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Abstract

Objective In the kidney, the medulla is most susceptible to damage in case of hampered perfusion or oxygenation. Due to 

separate regulation of cortical and medullary perfusion, measurement of both is crucial to improve the understanding of 

renal pathophysiology. We aim to develop and evaluate a physiologically accurate model to measure renal inner medullary 

 (Fmed) and cortical perfusion  (Fcor) separately.

Materials and methods We developed a 7-compartment model of renal perfusion and used an iterated approach to fit 10 free 

parameters. Model stability and accuracy were tested on both patient data and simulations. Cortical perfusion and  FT (tubular 

flow or glomerular filtration rate per unit of tissue volume) were compared to a conventional 2-compartment filtration model.

Results Average (standard deviation)  Fmed was 37(23)mL/100 mL/min. Fitting stability as expressed by the median (inter-

quartile range) coefficient of variation between fits was 0.0(0.0–5.8)%, with outliers up to 81%. In simulations,  Fmed was 

underestimated by around 8%. Intra-class correlation coefficients for  Fcor and  FT as measured with the 2- and 7- compartment 

model were 0.87 and 0.63, respectively.

Discussion We developed a pharmacokinetic model closely following renal physiology. Although the results were vulnerable 

for overfitting, relatively stable results could be obtained even for  Fmed.

Keywords Kidney medulla · Perfusion · Magnetic resonance imaging

Introduction

The renal medulla functions at the border of hypoxia, even 

under physiological conditions. It receives only 10 (inner 

medulla) to 40% (outer medulla) of renal blood flow. Fur-

thermore, due to countercurrent exchange, oxygen can 

diffuse freely from arterial to venous vasa recta, further 

diminishing oxygen supply [1]. While nephrons in the inner 

medulla are adapted to these hypoxic conditions and largely 

rely on anaerobic respiration, the high oxygen demand of 

the outer medulla necessitates aerobic metabolism, leav-

ing this region susceptible to hypoxic damage [1]. Strict 

renal autoregulation keeps renal (medullary) oxygenation 

within limits by tuning both oxygen supply and demand. 

Notably, increased cortical perfusion generally leads to 

an increase in glomerular filtration rate (GFR), resulting 

in more solutes being delivered to the medullary tubules. 

This increases tubular transport and consequently increases 

oxygen consumption in the medulla, which contributes to 

medullary hypoxia. Counterintuitively, an increase in renal 

perfusion and oxygen supply, benefitting cortical oxygena-

tion, can therefore contribute to medullary hypoxia. Corti-

cal and medullary perfusion and oxygenation therefore are 

regulated separately [1]. To obtain detailed insights into the 

role of perfusion and oxygenation in renal disease, cortical 

and medullary regions should also be measured separately.

Renal regional hypoxia has been extensively studied by 

BOLD MRI, sometimes yielding contradictory results [2]. 

One major drawback of BOLD MRI is its reliance on the 

content of deoxyhemoglobin, which leads to confounding 

by blood volume and perfusion [3]. For correct interpreta-

tion of BOLD MRI data, knowledge of underlying changes 

in blood volume and perfusion is crucial. Furthermore, 
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although perfusion is evidently not the sole determinant of 

renal oxygenation, impaired perfusion is a major factor in 

the development of renal hypoxia. Due to the separate regu-

lation of cortical and medullary perfusion, in vivo meas-

urement of both renal cortical and medullary perfusion is 

crucial to improve understanding of the pathophysiology of 

renal disease.

Several techniques exist to measure total or cortical per-

fusion in vivo, including para-aminohippurate clearance, 

arterial spin labeling (ASL) and dynamic contrast-enhanced 

(DCE) MRI, all with their own limitations. However, cur-

rently, there are no available non-invasive techniques for 

reliable measurement of medullary perfusion. ASL MRI 

relies on an endogenous tracer which decays within a few 

seconds, before it is able to travel from the labeling location 

(the aorta) to the peritubular (medullary) vasculature. ASL 

measurements of medullary perfusion are therefore deemed 

unreliable in a recent recommendation paper [4]. DCE 

analysis relies on pharmacokinetic modeling of the contrast 

enhancement curve. The most commonly used models do 

not discriminate between cortex and medulla and therefore 

cannot measure cortical and medullary perfusion separately 

[5–8], while another model does discriminate between cor-

tex and medulla but does not allow for measurement of med-

ullary perfusion [9].

