor, immobilized on the surface of the sensor. Finally,

{AB} represents the analyte-receptor complex on the surface.
The reaction being reversible means that analytes {A} can
associate, with an adsorption rate, known as association kon,
and dissociate from receptors {B}, forming and unforming
analyte-receptor complexes {AB}, with a desorption rate,
known as dissociation kof f, respectively. This reaction is only
approximated at equilibrium, where the system reaches a
steady-state thermodynamic condition. Hence, there will be
association and dissociation rates for such an interaction that
keeps the amount of complex {AB} on the sensor surface
constant. This binding interaction presented in Figure 1 will be
used across this Review for the consistency of discussion. In
the following, those parameters will be described with a
discussion on their relations to the binding kinetics.

2.1. Gibbs and Artificial Energy Functions. To provide
a general overview of the free energy in a system with no
constraints on the rigidity of the freedom of the receptor, one
can take a statistical approach to solve the thermodynamics
analysis through considering an artificial energy function by
considering the coordinates of reactants (analyte and
receptors) and the transition from their initial state to the
final state of them. The artificial energy function includes all
the contributions from the stochastic formulas for kinetic and
potential energies, which can change with respect to the
intermediary steps of a reaction. In addition to the artificial
energy function, the energies of solvation also need to be taken
into account by considering the entropic energy change.
Hence, work needs to be done to allow an analyte either to
dissolve in solution or to condense on a surface.12 This helps
to estimate the Gibbs free energy, which can be used to
calculate the association constant. Although, when the Gibbs
free energy is found, it can be directly related to the binding
affinity constants. The rate of association is much higher for
reactions with a high level of Gibbs free energy, while the rate
of dissociation in turn is much lower. Figure 2 shows a free

energy diagram for a reversible reaction, in which the system
releases energy in the forward direction and absorbs energy in
the backward direction. As the amount of energy released is
directly related to the Gibbs free energy and the reaction
coefficient, the forward reaction is favored (kon) and the
backward reaction is unfavored and much less likely to occur
(kof f). The transition state for a reversible reaction expressed in
eq 1 is complicated, and it is important to note the activation
energies in both directions. For the forward reaction to occur, a
molecule must have sufficient internal energy to overcome the

Figure 1. Schematic representation of the interaction of analyte
molecules (A) with immoblized receptors (B) in a biosensor to create
a complex (AB) through one-to-one association and dissociation. In
this schematic, free analyte molecules and receptors are indicated as
orange diamonds and blue Y-shapes, respectively. The same
representation is used in other schematics for consistency.

Figure 2. Schematic representation of the interaction states between
analyte and receptor as a function of thermodynamic energies.
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association activation energy boundary, which is a combination
of factors noted in the potential and entropy energy sections.
The Eyring theory can be used to model kinetic parameters,13

where the rate of reaction in both directions increases with
respect to temperature. This again follows with the theory that
more molecules on both sides of the reaction would have
sufficient energy to overcome the activation energy boundary.

2.2. Kinetic Energy and Degrees-of-Freedom. The
amount of kinetic energy a molecule possesses is primarily
based on two factors: the temperature of the molecule and the
number of degrees-of-freedom it possesses. Compared to
simple diatomic molecules, biomolecules used in typical
sensing applications have more complicated structures,
resulting in many more degrees-of-freedom based on the
structure of the analyte and complex. For example, anti-IgG
has an Y-shape structure with 6 degrees-of-freedom. Another
problem in biosensing systems is the flow rate, as increasing
the flow rate in a system increases the velocity of a reactant
flowing over a sensor’s surface, increasing potential and Gibbs
free energies. In theory, this should reduce the likelihood of a
successful binding event based on the previous Gibbs equation,
though in turn, it should increase the chance that a molecule
would possess enough energy to overcome the activation
energy, enhancing the number of events. This results in
complicated dynamics, especially in multiple step reactions.
Nevertheless, it can be assumed that increasing the kinetic
energy by raising the flow rate has a similar effect to elevate
temperature, where both kon and kof f increase.

14

2.3. Potential Energy and Chemical Potential. The
amount of potential energy of a molecule is primarily based on
two factors. The first factor is the chemical potential, which is
based on which bonds are broken and formed throughout the
entire reaction chain. If more energy is lost in breaking bonds
in the reactants than there is energy released to form bonds in
the products, the forward reaction is less favorable. The second
factor is based on how the structures of the reactants and
products align with the solution. If a molecule is polar and
contains dipoles that align well with the dipoles of the solvent,
then work needs to be done to remove the molecules from
their place in the solution. When analyzing chemical potentials,
each type of bond has its own corresponding energy (under
given conditions), and as such, chemical potential energies can
be calculated assuming a reaction (and all its intermediary
steps) is well-known. The potential energy of a solution can
also be determined based on the polarity of the reactant/
solvent and their corresponding radii based on a partition
function, which describes the statistical properties of a system
at thermodynamic equilibrium. Molecules containing strong
dipoles in a polar solvent align in solution, with a prime
example being how the negative backbone of DNA aligns with
the positive hydrogen bond dipoles present in water. This leads
to a higher association activation energy required to break this
alignment and form free analytes before the construction of the
AB complex (Figure 2). Hence, according to the Gibbs free
energy, the higher activation energy requirement (of polar
molecules in polar solvents vs nonpolar solvents) leads to a
lower association rate of the reaction, assuming the reaction
pathway is not significantly impacted from the change in
solvent.

2.4. Entropy. The entropy of a system is a measure of
stochasticity, or rather how many different possible formations
are available to the system, with a large number of possibilities
resulting in a larger entropy. This means that gaseous systems

have more entropy than liquid systems and that systems with
multiple analytes have a higher entropy than single molecule
systems (due to the various permutations of both analytes).
Stochastic models consider the solvation of both the analytes
in solution and their receptor separately, creating an
interaction potential of mean force that is solely dependent
on the internal coordinates of the ligand, integrated with
respect to the radii of the receptor and analyte.12 A
comprehensive stochastic formula to denote the shift in
entropy can be found elsewhere,12 along with the full
derivation. When the thermodynamics of the system are
known, the next step is conversion of the energy change from
the reaction into a readable signal. For instance, the isothermal
titration calorimetry (ITC) method, which will be discussed
later in the Measurement Techniques section, measures the
temperature of a cell with reactants in reference to another cell
that contains only the solvent. By converting the shift in
temperature to the total amount of energy released in the
reaction, including the specific heat capacity of the solvent,
solvation energies, and pressure, the total energy shift and
hence the total number of formed complexes can be measured
over a period of time. This provides a binding graph that is
accurate so long as cells are well insulated and the
thermodynamics of the system are well understood, while
the effect of fouling, secondary factors, and environment of
measurement, discussed later, can cause a degree of
uncertainty.

3. BINDING KINETIC MODELS

Beside thermodynamics approaches, the binding kinetics can
be modeled based on molecular interactions. This section
outlines modeling approaches that have been developed to
study the binding kinetics of molecules. An overarching aim of
this section is to illustrate the processes of each method, their
applications, and limitations. This context is vital within sensor
design to achieve optimum sensitivity and limit of detection
with major impacts within expanding the efficiency of
biosensors in their varied applications such as health care
diagnosis and monitoring of environmental15 and food
contaminants.16 Modeling the binding kinetics is also
important for the measurement of the binding affinity of
biomolecules using developed techniques, discussed in section
5. This information is important within biosensor design and
the field of drug discovery. Understanding the binding kinetics
is key to optimizing the sensor performance and thus detection
of specific biomolecules. Furthermore, it allows evaluation of
the efficacy of a medicine, as an index on how effectively a
biomolecule binds to a target biomarker for a disease treatment
(i.e., monoclonal antibodies for cancer treatment). Further
details on the influence of the binding kinetics of biomolecules
for drug discovery can be found elsewhere.17−19 In the
following, well-know mathematical approaches for modeling
biomolecule binding interactions will be presented followed by
their strengths and challenges. These models include Langmuir
isotherm, fractal methods, statistical methods, and atomic
simulations.

