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Abstract

Regression is a fundamental prediction task common in data-centric engineering applications that involves learning

mappings between continuous variables. In many engineering applications (e.g., structural health monitoring),

feature-label pairs used to learn such mappings are of limited availability, which hinders the effectiveness of

traditional supervised machine learning approaches. This paper proposes a methodology for overcoming the issue

of data scarcity by combining active learning (AL) for regression with hierarchical Bayesian modeling. AL is an

approach for preferentially acquiring feature-label pairs in a resource-efficient manner. In particular, the current work

adopts a risk-informed approach that leverages contextual information associated with regression-based engineering

decision-making tasks (e.g., inspection and maintenance). Hierarchical Bayesian modeling allow multiple related

regression tasks to be learned over a population, capturing local and global effects. The information sharing facilitated

by this modeling approach means that information acquired for one engineering system can improve predictive

performance across the population. The proposed methodology is demonstrated using an experimental case study.

Specifically, multiple regressions are performed over a population ofmachining tools, where the quantity of interest is

the surface roughness of the workpieces. An inspection and maintenance decision process is defined using these

regression tasks, which is in turn used to construct the active-learning algorithm. The novel methodology proposed is

benchmarked against an uninformed approach to label acquisition and independent modeling of the regression tasks.

It is shown that the proposed approach has superior performance in terms of expected cost—maintaining predictive

performance while reducing the number of inspections required.

Impact Statement

This paper addresses online learning of regression models in a cost-effective manner. The problem is addressed

via two avenues: active learning, that is, choosing information critical to decisions, and information sharing,

using a hierarchical Bayesian model. This paper presents a decision-theoretic approach that allows the monetary

benefits to be quantified exactly. Regression is a prominent and important tool in many decision-support

technologies such as health monitoring and digital twins. Improving performance when learning regressions

in an online manner could lead to reduced costs and improved safety in many science and engineering

applications.
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1. Introduction

Structural health monitoring (SHM) offers proactive solutions to ensure the safety and reliability of

various items of infrastructure. SHM systems consist of data acquisition and processing systems to enable

the detection of damage in monitored structures. The aim of SHM is to help inform decision-making,

particularly for the operation and maintenance of high-value and safety-critical infrastructure. Improving

decision-making in SHM has economic benefits, by reduction of unnecessary inspections and interven-

tions, and safety benefits, by reducing the likelihood of failure events via informed interventions.

Statistical pattern recognition (SPR) is widely recognized as the primary tool for data-driven predic-

tions in SHM systems Farrar andWorden (2012). Regression models are a fundamental component of the

SPR approach to decision-support technologies, enabling the prediction of continuous outcomes based on

acquired data. For example, within the context of SHM, by associating the target variables of a regression

model with salient health-states, inferences can be made regarding the condition of a structure of interest

—although assumed as discrete in many SHM problems, damage progression is usually, in reality, a

continuous variable.

A significant challenge in SHM is the scarcity of data. All data-driven models can suffer from bias and

high uncertainty without sufficient training data, leading to unreliable predictions. Acquiring extensive

labeled datasets capturing a structure’s behavior across various health conditions is prohibitively costly

and often unattainable for essential infrastructures. Inadequate datamotivate sharing information between

similar assets Bull et al. (2023). From this, a new approach has emerged, population-based structural

health monitoring (PBSHM; Bull et al., 2021; Gosliga et al., 2021; Gardner et al., 2021; Tsialiamanis

et al., 2021).

1.1. PBSHM

PBSHM considers an entire population of structures. This approach assumes that structures that share

common environmental conditions, load patterns, and/or aging effects and thus will share statistical

commonalities. Considering structures as a population allows SHM users to share data between them. It

allows a structure with rich historical data to lend its statistical strength to a data-poor structure. By

capturing data from multiple structures, PBSHM aims to provide a more accurate and holistic health

assessment and enables the identification of global patterns, trends, and anomalies that would be difficult

to observe at the individual level. This strategy can not only improve predictions for structures with very

little data but also makes the most out of comprehensive datasets that can be so costly to procure. PBSHM

has a suite of tools that can be used to share information across a population, namely transfer learning and

domain adaptation. For a thorough introduction to the population-based approach to SHM, see Bull et al.

(2021); Gosliga et al. (2021); Gardner et al. (2021); Tsialiamanis et al. (2021).

1.2. Transfer learning

In PBSHM, one of the most widely explored areas of transfer learning is known as domain adaptation in

which feature data are mapped from a label-rich source domain to a label-scarce target domain, with the

aim of reducing the distance between the source and target domain in a shared latent space such that label

information can be shared. Fink et al. (2020) discuss domain adaptation’s place in fleet prognostics and

health management. Gardner et al. (2020) utilized domain adaptation to transfer inferences across

different structures, considering a population of laboratory-scale three-story buildings. Zhang et al.