The aim of the current study is to develop and evalu-

ate a method for measuring renal (inner) medullary perfu-

sion in particular, by means of a physiologically accurate 

model. The model will be tested for precision and accuracy 

using both simulated and real data. Furthermore, values 

obtained using the model will be compared to values 

obtained using a conventional two-compartment model 

[5] and literature values.

Methods

Theory

In view of our aim to measure medullary perfusion, i.e., 

blood flow from cortex to medulla, we identify the sim-

plest model that can correctly describe the exchange of 

contrast agent between cortex and medulla (Fig. 1). A con-

trast agent molecule can follow essentially two trajectories 

between these two regions:

(1) molecules that are filtered out of the plasma compart-

ment (PA, cortex) enter the proximal tubules (PT, cor-

tex) then the loop of Henle (LH, medulla), the distal 

tubules (DT, cortex) and the collecting ducts (CD, 

medulla) before being evacuated as urine (U);

(2) molecules that are not filtered out enter the vasa recta 

(VR, medulla) then the venous plasma (PV, cortex) 

before being evacuated as venous blood (V), or else 

they stay in the cortex and go straight to the venous 

plasma (PV, cortex).

Fig. 1  Schematic representation of the seven-compartment model. 

Flows with tracer are denoted  FX,Y where the flow is from compart-

ment X to compartment Y or by an extraction fraction times  Fcor 

(the arterial flow into the cortex). Resorption or tracer free flows are 

expressed as fractions  fX of  FT  (EFFFcor), with X the compartment 

from which resorption occurs. Note that the arterial plasma com-

partment is not strictly arterial since it also includes glomerular and 

peritubular capillaries. A renal arteries, PA arterial plasma compart-

ment, PV venous plasma compartment, V renal veins, VR vasa recta 

compartment, PT proximal tubules compartment, LH loop of Henle 

compartment, DT distal tubules compartment, CD collecting duct 

compartment, U urine/renal calyces
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We end up with a 7-compartment model (Fig. 1) with 

3 plasma compartments (PA, VR, PV) and 4 tubular com-

partments (PT, LH, DT, CD). The model is fully defined by 

10 free parameters, summarized in Table 1. They are the 

mean transit times (MTT) of each of the 7 compartments, 

the cortical perfusion  Fcor, the medullary extraction frac-

tion  Emed, and the glomerular extraction fraction  EFF. The 

target parameter medullary perfusion  Fmed can be derived 

as  Fmed =  Emed(1-EFF)Fcor.

If we write  MTTX for the MTT of a compartment X, then 

we can define the propagator  HX and residue functions  RX 

of the compartment as follows:

With these definitions, the solutions of the model equa-

tions can be written out compactly by following the trajec-

tory of the tracer flux from the arterial inlet to the com-

partment. For a given arterial concentration  CA(t), the 

concentration in each of the 7 compartments is given by ( ∗ 

denotes convolution):

R
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It is unlikely that a model of this complexity can be iden-

tified based only on a measured curve over the entire kid-

ney parenchyma. Instead, we follow a strategy introduced 

by Baumann et al. [10] of collecting concentrations in the 

cortex and medulla separately. Since medullary perfusion 

quantifies the exchange between these two regions, we 

hypothesized that this would produce a well-defined inverse 

problem. The cortex consists of the arterial plasma, venous 

plasma, proximal tubules and distal tubules:

The (fractional) volumina correct for the relative con-

tribution of each compartment and cancel out in the final 

equation. The medulla consists of the vasa recta, loop of 

Henle, and collecting ducts:
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Table 1  A list of primary and 

derived model parameters with 

units and their description. 

MTT: mean transit time.

