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Neuronal polyunsaturated fatty acids are 
protective in ALS/FTD

 

Ashling Giblin    1,2,8,9, Alexander J. Cammack1,3,9, Niek Blomberg4, 

Sharifah Anoar2, Alla Mikheenko    1,3, Mireia Carcolé    1,3, Magda L. Atilano    2, 

Alex Hull    2, Dunxin Shen2, Xiaoya Wei2, Rachel Coneys1,3, Lele Zhou1,2, 

Yassene Mohammed    4, Damien Olivier-Jimenez    4, Lian Y. Wang4, 

Kerri J. Kinghorn2, Teresa Niccoli    2, Alyssa N. Coyne    5,6, Rik van der Kant7, 

Tammaryn Lashley    3, Martin Giera    3, Linda Partridge    2  & 

Adrian M. Isaacs    1,3 

Here we report a conserved transcriptomic signature of reduced fatty acid 
and lipid metabolism gene expression in a Drosophila model of C9orf72 
repeat expansion, the most common genetic cause of amyotrophic 
lateral sclerosis and frontotemporal dementia (ALS/FTD), and in human 
postmortem ALS spinal cord. We performed lipidomics on C9 ALS/FTD 
Drosophila, induced pluripotent stem (iPS) cell neurons and postmortem 
FTD brain tissue. This revealed a common and specific reduction in 
phospholipid species containing polyunsaturated fatty acids (PUFAs). 
Feeding C9 ALS/FTD flies PUFAs yielded a modest increase in survival. 
However, increasing PUFA levels specifically in neurons of C9 ALS/FTD 
flies, by overexpressing fatty acid desaturase enzymes, led to a substantial 
extension of lifespan. Neuronal overexpression of fatty acid desaturases also 
suppressed stressor-induced neuronal death in iPS cell neurons of patients 
with both C9 and TDP-43 ALS/FTD. These data implicate neuronal fatty acid 
saturation in the pathogenesis of ALS/FTD and suggest that interventions to 
increase neuronal PUFA levels may be beneficial.

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) 
are two progressive and invariably fatal neurodegenerative disorders. ALS 
is characterized by loss of upper and lower motor neurons in the brain and 
spinal cord, leading to muscle wasting and paralysis, whereas FTD leads 
to degeneration of the frontal and temporal lobes of the brain, resulting 
in behavioral and language abnormalities. It is now well established that 
ALS and FTD represent two ends of a disease continuum, with overlapping 
clinical and pathological features. ALS and FTD are also linked genetically, 
with the most common genetic cause of both diseases being an intronic 
G4C2 repeat expansion in the C9orf72 gene (C9 ALS/FTD)1,2.

The C9orf72 repeat is transcribed bidirectionally into sense and 
antisense repeat RNAs, which are translated into dipeptide repeat 
proteins (DPRs) by a process termed repeat-associated non-ATG 
(RAN) translation3–8. RAN translation occurs in all reading frames 
and on both strands to produce five distinct DPR species: poly(GR), 
poly(GP) and poly(GA) from the sense strand and poly(GP), poly(PR) 
and poly(PA) from the antisense strand. DPRs and the repetitive RNAs 
themselves have been implicated in driving neurodegeneration9–15. In 
addition, the repeat expansion leads to reduced levels of the C9orf72 
protein16,17, which may exacerbate gain-of-function mechanisms18,19.  
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repeat sequence is codon optimized to no longer produce G4C2 RNAs 
but does produce toxic poly(GR) through ATG-driven translation9,27. 
We found that RO flies, but not GR36 flies, recapitulate the reduction 
in PUFA-containing phospholipids observed in C9 fly brains (Extended 
Data Fig. 2a–c). This indicates that reduction in phospholipid unsatura-
tion is driven by repeat RNA rather than DPRs.