3.1. Langmuir Model. The Langmuir model, also known
as the Langmuir isotherm, is originally an empirical equation
used for analyzing gases, which has been extended for liquid
mediums.20 This model is performed at isothermal conditions
to align with the definition of an adsorption isotherm.21 The
Langmuir model is extended to liquid medium for biosensor
applications, where the adsorption is the binding of an
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adsorbate, an entity such as biomolecule analytes, to a surface
such as immobilized bioreceptors. This model assumes a
monolayer coverage of all available analytes to receptors
homogeneously across the surface of the sensor.22,23 In a
biosensor concept, this means that analytes bind uniformly to
the immobilized bioreceptors (Figure 1) on the surface,
assuming identical interactions and binding sites across the
sensor. The Langmuir model considers no heterogeneity on
the surface,20 nonspecific binding and statistical collision.
These factors in biosensors will be discussed along with other
proposed models later in this section.
In the Langmuir model, the binding events can be assumed

as a reversible reaction (eq 1). The governing equation of the
Langmuir model considers a constant rate for kon and kof f, to
estimate the rate of binding as a function of analyte
concentration ([A]) and complex concentration ([AB]) at
equilibrium. Furthermore, the Langmuir model assumes
homogeneous surfaces and no interaction between neighboring
molecules during the binding process.22,24 Furthermore, this
model considers all sites at the same energy level,25 assuming
the same energy level for desorption (unbinding) and
adsorption (binding) processes.24 These assumptions make
the model inaccurate for modeling all aspects of in vivo
experiments and can result in frequent misuse of the model in
the literature.22 The Langmuir kinetics can be formulated into
the first-order or second-order binding kinetics based on the
chemical reaction between analytes and receptors, where the
ratio of available analyte to receptor capacity is a key
determining the kinetics model.26 In the Langmuir model,
the binding is assumed to have 100% probability in the case of
an analyte reaching in contact with a receptor. Overall, the
model represents the rate of binding, which can be used to
estimate the binding kinetics parameters, association and
dissociation constants, from empirical (experimental) data
obtained from measurement techniques such as surface
plasmon resonance (SPR) and quartz crystal microbalance
(QCM). Those measurement techniques will be discussed in
detail in subsequent sections.
Overall, the Langmuir model is classed as a simple model

due to its limited parameters without considering any spatial,
thermal, or other factors influencing the binding, e.g., the ionic
strength of the buffer solution. Furthermore, there are some
assumptions in the model that limit its application to predict
the binding kinetics for certain systems. For example, this
model assumes a high concentration of analytes so that it
represents a homogeneous system on a macroscale. A recent
study exhibits the failure of the Langmuir model for very small
concentrations of receptors or analytes, where statistical
approaches are required to capture the binding affinity of

biomolecules in a small scale and close systems.27 This can be
extended into the original model for neglecting any micro-
scopic effects taking place within the binding, such as
hydrophobic interactions or intracellular forces (Table 1).
The prediction of the model is accurate enough for data28

generated by commercially developed technologies based on
the SPR technique, i.e. BiACore,29 discussed further in
Measurement Techniques, to represent the average kinetics
in the bulk of reactions. This model has a good accuracy for
determining the main features of a reaction quickly, especially
for well understood binding complexes, while stringent sample
preparation methods are required to achieve reproducible
results.30 This model can easily be implement into biosensor
design for rapid prototyping to achieve optimal conditions for
binding.31 The next part will discuss a model that allows for the
consideration of binding in low dimensional space around
clusters, which is challenging to perceive using Langmuir
models.

3.2. Fractal Analysis. Fractal analysis is used to model the
binding kinetics by using fractals32 to consider the hetero-
geneity of surfaces, which is neglected in the Langmuir models.
It is noted that the fractal analysis has applications beyond the
binding kinetics.33 Fractal analysis considers specific scenarios
for the binding between target molecules and immobilized
receptors on the sensor surface, where the Langmuir models
are insufficient for modeling the binding interactions. This was
first discussed by Kopelman in 1986,34 indicating deficiencies
of the Langmuir isotherm to predict the binding limited to
restricted space in clusters or by walls, phase boundaries
created in heterogeneous biological systems. The surface of the
biosensor is another reason creating heterogeneity in the
binding between analyte and receptors with a considerable
impact on the binding rate. In the case of a heterogeneous
surface (known as deformities of crystal structure on the
surface of materials), the association and dissociation rates are
found to be time-dependent, where the fractal-like analysis can
be employed to model such heterogeneity on the sur-
face.32,34−36 In this model, the time-dependent binding kinetics
parameters are referred to as rate coefficients. The reaction
during fractal-like kinetics can not be approximated with the
Langmuir model, as the reaction is disordered with irregular
values of the kinetic parameters.
In the low dimensional space of fractal analysis, analytes

move around their original positions due to the compact space.
In such an analysis, the reaction rate reduces overtime.35 In a
diffusion limited system, the distribution becomes less random
over time, leading to analytes likely revisiting their original
positions in low dimension fractal-like reactions. This is in
contrast to a classical homogeneous system with a uniform

Table 1. Summary of the Features for Different Methods to Model Binding Kinetics in a Biosensor

Models

Features Langmuir Fractal Analysis Markov Chain Langiven Agent-based Atomic

Ease of implementation √ X X √ X X

Computational complexity X √ √ X √ √
Model surface and distribution of receptors X √ √ X √ √
Consider kon and kof f constant √ X X X X X

Model fouling and secondary factors X √ √ √ √ √
Implement stochastic nature of binding X X √ √ √ X

Model environment of binding X X √ √ √ √
Scalable for a biosensor size √ √ √ X X X

Model time scale comparable to measurements √ √ √ X X X
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random distribution of analyte throughout the reaction.
Therefore, as the analyte position is biased around these
initial points in low dimensional spaces over time, it appears
that the reaction rate plateaus due to uniform diffusion of
analytes around their contained space. Hence, analytes are
unable to discover receptors far from them, unlike the case of
homogeneous higher dimensions (i.e., the Langmuir model in
3D). Figure 3(a) shows a schematic of a heterogeneous
binding with clusters of binding complex across the surface of
the sensor. The microscopic view of such fractal-link binding is
presented in an inset (Figure 3(a)-(iii)).
The binding kinetics are perfectly described through using

this model for both association and dissociation rates.32 An
interesting result of this study is that the adsorption rate is
sensitive to the level of heterogeneity of the sensor. The close
binding between analyte and receptor in a diffusion-controlled
system is the event defined as low dimensional. A specific
example is mentioned previously37 through analyzing the
kinetics between antibody antirabbit IgG and bovine serum
albumin (BSA) measured in another study.38 They discuss the
deficiency of using the first-order Langmuir model with
constant binding kinetic parameters to fit the experimental
measurements. Experimental measurements can be described
by a diffusion-limited irreversible reaction, as their rate of
association diminished over time.38 Fractal analysis was
employed successfully to model experimental observations,37

where a weak dependence on the analyte concentration and
surface disorder is reported. A high fractal dimension is linked
to the heterogeneity and roughness of the sensor surface.
Therefore, this fractal analysis outlines the disorder of

processes on the biosensor surfaces.37 It should be noted
that the fractal analysis can include any nonspecific binding
(NSB) with increase of the fractal dimensions and the
heterogeneity of the surface.32 Later, nonspecific molecules
and secondary factors will be discussed in more detail with
their impacts on the binding kinetics.

3.3. Statistical Models. Statistical models include micro-
scopic processes with the probability of them occurring during
the binding interactions between analytes and receptors. In
these models, a time-dependent view into the binding kinetics
is critical. The nature of binding is inherently probabilistic,
where the binding occurs at a certain activation energy based
on the thermodynamics of the system. These fluctuations of
energy are random and can be described by probability
functions, which determine whether a threshold potential is
met. This threshold potential, for example, describes the
required potential energy of an analyte to undergo conforma-
tional change or the energy required for binding to occur
between analytes and receptors.39 This subsection will focus on
the use of statistical approaches to model microscopic events
influencing binding kinetics in biosensors. In the following,
Markov models, Langevin methods, and agent-based ap-
proaches, as the main statistical methods, will be discussed
with their applications on the perception of binding kinetics.