Parameters in bold are the 10 free primary parameters and are also provided with their bounds

Parameter Unit Description Bounds

MTTPA S MTT of arterial plasma compartment 0–15

MTTPV S MTT of venous plasma compartment 1–20

MTTVR S MTT of vasa recta compartment 50–200

MTTPT S MTT of proximal tubules compartment 1–100

MTTLH s MTT of loop of Henle compartment 1–100

MTTDT s MTT of distal tubules compartment 1–100

MTTCD s MTT of collecting duct compartment 1–100

Fcor mL/100mL/min Cortical perfusion 0–1000

Emed – Medullary flow fraction 0–1

EFF – Glomerular extraction fraction 0–1

Fmed mL/100mL/min Medullary perfusion Derived

FT mL/100mL/min Tubular flow (or GFR per 100mL tissue) Derived



 Magnetic Resonance Materials in Physics, Biology and Medicine

Patient data collection

Patient data were selected from an ongoing study (iBEAt 

[11]) on imaging biomarkers in diabetic kidney dis-

ease. The main inclusion criteria were type-2 diabetes, 

eGFR > 30 ml/min/1.73m2. All subjects signed informed 

consent prior to inclusion. For the purposes of this paper, 

the first 24 patients of one recruiting site were selected, 

excluding cases where DCE-MRI data were deemed to be 

of insufficient quality. Quality control consisted of visual 

inspecting of the raw images in a DICOM viewer. Any 

images that show artifacts, signal drop-outs, data trunca-

tion or extreme noise levels suggesting coil issues, were 

excluded.

Patients were scanned on a 3 T MR system (Magnetom 

Prisma, Siemens, Erlangen, Germany), feet first with an 

18-channel phased array body coil. Apart from DCE-MRI, 

the scan protocol included a range of sequences including 

DIXON,  T1/T2/T2*-mapping, diffusion weighted imaging 

and diffusion tensor imaging, ASL and phase contrast. 

DCE-MRI was performed in free breathing with a 2D 

fast gradient echo sequence with a non-selective satura-

tion pulse prior to each slice readout. 2D acquisition was 

chosen because of the smaller acquisition time per slice 

as compared to a 3D volume acquisition. This renders the 

images less vulnerable to (respiratory) motion artifacts. 

Eight oblique slices through the kidney and one trans-

verse slice through the descending aorta were acquired 

with acquired voxel size of 2.78 × 2.08 × 7.5  mm3 recon-

structed to a voxel size of 1 × 1 × 7.5  mm3. The field of 

view was 400 × 400mm and a parallel imaging factor of 2 

was employed, along with a partial Fourier factor of 7/8. 

Temporal resolution was 1.6s and total acquisition time 

was 7 min. Flip angle was 10 degrees, TR and TE were 

179 ms and 0.97 ms, respectively, with an echo spacing of 

2.2 ms. Image acquisition started 20s before bolus injec-

tion of 0.05 ml/kg gadoterate meglumine at a rate of 2 

mL/s followed by a 20 mL saline flush at a rate of 2 mL/s.

DCE-MRI images were aligned slice-by-slice using 

model-driven registration [12]. Registration accuracy 

was evaluated by visual comparison of the coregistered 

dynamics against the original time series, and by compar-

ing motion corrected versus uncorrected datasets. Motion 

correction results were rejected if the coregistration had 

created unrealistic deformations or had blurred out detail 

that was visible in the source images. Segmentation was 

performed on the registered data using k-means cluster-

ing [13]. Three clusters were created: one to represent the 

cortical voxels, one for inner medullary voxels and one for 

voxels containing partial voluming/outer medulla (on aver-

age 22% of all voxels labeled as kidney parenchyma). The 

latter were not used in further processing. Segmentation 

of the aorta for calculation of the arterial input function 

was performed by k-means clustering as well. Any voxels 

outside of the selected anatomical regions were manually 

removed. Average cortical, inner medullary, and aorta 

time–intensity curves were calculated from each data 

series.

