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Ultrasensitive ctDNA detection for 
preoperative disease stratification in 
early-stage lung adenocarcinoma

 

James R. M. Black    1,2,112, Gabor Bartha3,112, Charles W. Abbott3, 

Sean M. Boyle    3, Takahiro Karasaki    1,2,4,5, Bailiang Li    3, Rui Chen    3, 

Jason Harris3, Selvaraju Veeriah1, Martina Colopi1, Maise Al Bakir    1,2, 

Wing Kin Liu1, John Lyle3, Fábio C. P. Navarro    3, Josette Northcott3, 

Rachel Marty Pyke3, Mark S. Hill    1,2, Kerstin Thol1,6, Ariana Huebner1,2,6, 

Chris Bailey1,2, Emma C. Colliver    1,2, Carlos Martínez-Ruiz    1,6, 

Kristiana Grigoriadis    1,2,6, Piotr Pawlik1,6, David A. Moore1,2,7, 

Daniele Marinelli    1,6,8, Oliver G. Shutkever1, Cian Murphy    1,2, 

Monica Sivakumar1, TRACERx consortium*, Jacqui A. Shaw9, 

Allan Hackshaw    10, Nicholas McGranahan    1,6, Mariam Jamal-Hanjani    1,4,11, 

Alexander M. Frankell    1,2, Richard O. Chen    3,113 & Charles Swanton    1,2,11,113 

Circulating tumor DNA (ctDNA) detection can predict clinical risk in 

early-stage tumors. However, clinical applications are constrained by 

the sensitivity of clinically validated ctDNA detection approaches. NeXT 

Personal is a whole-genome-based, tumor-informed platform that has been 

analytically validated for ultrasensitive ctDNA detection at 1–3 ppm of ctDNA 

with 99.9% specificity. Through an analysis of 171 patients with early-stage 

lung cancer from the TRACERx study, we detected ctDNA pre-operatively 

within 81% of patients with lung adenocarcinoma (LUAD), including 53% of 

those with pathological TNM (pTNM) stage I disease. ctDNA predicted worse 

clinical outcome, and patients with LUAD with <80 ppm preoperative ctDNA 

levels (the 95% limit of detection of a ctDNA detection approach previously 

published in TRACERx) experienced reduced overall survival compared with 

ctDNA-negative patients with LUAD. Although prospective studies are needed 

to confirm the clinical utility of the assay, these data show that our approach 

has the potential to improve disease stratification in early-stage LUADs.

Liquid biopsy for detecting circulating tumor DNA (ctDNA, namely 

cell-free DNA derived from a tumor) holds promise as a strategy for 

personalized clinical management of early-stage cancers1–7. Preopera-

tive ctDNA status has shown potential as a biomarker, while postop-

erative ctDNA detection can direct adjuvant therapy regimens8,9, and 

monitoring for molecular residual disease (MRD) during follow-up has 

the potential to identify relapse earlier than would be detected with 

routine clinical surveillance1,2,5,10.

ctDNA detection can be tumor-informed or tumor-agnostic. 

Tumor-informed approaches leverage information from genomic 

profiling of a tumor tissue specimen, allowing for tracking of 

tumor-specific mutations within plasma and typically improving 

sensitivity relative to tumor-agnostic approaches. In 2020, cancer 

personalized profiling by deep sequencing (CAPP-seq), was used in a 

tumor-informed approach to demonstrate that preoperative ctDNA 

detection in non-small-cell lung cancer (NSCLC) could be used to 
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NSCLC tumors. A median of 1,800 patient-specific somatic variants 

were included in the NeXT Personal panel design (range, 646–1,942), 

of which a median of 97.83% were from non-coding regions (Extended 

Data Fig. 1a). This resulted in a set of bespoke panels with a median 

predicted LOD of 1.33 ppm and a range of 0.85–4.45 ppm (Extended 

Data Fig. 1b). The median DNA input quantity was 23.5 ng (Fig 1b; range, 

4.01–50.0 ng).

ctDNA was detected in a preoperative plasma sample in 81% of 

patients with LUAD (Fig. 1c, 76/94) and 100% of patients with non-LUAD 

(Fig. 1d, 77/77) NSCLCs across a broad range of tumor fractions (positive 

ctDNA detection range, 1.66–253,826 ppm). This included 32 LUADs 

(34% of all LUADs) in which ctDNA was detected, but at below 80 ppm, 

the 95% LOD in our previous approach2. We could detect ctDNA in the 

blood of 57% of patients with pTNM stage I LUADs (16/28): ctDNA from 

these tumors has been difficult to detect in blood samples (only 14% of 

such tumors were identified in Abbosh et al.2 and 13% in Abbosh et al.1). 

Similarly, ctDNA was detected in 79% of pTNM stage II LUADs (23/29, 

compared to 44% in Abbosh et al.2). ctDNA shedding, as previously 

reported, was associated with smoking status (pack-year history) 

(Spearman’s 𝜌 = 0.18, P = 0.021; Extended Data Fig. 1c)2 and with the 

high-grade predominant subtypes of LUAD, in particular the solid 

and cribriform subtypes (P = 1.3 × 10–8, Kruskal–Wallis test; Extended 

Data Fig. 1d)25. Oncogenic events, which in this cohort comprised EGFR 

mutations and skipping of MET exon 14 (no RET-ROS1-ALK oncogenic 

fusions were detected), were not associated with a significant differ-

ence in ctDNA ppm level (P = 0.23, Kruskal–Wallis test; Extended Data 

Fig. 1e) or rate of preoperative ctDNA detection (P = 0.16, Fisher’s exact 

test; Extended Data Fig. 1f), although this analysis is likely to have 

been underpowered given the small numbers of patients harboring 

these events.