To determine whether these lipidomic alterations are con-
served in a human model, we performed lipidomic analyses on C9 
repeat-containing iPS cell cortical neurons and isogenic controls, 
which were induced with the i3Neuron protocol28,29 and collected 21 d 
later (Fig. 2a). As in the C9 flies, we observed a striking shift toward 
higher phospholipid saturation and loss of highly polyunsaturated 
phospholipids (containing fatty acyl chains with four or more double 
bonds) compared with controls (Fig. 2b,c and Extended Data Fig. 3a–c). 
To confirm that these changes were driven by the C9 repeat expansion 
and not cell-line variability, or other mechanisms such as C9orf72 loss of 
function, we next performed lipidomic analyses in two cross-validation 
experiments (Fig. 2a). In the first, we exogenously expressed C9 repeats 
in control iPS cell neurons by transducing with (G4C2)92 or (G4C2)2 lenti-
viruses. As expected, lentiviral repeat expression resulted in substan-
tial DPR production in (G4C2)92- but not (G4C2)2-transduced neurons 
(Extended Data Fig. 4). Exogenous repeat expression in control iPS cell 
neurons recapitulated the loss of highly polyunsaturated phospho-
lipids that we observed in the C9 patient lines (Fig. 2b,c). This shows 
that expression of expanded C9orf72 repeats is sufficient to drive the 
lipid changes observed. Next, we treated our three C9 lines with an 
antisense oligonucleotide (ASO) that specifically targets transcripts 
containing the C9 repeat7. This led to an almost complete (>95%) reduc-
tion in DPRs compared with a nontargeting (NT) control, confirming 
effective knockdown (Extended Data Fig. 4). C9 repeat knockdown 
prevented the reduction in highly polyunsaturated phospholipids that 
we observed in the C9 patient lines, suggesting that the C9 repeat was 
driving these changes (Fig. 2b,c and Extended Data Fig. 3a,d,e). Lipid 
class proportionality was similar across conditions, suggesting that 
these observations are the result of a specific shift in phospholipid 
saturation rather than a global alteration in lipid class abundance 
(Extended Data Fig. 5a). Together, these results demonstrate a striking 
and specific decrease in PUFA-containing phospholipid species caused 
by the presence of expanded C9 repeats.

Given our observation of conserved phospholipid saturation 
alterations in i3Neurons, we wondered whether this was being driven 
by an alteration in neuronal desaturase expression as observed in 
our C9 flies. We assayed RNA levels of FASN, as well as the four major 
neuronal lipid desaturases, SCD, SCD5, FADS1 and FADS2, in DIV21 i3Neu-
rons, but found no significant changes in any of these genes compared 
with isogenic control lines at this timepoint (Extended Data Fig. 5b). 
This suggests that either desaturase expression is altered at an earlier 
timepoint than we assayed here or alternative upstream mechanisms 
are driving the observed lipidomic saturation shifts in C9 i3Neurons.

Altered phospholipid saturation in FTLD postmortem frontal 
cortex
We next asked whether phospholipid saturation dysregulation 
is also present in human disease tissue. We performed lipidomic 
analyses on postmortem affected (frontal cortex) and less affected 
(cerebellum) brain tissue from a large cohort of 47 individuals with 
neuropathologically confirmed FTD, termed frontotemporal lobar 
degeneration (FTLD), 15 of whom had a C9 mutation and 13 age- and 
sex-matched, healthy controls (Fig. 3a). In concordance with our fly 
and iPS cell-neuron data, in FTLD frontal cortex we observed a decrease 
in highly unsaturated phospholipids, particularly those containing 
four or more double bonds in their most unsaturated fatty acyl chain 
(Fig. 3b,c and Extended Data Fig. 6a,b), whereas lipid class proportional-
ity was similar between control and FTLD tissue in both brain regions 
(Extended Data Fig. 6c,d). It is interesting that there was one exception, 

Despite numerous cellular pathways implicated downstream of the 
C9orf72 repeat expansion since its discovery20,21, the molecular mecha-
nisms driving neuronal loss are still unclear.

The brain has the second highest lipid content of any organ in the 
body, where these molecules serve as critical components of neuronal 
and organellar membranes. Brain lipids contain a particularly high 
proportion of polyunsaturated fatty acids (PUFAs)22 and epidemiologi-
cal studies have demonstrated that increased dietary consumption of 
PUFAs, particularly ω-3 PUFAs, is associated with decreased ALS risk 
and longer survival after onset23–25. However, a molecular understand-
ing of these findings and their relevance to neurodegeneration are 
unclear. Thus, in the present study, we sought to characterize lipid 
changes associated with C9 ALS/FTD and understand their contribu-
tion to neurodegeneration.