Implementation of the model

The model summarized in Eqs. 8 and 9 was implemented 

in Matlab (R2019a, MathWorks, Natick, MA, USA), using 

signals in arterial blood, cortex and inner medulla as input 

data and producing measurements of all 10 free parameters 

as outputs. Arterial and tissue concentrations were assumed 

to be proportional to the signal change with respect to the 

baseline level. A hematocrit of 0.45 was assumed to convert 

the aorta blood concentration to plasma concentration. For a 

given arterial plasma concentration, predicted tissue concen-

trations were calculated using Eqs. 8 and 9 with convolutions 

calculated as described in [14]. The model parameters were 

fitted to inner medullary and cortical signal curves simul-

taneously in a single regularized fit [15]. The model fit was 

repeated 100 times with different initial parameter values 

randomly chosen within physiological ranges, but without 

bounds on the fits. Of the 100 obtained solutions, only those 

solutions were selected with all parameters within physi-

ological bounds. The solution with the lowest chi-square was 

selected as the result of the fit. The procedure is graphically 

depicted in Fig. 2.

Simulated data collection

The aorta concentrations measured in the patients were used 

to generate kidney tissue signal–time curves with known 

ground-truth model parameters (Fig. 3). To determine real-

istic ground truth and bounds for all parameters, literature 

values were used where available. These were subsequently 

adjusted by data obtained by explorative model fits on 

patient data. Sets of ground truth values for all parameters 

were obtained from the normal distribution with a stand-

ard deviation of 20% around those theoretical values. Using 

those sets of ground truth values and the measured arterial 

plasma concentrations, signal–time curves were generated. 

Gaussian noise with a fixed standard deviation was added to 

the signals to obtain an arterial contrast-to-noise ratio (CNR) 

of 150, similar to the patient data. Arterial CNR was defined 

as the ratio between peak arterial signal change and baseline 

standard deviation.

Data analysis

While the analysis is designed primarily to measure inner 

medullary perfusion, the 9 other parameters generated by 
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the analysis are reported as well as they can be of use for 

additional quality control.

Patient data were used to verify that the model fitted the 

data well, compare results against known literature values, 

test sensitivity of the results to the choice of initial values, 

and compare shared parameters against a common reference 

model. Goodness of fit was assessed visually by inspection 

of fits overlaid on data. Results for all model parameters 

were reported as groupwise mean (standard deviation) and 

compared to literature values where available. In order to 

test model sensitivity to initial values, the fitting procedure 

was repeated 50 times for each dataset. This procedure is 

schematically depicted in Fig. 3. The coefficient of varia-

tion (CoV, defined as standard deviation/mean) was calcu-

lated over these 50 fits. If the iterated fit is perfectly stable, 

this CoV equals zero. Values for tubular flow  FT (GFR per 

unit of tissue volume) and  Fcor were compared to values 

obtained using the current reference two-compartment fil-

tration model [7]. The intraclass correlation coefficient ICC 

was used to measure agreement between both measurements 

(two-way mixed effects, consistency, single measurements).

The simulated data were used to determine sensitivity to 

initial values and accuracy of the model fit if used with noisy 

data. The bias with respect to the ground-truth value was 

used to determine accuracy of the model fit. To determine 

whether the model is sensitive enough to detect individual 

differences in  Fmed, fitted  Fmed was compared to true  Fmed for 

all ground truth curves using the intraclass correlation coef-

ficient (ICC, two-way mixed effects, absolute agreement, 

single measurement). Sensitivity of all parameters to initial 

values was measured in a similar way as in patient data by 

repeating the fitting procedure 50 times for each simulated 

dataset (Fig. 3) and quantify sensitivity using a CoV defined 

as standard deviation/mean.

Results

DCE data

Of the 24 DCE examinations available, four patients were 

excluded because of excessive inflow fluctuations in the AIF 

data (for details, see supplemental materials). An example 

of an AIF which was excluded alongside an included AIF is 

shown in the supplementary materials (Figure S1). In Fig. 4, 

a representative example of the pre-contrast and post-con-

trast DCE images in one patient is shown, alongside the 

segmentations.