We next assessed the degree to which this additional sensitiv-

ity improved our ability to stratify these patients according to clini-

cal outcome. Preoperative ctDNA-negative patients were compared 

with patients whose ctDNA levels were below the median of those 

detected (ctDNA-low) and those with ctDNA levels above the median 

of those detected (ctDNA high). ctDNA status predicted OS in LUADs 

(Fig. 2a, low: hazard ratio (HR) = 11.08, 95% confidence interval (CI) = 

1.48–83.2; high: HR = 19.33, 95% CI = 2.56–146.0) and RFS (Extended 

Data Fig. 2a, low: HR, = 14.17, 95% CI = 1.91–105.3; high, HR = 25.79, 95% 

CI = 3.48–191.4). Patients with a preoperative ctDNA-negative status 

had significantly improved OS (5-year OS, 100%; 95% CI = 100%–100%; 

n = 18) compared with ctDNA-low patients (5-year OS, 61.4%; 95% CI = 

47.3%–79.6%; n = 38), and ctDNA-high patients (5-year OS, 48.8%; 95%  

CI = 34.7%–68.7%; n = 38). Notably, when analysis was restricted to 

include only patients in whom ctDNA would not have been reliably 

detected using the approach in Abbosh et al.2, the presence of ctDNA 

at levels below 80 ppm remained prognostic for poor OS (Fig. 2b, 

P = 0.0029; HR = 12.33; 95% CI = 1.63–93.35) and RFS (Extended Data 

Fig. 2b, P = 0.00011; HR = 18.07; 95% CI = 2.41–135.3) in LUAD. This sug-

gests that clinically meaningful signal is detected by assays with sensitiv-

ity at tumor fractions below 80 ppm, and that the ultra-high-sensitivity 

assay presented here enables identification of a group of very-low- 

risk patients with LUAD.

As we have previously reported, the association between out-

comes and elevated preoperative ctDNA levels in non-LUADs was 

substantially reduced compared with that in LUADs; previous work 

has found no discernible impact of ctDNA levels on clinical outcome 

in non-LUADs1. In this analysis, a ctDNA level greater than the median 

in non-LUADs was not associated with reduced RFS (Extended Data 

Fig. 2c; HR = 1.81; 95% CI = 0.93–3.92; P = 0.077). This highlights a fun-

damentally different relationship between ctDNA and disease biology 

in non-LUADs compared with that in LUADs.

When adjusted for histology, pTNM stage, smoking status, age, 

the presence of an oncogenic event (such as an EGFR driver mutation 

or the skipping of exon 14 in MET) and the addition of adjuvant therapy, 

identify patients with stage I disease with poor clinical outcome11. 

Subsequent work within lung adenocarcinomas (LUADs) from the 

LUNGCA-1 cohort12, the NADIM trial13 and the TRACERx study1 of NSCLC 

confirmed the prognostic capacity of preoperative ctDNA detection 

for overall survival (OS) and relapse-free survival (RFS) in LUADs.

Detection of preoperative ctDNA in early-stage LUAD is a consider-

able challenge owing to the low levels of ctDNA in plasma, which are 

frequently below 100 ppm10,14. Additionally, the sensitivity of ctDNA 

detection can be impaired by variations in the production of cell-free 

DNA (cfDNA) by non-malignant cells15, sequencing error and variants 

arising from clonal hematopoiesis of indeterminate potential (CHIP), 

which can be present at low levels in plasma16. A high-quality ctDNA 

detection platform must have a number of attributes for optimal clini-

cal utility: it must be extremely sensitive, highly specific and applicable 

to a broad spectrum of tumors, and it must deliver results with small 

amounts of DNA input. To that end, there has recently been signifi-

cant focus on research into developing approaches to overcome this 

problem6,17–20.

Although the relationship between ctDNA detection and survival 

is independent of pathological tumor-node-metastasis (pTNM) stage 

in this setting, the degree to which the limit of detection (LOD) of 

ctDNA assays affects the clinical sensitivity of ctDNA as a biomarker 

for aggressive disease is not well understood.

Here, we used NeXT Personal, an ultrasensitive, tumor-informed 

liquid-biopsy platform to characterize preoperative ctDNA in 171 

patients in the TRACERx study1,21,22. NeXT Personal is a tumor-informed 

liquid-biopsy platform that leverages prioritized target selection from 

whole-genome sequencing of tumor and matched normal DNA23. 

The development and analytical validation of this assay is outlined 

in Methods and in ref. 23. In brief, the method aims to achieve a LOD 

approaching 1 ppm by aggregating the signal from a larger number of 

somatic variant targets than can be detected from an exome. To avoid 

being overwhelmed by false signals arising from the large number of 

variants, noise must be suppressed to very low levels, which is largely 

accomplished by molecular consensus, which allows identification 

of independent sequence reads arising from a common founder, and 

groups these reads into unique molecule families for further analysis.  

NeXT Personal bespoke panels are designed using the top ~1,800 

signal-to-noise ranked somatic variants for ctDNA detection from 

plasma (that is, the subset of cfDNA that contains the tumor-specific 

mutations in the panel). Hybridization-based genomic-target enrich-

ment using the panel is followed by ultradeep sequencing of the plasma 

samples. NeXT Personal then aggregates the tumor-derived signal 

from the somatic targets. This process, combined with comprehensive 

noise-suppression methods, enables NeXT Personal to achieve ultra-

sensitive ctDNA detection for disease stratification, therapy monitor-

ing and MRD detection (Methods and Fig. 1a).

Personalized tumor-informed ctDNA-detection assays that lever-

age exonic mutations have been investigated in the TRACERx cohort1,2. 

We have previously studied the ability of ctDNA, detected in a preop-

erative peripheral blood sample, to predict clinical outcome in LUAD1. 

This involved a tumor-informed assay investigating somatic variants 

at an average of 200 positions per sample, revealing that patients with 

LUAD who had ctDNA detected in their blood at the time of surgery 

had a worse clinical prognosis24. However, ctDNA was detectable in 

only 14% of patients with pathological stage I LUAD at this time point. 

We therefore set out to assess the degree to which a more sensitive 

and specific assay would increase prognostic value in a cohort with 

comparable clinical demographics (Extended Data Table 1).