3.3.1. Markov Chain. The Markov model is a probabilistic
technique used to model dynamic systems.40 A Markov
process is a sequence of random elements, where any next
sequence element is predicted based on the previous state,
irrespective of its sequence history before the last state.41 This
model can be employed to describe the probability of

Figure 3. Schematic of (a) fractal-like binding kinetics representing (i)−(ii) clusters showing the binding on the surface of a sensor as fractal
patterns, where the purple color shows the formation of an analyte-receptor complex, with (iii) an inset of the microscopic view of the surface and
binding interactions, (b) a state transition diagram in the Markov chain model of an affinity biosensor, where each state corresponds to different
coordinates, with state-c and state-0 presenting the binding state and interaction state, respectively, (c) the Langevin method demonstrating the
binding of the (i) target molecule and (ii) nonspecific molecule, based on the change of the potential energy for a one-dimensional model along the
distance between the molecule and receptor, and (d) a hybrid ABM with different discretized grids monitoring and influencing the behavior of
agents.
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transition from coordinate i to j at each time step presented in
Figure 3(b), denoted by mij. This model can estimate the
signal-to-noise ratio of a biosensor.42,43 An advantage of such a
mathematical model is the capability to include other time-
dependent probabilistic behaviors influencing the binding
kinetics in biosensors. This model can be used to represent
various biosensor platforms such as electrochemical43 and ion-
sensitive field effect transistor devices.42 Besides all the positive
aspects, one of the main disadvantages of the Markov model is
the systematic error introduced into calculations by discretiz-
ing the modeled space. This can be linked to the local behavior
occurring in a continuous space. Boundaries define a
discretized domain44 leading to interruption of a continuous
space. The interruption of a continuous space means that there
is no representation of local behavior on the boundaries of
these grid lines, shown in Figure 3(b). Therefore, there is a loss
of information around an analyte’s behavior, reducing the
accuracy of the model, due to the lack of information to
describe an analyte moving from one state to another. In
practice, there is no discretization for the continuous space,
except a different grid layer defined with a transfer matrix to
convert the continuous domain into a discrete space.
The complexity of the Markov model is a challenge,

especially in the construction of states. For systems with
several variables for the process modeling, the computational
complexity is intensive. For example, previous studies discuss
requirements for further enhancement, such as describing
dengue immunoglobulin positives and negatives to increase the
size of the transition matrix. This is mimicked in other models
for biosensors,43 where including many states to model a
biosensor is difficult due to the size of different matrices
including behaviors and their probabilities. Finally, the
property of dynamics without a memory is found to be a
disadvantage, where the transition between states is
independent of previous states, leading to difficulty in
deciphering trends from previous states. This reduces the
capability of the Markov model to describe new phenomena.
This is especially relevant to medical applications with disease
progression being dependent on previous states.45 The Markov
chain modeling technique has the ability to capture many
processes occurring during the binding and including environ-
mental factors which are missing from isotherm models. In this
respect, the model is able to provide more insight into binding
behavior through capturing stochastic microscopic details in
time, such as nonspecific interactions. It is noted that the size
of the model must be adjusted to allow for its efficacy,
depending on the requirements and constraints on the
optimization process.

3.3.2. Langevin. The Langevin model is a stochastic
equation that conforms to the Markov processes as described
earlier.46 The Langevin dynamics model presents the response
of a particle’s movement through considering microscopic
forces such as thermal oscillations over time using stochastic
differential equations.47 The original derivation of the Langevin
equation describes the Brownian motion of particles by
considering forces exerted on a particle.48 This model
describes the binding as the change of an analyte’s potential
energy based on its position in an energy profile of the binding
process, illustrated in Figure 3(c). An unbound analyte in a
free state (freely diffusing at a higher energy level) should
overcome a potential barrier to bind. This corresponds to an
initial increase in the potential energy for the creation of an
analyte-receptor complex. The potential energy of the analyte

is lower than its potential at the free state after the binding
event. In this model, kon describes the rate at which particles
overcome this barrier for binding, whereas kof f represents the
reverse of this process for the analyte to dissociate from the
receptor and move back to its free state. The transition of an
analyte between the free state and the bound state occurs from
a time varying thermal noise term. This is because the
stochastic thermal oscillation varies the potential energy of the
particle to associate or dissociate by granting enough energy to
create or break the complex molecule.49 The energy profile or
funnel is smoother in specific binding (Figure 3(a)-(i)). This
means a lower potential energy is required to overcome the
potential barrier, leading to higher association rates. In the case
of NSB (Figure 3(c)-(ii)), the potential energy profile is rough
with a larger potential barrier hindering the binding events,
while the thermal oscillations can still overcome the barrier,
giving sufficient potential energy to the nonspecific molecules
to form a binding to the receptor.10

The Langevin approach is applicable to modeling the energy
profile of binding kinetics by including microscopic forces
acting on analytes during their movement and the binding
process. This higher resolution of microscopic behaviors is
useful for generating more accurate and useful kinetic data.
The inclusion of thermodynamic principles alongside New-
tonian physics helps to give a more rigorous physical
explanation of the processes that define the stochastic nature
of binding kinetics. The main drawback in this type of
modeling is computational complexity, especially in large
systems with multiple forces acting on molecules. Therefore,
this method is used for exploratory solutions of complex
behaviors in biosensors such as nonspecific binding and
electrochemical forces. In this regard, previous studies propose
the use of an external force to control the binding kinetics in
the context of dynamic single molecule sensors. The force
modulates association and dissociation rates, kon and kof f,
through changing the height of the potential barrier required to
overcome the binding process.48 Such techniques can be used
to overcome issues associated with nonspecific molecules in
biosensors. In these techniques, kof f for nonspecific molecules
bound to the sensor can be increased to be higher than that for
specific binding, leading to a faster dissociation of those none-
target molecules. Hence, the lifetime of the analyte-receptor
complexes from specific binding on average last longer than
those from nonspecific, helping to improve the accuracy of the
sensor toward specific binding.

3.3.3. Agent-Based. Agent-based modeling (ABM) is a
discrete stochastic model considering individual characteristics
and behavior in space and time of an agent.50,51 ABM
approaches take individual behaviors into account by modeling
each agent with a set of rules. These rules are dependent on the
application such as modeling the Brownian motion of particles.
The ability to model with rules makes them adaptable to
different purposes. In the context of the binding kinetics and
biosensors, ABM can be used to abstract any characteristic of
individual entities to replicate the system behavior,52 which is
challenging to model using other approaches discussed so far
considering the biosensor as a unit, such as the Langmuir
isotherms. A very high level of detail to consider in ABM
provides an opportunity for implementation of various
behaviors in biomolecular interactions, such as van der Waals
forces, Lennard-Jones potential, and hydrophobic and long-
range coulombs interactions. In this respect, treating agents in
a spatial environment allows for the consideration of collisions
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between analytes,53 which has been neglected from models
such as the Langevin equation. Another benefit of the ABM
approaches is capability to model emergent behaviors,50,52,54

where a system behaves based on its set of fundamental rules
without prior information about its surroundings. ABM has
potential to explain certain elements of the binding kinetics,
where other modeling techniques are unable to explain these.
This provides opportunities to better understand the binding
kinetics and biosensor performance prior to use of clinical
samples for the development of point-of-care technologies.
It should be noted that some rules and parameters governing

the agents are based on empirical evidence, where rules are
applied based on probability functions at each time step
according to analytical equations. The binding event in ABM
occurs based on such probability functions. These empirical
parameters used in ABMs help to explain the complexity of
biomolecular interactions in a biosensor, such as fouling.
Furthermore, they can also be used to validate empirical
observations.54 Hybrid ABM approaches are widely used to
model agents-based functions using multiple layers, represent-
ing different scales and further rules affecting the agent
behavior. It is important to note that microscale behavior is
handled with ABM and continuous modeling of macroscale
behaviors is usually approximated using partial differential
equations, which feed information to influence the microscale
model.55 An example is demonstrated in Figure 3(d) with a
continuous space (the agent containing layers) representing
the microscale behavior of analytes and receptors moving
around in a continuous space. These rules that govern at
macroscale or microscale can be represented as discretized
spaces using layers defined with lattices and meshes, which are
used to map the continuous space.
Generally, the application of the ABM approach to model

the binding kinetics can be considered for a model with the
entire agents and process. They are scalable and adjustable to
create a very realistic model depending on the considered
computational complexity. They include microscopic inter-
actions to model macroscopic behaviors while accounting for
spatial and environmental interactions, which is challenging to
replicate in differential equation models. Therefore, ABM
approaches are attractive candidates for developing models to
explore new theories explaining the binding interactions
through the use of emergence to simulate known behaviors
while also trialing new rules or behaviors. There are a few
examples of ABM approaches used in biomolecular inter-
actions.53,56 Furthermore, the ABM approach has also been
developed to study tumor cell growth,56 where the cell
interactions and phenotype developments are modeled in a
continuous environment to understand tumor growth and the
individual cell interactions with the environment. High
computational demand is the main challenge to using ABM.