Measurement of inner medullary perfusion

In Fig. 5, fits of the seven compartment model to time–inten-

sity curves obtained in patients are shown. A small mis-

match in the first pass was often observed, but overall, the 

model fits the data well. In the supplementary materials, the 

root-mean-square errors of the fits of the patient curves are 

provided. Table 2 summarizes the key numerical results in 

patients and simulated data, and Figs. 6 and 7 show more 

detailed data distributions for patient data and simulations, 

respectively. Average (stdev) inner medullary perfusion 

Fig. 2  The fitting procedure depicted schematically. As part of the fit-

ting procedure, a regularized unconstrained fit is performed 100 times 

with randomly chosen initial values. Next, the solutions within physi-

ological bounds are selected. Last, the solution with the lowest chi-

squared is selected
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was 37 (23) mL/100 mL/min. Sensitivity to initial values as 

reflected by the CoV between iterated fits was median 0.0 

(0.0–5.8) %. However, there were outliers with CoVs up to 

81%. In the simulations, noise caused a systematic underes-

timation of inner medullary perfusion by around 8% com-

pared to ground truth. The CoV measuring the sensitivity to 

initial values was median 0.0 (0.0–25) % in simulations, with 

outliers up to ~ 80%. A CoV of 0.0 indicates good stability 

of the fit Table 3.

Figure 8 shows the estimated inner medullary perfusion 

against ground truth in all simulations. The agreement was 

reasonable as shown by the regression line (slope 1.2), but 

the correlations were relatively poor (R2 = 0.67) and variable 

(ICC = 0.77).

Measurement of secondary parameters

Measurement of cortical perfusion was reasonably accurate 

with a bias of + 1.0 (− 0.9–3.1) % compared to ground truth in 

simulations and sensitivity to initial values was low with the 

75th percentile of CoV below 0.5% in both simulations and 

patient data. Average cortical plasma flow obtained in patients 

was 246 ml/100ml/min which is at the high end of literature 

values, similar to a reference measurement with H2O-labeled 

Fig. 3  Data generation to determine stability and accuracy of the 

fitting procedure. Left: simulated data: (1) for each available arte-

rial input function (aorta concentrations measured in patients) 4 sets 

of kidney tissue signal-time curves were generated, for a total of 96 

unique curves with unique random choices of parameters, (2) the fit-

ting procedure as depicted in Fig.  2 was applied 50 times to deter-

mine fitting stability and accuracy. Right: patient data: (1) for each 

patient, two datasets were available (left and right kidney), (2) the 

fitting procedure as depicted in Fig. 2 was applied 50 times to deter-

mine fitting stability

Fig. 4  Representative DCE images obtained in a patient with diabetes. The mask image depicts the cluster results: the cortical cluster is depicted 

in gray, the inner medulla in white and the partial voluming/outer medulla is depicted in red since it is not used in the data analysis
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PET (258 mL/100mL/min, assuming Hct of 0.45).  FT could 

be measured reasonably accurately with a bias of − 2.2 

(− 6.9–0.4) % and reasonably precise with the 75th percen-

tile of CoV below 9% in both simulations and patient data.

Estimates of the MTT of tubular compartments were 

relatively accurate (bias from 1.5% to 4.5%), but the MTTs 

of the vascular compartments were more biased (bias from 

10 to 36%). Sensitivity to initial values of the MTTs was 

reasonable for the tubular compartments (75th percentile of 

the CoV up to 12%). However, this sensitivity was markedly 

increased especially for  MTTVR, with the 75th percentile of 

the CoV equaling 110%.

Correlation to parameter estimates obtained using the 

2-compartment filtration model is shown in Fig. 9. Compared 

to the 2-compartment filtration model, the 7-compartment 

model produces higher cortical perfusion. The ICC for corti-

cal perfusion obtained with the two- and seven-compartment 

models was 0.87 and for  FT the ICC was 0.63.