Results
Fatty acid and lipid metabolism pathways are decreased in C9 
ALS/FTD
To identify pathways dysregulated in neurons in response to expres-
sion of the pathological C9orf72 repeat (C9) expansion, we performed 
RNA sequencing (RNA-seq) on Drosophila heads with 36 G4C2 repeats 
expressed exclusively in adult neurons9 (Fig. 1a). These experiments 
were performed at an early timepoint (5 d of repeat expression) to 
assess early gene expression changes. Gene ontology (GO) enrich-
ment analysis of differentially expressed genes (DEGs) identified only 
three GO terms enriched among upregulated pathways (Extended 
Data Fig. 1a). However, among the most significantly downregu-
lated pathways, we observed multiple terms related to fatty acid and 
lipid metabolism (Fig. 1b). This included reduction of several genes 
throughout the canonical long-chain fatty acid synthesis and desatu-
ration pathway, such as AcCoAS, FASN1, FASN2 and Desat1 (Fig. 1c,d 
and Extended Data Fig. 1b). To determine whether these lipid gene 
expression changes were conserved in human disease, we reanalyzed 
the largest bulk RNA-seq dataset generated from ALS postmortem 
spinal cords, comprising 138 cases of ALS and 36 non-neurological 
disease controls26. Strikingly, genes in the same lipid and fatty acid 
metabolism pathway were also downregulated in ALS spinal cords, 
including ACACA, ACSS2, FASN, ELOVL6 and SCD (orthologous to Dros-

ophila ACC, AcCoAS, FASN1/FASN2, Baldspot and Desat1, respectively) 
(Extended Data Fig. 1c). These genes were similarly downregulated in 
the subset of 28 spinal cords of patients with C9 ALS present within 
the dataset (Extended Data Fig. 1c). Together, these findings demon-
strate conserved transcriptional dysregulation of lipid metabolism, and 
specifically downregulation of fatty acid synthesis and desaturation 
processes, in ALS/FTD neurons.

Altered phospholipid saturation in C9orf72 flies and iPS cell 
neurons
In light of the dysregulation of the fatty acid and lipid metabolism 
transcriptional signature, we next determined whether lipids were 
altered in C9 fly brains. We dissected brains from C9 and wild-type 
control flies after 7 d of repeat expression and conducted lipidomic 
analysis of >1,400 complex lipid species (Fig. 1e). Among the different 
lipid classes that were measured, these experiments revealed a consist-
ent change across phospholipid species (Fig. 1f,g). Phospholipids are 
composed of two fatty acyl chains and a head group. The number of dou-
ble bonds in each chain determines their saturation with zero double 
bonds being a completely saturated fatty acid (SFA) and each additional 
double bond increasing unsaturation. Species with two or more double 
bonds are classed as PUFAs. We observed a marked shift toward higher 
phospholipid saturation and loss of PUFA-containing phospholipids 
compared with control brains (Fig. 1f,g). To test whether this phenotype 
was being driven by repeat RNA or DPRs, we then conducted lipidomics 
on brains from RNA-only (RO) flies, where the repeat is interrupted by 
stop codons and does not produce DPRs, and GR36 flies, in which the 

http://www.nature.com/natureneuroscience


Nature Neuroscience

Article https://doi.org/10.1038/s41593-025-01889-3

in species containing arachidonic acid (C20:4), some of which were 
upregulated in FTLD tissues. This is consistent with the association of 
arachidonic acid with inflammatory signaling30, highlighting additional 
lipid alterations that occur in end-stage disease, as well as a previous 
study showing elevated arachidonic acid in C9 repeat disease models31. 
These changes in highly polyunsaturated phospholipids were largely 
specific to the frontal cortex. In both tissue regions, we also observed 
a decrease in species containing linoleic acid (C18:2), an essential PUFA 
that is a precursor for highly unsaturated fatty acid species32. Thus, 

consistent with C9 flies and iPS cell neurons, FTLD postmortem brains 
displayed a reduction in highly polyunsaturated species, specifically 
in the affected region.