3.4. Atomic Models. The statistical models discussed
previously consider analytes and receptors as individual
particles and macromolecules. These models neglect any
molecule conformation during binding interactions in
biosensors. Atomic modeling approaches have been developed
to study the system in full interactions between atoms through
considering force fields to measure the physical properties of
biomolecules such as conformational structures and binding
mechanisms. Molecular dynamics (MD) simulations are the
most well-known approach to modeling the binding kinetics at
atomic scale. MD models take into account all atoms and
forces at each time step, mainly employing Newtonian physics

of particles, including van der Waals forces, electric charges
between atoms, intermolecular bonds, hydrophilic and hydro-
phobic regions, and conformational and physical struc-
tures.57−59 Those simulation approaches consider all atoms
involved and are mainly limited to model nanostructures.
Hence, MD simulations are known as computationally
expensive techniques, especially compared to other modeling
approaches discussed here. In this respect, there are methods
to reduce the computational intensity such as neighboring list
and coarse grain methods.60 Considering the time scale in MD
simulations, it is difficult to understand whether a system has
reached thermodynamic equilibrium in microsecond time
scales.61

Atomic simulations are extended to many applications
especially in biomolecular analysis, e.g., modeling antiviral
drugs to the capsid of rhinovirus62 and protein dynamics.
There is great interest in using atomic simulations to
understand the movement and conformation of proteins as
well as their interactions.62 The structure of proteins is
dynamic, causing challenges to understand their behavior.
However, MD simulations are helpful in modeling complex
phenomena driven by the dynamic nature of biomolecules. For
example, MD simulations can be employed to determine the
role of solvents at temperatures below the glass-transition
temperature (the temperature at which a polymer changes
from rigid glass state to flexible).63 A great impact of
temperature on the amplitude of carbonmonoxy myoglobin
protein oscillations has been reported, while this effect is found
to be negligible at low temperature. Currently, this behavior
necessitates rigorous techniques to observe experimentally,
while the activity of proteins at different temperature ranges
can be predicted using atomic simulations.62 A common
implementation of MD simulations is protein docking. This is
applied to understanding the kinetics of potential drug
candidates through investigating the bind response of proteins
to their targets for long residence times as an indication of the
affinity of a drug target.64 MD models take into account
thermodynamic contributions and the conformational struc-
ture. Despite the great potential to model the binding
response, it is impractical to model dissociation events using
MD simulations to estimate the kinetic parameters. That can
be linked to the longer interaction time compared to the MD
simulation time scale.65 Therefore, the incorporation of other
models with MD simulations allows for the comparison of
experimental data. For instance, previous studies use a two
state model representing a reaction between an enzyme and an
inhibitor based on the calculation of the mean first passage
time.66

So far, we focused on approaches modeling the binding
interaction between analyte and receptors in biosensors. In
those models, we mainly assume that analyte and receptors are
two main components of the interaction without any
additional factors impacting the binding interaction such as
nontarget molecules, known as NSB, fouling, and external
forces in biosensors. There are certain features among those
models that are listed in Table 1, representing opportunities
and challenges to employ them for predicting the binding
interactions in a biosensor. The next section briefly reviews any
secondary factors (including fouling) influencing the binding
kinetics in biosensors.
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4. FOULING AND SECONDARY FACTORS

An ideal scenario for a biosensor is to have the target analyte
and receptors as the sole components for interactions. Such an
ideal system can be achieved in the laboratory through using
stringent techniques, while there are various degrees of
complexity, considered as fouling and secondary factors, in
clinical samples such as nonspecific molecules interacting with
receptors and sensors, distribution and orientation of
receptors, collision and interaction with the sample matrix
(i.e., serum), and analyte stability. This causes several issues in
detection. First, they cause additional noise in the signal, as
false-positive and false-negative signals. Moreover, interference
of these factors leads to challenges to predicting the binding
kinetics of the target analyte accurately. A schematic of those
interfering factors is shown in Figure 4. This section will study
the effect of fouling and secondary factors on the binding
interactions and outline the methods used to optimize and
reduce them. This review focuses on the binding kinetics, while
there are several in-depth reviews on these factors for further
details.10,11,67

The binding of unwanted molecules causes an increase in
the generated signal from the biosensor. This introduces false-
positives in the sensor outputs, where the signal represents
both the target of interest and nonspecific molecules. These
false-positives are equivalent to noise in the sensor signal
reducing the sensitivity, signal-to-noise ratio and limit of
detection.68 The issue of NSB enhances with the change of
analyte concentration, with a scale of N2, where N is the
number of molecules in the sample.10 This scaling inevitably
becomes a significant problem in systems with high
concentrations. Such scaling issues lead to more challenges
with unknown level of fouling and secondary factors in
biosensors prior to use in clinical samples.69 For instance, the
nature of NSB is unclear, causing challenges to eliminating its
effect during the use of biosensors in clinical samples. In
laboratory settings, samples contain only analytes of interest,
whereas real clinical samples such as blood or saliva contain

not only the analytes of interest but also other particulates
creating NSB to the receptor or transducer surface, leading to a
high level of uncertainty in biosensors for use in clinical
applications.10,68 It also causes issues with drug discovery and
delivery, as it reduces the drug efficacy through interrupting
the binding to cell membranes.10

At the molecular level, NSB causes complicated problems
through interactions with both analyte and receptor molecules.
The association between nonspecific molecules and receptor
sites increases via cooperative binding,10 where receptors with
two active sites (bivalent) have an analyte bound to one site.
This binding of an analyte molecule to one active site of a
bivalent receptor can change the affinity of the other binding
sites.70,71 In this regard, a molecular binding (specific or
nonspecific binding) to a bivalent receptor modifies the
thermodynamics of the complex formation for other binding
sites as a result of cooperative binding, which can enhance the
formation of NSB compared to SB in biosensors.10,70 It should
be noted that cooperative binding can provide a benefit to
specific molecules through reducing the entropy for complex
formation. Beside NSB, another behavior in biosensors is
molecular crowding, also known as fouling, where the
biosensor surface is internally crowded with many entities.
Such crowding behavior can change the biomolecular (i.e.,
protein) behavior.10 A high concentration of these biomole-
cules leads to the excluded volume effect.10,72 The excluded
volume effect refers to the space taken by one molecule as
being unusable by another molecule, reducing the availability
of the sensor volume.72 This leads to crowding around the
sensor surface followed by a reduction of reaction rates, where
biomolecules have challenges to moving freely around to bind
with receptors, as other molecules cause collisions and block
the path.10

The issue of fouling and NSB is generally inevitable,
requiring certain methods to mitigate its effects.68 In this
regard, the impact of NSB can be reduced with various
techniques during the sensing process, for example, by placing
a filter layer, physically or using a continuous-flow diffusion

Figure 4. Schematic of (a) nonspecific molecules and NSB interfering target molecule binding interactions and (b) the receptor distribution and its
impact on the binding, including homogeneous binding, clustering/aggregation of receptors, various receptor orientations (heads-on, side-on (with
incomplete binding in faded purple color), and flat-on), and surface defects with nonuniform receptor distribution.
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layer, between the transducer and receptor to inhibit molecules
other than the target analyte from reaching the surface.68,73 A
physical layer, also called a coating or nonfouling layer, is used
to prepare the sensor surface to reduce NSB by covering
surface defects of the sensor to prevent exposed areas from
being available for NSB.74,75 Despite promising results, these
techniques are still unable to provide the full requirements
needed for clinical samples. Furthermore, antifouling methods
are time-consuming and costly, with the possibility of causing
damage to the sensor surface.7,76 There is also a technique
called referencing that is frequently used to mitigate NSB
effects on the signal outputs. The process involves using more
than one channel, where NSB measurement is done separately
to the specific binding, in a reference channel. It involves
multiple measurements, and the output signal from the
reference channel is then subtracted from the main signal,
leaving the representation of only specific bindings in the
signal. However, problems arise from the repeated measure-
ments, as this increases the limit of detection.10 Other ideas
include functionalizing different surfaces and using them as
references for the signal. Further details of the surface
modification methods can found elsewhere.10 Formation of a
flow layer has been proposed to mitigate NSB challenges using
laminar flow to create a continuous-flow diffusion layer to
separate nonspecific molecules. This is also termed a
continuous-flow diffusion filter. This technique has been
used for in vivo blood sensing, where it separates a layer of
buffer fluid from the rest of the sample with the nonspecific
molecules to improve sensor specificity and reduce its limit of
detection.77 Recently, the incorporation of nanostructures in
conjunction with the electrohydrodynamic-driven fluid flow
proposes a novel technique to enhance molecular interactions
and reduce NSB.78,79 External force fields also can be used as
an active method to achieve a similar mechanism to reduce
NSB effects.68 Dynamic tracking offers a similar approach to
mitigate the NSB issues through monitoring elements of the
reaction overtime.80 All information for the system regarding
analyte dynamics is required to have access to the unbinding
time for each molecule to distinguish nonspecific from specific
bindings, where the false-positive can be reduced from the
output signal.
Environment of measurement and detection technologies

are other secondary factors affecting biomolecular interactions
and binding kinetics. In this respect, labeling techniques, such
as fluorescence and nanoparticles, are used to improve
sensitivity and specificity, while they can change the binding
interactions and kinetics.81 For example, there is a significant
impact of fluorescent labeling on the binding kinetics of lectin-
glycoprotein interactions compared to other measurement
techniques without labels.82 This labeling effect is found to be
negligible on the protein−ligand binding interactions.83 Labels
can also alter the binding interactions through damaging
biomolecules.84−86 Beside those detrimental effects, nano-
particle labels are used in multiple areas across medical fields
such as diagnostics, screening, and drug delivery by enhancing
the binding interactions.87 For instance, nanoparticle labeling
was employed in conjunction with SPR techniques to increase
the binding affinity by enhancing the association rates.87