Fig. 5  Model fits on real data. In general, capturing the first-pass 

peak remains challenging. In a, the first-pass peak is not very pro-

nounced but yet is not completely captured by the model fit; while 

in b the first-pass peak of the inner medulla and to a lesser extent the 

cortex is not captured by the model fit. AIF arterial input function

Table 2  Parameter values, fitting stability and accuracy (deviation from true value in simulations) as obtained by fitting of the 7-compartment 

model on both patient data and simulated data

*Derived from  Fcor and  Emed by  Emed(1-EFF)Fcor; † Derived from  Fcor by multiplication by  EFF

CoV coefficient of variation, Fmed medullary perfusion, Fcor cortical perfusion, TPA arterial plasma compartment, FT tubular flow, TPV venous 

plasma compartment, TVR vasa recta compartment, TPT proximal tubules compartment, TLH loop of Henle compartment, TCD collecting duct 

compartment, Emed medullary extraction fraction, EFF filtration fraction

Patient data Simulations

Fitted value Sensitivity to initial 

value (CoV)

Fitted value Deviation from true 

value

Sensitivity to initial 

value (CoV)

Groupwise mean (SD) Groupwise median % 

(IQR)

Groupwise mean (SD) Groupwise median % 

(IQR)

Groupwise median % 

(IQR)

Fmed* (mL/100 mL/

min)

37 (23) 0.0 (0.0–5.8) 70 (31) − 8.3 (− 21–7.0) 0.0 (0.0–25)

Fcor (mL/100 mL/min) 246 (73) 0.0 (0.0–0.4) 249 (52) 1.0 (-0.9–3.1) 0.0 (0.0–0.47)

FT† (mL/100 mL/min) 55 (21) 0.0 (0.0–4.4) 72 (23) − 2.2 (− 6.9–0.4) 0.0 (0.0–8.9)

MTTPA (s) 1.3 (1.8) 0.0 (0.0–0.0) 1.5 (0.9) − 16 (− 53–7.3) 0.0 (0.0–35)

MTTPV (s) 11 (3.9) 0.0 (0.0–4.5) 7.5 (2.3) 10 (-5.1–21) 0.0 (0.0–17)

MTTVR (s) 140 (113) 0.1 (0.0–24) 32 (41) 36 (− 2.9–221) 0.0 (0.0–110)

MTTPT (s) 52 (19) 0.0 (0.0–7.6) 43 (9.1) 4.5 (− 0.4–13) 0.0 (0.0–12)

MTTLH (s) 80 (70) 0.0 (0.0–11) 77 (14) − 2.4 (− 5.0–3.9) 0.0 (0.0–2.8)

MTTDT (s) 36 (53) 0.0 (0.0–4.0) 29 (7.1) − 1.8 (− 7.0–4.8) 0.0 (0.0–2.5)

MTTCD (s) 30 (21) 0.0 (0.0–7.6) 41 (9.9) 1.5 (− 8.2–8.6) 0.0 (0.0–3.4)
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Discussion

We present a pharmacokinetic model for contrast passage 

through the kidneys, designed for measurement of inner 

medullary perfusion. Compared to models published ear-

lier, the model follows renal physiology more closely and 

separates cortex and medulla [5–9]. As a consequence, ten 

free parameters were used, rendering the results vulnerable 

for overfitting. However, with the suggested iterative and 

regularized fitting approach, we show that relatively stable 

results can be obtained even for renal inner medullary perfu-

sion. Compared to the model proposed by Lee et al. [9], we 

enable direct measurement of cortical and inner medullary 

perfusion.

Parameter estimations

The main parameter of interest for this project is inner 

medullary perfusion. In simulations, a comparison 

between true inner medullary perfusion versus the per-

fusion obtained from the model fit, yielded a reasonable 

correlation (ICC 0.77) and a 1.2 slope of the linear fit. This 

indicates that the model is sensitive to changes in inner 

medullary perfusion, which is of interest for pre–post-

experiments, where subjects act as their own control. 

Values for inner medullary perfusion as measured by this 

model were higher compared to values reported earlier 

from ASL measurements [16]. As mentioned in the intro-

duction, the ASL tracer is largely decayed before it reaches 

the renal medulla and (inner) medullary perfusion might 

be underestimated. This might partly be overcome using 

PASL since labeling is performed closer to the kidney. 

In contrast, we report relatively low inner medullary 

perfusion in comparison to measurements obtained by 
15O-labeled water PET in obese subjects [17]. However, 

these values were derived from a model which only con-

siders the kidney as a whole and does not discriminate 

between cortex and medulla [18]. Our simulations indi-

cated an underestimation of around 8% for inner medullary 

flow, so a certain degree of underestimation is likely.