(2017) used domain adaptation for fault diagnosis in the context of rotating machinery and between

different machines (Li et al., 2020). Xu and Noh (2021) showed that transfer learning can be used to

diagnose story-wise damage conditions of buildings effected by earthquakes.

1.3. Active learning (AL)

AL presents another avenue to address the limitations imposed by data scarcity in SHM. Conventional

supervised machine-learning methods are infeasible for many SHM applications because of the costs
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associated with descriptive labels. This has led to the development of unsupervised and semi-supervised

machine-learning techniques. AL is a set of techniques that selectively queries labels for otherwise

unlabeled data that are most informative given the current model; themodel can then be updated using this

informed subset of labeled data. AL can be applied offline to a large pool of collected data (Wang et al.,

2017) or online, whereby the dataset is continuously updated as new observations are collected (Zhu et al.,

2007). The online setting is particularly significant in SHM; generally, data from a monitored structure

will become available gradually throughout the life of the structure. In many cases, inspecting monitored

systems can be extremely costly, so if a system can determine when only the most critical or informative

observations need to be investigated, this could lead to significant reductions in maintenance costs (Bull

et al., 2019b).

AL has seen growing interest, particularly within SHM; Bull et al. (2019b) provide an online AL

framework for the classification problem and show the effects of the framework via a case study on

acoustic emissions data. Hughes et al. (2022a) present a risk-based formulation of AL inwhich queries are

guided by the expected value of information and outline amethod tominimize the effects of sampling bias

in AL (Hughes et al., 2022b).

Historically, a large portion of the literature has focused on AL in the context of classification—

this is particularly true in SHM applications (Bull et al., 2018; Hughes et al. 2022a). Nonetheless, for

many practical engineering scenarios, such as continuous degradation (Shahraki et al., 2017) and

crack growth (He et al., 2023), regression-based models are more suitable, motivating research into

AL for regression. For applications outside of SHM, it has been shown that many of the AL

procedures suitable for classification purposes are also suitable for regression (Burbidge et al.,

2007; Cai et al., 2013). One of the first statistical analyses of AL regression (ALR) was provided

by Cohn et al. (1996), where a locally weighted regression model for studying the dynamics of a robot

arm is showcased.More recently,Wu et al. (2019) proposed a “greedy sampling”method for ALR and

applied it to several machine learning benchmark datasets and also considered a case study focused on

estimating driver drowsiness. Specifically, a greedy sampling method proposed by Yu and Kim

(2010) is expanded to be “greedy” in the output space and is shown to be a robust and effective method

for AL. In a similar vein, Cai et al. (2013) proposed an expected model change maximization

framework for regression, and the learner chooses the unlabeled instance which causes the maximum

change in the current model parameter. Freund et al. (1997) showed that query-by-committee is not

only applicable to binary labels but also to discrete labels. Within the field of engineering, AL for

regression has been studied in several applications. In Dodt et al. (2022), an AL scheme based on the

predictive uncertainty from a Gaussian process regression is used to continuously calibrate a

surrogate model used for monitoring a spot welding process. In Song et al. (2022), AL is used in

the context of reliability analysis to reduce the number of computationally expensive simulations

required for estimation of variance-based sensitivity indices—again, the AL procedure is applied to a

Gaussian process regression. Di Fiore et al. (2024) provide an overview of AL approaches for

engineering applications and highlight the relationship between Bayesian optimization and AL. In

the paper, they summarize multiple approaches to AL for regressions and apply them to several

simulated benchmarks problems. For additional comprehensive surveys of AL research, including

applications to regression, the reader is directed to Kumar and Gupta (2020); Fu et al. (2013);

Aggarwal et al. (2014).

This article aims to combine the effects of the population-based approach with the efficiencies of AL to

improve decision-making, reduce costs andmore effectively allocate resources for SHM. This model will

be applied to a population of machining tools.

1.3.1. Novel contribution

We propose a novel approach to risk-based AL for regression and combine it with information sharing via

a hierarchical Bayesian model. The hierarchical model informs a novel risk-based query measure that

incorporates costs associated with an engineering decision process, where the adaptive inspection
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schedule monitors a population of machine tools rather than a single system. Therefore, our contributions

offer three practical advantages:

1. The cost/risk/utility function can be updated in an online manner, which allows for real-time

decision support for industrial applications.

2. A risk-based approachmeans that monitoring costs are built directly into the decision process. This

approach inherently solves budget allocation problems, a serious benefit for real-world applica-

tions.

3. This approach allows monitoring across a population, where inspecting one member in the

population improves the predictions and monitoring capability for all members in the population.

1.3.2. Paper outline

Section 2 is organized into three subsections, the first shows a general framework for information sharing

via hierarchical modeling, the second describes decision theory and computation of expected utility and

risk, and the third subsection describes risk-based AL for decision analysis. Section 3 introduces a case

study and applies the frameworks for hierarchical modeling and decision theory from Section 2.