Promoting neuronal fatty acid desaturation increases C9 fly 
survival
To determine whether dysregulated lipid metabolism directly contrib-
utes to neurotoxicity, we first asked whether dietary supplementation 
with fatty acids could rescue survival of C9 flies. The PUFAs linoleic acid 
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Fig. 1 | Transcriptomic and lipidomic analyses reveal downregulation of fatty 

acid and lipid metabolism genes and loss of PUFA-containing phospholipids 

in C9 flies. a, C9 flies were induced for 5 d before performing RNA-seq on heads 

compared with age-matched uninduced controls. b, GO biological process 

enrichment analyses showing lipid metabolism terms significantly enriched 

among downregulated genes in RNA-seq comparison of C9-induced fly heads 

versus uninduced controls (n = 4 biological replicates, with 15 fly heads per 

replicate). Genotype: UAS-(G4C2)36; elavGS. c, Volcano plot highlighting 

significantly downregulated fatty acid synthesis and desaturation genes in C9 fly 

heads. AcCoAS, Acetyl-coenzyme A synthetase. DEGs in b and c were calculated 

with DEseq2 using default parameters (Methods). d, Simplified long-chain fatty 

acid synthesis and desaturation pathway, with Drosophila genes in boxes and 
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genes that were significantly downregulated in C9 fly heads. The ‘C’ number 
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for lipidomics analyses. f, Heatmap displaying all detected phospholipids as 
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double bonds) colored cyan. Genotypes: elavGS, UAS-(G4C2)36; elavGS.
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(C18:2) and α-linolenic acid (C18:3) (Fig. 4a) significantly but modestly 
extended median survival of C9 flies by 12–15% (Fig. 4b,c and Extended 
Data Fig. 7a–c), whereas adding saturated or monounsaturated fatty 
acid species (palmitic acid (C16:0), stearic acid (C18:0) and oleic acid 
(C18:1)) had either no effect or decreased survival (Extended Data 
Fig. 7d–f). The extensions in survival generated by PUFA supplemen-
tation were specific to the disease model, because supplementing 
wild-type flies with linoleic acid or α-linolenic acid either decreased 
or had no effect on wild-type survival (Extended Data Fig. 7g,h).  
Furthermore, these rescues were not the result of an alteration in feed-
ing behavior, as measured by the proboscis extension assay (Extended 
Data Fig. 7i,j).

As the rescue with feeding PUFAs was modest, we next asked 
whether neuronal overexpression of fatty acid synthase or desaturase 
genes, which encode enzymes that produce and desaturate long-chain 
fatty acids, respectively (Fig. 4a), could prevent C9-associated neu-
rodegeneration in vivo. We crossed our C9 flies to flies overexpress-
ing lipid pathway genes, using the same adult neuronal driver as the 

C9 repeats, and measured survival. Although overexpression of the 
fatty acid synthase genes FASN1 and FASN2 resulted in survival exten-
sions (Extended Data Fig. 8a–c), the most impressive rescues occurred 
when overexpressing fatty acid desaturases. Overexpression of Desat1, 
which introduces a double bond into the acyl chain of saturated fatty 
acids (for example, C18:0) to produce the monounsaturated fatty 
acid oleic acid (C18:1) significantly extended C9 fly survival, increas-
ing median survival from 15 d to 25 d, an increase of 67% (Extended 
Data Fig. 8d). Linoleic acid (C18:2) and α-linolenic acid (C18:3) are 
termed essential fatty acids, because these species cannot be syn-
thesized endogenously by most animals, including Drosophila and 
humans, and must be obtained from the diet to serve as precursors for 
generating more highly unsaturated PUFAs. However, the nematode 
Caenorhabditis elegans does possess fatty acid desaturases capable 
of endogenously synthesizing these essential PUFAs from more satu-
rated precursors. Neuronal expression in C9 Drosophila of C. elegans 

FAT-2, a Δ12/Δ15 fatty acid desaturase that produces linoleic acid and 
α-linolenic acid from monounsaturated fatty acids33,34, provided an 
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even greater rescue, extending median survival from 15 d to 27.5 d, an 
increase of 83% (Fig. 4d). We confirmed that both desaturases modified 
lipid saturation in the expected way, with Desat1 converting C18:0 to 
C18:1 (Extended Data Fig. 8e) and FAT-2 causing a marked conversion 
of C18:1 to C18:2 and C18:3 in C9 fly brains (Fig. 4e). Importantly, these 
genetic rescues were not the result of an effect on DPR levels, because 
poly(GP) levels in C9 fly heads were unchanged by overexpression of 
any lipid-related genes (Extended Data Fig. 8f,g).