Further to labeling, nanoparticles are used to encapsulate
engineered supramolecules to improve efficiency, in vivo
stability, and biocompatibility.88 Nanoparticles can reduce the
binding affinity as well. For example, gold nanoparticles can
increase the dissociation rate (kof f), leading to a weaker binding

affinity.89 Further to changing the binding kinetics, nanolabels
can agglomerate, leading to NSB.90 This effect can be reduced
through functionalizing the surface of nanoparticles. For
example, a mix of carboxylate and octadecyl groups
functionalizing the surface of particles can reduce agglomer-
ation and nonspecific interactions, while such a method
changes the chemistry of the surface. Despite their interruption
in the binding interaction, NSB can reduce the toxicity of
nanomaterials.10

The role of surface chemistry on the binding kinetics and
sensor performance becomes important in electrochemical
technologies, where surface roughness, receptor orientations
and their distribution (illustrated in Figure 4) can impact the
binding interactions.11,67 In addition to the surface, conforma-
tional properties of some biomolecules (i.e., DNA and RNA)
can change the binding interaction. A substantial portion of
biomolecules, such as proteins and DNA, can change their
conformational structure during the binding process with an
analyte. The change of protein conformation acts as the
transducer of the sensor, known as molecular switch sensors.10

They perform these changes specifically to certain analytes to
mitigate the effect of NSB.10,68 In this technology, DNA is the
binding site changing its structure (conformation) after
interaction with analyte, which is detectable through various
measurement techniques such as microscopic and electro-
chemical technologies.10,91 This approach is unable to fully
remove the issue of NSB. Using an electric field is another
approach to improve the surface chemistry for uniform
receptors to enhance sensitivity.92 Recent studies have
highlighted the influence of mechanical stimuli on molecular
interactions to develop a dynamic environment for complex
biological measurements.93

In order to reduce fouling and secondary factors, various
strategies have been proposed so far involving the change of
surface chemistry and the environment of detection. While
these approaches are effective to some extent, they add more
complexity into the system with considerable impacts on the
binding interactions and, hence, the sensor performance.7,94 In
this regard, a critical evaluation is required to assess the
influence of those fouling and secondary factors on the binding
kinetics. Single molecule biosensors are suggested as a solution
to address those challenges.39,48 Some statistical modeling
approaches (discussed previously) can predict those secondary
factors (i.e. collision and NSB),42,43,48,53 while there are limited
studies attempting to characterize the effect of fouling and
secondary factors on the binding kinetics and biosensor design.
More mathematical models can support antifouling strategies
for the development of biosensors for clinical samples.

5. MEASUREMENT TECHNIQUES

To have a successful design of a biosensor, one needs to have
in-depth information about the binding kinetics. There are
several mathematical approaches to model the binding kinetics,
as discussed previously, to predict the binding rates, as the
number of complexes over time. Hence, precise measurement
techniques are required to characterize the binding interactions
for a meticulous biosensor design. In the following, the most
well-known and commercially available technologies to
measure the binding kinetics will be discussed, including
surface plasmon resonance (SPR), biolayer interferometry
(BLI), isothermal titration calorimetry (ITC), and quartz
crystal microbalance (QCM). This will be followed by
discussing key techniques used to characterize biomolecular
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interaction profiles. By carefully selecting a measurement
technique that fits the purpose, the binding properties can be
leveraged to achieve a clear view of biomolecular interactions
with functional surfaces.

5.1. Surface Plasmon Resonance (SPR). The SPR
technique is an optical technology using surface plasmon
waves (electromagnetic waves) to measure the refractive index
of a surface with the capability to detect biomolecular
interactions (Figure 5(a)). This method measures the changes
in the refractive index over an area with the evanescent wave.95

Therefore, it only detects binding events in a specific area on
the functionalized surface.96 In SPR, the change of the
refractive index can be measured as a response to a collection
of mass from binding analyte to receptors as shown in Figure
5(a).96−98 SPR is one of the leading techniques to measure the
binding affinity for biosensor design through offering high
throughput and label free features,96,99 which is applicable for
monitoring assays in real time, mutation detection, kinetic
analysis, screening of drug candidates and identification of
biomarkers for diseases such as cancer.100 The SPR method is
sensitive to the optical thickness of the chip and its refractive
index. Hence, this technique can be used to verify conforma-
tional changes. For instance, the protein conformation changes
the refractive index in the SPR method.100 Regarding the
limitations of this technique, there are challenges associated
with data processing through using the Langmuir model to
estimate the kinetic parameters,28,101 where the heterogeneity
of receptors can cause a deviation from the first-order model.

Furthermore, due to the small evanescent field domain, it is
challenging to detect the binding kinetics of large molecules
with a size greater than 10 μm.96 This technique has no
capability to differentiate between specific and NSB, leading to
false-positives during the measurement. It is noted that the
specificity to distinguish binding profiles can be improved by
using different materials for the chip. For example, a better
evanescent field can be achieved through using silver
embedded within gold for better detection capabilities for
larger proteins.102

5.2. Biolayer Interferometry (BLI). The BLI method is
another optical technology based on the reflection of white
light passing through optical fibers and interacting with a
functionalized surface (Figure 5(b)). The binding interaction
between analytes and receptors changes the wavelength of
reflected beams, suitable for measuring binding kinetics. This
technique offers nonfluidic sample delivery through moving
the optical fiber across the solutions for a high throughput
measurement in a low operation cost. This method can be
easily integrated with other measurement technologies, such as
microscale thermophoresis for measuring affinity in complex
samples.103 Furthermore, thermodynamic parameters can be
reliably measured by using the BLI method.104 Despite the
great features in BLI, this method has a higher LOD compared
with SPR leading to difficulty for measuring the binding affinity
of small molecules.105 Similar to SPR, this technology is unable
to recognize NSB, especially in weak interactions with KD > 1
μM.

Figure 5. Schematic representation of (a) the SPR method to measure the binding interactions based on the refractive index of reflected light, (b)
the BLI technique measuring the binding interactions based on the shift in the wavelength (λ) of reflected beams, (c) the ITC method to measure
the binding interactions based on the heat exchange at the sample cell due to the binding interaction between analytes and receptors, and (d) the
QCM-D method to measure the binding interactions based on the shift in the resonance frequency (Δf) and dissipation (D) of quartz crystal as a
result receptor-analyte complex formation.
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5.3. Isothermal Titration Calorimetry (ITC). The ITC
method is based on measuring the change of heat
(calorimetry) in a reaction to predict the enthalpy, entropy,
kinetics, and the stoichiometry between the two reactants
using two cells, one as a cell of interest and another as a
reference cell (Figure 5(c)). The amount of binding is
determined by the change of temperature due to the binding
interactions.106 The ITC technique offers accuracy comparable
with SPR and BLI methods with capability to detect analyte
concentrations in the order of nM to mM.107 This technique is
widely used in drug discovery and pharmaceutical applications
through predicting key thermodynamics parameters in
biomolecular interactions.108,109 This method has fairly low
throughput, leading to challenges to measure binding affinity.
Moreover, the average time for each test is approximately 2−3
h with requirement of high concentrations of reactants.107,108

ITC is mainly used as a secondary exploratory technique
beside other methods with high throughput to measure
binding kinetics of unknown interactions.110