2. Background information

The first part of this section outlines a framework for sharing information within homogeneous popu-

lations of structures; this forms the basis of the probabilistic regression model used in the current case

study. The second part includes an introduction to decision theory which forms the basis of the AL

procedure.

2.1. Hierarchical Bayesian modeling

Section 2.1 follows an explanation provided by the authors precious work (Bull et al., 2023). Consider

data recorded from a population of K engineering structures. The population can be denoted,

xk ,ykf gKk¼1 ¼ xik ,yikf gNk

i¼1

� �K

k¼1
(1)

where yk is a target response vector for inputs xk and xik ,yikf g are the ith pair of observations in group k.

There areNk observations in each group and thus Σ
K
k¼1Nk observations in total. The aim is to learn a set of

K predictors related to a regression or classification task. This paper focuses on regression, where the tasks

satisfy,

yik ¼ f k xikð Þþ ϵkf gKk¼1 (2)

and the output yik is determined by evaluating one of K latent functions with separate additive noise εk.

The mapping f k is assumed to be correlated between members in the population. The models should be

improved by learning the parameters in a joint inference over the whole population. In machine learning

this is referred to as multitask learning; in statistics, such data are usually modeled with hierarchical

models (Kreft and De Leeuw, 1998; Gelman and Hill, 2006).

In practice, some members in a population may possess extensive historical data, while members that

may have been more recently deployed will have very limited data for training. Learning separate

independent models for each group might lead to unreliable results for data-poor members, while a

single regression model of all the data (complete pooling) would result in poor generalization. Hierarch-

ical Bayesian models can learn separate models for each member, while encouraging the parameters of

these models to be correlated (Murphy, 2012). The established theory is summarized here.

Consider K linear regression models,

yk ¼Φkαkþ ϵkf gKk¼1 (3)
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where Φk ¼ 1,xk½ � is the Nk × 2 design matrix; αk is the 2× 1 vector of weights; and the noise vector is

Nk × 1 and normally distributed ϵk �N 0,σ2k1ð Þ. 1 is a vector of ones, I is the identitymatrix, andN m,sð Þ is
the normal distribution with meanm and (co)variance s. The likelihood of the target response vector is then

yk∣xk �N Φkαk,σk
2I

� �

(4)

∴yk∣xk �N α1
kð Þþα2

kð Þxik ,σk
2

� �

(5)

following the Bayesian methodology, one can set a common hierarchy of prior distributions over the

weights (slope and intercept) for each member in the population, typically normal distributions are used

for the weights of each group and inverse-Gamma for the variance parameter.

αKf gKk¼1 �
i:i:d:

N μα,diag σ2α
� �� �

(6)

μα �N mα,diag sαf gð Þ (7)

σα �
i:i:d:

IG a,bð Þ (8)

In words, Equation (6) assumes that the weights αKf gKk¼1 are normally distributed N �ð Þ with mean μα
and covariance diag σ2α

� �

. Equation (7) states that prior expectation of the weights αk is normally

distributed with mean μα and covariance diag sαf g. Equation (8) states that the prior deviation of the slope
and intercept is inverse-Gamma distributed with shape a and scale b. A general representation of

hierarchical regression can be seen in the direct graphical model in Figure 1.

The parent nodes μα,σ
2
α

� �

are inferred from the data, so Equations (6)–(8) encode prior belief of the

dependence between latent variables. If these parent nodes were a fixed value, rather than inferred, each

model would be independent, preventing the flow of information between domains, this structure allows

data-sparse domains to borrow statistical strength from those that are data rich (Murphy, 2012).

Huang and Beck (2015) andHuang et al. (2019) present an early example of using hierarchical Bayesian

models to represent engineering structures for SHM. Bull et al. (2023) used hierarchical models to improve

the survival analysis of a truck fleet and power prediction in a wind farm. Di Francesco et al. (2021) used

hierarchical models to account for incomplete and imperfect data in an inspection-planning setting.

2.2. Decision theory

Hierarchical models allow one to quantify beliefs about the states of interest and do reasoning under

uncertainty. In engineering these predictions are used to take actions in the real world. Decision theory

gives a framework to use the uncertainty quantification provided by a Bayesian approach tomake optimal

choices in many engineering problem settings.

Figure 1. A graphical model representing the linear mixed model with partial pooling.
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The idea of a “rational” decision-maker is defined as a decision-maker that acts to maximize the

expected utility of their actions; this is expressed via the von Neumann–Morgenstern theorem

(Morgenstern et al., 1964), which states that, for two decidable actions a and b:

a≽ b⇔ EU að Þ≥EU bð Þ (9)

where ≽ denotes a weak preference, indicating that a decision-maker favors a at least as much b; and

EU �ð Þ denotes the expected utility associated with doing an action. In Morgenstern et al. (1964), the

expected utility is derived. Consider a stochastic event X, which has mutually exclusive outcomes of

which x∈X are conditionally dependent on a decisionD between actions a and b. The expected utility of

action a is computed as follows:

EU að Þ¼
X

x∈X

P X¼ xjD¼ að Þ �U X¼ x,D¼ að Þ (10)

P XjD¼ að Þ is the probability of the outcome of X given that action a is executed. U denotes a utility

function that maps U :X×A!ℝ. Conveniently, if the utility of D is independent of the variable, X

U X,Dð Þ can be expressed as the sum of two utility functions,U Xð Þ andU Dð ÞThat separately describe the
utilities associated with outcomes and actions. Equation (10) can then be written as,

EU að Þ¼
X

x∈X

P X¼ xjD¼ að Þ �U X¼ xð Þ

" #

þU D¼ að Þ (11)

For a single decisionD over a finite set of actionsA, an optimal action a∗ can be defined such that the

maximum expected utility (MEU) is achieved, where,

MEU Dð Þ¼ max
a∈A

EU að Þ (12)

and,

a∗ ¼ argmax
a∈A

EU að Þ (13)

From Equations (11) and (12), one can see an equivalence between expected utility and risk, which is

defined as the product of a probability and a cost. One limitation of utility/risk-based decision theory is

that it can be difficult to obtain the probability distributions in Equations (10) and (11). However, via the

Bayesian framework outlined in Section 2.1, one can acquire posterior distributions, based on one’s

beliefs about an action, that can be used as the probabilities required for Equations (11) and (12).

Additionally, the costs or utilities required for these equations can be elicited from asset owners, allowing

the expected utility of an action to be estimated.

2.3. Active Learning

To implement a Bayesian hierarchical model, such as the one proposed in Section 2.1, labeled data are

required. As discussed in Section 1, for many engineering applications, and particularly for SHM,

collecting labels for data is very expensive. It requires sending a domain expert to inspect the physical

asset and often requires the operation of the asset to be temporarily halted. These costs motivate

reducing the number of inspections and only inspecting measurements that would most improve the

predictive model. AL is a set of tools that do this. Additionally, an offline active learner would not be

suitable for SHM. SHM systems are required to analyze data as it arrives throughout the life of the

monitored system and decisions about interventions can be required immediately upon arrival of this

data. One of themajor challenges of an online active learner in SHM is that once the decision is made not

to query a label, access is lost to this information. It is not possible to retrieve the label once the

opportunity has passed.
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Consider data, X¼ xif gNi¼1, which have hidden labels, Y ¼ yif gNi¼1, which can be acquired by

paying the costs associated with inspection. The process of choosing and labeling these data points is

referred to as querying. An active learner aims to learn a mapping of the observations, X, to the labels, Y ,

while keeping queries to a minimum. A general heuristic for AL is presented by Bull et al. (2019a) and

adapted to regression in Figure 2.

2.3.1. Risk-based Active Learning

The measure that an active learner uses to decide which unlabeled data to query is important. Information

theoretic approaches use information measures such as entropy and uncertainty to guide querying, these

types of approaches are common. Hughes et al. (2022a) suggest a risk-based active learner for SHM. This

approach uses the expected utility of an action, or the “value of information,” to guide querying. The costs

associated with interventions and monitoring are built-in directly to the decision-making process.

Decisions on inspections and maintenance are made to maximize the benefit of the expected outcome.

While risk-based AL has been explored in the classification setting (Hughes et al., 2022b), the current

paper proposes an approach to risk-based AL for the regression problem in which queries are guided

according to the expected utility.

3. Case study—A population of machining tools

In this section, the framework outlined in Section 2 will be applied to a case study. A population of

machining tools will be modeled by a hierarchical Bayesian model and a risk-based decision process will

be used to actively inspect the tools. The decision-theoretic approach to inspection planning will be

compared to a periodic inspection plan.

3.1 The dataset

A dataset described in the authors previous work (Wickramarachchi, 2019) measures deterioration over

the life of machining tools during a turning process. The experimental set-up is shown in Figure 3. The

workpiece is rotated around the dashed A-line and the tool makes four passes along the workpiece. Each

pass starts at point S and ends at point E. After four passes, the tool is inspected, and measurements are

taken of the workpiece and tool. This process continued until tool failure. The investigation was repeated

for seven nominally identical tools, which form a population.

The deterioration is measured indirectly from the roughness of the workpiece. As the machining tool

deteriorates, the surface quality of the workpiece will deteriorate and the roughness will increase. The

measurements from this experiment can be seen in Figure 4. It can be seen that, in general, surface

roughness increases with the distance a given tool has cut along the workpiece, this distance is termed

sliding distance. Several tools show a sharp decrease in surface roughness at the second measurement

point—this reading is believed to occur due to an initial sharpening of the tool early in the cutting process.

Because of the nature of the experiment, the measurements of surface roughness are very noisy, which

can lead to robustness issues when modeling. Combined with the high noise, the shallow gradient of the

deterioration makes it difficult to learn the parameters of the regression. This motivates the use of a

Bayesian hierarchical model adapted from Section 2.1.