We analyzed blood plasma samples collected before the surgical 

removal of lung cancer from 171 TRACERx patients, including 94 with 

LUAD (29.8% stage I, 30.9% stage II, 39.3% stage III) and 77 with non-

LUAD (28.6% stage I, 40.3% stage II, 31.2% stage III) NSCLC, using NeXT 

Personal (Extended Data Table 2 and Fig. 1b). Of these patients, 160 

had one primary NSCLC tumor and 11 had two synchronous primary 

http://www.nature.com/naturemedicine
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Fig. 1 | Highly sensitive detection of preoperative ctDNA. a, The NeXT Personal 

platform leverages tumor-informed information to achieve ultrasensitive and 

specific residual and recurrent cancer detection, longitudinal monitoring and 

therapy monitoring from liquid-biopsy samples. b, Clinicopathological variables 

relating to preoperative ctDNA detection in patients with NSCLC in the TRACERx 

study: ctDNA level (ppm tumor fraction); number of tumor molecules per ml 

plasma; pathological tumor node metastasis (pTNM) stage; NSCLC histology; 

tumor size (pathology-based tumor size (mm)); cigarette smoking (pack-years); 

pathological subtype of LUAD; presence of an oncogenic event (within this 

cohort, either the presence of an EGFR mutation or skipping of MET exon 14); and 

cfDNA input amount (ng). n = 171. c,d, Fraction of TRACERx LUAD (c) and non-

LUAD (d) tumors detected pre-operatively. Colors represent different studies: 

blue, Abbosh et al.1; gray, Abbosh et al.2; green, this study. n = 94 LUAD, n = 77 

non-LUAD.
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the presence of ctDNA—whether considered either as a continuous 

metric or stratified into groups as specified above—was independently 

associated with reduced OS (Fig. 2c and Extended Data Fig. 3a) and RFS 

(Extended Data Fig. 3b,c) in a pooled cohort of patients with LUADs and 

non-LUADs. Of note, the ctDNA level was not significant as an independ-

ent prognostic factor for RFS in the non-LUAD group (Extended Data 

Fig. 3d,e ). The prognostic effect of ctDNA as a continuous variable on 

both RFS and OS was not significant when adjusting for histological 

(squamous versus non-squamous) subtype and other clinicopathologi-

cal factors (Extended Data Fig. 3f,g).

This work has leveraged NeXT Personal, a tumor-informed assay 

that is capable of reliably detecting ctDNA in blood at 1–3 ppm (0.0001–

0.0003% tumor fraction). Notably, this ultra-high sensitivity can be 

achieved with an estimated specificity of 99.9% and even from sub-

optimal DNA input volumes. This could be important in many clinical 

settings, and can be applied to suboptimal DNA input volumes.

Patients with early-stage NSCLC remain at high risk of relapse, 

despite aggressive curative-intent treatment. Thus, it is of critical 

importance to accurately stratify patients to both maximize the like-

lihood of disease cure following surgery and adjuvant therapy and 

minimize risk of overtreatment in those patients predicted to have 

good outcome. Detectable preoperative ctDNA has been associated 

with worsened recurrence-free survival and reduced OS12,26,27, and 

has been suggested as a potential marker for neoadjuvant treatment 

selection8,9. We have demonstrated that assays that cannot detect 

ctDNA at tumor fractions below 80 ppm fail to capture a clinically 

impactful signal arising from a significant subset of patients with 

LUAD2. In this study, these patients with detectable but extremely low 

levels of ctDNA experienced a worse clinical outcome than those in 

whom we did not detect evidence of ctDNA. This suggests that there 

is a subset of very-low-risk patients with LUADs who can be definitively 

identified only by using an ultrasensitive ctDNA assay, raising the 

potential for an ultrasensitive and specific assay to be used prognosti-

cally for escalation of therapy in stage I LUADs exhibiting ctDNA release.

Although this study presents results from preoperative plasma 

samples, the high sensitivity of the NeXT Personal assay suggests the 

potential for significant clinical benefit in the setting of minimal resid-

ual disease for tracking treatment response and detecting recurrence.

Of note, there are a number of technologies in the field aiming to 

achieve ultrasensitive tumor-informed ctDNA detection, such those 
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Fig. 2 | Baseline ctDNA level is prognostic of OS. a, Kaplan–Meier (KM) curve 

of OS in ctDNA-high (dark gray), ctDNA-low (light gray) and ctDNA-negative 

(green) patients with LUAD. ctDNA-high and ctDNA-low groups were defined 

according to the median ctDNA levels across ctDNA-positive LUADs. P values 

were calculated using log-rank tests. b, KM curve demonstrating OS in patients 

harboring ctDNA at an estimated tumor fraction below the limit of reliable 

detection described in Abbosh et al.2 (light gray) and ctDNA-negative patients 

(green). P values were calculated using log-rank tests. c, Results of multivariable 

Cox regression analysis including ctDNA level (ctDNA-high, ctDNA-low, ctDNA-

negative); histology; whether the patient received adjuvant chemotherapy; 

cigarette smoking history (in increments of 10 pack-years); pTNM stage;  

age (in increments of 10 years); and the presence of an oncogenic event (either 

an EGFR mutation or MET exon 14 skipping). n = 171. Error bars represent 95% 

confidence intervals. The size of the boxes represent the number of patients 

within each category.
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developed by Foresight Diagnostics (PhasED-seq)18,28, C2i Genomics19 

and Inivata (RaDaR)6.

This work has limitations. The data from TRACERx was analyzed 

retrospectively, although in a blinded fashion. Future data from 

prospective cohorts will be needed to evaluate the clinical utility of 

this assay. Although NeXT Personal is already in use as a clinical diag-

nostic test, it, like other tumor-informed ctDNA detection assays,  

is of higher complexity, can be more costly to produce and requires  

a longer turnaround period to develop the panel and obtain a 

clinically actionable result, compared with non-tumor-informed 

approaches.