5.4. Quartz Crystal Microbalance (QCM). The QCM
technique is an acoustic wave technology used to measure
binding affinity based on the shift in the resonance frequency
of a quartz crystal resonator as a result of the mass adsorption
the functionalized surface111−114 (Figure 5(d)). To have an
accurate measurement, the mass must be rigidly bound to the
surface without any slip. Hence, there should be no fluid
friction between the surface and the buffer.115,116 A common
variant of this technique known as QCM-D (standing for
quartz crystal microbalance with dissipation) has been
developed to address such challenges, where the dissipation
of energy can be measured to determine the viscoelastic
properties of absorbents.117 Measuring the viscoelastic proper-
ties can be employed to measure the orientation of the
receptor as one of the main secondary factors (Figure 4) in the
binding kinetics analysis.11,118 Furthermore, QCM-D has
capabilities to detect protein conformation besides the
interaction measurements,119 where monitoring the conforma-
tion effects gives an opportunity to identify NSB through using
QCM-D along with the SPR technique.120 In this approach,
SPR informs the density of the formed biolayer for the
subsequent viscoelastic properties measurements using QCM-
D, tested on estrogen receptor α-DNA complex. Further
applications and use of QCM-D for the binding affinity can be
found elsewhere.121

The main limitation of the QCM-D technology is a relatively
low sensitivity compared to other methods,122 which is mainly
driven from the properties of quartz crystals. This is mainly
linked to the accuracy of estimating the binding complex from

the shift in resonance frequency, which can lead to false-
negatives during the measurements. In microfluidic biosensors,
the flow rate must be optimized to further avoid such
problems. For example, a high flow rate increases the noise on
the signal, while a low flow rate can lead to false-positives on
the signal due to proteins settling on the sensor surface without
binding.123 The uniformity and crystal defects are other factors
that influence the performance of this technology. Although
QCM-D is a label free method, nanoparticles have been
extensively employed in this technique to improve sensitivity
and specificity.122,124,125 As discussed previously, consider-
ations need to be taken into account for binding kinetics
measurements.
So far, well-known and commercially available measurement

technologies have been discussed with their features to analyze
the binding kinetics, listed in Table 2. These techniques are
mainly applicable for known biomolecular interactions with
various limitations mainly on the affinity range and the size of
biomolecules. Hence, several methods have been developed to
address those challenges. In the following, these techniques
will be discussed, including scanning tunneling microscopy
(STM), surface-enhanced Raman scattering (SERS), nuclear
magnetic resonance (NMR) spectroscopy, X-ray microscopy,
and total internal reflection fluorescence (TIRF).

5.5. Scanning Tunneling Microscopy (STM). The STM
technique is based on quantum tunneling to generate an image
of the surface, allowing for understanding the structure of
molecules as well as characteristics of the functionalized surface
through controlling the movement of a molecule through
rotation, conformation or translation.126 There are different
approaches to employing STM for the binding kinetics
measurements. One main approach is to functionalize the
probe tip with a target molecule passed over the receptor,127

where the bond type and lifetime of the complex can be
measured based on the binding response at a single molecule
level.128 STM is able to measure the molecule transfer during
the diffusion process and complex formation.126 A very low
throughput and complexity of the control systems and high
operational cost are the main limitations of the STM technique
to measuring the binding kinetics.129

5.6. Surface-Enhanced Raman Scattering (SERS). The
SERS method relies on the change of the Raman spectrum
based on the chemistry of the surface during the biomolecular
interactions.86,130−132 Due to its noninvasive properties, this
method is suitable to detect binding interactions in live
samples such as cellular processes.132,133 SERS is able to
distinguish the structure of binding suitable for NSB
measurements,131,134 which makes it suitable for complex

Table 2. Features of Well-Known and Commercially Available Techniques to Measure the Binding Kinetics of Biomolecules,
Including Limit of Detection (LOD), Affinity Range (KD), and Their Strengths and Limitations

Methods
LOD

(ng/cm2) KD (nM) Strengths Limitations

SPR 0.01 0.1−103 Well-established in commercial level, high throughput, high level of
repeatability, measure binding affinity and molecule conformation, label
free

Dependent on the uniformity of receptors,
limited to biomolecules smaller than 10 μm,
not able to detect NSB

BLI 0.1 0.01−106 Offering nonfluidic sample delivery, high throughput, low operation cost,
measuring thermodynamics of interactions, suitable for high affinity
interactions

Limited to large molecules, not able to detect
NSB, poor reproducibility

ITC - 1−105 Predicting thermodynamics of interactions, highly sensitive, measuring
unknown interactions, label free, no need to immobilization processes

Low throughput, high cost, large sample
consumption

QCM-D 0.5 0.1−105 Well-established in commercial level, high throughput, high level of
repeatability, Measuring orientation of receptors, possibility to monitor
molecule conformation and NSB, label free

Low sensitivity, accurate estimation of the
number of complexes
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samples. Nanolabels are widely used with this method, which
can cause challenges associated with fouling and secondary
factors during the binding kinetics measurements.130,135

Challenges of reliable and reproducible measurements,
difficulty to capture large molecules and operational costs are
the main limitations of this technique.136

5.7. Nuclear Magnetic Resonance (NMR) Spectrosco-
py. The NMR technique detects the structure and chemical
environment of molecules on the functionalized surface with
capability to measure the binding interactions.137,138 NMR is
able to measure weak to medium binding affinities with
dissociation constants KD from μM to mM, while this
technique has difficulties measuring the binding kinetics with
affinity less than 1 μM.139 NMR has a very high sensitivity to
the chemical environment of atoms suitable for determination
of NSB in complex samples, especially for protein−ligand
interactions.138 Furthermore, this method has capability to
measure the physical and conformational properties as well as
thermodynamic properties as key aspects in the binding
kinetics analysis.10 As a noninvasive method, NMR can be
employed to measure the binding interactions in live samples.
Despite a good throughput for rapid detection, NMR requires
complicated processes for sample preparation.138 Moreover,
this method relies heavily on labeling, especially for proteins,
where secondary factors can impact the binding kinetic
measurements.

5.8. X-ray Microscopy. X-ray microscopy is based on the
beam diffraction of the functionalized surface to determine the
structure of biomolecules for the binding interaction analysis.
This method is used to measure the binding kinetics as well as
conformation of receptors.140 X-ray microscopy can monitor
the structure of a reaction over time through monitoring
thermodynamic parameters.141 This method offers fairly high
throughput detection, enabling the binding kinetic measure-
ment of thousands of ligands with a target protein.
Furthermore, NSB can be recognized through this techni-
que,142 while the sample quality plays an important role on the
accuracy of the measurement.143 This method is limited to
crystalline molecules, where cryogenic measurements are
needed for some biomolecular analysis with potential impacts
on the binding response. The X-ray beam can also damage
biomolecules under study with subsequent effects on the
binding kinetics.144

5.9. Total Internal Reflection Fluorescence (TIRF).
TIRF microscopy is an optical technology based on the
interaction of light with different media to create various
refractive indexes.145 TIRF is widely used to measure the
binding kinetics,146−148 while it relies on the labeling processes
for the binding interaction analysis. In addition to the binding
kinetics, the method can also determine conformational
changes by analyzing the fluorescence signal.146 Such a specific
detection offers the capability to measure NSB through using
nanoparticles.149 TIRF offers a unique microscopic technique
with high sensitivity and low photodamage without any
limitation on the number of labels applicable for a wider
range of biomolecules. Besides those advantages, TIRF has
operational complexity in the labeling process and data
analysis, where the impact of labeling on the binding kinetics
needs to be considered, as discussed in the previous section.
In this section, most well-known techniques to analyze the

binding interaction of biomolecules have been presented.
These techniques are employed to measure the binding affinity
and kinetics parameters for biosensor design.31,150 There are

two main issues with such an approach. First, binding kinetics
parameters are significantly dependent on sample preparation
during the measurement. For instance, there is a high level of
uncertainty on binding kinetics measurements using the SPR
technique as a result of sample preparation.30 This can cause
misleading design of affinity biosensors. The discrepancy
between various techniques is another challenge to consider to
employ the measured binding kinetics parameters for affinity
biosensor design.151 Recognizing fouling and secondary
factors, discussed in the previous section, from output signals
in biosensors is a challenging process. In the following, well-
known signal processing methods used for biosensors and
measurement techniques will be presented.

5.10. Signal Processing. One of the effective methods to
mitigate fouling and secondary factors and improve the signal-
to-noise ratio is processing signals obtained from biosensors. In
this regard, various signal processing methods have been
developed where Fourier transform, wavelet transform, and
traditional filtering methods such as Kalman filters are widely
used for biosensor applications.