Figure 2. An AL heuristic. Source: Bull et al. (2019a).
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3.2. The hierarchical model

Because of the natural degradation of tools during the machining process, and its effect on surface finish,

tools must be replaced regularly. While each tool may be produced to the same specification and made

from the same materials, there will be variations in the manufacturing process that manifest as variations

between the physical properties of the tools and differences in behavior between the tools; this can be an

issue for standard modeling techniques. However, this variation lends itself well to a hierarchical

A A

S

E

Tool holder

Tool insert

TailstockSpindle

WorkpieceChuck
x

Z

Figure 3. Schematic showing the experimental set-up used for data acquisition. Source: Wickramar-

achchi (2019).

Figure 4. Experimental surface roughness measurements.
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Bayesian model because these types of model account for variations within a population while taking

advantage of the statistical similarities between them. An additional benefit of hierarchical models is their

suitability to the online setting and sparse datasets. This is particularly useful for tool conditionmonitoring

where researchers may need to make predictions as soon as the machining process has begun and with

only a few data points to learn a model. Additionally, the usual benefits of Bayesian modeling apply

(uncertainty quantification, prior information, etc.). The hierarchical framework set out in Section 2.1 is

adapted below to the case study. Here, there is a population of K¼ 7 similar tools, with a target response

vector yk, the roughness measurements for each tool. The input vectors xk are the sliding distance

measurements for each tool (how far the tool has cut across the work piece). xik ,yikf g are the ith pair of

observations in tool k. There are Nk observations in each member and thus ΣK
k¼1Nk observations in total.

The aim is to learn a set ofK predictors related to the regression task. The type of hierarchical model used

for this analysis is a linear mixed model Kreft and De Leeuw, 1998, so for each member in the population,

a gradientmk and intercept ck are learnt. A graphical representation of this model can be seen in Figure 5.

The likelihood of this model is

yikf gKk¼1 �Cauchy ymean,γkð Þ (14)

where the location parameter is the equation of a straight line,

ymean ¼mk � xik þ ck (15)

The Cauchy distribution was chosen as the likelihood because of the noisy nature of the data. Cauchy

distributions are particularly suited to these types of measurements because of the larger probability

density at the extremes, compared to normal distributions another more typical choice. This makes the

model less susceptible to outliers and extreme values. Following the Bayesian methodology, one can set

prior distributions over the slope for the groups, which encode our prior knowledge of the parameter

values.

mkf gKk¼1 �Normal μm,σmð Þ (16)

Figure 5. A graphical model representing the linear mixed model with partial pooling.
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μm �Gamma k,θð Þ (17)

σm �HalfCauchy sσmð Þ (18)

where the slopes are normally distributed, with mean μm and standard deviation σm. Equation (17)

shows the prior expectation of the slopes is Gamma distributed with shape k¼ 1 and scale θ¼ 1. The

Gamma distribution was a natural choice because we want to encode that the gradients are always

positive over the life of a tool. Equation (18) shows that the prior deviation of the slope is HalfCauchy

distributed with location parameter equal to zero and scale parameter sσm ¼ 25. As recommended by

Gelman (2006), the variance priors for this hierarchical model are set to be weakly informative. The

priors for the intercepts are

ckf gKk¼1 �Normal μc,σcð Þ (19)

μc �Normal μc,sμc
� �

(20)

σc �HalfCauchy sσcð Þ (21)

where the intercepts are normally distributed, with mean μc and standard deviation σc. Equation (20)

shows the prior expectation of the intercepts is also normally distributed with mean μc ¼ 0 and standard

deviation sμc ¼ 1. Equation (21) shows that the prior deviation of the intercept is HalfCauchy distributed

with location parameter equal to zero and scale parameter sσc ¼ 25.

The systematic application of graph-theoretic algorithms has led to a number of probabilistic

programming languages. Here, models are implemented in NumPyro (Phan et al., 2019. The parameters

are inferred using MCMC, via the no U-turn implementation of Hamiltonian Monte Carlo (Hoffman and

Gelman, 2014). Throughout, the burn-in period is 1000 iterations and 2000 iterations are used for

inference.

To motivate a population-based approach, the hierarchical model will be compared to a model with

complete pooling and an independent model with no pooling at all. In the complete pooling approach, a

single regression for all the data is learnt. For the independent model, a regression is learnt for each

member in the population, but it is assumed there is no correlation between them.Hierarchical modeling is

somewhere in between, where a separate regression can be learnt for eachmember, while encouraging the

parameters of these models to be correlated Murphy (2012).

To simulate tool replacement, some measurements from Figure 4 will be hidden from the models, this

emulates new tools with scarce data. In the following figures, the green line shows the samples from the

posterior distribution over the (parameterized) latent linear functions, and the gray area shows the area in

which 90% of the posterior samples fall.

Figure 6 shows that with complete-pooling, the model struggles with poor generalization and the

physical variations between tools mean that a single regression performs poorly on many tools. Even

with access to a tools full history, such as Tool 2 and Tool 3, a complete poolingmethodmay not perform

well.