If ctDNA is to be used for clinical risk prediction, the design of 

personalized adjuvant treatment regimens and early detection of 

recurrence and integrated into routine clinical care, ctDNA assays 

should have a high degree of sensitivity. In this way, they hold promise 

to transform adjuvant clinical trial design and clinical practice.

Online content
Any methods, additional references, Nature Portfolio reporting sum-

maries, source data, extended data, supplementary information, 

acknowledgements, peer review information; details of author con-

tributions and competing interests; and statements of data and code 

availability are available at https://doi.org/10.1038/s41591-024-03216-y.
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Methods
Baseline characterization of lung cancer samples
TRACERx patient recruitment and sample collection complied with 

all relevant ethical regulations and were carried out as previously 

described2. The eligibility criteria have been previously described2. 

Of note, the eighth version of pTNM staging was used in this analysis.  

Patients with histopathologically confirmed stage I–IIIB NSCLC 

who were eligible for primary surgery were enrolled in the prospec-

tive observational TRACERx study (ClinicalTrials.gov identifier: 

NCT01888601). The study design was approved by an independent 

research ethics committee (NRES Committee London, REC ref. 13/

LO/1546), and informed consent was obtained from all patients before 

study admittance. Patient sample identifiers were anonymized and 

tracked in a centralized database controlled by the study sponsor. DNA 

degradation of archived formalin-fixed paraffin-embedded (FFPE) 

samples over time can affect panel quality for ctDNA detection, and 

degraded samples might not accurately reflect the typical sample qual-

ity in a clinical setting in which FFPE samples were recently collected 

(Extended Data Fig. 4a). We obtained FFPE tissue for 204 patients. 

Of these, 62 had atypically low counts of high-quality panel targets 

(<1,000), likely owing to age and/or poor quality of the FFPE samples, 

and 2 did not pass panel design. For 31 of the 64 patients, DNA extracted 

from fresh frozen (FF) tissue was available by September 2023. For 

these samples, an updated set of panels was generated, the quality of 

which was more consistent with <5-year-old FFPE samples (Extended 

Data Fig. 4b). One panel was constructed from an FF tumor sample and 

failed to attain 1,000 high-quality targets; however, this was included 

to ensure that the cohort was representative of the wider TRACERx 

cohort. Two FF panels were constructed where FFPE panel construction 

had failed entirely. The final cohort in our study consisted of preopera-

tive samples from 171 consecutively recruited patients in the larger 

TRACERx study in whom adequate plasma was available for the ctDNA 

analysis completed by September 2023, in addition to confirmed clini-

cal outcome data as of February 2024. Retrospective ctDNA analysis 

was conducted using prospectively collected specimens and during 

clinical follow-up. In this cohort, we demonstrated that our measure 

of ctDNA signal (ppm) was in strong agreement with tumor molecules 

per ml plasma, which accounts for the volume of plasma from which 

input cfDNA is extracted (Demming regression; fitted slope = 0.97, CI =  

0.95–0.99; Extended Data Fig. 4c). Personalis investigators were fully 

blinded to patient clinical outcome and clinical pathological character-

istics during sample processing and ctDNA analysis. Likewise, TRACERx 

investigators were blinded to patient ctDNA status during clinical data 

and patient specimen collection. EGFR mutations, oncogenic fusion 

isoforms and instances of MET exon 14 skipping from patients in the 

TRACERx cohort were annotated as previously described29.

Tumor and normal whole-genome sequencing
Tumor sections were macrodissected to improve tumor content and 

were required to meet a tumor cellularity threshold of ≥20%, as deter-

mined by pathological review, to be eligible for DNA extraction and 

further processing. At this threshold, 1.2% (2/171) of samples were 

considered ineligible for analysis and required replacement with dif-

ferent specimens. At our chosen 20% cut-off threshold, we observed 

no significant correlation between tumor purity and the LOD of the 

assay (Supplementary Fig. 1). Genomic DNA was isolated from matched 

tumor and normal samples using the Qiagen AllPrep DNA/RNA FFPE  

Tissue Kit or the QIAamp DNA Mini Kit (Qiagen) using internally opti-

mized workflows. Whole-genome sequencing (WGS) libraries were pre-

pared with 100–500 ng of acoustically sheared genomic DNA (Covaris)  

using the KAPA HyperPrep Kit (Roche Sequencing Solutions) and 

customized methods. Libraries were cleaned up using AMPure XP 

beads and then quantified using the KAPA Library Quantification Kit 

(Roche Sequencing Solutions), before being sequenced to ×30 depth 

of coverage using a NovaSeq 6000 instrument (Illumina). The impact 

of varying DNA input amounts during tumor WGS on panel design was 

assessed using 19 normal–tumor pairs. For each pair, normal libraries 

were made using 550 ng input DNA, and tumor libraries with 5 ng, 15 ng, 

50 ng, 200 ng or 550 ng of input DNA. We observed largely consistent 

panel size and similarity across the range of input DNA amounts (Sup-

plementary Fig. 2a,b). A comprehensive list of reagents used in this 

study is provided in Supplementary Table 1.

Alignment and variant calling from tumor and normal 
whole-genome sequencing
The pipeline performs alignment, duplicate removal and base 

quality-score recalibration (BQSR) of the matched tumor and normal 

WGS samples using best-practice guidelines recommended by the 

Broad Institute30,31. In brief, individual read-pairs were first mapped to 

the hs37d5 reference genome build using the BWA–MEM aligner. We 

then used the Picard toolkit (RRID: SCR_006525) to identify duplicate 

reads through comparison of the 5′ position of reads and read-pairs. 