5.10.1. Fourier Transform. The Fourier transform method
enables the decomposition of complex signals into their
constituent frequency components, unveiling underlying
patterns and dynamics. By transforming signals from the
time domain to the frequency domain, this method facilitates
the identification of characteristic frequencies associated with
biological interactions, allowing for the sensitive and specific
detection of biomolecules in samples. This is especially useful
in applications such as DNA microarrays and protein
sequencing, where the frequency of certain markers can
indicate the presence or absence of specific traits or
conditions.152 One key step to analyze a signal from a
biosensor is to transform data into biomolecular interactions,
where signal processing can help for this purpose. For instance,
Fourier transform is employed in spectroscopy devices to
convert infrared spectral data into a molecular absorption and
transmission spectrum, providing a distinctive molecular
fingerprint and facilitating the identification and character-
ization of bacterial strains based on their unique molecular
compositions. Fourier transform can decipher binding events
and alterations to detect a myriad of biological entities.153,154

Despite its profound impact, the use of the Fourier transform
method for biosensors is challenging. In this regard, Fourier
transform-based methods can have poor performance for
detecting analytes at exceedingly low concentrations, neces-
sitating amplification mechanisms.155 Furthermore, the inher-
ent mathematical complexity poses a barrier to the
implementation of Fourier transform techniques, especially in
portable biosensors.156 The interpretation of Fourier-trans-
formed data demands expertise, particularly in complex
biological matrices in clinical samples.

5.10.2. Wavelet Transform. Wavelet transform has emerged
as a versatile tool in signal processing, offering unique
advantages in capturing both time and frequency information
simultaneously. Unlike traditional Fourier-based methods,
which provide a global view of signal frequencies, wavelet
analysis allows for localized frequency analysis, making it
particularly well-suited for analyzing nonstationary signals
often encountered in biosensor applications.157,158 One of the
key advantages of wavelet transforms in biosensor applications
is their ability to denoise and baseline-correct signals. The
linear decomposition of signals into different frequency bands
allows for the effective removal of unwanted noise and
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background interference, which is crucial for improving the
signal-to-noise ratio and accurate detection in biosensors. In
this regard, the efficacy of wavelet-based adaptive denoising
and baseline correction is demonstrated through decomposing
the signal into various frequency components, allowing for the
identification and removal of noise components while
preserving the essential features of the signal to identifying
biomarkers from human serum/plasma.159 Additionally, wave-
let-based methods have been utilized for feature extraction and
signal compression, facilitating efficient data processing and
storage of biosensor systems. Unlike denoising and baseline
correction, which primarily aim to improve signal quality,
feature extraction involves identifying and extracting relevant
information or characteristics from biosensor signals. In this
regard, wavelet transforms are utilized to identify specific
features or patterns within biosensor signals that correspond to
analyte concentrations or other relevant parameters.160 This
approach can help to enhance the sensitivity and specificity of
the biosensor. More details of emerging applications of
wavelets, including their utilization for signal compression in
biosensor systems, can be found elsewhere.161

5.10.3. Traditional Filtering. Traditional filtering techni-
ques, such as Kalman filters and frequency filters, are
commonly used in biosensor applications to ensure accurate
and reliable measurements. The Kalman filter and its extended
version, the Extended Kalman Filter, have found widespread
applications in various domains, including biosensor tech-
nologies. These state-space estimation techniques have proven
to be effective in tracking and predicting the behavior of
complex systems, making them suitable for processing data
from biosensors. The Kalman filter is a recursive algorithm that
estimates the internal state of a dynamic system from a series
of noisy measurements. It operates in two distinct phases:
prediction and correction. The prediction phase uses the
system’s state transition model to estimate the current state,
while the correction phase adjusts this estimate based on the
latest measurement. This allows the Kalman filter to provide
reliable estimates of the system’s state, even in the presence of
noise and uncertainty. An Extended Kalman Filtering
Projection Method was introduced and applied to enhance
the performance of optical biosensors by reducing the 3σ noise
value.162 The Extended Kalman Filter was employed to refine
the estimation of noise parameters, particularly the noise
covariance matrix, thereby improving the accuracy of sensor
measurements.
Frequency filters are utilized to selectively pass or attenuate

specific frequency components of signals obtained from
biosensors. By filtering out noise or unwanted signals,
frequency filters enhance the accuracy and reliability of data
interpretation. In biosensor applications, frequency filters are
particularly useful for isolating and analyzing specific molecular
interactions, enabling precise detection and quantification of
target analytes amidst complex biological matrices. They play a
crucial role in improving the sensitivity, specificity, and overall
performance of biosensor systems. The application of a low-
pass filter as a type of frequency filter played a crucial role in
understanding the dynamic response limits of affinity-based
sensors. By employing this filter in the frequency domain, the
effects of diffusion, convection, and reaction on sensor
performance can be isolated to better analyze the continuous
sensing systems by filtering out high-frequency components
such as rapid fluctuations in analyte concentration.163 Those
filter methods use mainly the Langmuir isotherm through

considering the binding interactions without implications of
fouling and secondary factors, as discussed previous, while
there are some studies incorporating band-pass filters with
statistical binding kinetics to capture the noise driven from
secondary factors, such as nonspecific bindings.42,43

Those filtering methods discussed so far are used to improve
the accuracy of biosensors as a fundamental criterion in the
evaluation of clinical and laboratory tests with complex
samples to enable identification of the presence and level of
a specific analyte. There is a trade-off between sensitivity,
known as the ability to correctly detect true positives, and
specificity, considered as the ability to correctly identify true
negatives. Across this balance, there are the concepts of false-
positives and false-negatives, which correspond to the test’s
intrinsic statistical errors, known as type I and type II errors,
respectively.164 False-positives, or type I errors, occur when a
test incorrectly indicates the presence of an analyte in a blank
sample. The presence of an NSB is an example of type I errors.
False-negatives, or type II errors, arise when a test fails to
detect an analyte that is present in the sample. Lack of proper
functionalized surfaces and fouling are the potential source of
type II errors. The statistical approach to controlling them
typically involves setting a predefined level for errors,
commonly at 5%. The chosen error thresholds have an impact
on the limit of blank and the limit of detection, which are
critical to establishing the test’s ability to differentiate between
true negative and true positive results. Some examples of those
errors have been discussed early, such as false-positives in
QCM-D with low flow rates,123 NSB in detection of small
molecules,10 and false-negative due to receptor clustering11

Minimizing these errors is thus crucial in the design and
validation of diagnostic assays. For instance, increasing the
number of replicate measurements or reducing noise in the
system can lower both the standard deviation of blank samples
and minimum level to detect analyte, thereby improving both
the limit of blank and the limit of detection and ultimately
enhancing diagnostic sensitivity. These steps are suitable for
laboratory sample testing and preclinical development stages,
while further statistical analysis and evaluation metrics are
required for clinical applications.164 In addition to signal
processing, several different approaches have been proposed to
mitigate false-positive and false-negative errors during the
measurement. For example, decreasing sensitivity of the
biosensor outputs can significantly eliminate false-positives,
where incorporation of a prescreen can further reduce true
negatives during the measurement process.165 Using machine
learning methods is another approach recently proposed to
reduce the impact of false-positives and false-negatives in
biosensors.166 Employing appropriate binding kinetics models
and measurement approaches should be considered to explore
those false errors in the signal processing steps. For instance,
the Markov models, as discussed previously, are suitable to
capture NSB and false-positives in noise,42,43 while the SERS
technique can distinguish NSB in complex samples.131 Hence,
having a proper evaluation of binding kinetics can help to
design reliable biosensors, which will be discussed in the
following section through presenting current breakthroughs to
analyze binding kinetics in biosensors.

6. CHALLENGES AND OPPORTUNITIES

Understanding the binding kinetics is one of the main pillars to
design affinity biosensors. Figure 6 demonstrates the main
pillars to design a biosensor, including media for mass transfer,
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surface chemistry for binding, transducer to generate a
readable signal, and testing for calibration curves, which
determine the fundamental performance parameters, including
selectivity, sensitivity, linearity, stability, and repeatability. In
this design procedure, analyte mass transfer (convection- or
diffusion-based physics) is integrated with the binding kinetic
model, discussed earlier, to predict the binding response,
where the binding kinetic parameters (kon and kof f) are
measured using techniques such as SPR, QCMD, BLI and
ITC, as discussed previously. Then the binding concentration
can be linked to the transducer response based on the
transaction mechanism of the biosensor technology. This will
be compared to testing and calibration curves through
appropriate signal processing, where the optimum design can
be achieved through multiple iterations across these steps. Due
to its simplicity, currently the Langmuir model is widely used
in the binding response prediction,31,150 binding kinetic
measurements30 and transducer signal processing.162

Besides all challenges associated with the Langmuir model
discussed previously, binding kinetics is considered constant,
assuming uniformity in the binding sites. This model
development in biosensor design relies on a very high ratio
of analyte to binding sites, where all binding interactions can
reach the equilibrium state in a small period of time, leading to
various problems.22 Such assumptions are beyond the
Langmuir isotherm, where other binding kinetic models such
as fractal analysis, Markov chain, and Langevin have the same
considerations on equilibrium in the binding interactions.
Besides these limitations, inappropriate procedures are other
issues causing challenges in having accurate binding affinity
measurements and biosensor design. A recent investigation has
evaluated several studies in the literature on the binding affinity
estimations, highlighting the importance of measurement
procedures on the accuracy and reliability of outcomes.167