Lipid saturation influences the biophysical properties of cellular 
membranes, particularly the packing of membrane phospholipids, with 
increased unsaturation resulting in an increase in membrane fluidity33,35,36. 
As membrane fluidity increases with temperature, poikilothermic  
Drosophila must adjust their membrane lipid content on temperature 
fluctuations to survive37,38. Indeed, Drosophila alter their feeding prefer-
ences in response to cold exposure to incorporate more PUFAs into their 
lipid bilayers to maintain their membrane fluidity38. Therefore, to inves-
tigate the mechanism by which neuronal desaturase expression is ben-
eficial and whether membrane fluidity plays a role, we used a Drosophila 
cold-stress membrane fluidity paradigm. C9 flies were exposed to 4 °C 
for 18 h, which causes a cold-induced paralysis attributable to decreased 
membrane fluidity33,39,40, and then returned to room temperature, with 
recovery scored 1 h later (Fig. 4f). Whereas all nonrepeat-expressing con-
trol flies showed a full recovery after this period, 42% of flies expressing 
(G4C2)36 were dead and 54% were partially paralyzed, with only 2% exhib-
iting a full recovery (Fig. 4g). Strikingly, overexpressing either Desat1 or 
FAT-2 specifically in neurons prevented death entirely after cold exposure 
in C9 flies and resulted in a dramatically improved recovery (Fig. 4g). 
These data suggest that an increase in membrane fluidity contributes to 
the beneficial effect of neuronal desaturase overexpression.

We next asked whether loss of fatty acid synthesis or desaturation 
exacerbates neurodegeneration or is sufficient to induce neurodegen-
eration on its own. Knocking down FASN1 in neurons did not alter C9 
fly survival, however, expressing a Desat1 hypomorphic mutant allele 
exacerbated toxicity in C9 flies, reducing survival and worsening toler-
ance in the cold-stress assay (Extended Data Fig. 8h–j). We then tested 
whether loss or overexpression of these genes can modify lifespan and 
neurodegeneration in wild-type flies. Knocking down FASN1 or Desat1 
in eye neurons of wild-type flies using a GMR-GAL4 driver was not 
sufficient to induce neurodegeneration (Extended Data Fig. 8k,l) and 
FASN1 knockdown in all neurons did not significantly modify wild-type 
fly lifespan (Extended Data Fig. 8m), suggesting that loss of these 
genes is insufficient to induce neurodegeneration on its own. Similarly, 
overexpressing these genes in neurons of healthy control flies had 
either no effect on survival or increased survival by a much smaller 
magnitude than that observed in the context of C9 repeats (Extended 
Data Fig. 8n–q). Thus, neuronal fatty acid desaturation alterations 
appear to sensitize neurons to degeneration and, accordingly, promot-
ing lipid desaturation within neurons is beneficial for ameliorating 
C9-associated neurodegeneration in vivo.

FAT-1 or FAT-2 rescue stressor-induced toxicity in C9 iPS cell 
neurons
We next investigated whether lipid desaturase overexpression can 
prevent C9-driven neurotoxicity in iPS cell neurons. We first sought 
to confirm in our i3Neuron system that desaturase overexpression is 
able to increase lipid unsaturation. FAT-1 is a C. elegans lipid desaturase 
which adds a double bond to ω-6 fatty acids to create the more highly 
unsaturated ω-3 species41. As expected, we observed that lentiviral 
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expression of FAT-1 caused an increase in ω-3 fatty acids (for exam-
ple, C20:5 and C22:6) and concomitant decrease in ω-6 species (for 
example, C20:4), both in the free fatty acid pool and in phospholipids 
(Extended Data Fig. 9a–e). FAT-2, as a Δ12/Δ15 fatty acid desaturase, 
creates both ω-3 and ω-6 species from less unsaturated precursors34. 
Accordingly, our lipidomic analysis revealed that FAT-2 overexpression 
in C9 i3Neurons resulted in substantial increases in the essential fatty 
acids linoleic acid (C18:2) and α-linolenic acid (C18:3), as well as their 
more highly unsaturated derivatives (for example, C20:4, C20:5 and 
C22:6), in both the free fatty acid and phospholipid classes (Extended 
Data Fig. 9a–e). Thus, desaturase overexpression is a potent augmenter 
of lipid unsaturation in vitro.