Duplicate reads were then removed. The Genome Analysis Toolkit 

(GATK, RRID: SCR_001876) was then used for sequence realignment 

and to apply base quality scores (BQSR): the BaseRecalibrator tool 

uses the deduplicated data and a set of known variants to construct 

a model of covariation, which is the used to generate a recalibration 

file. The ApplyBQSR tool then uses this model to adjust base quality 

scores in the data, yielding a new BAM file. Aligned sequence data are 

written in BAM format according to SAM (RRID: SCR_01095) specifica-

tion. MuTect (RRID: SCR_000559) was used to co-analyze the tumor 

and normal BAM files for somatic single-nucleotide variant (SNV) 

detection. Somatic SNV calls were filtered on the basis of a broad set 

of quality-control metrics, such as local sequence coverage and read 

quality, strand bias and the statistical likelihood that the allele is present 

in the normal sample.

NeXT personal probe panel design
Hybrid capture probe panels used in this study were designed with 

the NeXT Personal platform’s proprietary algorithms, as governed 

by the standard operating procedures at Personalis. In the design 

process for the bespoke panel, for each patient’s panel, the ctDNA 

targets were selected from exonic, intronic and intergenic somatic 

variants identified through WGS of matched tumor and normal sam-

ples, as described above. Somatic variants identified using Mutect 

(v1.1.6, default parameters) were selected and assigned an error rate 

according to the observed substitution in the solid tumor. Namely, the 

substitution error rate was estimated by the ratio of the aggregated 

amount of signal and the total number of molecules observed in each 

possible substitution in more than 200 healthy plasma samples23. The 

MRD targets were then selected from somatic variants with an allele 

frequency above 10%. Variants were further filtered by excluding those 

found in particular regions of the genome. Exclusion criteria included 

regions containing known germline SNPs, known CHIP variants, high 

GC content (≥80%), high polymorphism rates, mapping difficulties, 

systematic bias, short tandem repeats and low sequence complexity32.

Somatic variant calls were ranked by the product of allele fre-

quency in solid tumor and the substitution-based error rate of solid 

tumor substitutions. Up to ~1,800 top ranked somatic variants were 

selected genome-wide for panel inclusion by the NeXT Personal 

platform. The final panel also included 43 population SNVs for 

quality-assurance purposes (that is, to detect potential sample–panel 

mismatch or contamination). Several criteria were used to optimize 

the selection of the 43 SNVs, including having a population frequency 

of at least 20%, being in Hardy–Weinberg equilibrium and being out-

side of the HLA region. The SNPs were prioritized to have roughly 

equivalent representation across subpopulations. Probe sequences 

were designed by the NeXT Personal platform’s proprietary algorithm 

before being processed for manufacturing. Upon receiving panel 

reagents, the new panel was used for targeted sequencing of blood 

http://www.nature.com/naturemedicine
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plasma from an unrelated healthy donor. This served two purposes: 

quality-control tests on the sequencing data were used to qualify the 

panel for use on the patient’s plasma samples, and any MRD targets 

for which any non-reference signal was observed were deactivated in 

the logical panel design, to mitigate the risk that those targets could 

be enriched for noise.

NeXT Personal cfDNA library preparation, target enrichment 
and sequencing
Library preparation, target enrichment and sequencing of the cfDNA 

samples were performed in CLIA-certified and CAP-accredited labora-

tories, as governed by the standard operating procedures at Personalis. 

In brief, sequencing libraries were prepared from 2.45–50 ng cfDNA 

input (median, 15 ng), using the KAPA HyperPrep Kit (Roche Sequenc-

ing Solutions) and customized methods. We assessed the effect of the 

quantity of total input cfDNA on MRD detection and ctDNA burden and 

observed no significant associations between the amount of cfDNA 

input and ctDNA detection status (Supplementary Fig. 3). Consistently, 

there was no significant correlation between the quantity of input 

cfDNA and ctDNA burden or ctDNA burden and the LOD of the assay 

(Supplementary Fig. 3b,c). Together, this evidence suggests that ctDNA 

burden and detection status were not confounded by the quantity of 

total circulating DNA in the cohort. These findings are supported by a 

separate analytical validation study23. The pre-capture libraries were 

quantified using a Lunatic spectrophotometer (Unchained Labs), and 

up to 1,500 ng was enriched with patient-specific NeXT Personal probe 

panels using proprietary modifications to the Fast Hybridization and 

Wash Kit (Twist Bioscience) and workflow. The postcapture libraries 

were then amplified by PCR (nine cycles), and a quality assessment 

was performed using the TapeStation system (Agilent Technologies). 

The final libraries were cleaned up using AMPure XP beads and then 

quantified using the KAPA Library Quantification Kit (Roche Sequenc-

ing Solutions) before being sequenced on a NovaSeq 6000 instrument 

(Illumina). The libraries were deeply sequenced to optimize the num-

ber of unique observed molecules. We observed a weak correlation 

between sequencing depth and the LOD for each custom assay, as 

well as between sequencing depth and the strength of ctDNA signal 

detected (ppm level); however, the ctDNA detection status (detected 

or not detected) was not confounded by the variability of sequencing 

depth, with no significant difference in sequencing depth observed 

between the two groups (Supplementary Fig. 4a–c).

NeXT Personal cfDNA analysis
Analysis of all NeXT Personal data in this study was performed using 

a consistent, locked version of the production pipeline developed by 

Personalis. In summary, the cfDNA sequencing data were aligned to 

the human reference genome (version hs37d5), followed by noise sup-

pression and ctDNA detection. More specifically, we built and filtered 

the molecular consensus as follows. First, we aligned all reads to the 

human reference using BWA–MEM (Burrows–Wheeler Aligner, v1.0.2). 