The model with no pooling can be seen in Figure 7. For tools that have enough historic data, the

mean and variance predictions are reasonable. However, this model performs poorly with scarce data.

For these tools, the model struggles to learn the parameters of the regression. The variance of

these tools are over-estimated and makes poor predictions about the hidden data, when there is not

enough data the model relies on vague priors. Over predicting the variance of the surface roughness

could be problematic for asset owners if they use this model to inform decisions. For example,

unnecessary inspections may be triggered or tools may be replaced prematurely, increasing the costs

of production.

Finally, the hierarchical model can be seen in Figure 8. For tools with plentiful data, this model behaves

comparably to the no-pooling model. However, for data-scarce tools, there is a large reduction in the

estimated variation and improvements in the predicted mean. This model is able to draw on the statistical
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Figure 6. Predictions using a complete pooling method.

Figure 7. Predictions without any pooling method.
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strength of other tools to help predictions. Themodel remembers the data from other tools, captured by the

prior shared between models of machining operations, and has learnt how similar tools behave.

It can be seen in Table 1 that the information sharing provided by a partial-pooling model can improve

regression accuracy, shown through a reduction in the total mean squared error as compared to the

complete-pooling and no-pooling models. It should be noted that while partial-pooling approaches can

achieve improved performance across a population, for individual members in the population, the partial-

pooling will occasionally score worse in terms of MSE. For example, in “Tool 2,” the surface roughness

measurements are very elevated compared to any other member in the population and returns to the

population mean towards the end of tool life. The no-pooling approach over fits to these data, while the

partial pooling approach does a better job at modeling the underlying process, masked by noisy

measurement. Importantly, the partial pooling method makes good predictions near the end of tool life,

the portion of tool life that is most critical for making decisions about replacing the tool.

These results are in accordancewith the results of the authors previouswork (Bull et al., 2023; Dardeno

et al., 2024) and motivate sharing information across a population to improve predictions.

Figure 8. Predictions using a partial pooling method.

Table 1. Mean squared error of partial pooling, complete pooling, and no pooling methods

Pooling type

Mean squared error

Tool 1 Tool 2 Tool 3 Tool 4 Tool 5 Tool 6 Tool 7 Total

No pooling 0.03539 0.00848 0.02781 0.00541 0.00930 0.08680 0.06081 0.23401

Complete pooling 0.03844 0.01492 0.03578 0.00716 0.00506 0.06062 0.02525 0.18724

Partial pooling 0.03928 0.00629 0.03167 0.00523 0.00575 0.06099 0.02677 0.17599
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3.3. Decision process and Active Learning

Tool health deterioration can lead to tool failure. When monitoring tools, such as the ones that produced

the data in this case study, a manufacturer may have an interest in avoiding tool failure because of the

safety implications and costs associated with damage to the workpiece. Typically, inspections are used to

observe the health state of the tool. However, performing an inspection has its own costs. Tool inspections

halt production and labor and expertise are required to conduct an inspection. Optimizing this decision

process, whether or not to inspect an asset, can improve economic efficiency. Often there is a limited

budget for inspections and ideally inspections should only be conducted when necessary. Employing

decision-theoretic approach as shown in Section 2.2 to guide decision-making for inspections provides a

risk-based AL approach to more efficiently allocate inspection budgets.

A common quality control criterion for the machining of engineering components is maintaining a

surface roughness below some threshold level Scrit, beyond which the component is no longer fit for

purpose. A high-quality surface finish can significantly improve the fatigue strength, corrosion resistance,

and creep life of machined parts (Sharkawy et al., 2014). If the surface finish is damaged via inadequate

modeling or control of the machining process, the part may need to be discarded or re-machined; this has

an associated utility, Cworkpiece. Additionally, during the machining process, an inspection can be

conducted to gain access to a noisy observation of the surface roughness, with a utility Cinspection.

Throughout the machining process, the tool can be replaced, with a cost Ctool. Here, there is a decision,

inaction, to allow the tool to continue machining with a risk to damage the workpiece, and action, to

inspect/replace the tool.

The EU, as seen in Equation (10), needs to be determined for each of the possible actions, and the action

with maximum expected utility should be chosen in accordance with Equation (13). One limitation of the

dataset used in this case study is that inspections and tool replacements can only be triggered at specific

discrete time steps because the data were collected at periodic intervals; a dataset with less restrictive

inspections points is under production and will be part of future work.

The expected utility of three actions need to be considered to evaluate this decision process. Inaction, to

do nothing and allow the tool to continue machining, to inspect the tool and/or to replace the tool. If an

inspection occurs, there is another opportunity to decide to replace the tool based on the new information

acquired from the inspection.