Cortical perfusion and  FT could be compared directly to 

the more conventional two-parameter model as proposed 

initially by [5]. As visible in Fig. 9, cortical perfusion as 

measured by the 7-compartment model was systematically 

higher compared to the value obtained from the 2-com-

partment model. However, the 2-compartment model was 

applied to the parenchymal signal enhancement curves, 

so this “cortical” perfusion and  FT actually represent per-

fusion and  FT of the entire kidney. Therefore, this likely 

reflects an actual difference rather than an overestimation. 

However, as illustrated by an ICC of 0.87 for cortical per-

fusion, consistency between models was excellent. For  FT 

measurement, the ICC of 0.63 indicated moderate consist-

ency though the systematic difference was much smaller.

Fig. 6  Patient data results. Sensitivity to initial values in terms 

of CoV of the seven-compartment model with the iterated fitting 

approach, based on 50 iterated fits of each of the 40 time–intensity 

curves; a CoV of inner medullary  (Fmed) and cortical  (Fcor) perfusion 

and  FT; b CoV of mean transit times for each compartment. Note the 

difference in scale of the y-axis. For all parameters, ideally the box-

plots would lie invisibly on the x-axis because this indicates perfect 

stability of the fits. However, of interest are the outliers (red crosses), 

which reflect unstable fits despite the iterative fitting approach. In 

contrast, the proximity of the boxes to the x-axis reflect the excellent 

fitting stability in most curves, resulting in a CoV close to zero when 

the iterated fitting procedure is repeated 50 times. Fmed inner medul-

lary perfusion, Fcor cortical perfusion, Tpa arterial plasma compart-

ment, Tpv venous plasma compartment, Tvr vasa recta compartment, 

Tpt proximal tubules compartment, Tlh loop of Henle compartment, 

Tcd collecting duct compartment
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Fig. 7  Simulation results. Sensitivity to initial values: a CoV and 

b bias of the flows and c CoV and d bias of the mean transit times 

measured using the seven-compartment model with the iterated fit-

ting approach, based on 50 iterated fits of each of the 40 ground truth 

curves. As in Fig.  6, the outliers (red crosses) are of main interest 

since they reflect unstable fits despite the iterative fitting approach. 

Fmed inner medullary perfusion, Fcor cortical perfusion, MTTpa arte-

rial plasma compartment, MTTpv venous plasma compartment, MTTvr 

vasa recta compartment, MTTpt proximal tubules compartment, MTTlh 

loop of Henle compartment, MTTcd collecting duct compartment

Table 3  Groupwise averages of parameter estimations for the seven 

compartment alongside estimates of the two-compartment model

Fcor cortical perfusion, TPA arterial plasma compartment transit time, 

FT tubular flow

Seven-compart-

ment model

Two-com-

partment 

model

Parameter Unit Mean SD Mean SD

Fcor mL/100 mL/min 246 73 177 52

TPA S 1.3 1.8 11.1 5.5

FT mL/100 mL/min 55 21 49 18

Fig. 8  Fitted inner medullary perfusion  Fmed versus true  Fmed for the 

iterated fitting approach. The slope of the regression line is 1.2 with 

an R2 of 0.67 (p <  10−10). Fmed inner medullary perfusion
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Model assumptions

The model presented here builds on the multicompartment 

modeling approach for cortex and medulla as presented by 

Lee et al. [9]. However, since that model used a single arte-

rial compartment not separated in arterioles and vasa recta, 

it is not able to provide estimates of medullary perfusion. 

Furthermore, the initial 7-compartment model was simpli-

fied to a 3-compartment model for actual implementations.