Second, we grouped read-pairs according to their paired mapped 

positions to form initial consensus groups. With a positional approach 

like this, there is a risk of grouping multiple molecules together that 

share paired mapped positions. We mitigated this risk by detecting 

the presence of non-reference alleles that were present in not only a 

subset of the consensus-group reads, but also at least two other con-

sensus groups. When there was an allele present in a subset of reads 

with additional support from other consensus groups, we split the 

consensus group to isolate the allele-containing reads in their own 

new group. For each group, we required observation of at least one 

molecule from each DNA strand. Raw reads that differed by more than 

2.5% across the consensus molecule were not included. Bases with a 

quality of less than 29 were masked. Once we defined the consensus 

groups, we formed a single consensus molecule from the reads in 

each group on the basis of identification of the consensus basecall at 

each position along the group of read-pairs. Bases with less than 90% 

agreement in the molecular group were masked. Reads with more 

than 20% of their bases masked were removed. Then, we re-mapped 

these consensus reads again using BWA–MEM to avoid any erroneous 

alignment caused by sequencing errors. Following noise suppres-

sion, tumor-derived signal was aggregated in a tested sample across 

ctDNA targets in each patient-specific panel to calculate the ctDNA 

level (measured in ppm, based on the total unique molecule count). 

A one-tailed Poisson test was then performed to determine ctDNA 

detection status for each tested sample. The observed aggregate 

tumor-derived signal across each panel serves as the tested value, with 

the expected noise arising from accumulated background error being 

set as the mean of the Poisson distribution. The P value threshold was 

established as previously described23. In brief, the P value threshold 

is set at <0.001 to ensure that an analytical specificity requirement 

of >99.9% was met. Therefore, the P value threshold was set to 0.001 

for this study to ensure higher specificity. If the tumor signal was 

significantly (P ≤ 0.001) above the expected noise, the sample was 

classified as ctDNA-positive (that is ‘detected’); otherwise, it was 

classified as ctDNA-negative (that is ‘not detected’). Given that the P 

value is the probability that the observed signal comes from noise, the 

detection threshold is set to enforce a specificity requirement and is 

independent of factors that affect observed levels. Variations in assay 

and locus-specific factors might affect the efficiency of detection of 

a specific genetic alteration. Different genetic alterations could also 

be present at different frequencies in the blood. The actual ppm level 

(allele frequency) measured is a function of the set of targets selected. 

After aggregation across many loci, however, the average per-locus 

efficiency of detection tends toward the population mean of the 

efficiency of detecting a specific genetic alteration. This is demon-

strated in Supplementary Figure 5a, which shows that, as the panel 

size approaches 1,800 targets, the coefficient of variation (CV) of the 

observed ppm level adds little to the overall variability of the assay. 

Basing detection status on a P value, rather than an allele frequency 

threshold, allowed our approach to normalize detection efficiency for 

specific mutations through the summation of signal across up to 1,800 

variant loci that have been selected on the basis of their site-specific 

error rates, inherent noise and complexity.

Clonal hematopoiesis of indeterminate potential
We designed our assay to prevent CHIP mutations from being included 

in the bespoke panel by taking a tumor-matched-normal approach 

for somatic variant calling to inform panel design. This is an effective 

approach because the CHIP signal is higher in the normal blood cells 

than in tumor tissue, and thus will be filtered out in the tumor normal 

algorithmic comparison. We also excluded the most common CHIP 

regions from our panel design.

TRACERx cfDNA extraction and quantification
Blood samples were collected in K2-EDTA tubes. Samples were pro-

cessed within 2 h of collection by double centrifugation of the blood, 

first for 10 min at 1,000g, then the plasma for 10 min at 2,000g. Plasma 

was stored in 1-ml aliquots at −80 °C. Following isolation, plasma was 

shipped on dry ice. At the time of analysis, TRACERx plasma samples 

were between 2 and 9 years old. Up to 24 h before cfDNA extraction, 

the plasma was thawed and aliquots from the same patient plasma 

time point were consolidated and then stored at 4 °C. Immediately 

before cfDNA extraction using QIAamp Circulating Nucleic Acid or 

QIAsymphony Circulating DNA kits (Qiagen), consolidated plasma 

was clarified at 16,000g to remove cryoprecipitates.

Samples used for DNA input performance characterization
All experiments were performed in the Clinical Laboratory Improve-

ment Amendments (CLIA)-certified and College of American Patholo-

gists (CAP)-accredited laboratories at Personalis, as guided by the 
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Association for Molecular Pathology (AMP) and CAP’s joint recommen-

dations33. Healthy donor and patient tissue and matched buffy-coat and 

plasma samples used in Supplementary Figures 2 and 5 were sourced 

from either Boca Biolistics, Cureline or iProcess. Patient samples in 

this study obtained from commercial vendors were collected from 

informed patients following receipt of their written consent under 

study protocols approved by an Independent Ethical Committee or 

Institutional Review Board (Protocol numbers: PG-ONC 2003/1; IRB7 

- Registration 5136; IRB 800959).

Survival analyses
OS was defined as the days from registration to death or loss of 

follow-up. RFS was defined as the days from registration to any dis-

ease recurrence, new primary tumor events or death. Exploratory 

analysis comparing OS and RFS at different ctDNA levels was performed 

for a total 171 patients shown in Figure 2 and Extended Data Figure 3. 

Survival (3.3–1), survminer (0.4.9) and finalfit (1.0.4) R packages were 

used to generate hazard ratios, CIs, 2-year survival probability, forest 

plots, KM plots and Cox regression models. Differences in OS or RFS 

between different groups of patients were assessed using log-rank 

tests. The association of OS or RFS with continuous variables, such 

as ctDNA level, was assessed through Cox regression modeling. The 

independent prognostic value of ctDNA in either the continuous or 

categorical form was assessed by multivariable Cox regression models 

that included histology, adjuvant treatment status, smoking status, 

pathological stage and age.

Statistical analysis and data handling
No statistical methods were used to predetermine sample size. Analy-

sis was performed in the R statistical environment (4.1.3). All statistical 

tests were two-sided, unless stated otherwise. For assay-performance 

analyses, positive predictive value was calculated as all true-positive 

results divided by the sum of true-positive and false-positive results; 

negative predictive value was calculated as all true-negative results 

divided by the sum of false-negative plus true-negative results; sen-

sitivity was calculated as true-positive results divided by the sum of 

true-positive and false-negative results; and specificity was calculated 

as true negatives divided by the sum of true negatives and false posi-

tives. For input and output operations and general data manipulation, 

the R packages tidyverse (v1.3.2) and lubridate were used (v1.9.2). 