Again, Equation (10) can be used to calculate the expected utility of a decision. To compute the utility

associated with inaction, not inspecting the tool at time step t, one can use Equation (22). The two

outcomes of inaction are the surface roughness reaching or exceeding Scrit before the next opportunity to

intervene, time step tþ1, or the surface roughness not reaching or exceeding Scrit. The utility of not

exceeding Scrit is assigned a value of 0, so the second term in Equation (22) equals 0. The probability

Ptþ1 S> Scritð Þ can be estimated from the model; here, it is the proportion of samples from the Hamiltonian

Monte Carlo (HMC) simulation that exceed Scrit before the next opportunity to inspect.

EU D¼ donothingð Þ¼Ptþ1 S> Scritð Þ×U S> Scritð ÞþP S< Scritð Þ×U S< Scritð Þ (22)

When computing the utility of inspection at a given time step, again, there are two outcomes based on

whether the surface roughness will exceed Scrit. Again, probabilities of the outcomes can be estimated

from the HMC samples. The equation to compute the EU of inspection can be seen in Equation (23). It

includes the probability that the tool needs to be replaced, which is the probability that S is already greater

than Scrit at that time step, as well as the probability that S is not greater than Scrit butwill be by the next time

step. For the current linear model, this is equivalent to Ptþ1 S > Scritð Þ and could be evaluated a such from
the HMC samples. Again, these probabilities are estimated from HMC samples.

EU D¼ inspectionð Þ¼Ctool × Ptþ1 S> Scritð Þð ÞþCinspection (23)

The criteria required to trigger the replacement of a tool can be seen in Equation (24). It is the

probability at which the risk associated with damaging the work piece (the probability of damage

occurring multiplied by the utility associated with it) becomes greater than the cost of replacing the tool.
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P T f < T
� �

×Cworkpiece ≥Ctool

P T f < T
� �

≥
Ctool

Cworkpiece

P T f < T
� �

≥ α

(24)

Equation (24) shows that tools should be replaced at the earliest time, T, that P T f < T
� �

is equal to

or greater than the ratio, α. P T f < T
� �

is the assessment of time-to-failure after one has updated beliefs

with the results of any inspections and where failure is S exceeding Scrit. Intuitively, as Ctool increases,

the probability requirements are increased and so replacements are more difficult to trigger, the

system prioritizes extending tool life. As U S> Scritð Þ increases, the probability requirements are

reduced and so replacements are more easily triggered and the system prioritizes the surface quality of

the workpiece.

A complete decision-theoretic approach would consider the expected value of information associated

with improving the model based on the new data from an inspection. For the current work, it is assumed

that inspecting the toolwould provide zero improvement to the predictions of themodel as the full value of

information calculation is very computationally expensive.

At every potential inspection point, the hierarchical model makes predictions about the surface

roughness. These predictions are based on the currently available data and are used to inform the decision

analysis detailed above. A diagram showing this process is shown in Figure 9.

Figure 9. The decision theoretic active-learning heuristic.
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The online decision-theoretic AL approach for inspection planning presented in this work is compared

to a conventional inspection plan featuring periodic inspections. With both approaches, the model has

access to the full measurement history of four of the tools and very limited data for the rest of the tools (the

authors found that, in this case, without access to at least four full tool datasets, the hierarchical model does

not have enough data to draw on for accurate predictions).

In general, the parameters of the decision process, Scrit ,Cinspection,Ctool,U S> Scritð Þ can be elicited from
expert familiar with the inspection process. Here, the values are set by hand to reflect a situation common

in industry, where the cost of damaging the workpiece is much greater than the cost of replacing the tool

(It is worth noting that optimal actions are invariant under affine transformations of the utility function.):

U S> Scritð Þ¼ 1

Ctool ¼ 0:25

Cinspection ¼ 0:05

Scrit ¼ 0:9μm

(25)

To assess the performance of these monitoring systems, each will be compared to a monitoring

system with access to the full measurement history of every tool. This monitoring system will be seen

as the gold standard as it represents the limiting case of using all possible information within the

dataset and thus the point at which it decides to replace the tool can be considered to be the optimal

point of replacement. If the other monitoring systems choose to replace the tool later than the optimal

point, it is assumed the roughness has exceeded Scrit (despite what the noisy measurements might

suggest) and the workpiece will be considered damaged with a cost Cworkpiece. If the monitoring

systems choose to replace the tool earlier than the optimal replacement time, then some portion of the

tool life is wasted; the cost of which can be calculated using Equation (26). The optimal monitoring

system can choose to replace the tool at any point throughout the life of the tools, that is, it can observe

several measurements that are greater than Scrit and then realize it should have replaced the tool before

these measurements. The other monitoring systems are performing in an online manner, so do not

have this luxury. The combined costs of both inspections and suboptimal replacements, will be

compared.

Cearly replacement ¼
treplacement

toptimal replacement

×Ctool (26)

As mentioned previously, the first four tools are to be seen as historic data that the manufacturer has

collected fromprevious tools. The hierarchical model can leverage this data to inform the population-level

distributions. The active-learning procedure tool replacements are not calculated for these tools, only

Tools 5–7. During the original experiment the measurements were taken at a time step that relates to

6.02 km sliding distanceWickramarachchi, 2019. Figure 10 shows the optimal replacement for Tools 5–7

based on the “gold standard” model.