We then tested whether overexpression of desaturase genes could 
prevent C9-associated neurodegeneration in human C9 neurons. We 
overexpressed FAT-1, FAT-2 or a BFP-only control in C9 iPS-cell-derived 
spinal neurons (iPS cell-SNs) and then exposed them to high levels of 
glutamate to induce excitotoxicity (Fig. 5a). As previously reported10,42, 
C9 SNs exhibited heightened susceptibility to excitotoxic cell death 

compared with SNs derived from healthy donor iPS cells (Fig. 5b–d). 
Importantly, however, overexpression of either FAT-1 or FAT-2 was suf-
ficient to partially rescue glutamate-induced toxicity, significantly 
decreasing cell death in C9 SNs compared with BFP-only control 
(Fig. 5b–d). Thus, desaturase overexpression is beneficial in pre-
venting C9-associated neurodegenerative phenotypes in human C9 
neurons.

Finally, we wondered whether the protective effect of desaturase 
overexpression might extend to other forms of ALS as well. To test 
this, we used our glutamate excitotoxicity assay on mutant TDP-43 
or SOD1 iPS cell-SNs (Fig. 5e). In both disease groups, we observed 
heightened vulnerability to glutamate stress compared with control 
neurons (Fig. 5f–h). Overexpression of either FAT-1 or FAT-2 was able to 
partially rescue toxicity in TDP-43, but not SOD1 neurons (Fig. 5f–h). 
These results are consistent with the finding that lipid dysregulation is 
also found in sporadic ALS and FTLD (Fig. 3 and Extended Data Fig. 1c) 
and suggests that PUFA upregulation may be a common mechanism to 
combat stress that is protective in non-C9 ALS cases as well.
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e, Schematic of glutamate-induced excitotoxicity assay in TDP-43 and SOD1 
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Discussion
In the present study, we uncovered lipid metabolism dysregulation 
in multiple models of C9 ALS/FTD, including transgenic Drosophila, 
iPS-cell-derived neurons and patient postmortem brain and spinal cord 
tissue of patients with ALS and FTD. We first identified transcriptional 
dysregulation of canonical fatty acid synthesis and desaturation genes, 
which was present at a predegeneration timepoint in C9 fly heads and 
was conserved in end-stage disease in ALS postmortem spinal cord 
tissue. Through lipidomic assays in C9 flies, iPS-cell-derived neurons 
and FTLD postmortem brains, we identified a loss of PUFA-containing 
phospholipids. In vitro, this was recapitulated by transduction of con-
trol neurons with 92 G4C2 repeats and prevented by treatment with a 
C9 ASO, demonstrating a disease-specific lipid signature. Importantly, 
promoting lipid desaturation through neuronal desaturase overexpres-
sion prolonged survival of C9 flies and rescued glutamate-induced 
excitotoxicity in C9 and TDP-43 patient iPS cell-SNs. C9 flies also dis-
played a dramatic defect in cold-stress recovery, a measure of impaired 
membrane fluidity, which was strongly reversed by neuronal desatu-
rase overexpression. Together, this suggests a functional role for lipid 
unsaturation in modifying neurodegeneration in ALS/FTD.