For general visualization, the R packages ggplot2 (v.3.4.2), ggpubr 

(v.0.4.0), scales (v.1.2.1.) and ggnewscale (v.0.4.9) were used. For statis-

tical analyses and related visualization, R packages survival (v.3.3–1), 

survminer (v.0.4.9), finalfit (v.1.0.4), gt (v.0.10.1) and mcr (v.1.2.2) 

were used.

Reporting summary
Further information on research design is available in the Nature 

Portfolio Reporting Summary linked to this article.

Data availability
Processed TRACERx patient data have been deposited on Zenodo at 

https://doi.org/10.5281/zenodo.8400837 (ref. 34). Supporting data 

from validation experiments are included as Extended Data Table 1. 

Raw data from TRACERx patients analyzed in this study, including 

fastq and bam files from tumor and normal WGS, as well as fastq files 

from cfDNA, have been deposited at the European Genome–phenome 

Archive (EGA), hosted by The European Bioinformatics Institute (EBI) 

and the Centre for Genomic Regulation (CRG) under the accession 

codes EGAS00001006494, under controlled access.

Code availability
Supporting code required to reproduce all analyses and figures 

included in this paper are available on Zenodo at https://doi.org/ 

10.5281/zenodo.8400837 (ref. 34).
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Extended Data Table 1 | Baseline demographic and tumor characteristics for the study population split by lung 
adenocarcinoma and non-adenocarcinoma populations. Data are n (%), unless otherwise stated. Percentages may not sum 
to 100% due to rounding

Characteristic levels LUAD Non-LUAD p

n - 94 77 NA

Age (years) Mean (SD) 67.2 (8.9) 70.1 (8.0) 0.028

Sex Female 40 (42.6) 29 (37.7) 0.623

Male 54 (57.4) 48 (62.3)

Pathological TNM 1a 11 (11.7) 6 (7.8) 0.718

1b 17 (18.1) 16 (20.8)

2a 4 (4.3) 4 (5.2)

2b 25 (26.6) 27 (35.1)

3a 35 (37.2) 22 (28.6)

3b 2 (2.1) 2 (2.6)

Smoking status Ex-Smoker 41 (43.6) 46 (59.7) 0.086

Never Smoked 6 (6.4) 2 (2.6)

Smoker 47 (50.0) 29 (37.7)

Adjuvant treatment Adjuvant 46 (48.9) 36 (46.8) 0.896

No adjuvant 48 (51.1) 41 (53.2)

LUAD subtype Lepidic 6 (6.4)

Papillary 6 (6.4)

Acinar 23 (24.5)

Cribriform 7 (7.4)

Micropapillary 4 (4.3)

Solid 38 (40.4)

Invasive mucinous 10 (10.6)

Oncogenic event None 85 (90.4) 73 (94.8) 0.364

EGFR mutated 7 (7.4) 2 (2.6)

MET exon 14 skipped 2 (2.1) 2 (2.6)

Follow up (days; OS) Median (# of events) 1839 (39) 1862 (38) 0.84

Follow up (days; RFS) Median (# of events) 1821 (49) 1849 (40) 0.58

P values were calculated using chi-squared tests for categorical variables and t tests for continuous variables.
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Extended Data Table 2 | Baseline demographic and tumor characteristics for the current study presented alongside general 
characteristics of patients included in the work detailed in refs. 1,2. Data are n (%), unless otherwise stated. Percentages 
may not sum to 100% due to rounding

Characteristic levels Abbosh et al. 2023 Abbosh et al. 2017 NeXT Personal

Age (years) Mean (SD) 68.8 (9.4) 68.4 (9.3) 68.5 (8.6)

Sex Female 79 (40.9) 36 (37.5) 69 (40.4)

Male 114 (59.1) 60 (62.5) 102 (59.6)

Adjuvant treatment Adjuvant 77 (39.9) 28 (29.2) 82 (48.0)

No adjuvant 116 (60.1) 68 (70.8) 89 (52.0)

Histology Adenocarcinoma 101 (52.3) 57 (59.4) 94 (55.0)

Other 25 (13.0) 8 (8.3) 20 (11.7)

Squamous cell carcinoma 67 (34.7) 31 (32.3) 57 (33.3)

LUAD subtype Lepidic 4 (4.2) 10 (17.9) 6 (6.4)

Papillary 11 (11.5) 4 (7.1) 6 (6.4)

Acinar 33 (34.4) 21 (37.5) 23 (24.5)

Cribriform 9 (9.4) 1 (1.8) 7 (7.4)

Micropapillary 4 (4.2) 4 (4.3)

Solid 24 (25.0) 14 (25.0) 38 (40.4)

Invasive Mucinous 11 (11.5) 6 (10.7) 10 (10.6)

Pathological TNM IA 37 (19.2) 26 (27.1) 17 (9.9)

IB 37 (19.2) 32 (33.3) 33 (19.3)

IIA 40 (20.7) 14 (14.6) 8 (4.7)

IIB 30 (15.5) 10 (10.4) 52 (30.4)

IIIA 49 (25.4) 13 (13.5) 57 (33.3)

IIIB 1 (1.0) 4 (2.3)

Smoking status Ex-Smoker 103 (53.4) 49 (51.0) 87 (50.9)

Never Smoked 10 (5.2) 11 (11.5) 8 (4.7)

Smoker 80 (41.5) 36 (37.5) 76 (44.4)
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Extended Data Fig. 1 | Association between ctDNA and clinicogenomic 

features of NSCLC. a. Stacked barplot of the number of targets obtained from 

coding (grey) and noncoding (blue) regions of the genome for each panel. b. Dot 

plot depicting panel-specific limit of detection (LOD) in ppm in all pre-operative 

plasma samples. c. Scatterplot demonstrating the association of ctDNA level with 

pack years of smoking for preoperative samples. Fitted line represents a linear 

model, and the shaded area represents the 95% confidence interval. d. Boxplot of 

preoperative ctDNA level for each pathological subtype of lung adenocarcinoma. 