4. Results

In this section, the decision theoretic active learner described in Section 3 and a periodic approach to

inspection planning will be compared. The point at which these approaches suggest to replace Tools 5–7,

based on the criteria showcased in Equation (24), will be compared to the “gold standard” model, for

which, the suggested tool replacements are shown in Figure 10.

Figure 11 shows the suggested tool replacements with periodic inspections. It can be seen that,

compared to the optimal replacements in Figure 10, every tool is replaced one time step too early, with

a total of 10 inspections. This result is to be expected because in forecasting the surface roughness

predictions with reduced data (as compared to the “gold standard” model which has access to all the

information), the uncertainty is inflated thus increasing the estimated risk associated with damage to the

workpiece.
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Figure 12 shows the replacements with risk-based inspection planning. Tools 5 and 6 are again

inspected one time step before the fully observed case. Additionally, Tool 7 is inspected two time steps

before the gold standard. The risk-based monitoring system used a total of five inspections. The reduced

number of inspections is because the decision-theoretic approach will, in general not suggest inspections

Figure 10. Benchmark replacements determined using all available information.

Figure 11. Tool replacement with periodic inspections.
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early in the life of a tool when the risk of S exceeding Scrit is small. Most inspections will be triggered near

the end of tool life when the risk associated with damaging the work piece is greatest. Again, because of

the reduced access to information (compared to both the “gold standard” and the periodic inspections),

inflated risk increases the likelihood of preoptimal tool replacements.

Table 2 collates the number of inspections and tool replacements. It should be noted that the unit

“0.602 kms” refers to the sliding distance (how far the tool has cut) between each surface roughness

measurement.

Table 3 compares the performance of the inspection approaches. The “cost of inspections” column is

the number of inspections multiplied by the cost of an inspection. The “cost of wasted tool life” for each

inspection approach can be seen in the first column of Figure 3 and can be calculated using Equation (27).

Cwasted tool life ¼Ctool ×
Discrepancy

Optimal Replacement
(27)

Figure 12. Tool replacement with risk-based inspections.

Table 2. Inspection values

Inspection type

Tool replaced at (0.602 kms) Discrepancy (0.602 kms)

Tool 5 Tool 6 Tool 7 Tool 5 Tool 6 Tool 7 Number of inspections

Full information 10 10 11 0 0 0 0

Periodic inspections 9 9 10 1 1 1 10

Risk-based inspections 9 9 9 1 1 2 5
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As can be seen in the final column of Table 3, using the parameters described in this paper, a risk-based

approach to inspection planning reduced costs associated with monitoring by 36.95%.

5. Discussion

The case study showcased in Section 3 highlights the effectiveness of a risk-based approach to inspection

planning. The significant reduction in monitoring costs can be attributed to reducing the number of

unnecessary inspections while avoiding damaging the workpiece at a similar rate to a periodic inspection

process.

Deriving the equations of the expected utility of every action in the decision analysis is not always

trivial. Even then, sometimes, simplifications are required if the user wishes to implement the decisions in

real time, since some expected utility calculations induce large computational loads.

While choosing a hierarchical or multilevel model to model the data in Section 3 provides many

benefits, there are also computational considerations when working with these models. When

partially pooling data in this manner, the probability space that a Monte Carlo sampler is required

to explore becomes higher dimensional; this can lead to increased computational costs and restric-

tions in the choice of prior probability distributions (because of complex posterior geometries

which can be difficult to explore). For online monitoring scenarios where decisions and actions

are required instantaneously with data acquisition, increased computation times could be an issue.

Additionally, the full Value of Information analysis was left out of this paper, this would add to

computation times.

6. Conclusion

ABayesianmultilevel model is used tomodel a population ofmachining tools andmake predictions about

how the tools degrade. The equations for the expected utility of inspecting and replacing the tools were

derived to form an online decision-theoretic approach to inspection planning where tools are inspected in

an active manner according to the risk.

The authors believe that using risk as a query measure for AL, rather than information measures,

has a place in many engineering decision scenarios. While it can be difficult to formulate the

equations presented in Section 3 without proper understanding of the decision problem, this work

shows that a risk-based approach to inspection planning can lead to a large reduction in monitoring

costs while maintaining comparable or, in some cases, improved performance when compared to

other methods.

Data availability statement. Due to a patent on the toolmonitoring system used to collect this data, this data cannot be open source.

Requests for data will be considered on a case-by-case basis.
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Table 3. Costs of each inspection method

Inspection type

Cost of wasted tool life Cost of inspections

Tool 5 Tool 6 Tool 7 Tool 5 Tool 6 Tool 7 Total cost
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Risk-based inspections 0.025 0.025 0.056 0.15 0.05 0.05 0.361
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