We assumed a linear relation between signal intensity and 

contrast agent concentration. Only a quarter dose of contrast 

agent was administered to avoid high concentrations dur-

ing first pass, and for low concentrations, this assumption 

is reasonable. Next, the compartmental approach assumes 

fast exchange of water in renal cortical and medullary tis-

sue and consequently a mono-exponential signal decay, 

which might not hold in renal tubules and vessels [19]. A 

fixed value for blood hematocrit was assumed in all vessels 

for conversion of blood concentrations to plasma and vice 

versa. Small vessel hematocrit however is assumed to be 

significantly lower [6]. Last, contrast agent absorption and 

secretion were neglected in derivation of this model since 

gadoterate meglumine is predominantly passively excreted 

via glomerular filtration [9].

Cortex and inner medulla segmentation

Segmentation of cortex and inner medulla was performed 

using k-means clustering as proposed by [20], based on the 

inherently different signal enhancement curves of cortex 

and medulla. The three clusters generated for each kidney 

were appointed to cortex, inner medulla and a region of par-

tial volume or potentially outer medulla. The latter cluster 

was excluded. However, if it is assumed to represent partial 

Fig. 9  a A comparison of cortical perfusion  Fcor as measured by the 

two-compartment model and the seven-compartment model. Corti-

cal perfusion is higher by around 40% by the 7-compartment model 

compared to the 2-compartment model. The linear fit corresponds to 

 Fcor,7cmp = 18 + 1.3Fcor,2cmp (p <  10−16) and  R2 equals 0.84; b the same 

for  FT.  FT is higher by around 10% by the 7-compartment model com-

pared to the 2-compartment approach. The linear fit corresponds to 

 FT,7cmp = 20 + 0.73  FT,2cmp (p <  10−5). R2 equals 0.39. The compari-

son is carried out on patient data; c Bland–Altman plot of the dif-

ference between 2- and 7-compartment models. The overestimation 

of cortical perfusion by the 7-compartment model compared to the 

2-compartment model seems to increase with higher perfusion; d 

Bland–Altman plot of  FT estimated by the 2- and 7-compartment 

models. Fcor,7cmp cortical perfusion obtained from 7-compartment 

model, Fcor,2cmp cortical perfusion obtained from 2-compartment 

model, FT,7cmp glomerular filtration rate obtained from 7-compart-

ment model, FT,2cmp tubular flow obtained from 2-compartment model
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volume, which seems reasonable with a reconstructed voxel 

size of 1 × 1x7.5mm3, it can be fitted along with the cortical 

and medullary curves by adding a single extra parameter 

defining the fractional medullary contribution to the curve.

Model fit stability and accuracy

The model fit in general was reasonably well, but the model 

fit systematically underestimated the height of the first-pass 

peak. In line with other models, we used an exponential vas-

cular input response function which might not capture the 

complexity of renal arterial vasculature. The complexity of 

the model (ten free parameters) creates a risk of overfitting. 

Note however that these 10 free parameters are obtained 

from two distinct curves, the cortical and inner medullary 

curve. For some, but not all signal enhancement curves, the 

model fit ended up in local minima. This was partly tackled 

by the iterative fitting approach with varying initial values, 

which is more likely to identify the global optimum. Fur-

thermore, we used a regularized fitting approach [15]. This 

resulted in a median coefficient of variation below 10% for 

all parameters of interest, but there were outliers up to a CoV 

of around 80% for  Fmed. Note however that this reflects the 

relative difference of a very small quantity, which in absolute 

numbers is only around 10–30 ml/min/100ml.

Measurements of the mean transit times were inaccurate, 

and potentially this reflects some degree of overparameteri-

zation in the modeling. Potentially the bolus dispersion in 

some spaces can be safely ignored, which might reduce the 

number of free parameters and can potentially improve sta-

bility of the fit. Test runs showed that fixing of  MTTLH might 

improve stability without affecting of  Fcor,  Fmed,  FT estima-

tion too much.

Conclusion

In conclusion, we present a multicompartment model which 

reflects renal physiology and enables separate measurement 

of cortical and medullary perfusion, along with tubular flow 

(GFR per unit of kidney volume). The model was applied 

to MR renography data obtained in diabetic subjects. Since 

in vivo measurement of human medullary perfusion up to 

now is impossible, no validation to a reference standard 

could be performed. Further studies should show whether 

the model is able to detect intervention induced changes in 

medullary perfusion.
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