The boxplots depict the median at the middle line, the lower and upper hinges 

represent the first and third quartiles, respectively, the whiskers show minima 

to maxima no greater than 1.5× the interquartile range (IQR), with the remaining 

outlying data points plotted individually. Sample size is n = 94 patients. P value 

was calculated using two-sided Kruskal-Wallis rank sum test. e. Boxplot of 

preoperative ctDNA level by oncogenic event status. The boxplots depict the 

median at the middle line, the lower and upper hinges represent the first and 

third quartiles, respectively, the whiskers show minima to maxima no greater 

than 1.5× the IQR, with the remaining outlying data points plotted individually. 

Sample size is n = 171 patients. P value was calculated using two-sided Kruskal-

Wallis rank sum test. f. Barplot of patient oncogenic event status colored by 

preoperative ctDNA detection status. P value was calculated using two-sided 

Fisher’s exact test.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Increased assay sensitivity improves stratification 

of relapse-free survival. a. Kaplan–Meier (KM) curve demonstrating relapse-

free survival (RFS) within ctDNA-high (dark grey), ctDNA-low (light grey) and 

ctDNA-negative (green) patients with lung adenocarcinoma. ctDNA high and low 

groups were defined according to the median ctDNA levels across ctDNA-positive 

LUADs. P values were calculated using log-rank tests. b. KM curve demonstrating 

RFS within patients harbouring ctDNA at an estimated ppm below the limit 

of reliable detection described in Abbosh et al. 20232 (light grey), and ctDNA 

negative patients (green). P values were calculated using log-rank tests. c. KM 

curve illustrating difference in RFS between ctDNA-high and ctDNA-low patients 

with non-LUAD. P values were calculated using log-rank tests.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Multivariable analyses adjusting for known risk factors 

confirms independent prognostic value of pre-operative ctDNA.  

a. Multivariable Cox regression analysis for overall survival (OS) containing 

ctDNA (continuous, per 10-fold increase); histology; whether the patient 

received adjuvant chemotherapy; cigarette smoking status (in 10 pack year 

increments); pTNM stage; age (in 10 year increments); and the presence of an 

oncogenic event. n = 171 patients. b. Multivariable Cox regression analysis for 

relapse-free survival (RFS) containing ctDNA (continuous, per 10-fold increase); 

histology; whether the patient received adjuvant chemotherapy; cigarette 

smoking history; pTNM stage; age; and the presence of an oncogenic event. 

n = 171 patients. c. Multivariable Cox regression analysis for RFS containing 

ctDNA level (ctDNA-high, ctDNA-low, ctDNA-negative); histology; whether 

the patient received adjuvant chemotherapy; cigarette smoking history; 

pTNM stage; age.; and the presence of an oncogenic event. n = 171 patients. 

d. Multivariable Cox regression analysis for RFS in non-LUADs containing 

ctDNA level (ctDNA-high, ctDNA-low); whether the patient received adjuvant 

chemotherapy; cigarette smoking history; pTNM stage; age; and oncogenic 

events. n = 77 patients. e. Multivariable Cox regression analysis for RFS in non-

LUADs containing ctDNA (continuous); whether the patient received adjuvant 

chemotherapy; cigarette smoking history; pTNM stage; age; and oncogenic 

events. n = 77 patients. f. Multivariable Cox regression analysis for OS in non-

LUADs containing ctDNA (continuous, per 10-fold increase); sub-histology; 

whether the patient received adjuvant chemotherapy; cigarette smoking history; 

pTNM stage; age and oncogenic events. n = 77 patients. g. Multivariable analysis 

for RFS in non-LUADs containing ctDNA (continuous, per 10-fold increase); 

sub-histology; whether the patient received adjuvant chemotherapy; cigarette 

smoking history; pTNM stage; age; and oncogenic events. n = 77 patients. For all 

plots in this figure, error bars represent 95% confidence intervals. The size of the 

boxes represents the number of patients within each category.
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Extended Data Fig. 4 | The impact of sample age and preservation format on 

panel targets. a. Box and dot plot comparing number of high quality targets 

per panel from formalin-fixed paraffin embedded (FFPE) samples greater than 

5 years vs less than 5 years old. Horizontal dashed line at 1000 indicates QC 

threshold. Center line represents the median. The upper whisker is the maximum 

value of the data that is within 1.5 times the interquartile range over the 75th 

percentile. The lower whisker is the minimum value of the data that is within  

1.5 times the interquartile range under the 25th percentile. Sample size is n = 202.  

b. Failed FFPE or FFPE-derived panels which yielded fewer than 1000 high quality 

targets were re-generated using fresh frozen (FF) tissue where available. Green 

dots indicate samples included in our analysis, grey dots indicate those that 

failed to attain sufficient high quality targets for further processing. Where 

possible these panels were replaced with FF-derived panels. Connecting lines 

indicate paired patient panels designed from either FF or FFPE tumor sample. 

Center line represents the median. The upper whisker is the maximum value of 

the data that is within 1.5 times the interquartile range over the 75th percentile. 

The lower whisker is the minimum value of the data that is within 1.5 times the 

interquartile range under the 25th percentile. Sample size is n = 233 panels. One 

panel constructed from an FF tumor sample failed to attain 1,000 high-quality 

targets but was included to ensure that the cohort was representative of the wider 

TRACERx cohort. Two FF panels were constructed where FFPE panels had failed 

altogether; these are represented by green dots on the FF side not connected to 

an FFPE dot. c. Deming regression demonstrating agreement between measured 

ctDNA PPM and tumor molecules per milliliter of plasma. Fitted line represents a 

linear model, and the shaded area represents the 95% confidence interval.
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