Hence, a framework is proposed to ensure the reliability of
equilibrium approaches used to determine the binding affinity
of biomolecules. This framework is based on providing
sufficient time to achieve equilibrium and controlling the
titration regimes. In this regard, varying incubation time and
biomolecule concentration can help to ensure equilibrium in
the binding regime during affinity interactions, where models
can be employed accurately to determine binding kinetics as

well as design biosensors. Using such a standard framework
can provide opportunities to remove uncertainties associated
with measurement procedures as well as to better understand
limitations in current modeling approaches.
The use of equilibrium approaches to measure binding

kinetics and design biosensors requires knowledge of the
biomolecular interactions and their affinities. Furthermore,
significant noise in a low concentration of analyte and
recognizing a fully developed equilibrium state in a biosensor
are some other challenges.167 In this regard, a recent approach
has been proposed to determine the binding affinity based on
the transient state before reaching the equilibrium con-
dition.168 In this method, the rate of association with respect
to time and input concentration is passed backward into a
target estimation algorithm based on an inverse Langmuir
calculation with a high pass filter. Further to maximizing signal-
to-noise ratios, this technique offers biosensor design for
continuous monitoring systems. This new approach to
designing affinity biosensors can help with better incorporation
of binding kinetics into signal processing without concerns to
reach equilibrium. The application of such a method depends
on the relationship between the concentration oscillations and
transducer response.163,168 There are many opportunities to
measure the binding kinetics of low affinity interactions, to
eliminate the noise of NSB and design reliable biosensors for
continuous measurements. In addition to pre-equilibrium
techniques,168 controlling binding affinity through molecular
switching is another approach to overcome challenges
associated with the equilibrium methods. There are several
recent proposals in this regard, where the binding kinetics
(both association and dissociation rates) can be tuned in
reversible interactions.169−172 These techniques provide several
opportunities. First, the thermodynamics and kinetics of
interactions can be decoupled for detection of specific binding.
In this respect, the Langevin model works well to predict the
change of thermodynamics in the binding interactions, where
NSB can be distinguished.48 Detecting low affinity interactions
is another opportunity to use molecular switching through
enhancing binding kinetics. Besides fast and sensitive
detection, these techniques provide opportunities for con-
tinuous measurements as well without concerns on sample
preparation and measurement procedures.169 Developing high-
speed switching is another application of using modulated
binding affinity for modern electronic devices.173

The applicability of binding kinetics in different biological
samples is crucial for advancing the design and utility of
biosensors in diverse real-world settings. Binding kinetics
directly influences biosensor performance in terms of
sensitivity, specificity, and response time across various
biological matrices. Understanding multivalent protein inter-
actions is one example of the importance of binding kinetics to
identify and develop novel pharmaceutical strategies.174 Precise
targeting and imaging in vivo are other aspects on the
significance of binding kinetics for dynamics monitoring of
therapeutic processes.175 In simple biological samples such as
buffer solutions or cell culture media, binding kinetics are
relatively straightforward to measure and predict. There are
many studies on exemplar biomolecular interactions in buffer
solutions such as antibody−antigen, DNA, and Biotin−
Avidin.30,83,147 These environments often lack complex
interfering substances, allowing for the robust quantification
of analyte-receptor interactions. However, in more complex
biological samples, such as blood, saliva, or urine, binding

Figure 6. Schematic representation of key steps to design affinity
biosensors, where binding kinetics is integrated with other aspects
including biomolecule mass transfer through media, signal generation
through sensor’s transducer and standard calibration curve and
testing.
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kinetics become significantly influenced by secondary
factors.10,176 The complexity of biological samples has an
impact on the biosensor characteristics, such as reducing
selectivity. These effects necessitate careful optimization of
surface chemistry, such as the use of antifouling coatings and
incorporation of referencing strategies.
The variability of binding kinetics across biological matrices

highlights the need for robust sensor calibration and
adaptation to specific sample types. Addressing these
challenges involves integrating kinetic modeling with empirical
measurements across different matrices. Advanced models that
incorporate real-time environmental factors, such as viscosity
and molecular crowding, can improve predictions and guide
biosensor design. This enables the reliable application of
binding kinetics for diagnostics and biomarker discovery across
diverse biological samples.

7. CONCLUSIONS

The main purpose of this Review is to explain the concepts and
advances of binding kinetics and its importance in design and
development of affinity biosensors, which have been over-
looked in the development of robust and reliable technologies
for clinical samples with a complex matrix. Here, the
fundamentals of binding interaction are presented through
thermodynamics and energy concepts. This is then extended to
the binding kinetics models proposed so far, where the
strengths and limitations of those models are discussed for
designing affinity biosensors. The implication of fouling and
secondary factors (such as environment of measurement,
nonspecific binding and sample medium) on the binding
kinetics is then discussed as various noise sources in the
biosensor responses. This Review is then concluded through
the evaluation of experimental techniques to measure the
binding kinetics of biomolecular interactions. The existing
challenges and potential opportunities on the current
perception of binding kinetics can be summarized in the
following:

• Understanding the thermodynamics of binding in a
biosensor provides an in-depth insight into the profile as
well as statistical nature of binding, while there are
limited theoretical and measurement studies. Current
advanced technologies (such as STM, SERS and NMR)
can offer high resolution measurements for the
thermodynamics of binding, where the binding inter-
actions can be looked at from fundamental principles.
This can provide opportunities to distinguish the
binding interaction profiles between analytes and
receptors with different orientations and distributions.

• The Langmuir model is a simple approach to consider,
especially in design and signal processing, while this
model is unable to consider fouling and secondary
factors as well as the statistical nature of binding for
practical measurements and complex samples. In
contrast, statistical approaches, such as Markov Chain,
Langevin and Agent-based models, can offer oppor-
tunities to address those issues in biosensor design, while
the challenge associated with their computational
complexity and scale can be resolved through proposing
multiscale models.

• It is too idealistic to have a universal model to design all
biosensors, so mathematical models need to be
developed to fit for purpose. One such purpose could

be better understanding of the complexity of binding,
where mathematical models can support various steps in
biosensor design including strategies to immobilized
bioreceptors, techniques to improve surface chemistry,
and approaches to control fouling. This can lead to the
improvement of reliability and repeatability of bio-
sensors, especially for POC applications.

• There are various techniques, as presented in the last
section, to measure the binding kinetics, while careful
considerations are required in order to use those affinity
binding kinetics parameters for the design of biosensors,
especially with different technologies. As discussed in
this Review, secondary factors can have a range of
impacts on the binding kinetics based on the measure-
ment technique. In this respect, a mathematical model
can provide insights on how to transfer the binding
kinetics information from one technology to another.

There are great potentials of using biosensors for in vivo and
clinical applications due to their ability to provide rapid,
sensitive, and specific detection of biomolecular interactions.
Advances in biosensor design, including wearable and
implantable devices, offer new avenues for real-time monitor-
ing of biomarkers, disease progression, and therapeutic
interventions. Key features, such as miniaturization, high
sensitivity, and integration with digital health platforms,
make biosensors particularly appealing for clinical diagnostics
and monitoring. Despite these promising applications,
significant challenges remain. In vivo environments are
complex, with high variability and interference from non-
specific binding, molecular crowding, and fouling, all of which
affect sensor accuracy and reliability. The presence of diverse
biomolecules in clinical samples can lead to false positives and
negatives, complicating the interpretation of sensor outputs.
Additionally, the stability of biosensors under physiological
conditions, including their longevity and resistance to
biofouling, is critical for practical applications. This Review
attempts to draw attention to the importance of the binding
interaction profile and its kinetics in the development of more
robust and reliable affinity biosensors, where more future
studies in these aspects can bring existing innovative
technologies closer to commercial stages.
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binding kinetics, the rate of binding interaction between
analyte and receptors in affinity biosensors; complex matrix,
samples with target molecules and various none-target
molecules that interfere with sensor; nonspecific binding, any
interaction between nontarget molecules and receptors;
secondary factors, any interfering factors affecting the binding
interaction including receptor orientation, surface chemistry,
external force fields, and environment of measurement; false-
positive, detecting any interactions beyond target molecules in
the sensor output signal; false-negative, any interference in
binding interaction causing reduction of the sensor output
signal;
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