Growing evidence links dysregulated lipid homeostasis to neuro-
degenerative diseases, including ALS/FTD. Several studies have shown 
altered levels of lipid species in postmortem tissue43, cerebrospinal 
fluid44,45 and blood46–48 of patients with ALS/FTD as well as ALS rodent 
models49. PUFAs have been specifically linked to ALS pathogenesis, 
with multiple epidemiological studies suggesting a protective role for 
dietary PUFAs in decreasing risk of developing ALS24,25,50. A recent study 
of plasma fatty acids from 449 patients with ALS revealed that higher 
levels of plasma α-linolenic acid (C18:3) at baseline are associated with 
prolonged survival and slower functional decline, whereas increased 
plasma linoleic acid (C18:2) and eicosapentaenoic acid (C20:5) were 
associated with a reduced risk of death during follow-up23. Linoleic acid 
and α-linolenic acid are essential PUFAs that must be obtained from the 
diet and serve as precursors for the highly unsaturated species arachi-
donic acid (C20:4), eicosapentaenoic acid (C20:5) and docosahexae-
noic acid (C22:6)51. In the present study, we report that a wide range of 
PUFA-containing phospholipids are altered in C9 flies, iPS cell neurons 
and FTLD postmortem frontal cortex. It is interesting that in our fly 
experiments the effect appeared to be driven by repeat RNAs, rather 
than the highly toxic DPRs. This was surprising because the repeat RNA 
alone is not sufficient to drive neurodegeneration in flies9,52. This indi-
cates that the presence of repeat RNA is sensitizing but that additional 
stressors are required to cause overt neurodegeneration. Consistent 
with this possibility, knockdown of the fatty acid desaturase Desat1 in 
wild-type flies was not sufficient to cause neurodegeneration on its 
own. This suggests that lipid saturation alteration is probably part of a 
‘multistep’ disease process53, but importantly it is one that can be modu-
lated to provide benefit. The mechanism by which repeat RNA leads to 
reduced phospholipid desaturation is not clear, but one possibility is 
that it could be driven by nucleocytoplasmic transport impairment, 
which could lead to mislocalization of master transcriptional regula-
tors of lipid metabolism, such as sterol regulatory element-binding 
proteins or peroxisome proliferator-activated receptors, causing the 
widespread transcriptional dysregulation of lipid metabolism, with the 
resulting effects on lipid species reported here54–56. Although we see 
transcriptional changes that probably drive lipid changes in flies, it is 
possible that there are other triggers in the i3Neurons as well as sporadic 
ALS. For instance, alterations in lipid saturation could be a ‘lipid stress 
response’ to neurodegenerative insults. Our ‘DPR-only’ flies expressing 
36 GR repeats exhibited an almost opposite brain lipid signature to that 
of RO flies and (G4C2)36 flies, with most PUFA-containing phospholipids 
appearing as increased compared with controls. As (GR)36 flies exhibit a 
highly aggressive neurodegenerative phenotype, it is still possible that 
they would also show reduced PUFA-containing phospholipids at ear-
lier timepoints, although at this later disease stage surviving neurons 

that contain polyunsaturated phospholipids remain. This would be 
consistent with a loss of PUFAs sensitizing neurons to degeneration. 
A limitation of our study is the use of one Drosophila G4C2 repeat line, 
(G4C2)36, preventing us from assessing whether the number of repeats 
correlates with desaturation levels. Future work comparing lines with 
varying numbers of G4C2 repeats, inserted in the same locus, using the 
same driver and with otherwise genetically identical backgrounds, will 
help address this interesting question.

Our data fit well with the epidemiological evidence of PUFA levels 
and intake being protective in ALS, but crucially suggest that delivery 
of PUFAs to neurons is a key determinant of their protective function. 
We were able to study C9 lipid dysregulation specifically in neurons 
by using an inducible neuronal driver in Drosophila and employing 
pure neuronal cultures for lipidomic analyses. Using this approach, we 
observed a strikingly enhanced benefit of neuronal overexpression of 
desaturases in flies versus feeding PUFAs in the diet. To reach the brain, 
PUFAs need to pass the gut barrier, as well as the blood–brain barrier 
(BBB), and therefore the absolute quantities that reach neurons from 
the diet are unclear. A metabolic labeling study recently suggested 
that dietary sources account for 60–70% of the PUFAs in the mouse 
brain57. However, the efficiency of BBB transport varies for each fatty 
acid species58. This delivery issue may explain the differences in survival 
benefits observed between genetic overexpression of desaturases 
versus pharmacological supplementation of their fatty acid products, 
although we cannot rule out that dietary linoleic acid and α-linolenic 
acid may partially mediate their survival benefits through systemic 
actions. Furthermore, we have been able to show increased neuronal 
protection with increased unsaturation, demonstrating that any single 
gene in the lipid synthesis and desaturation pathway that can ultimately 
increase PUFAs in neurons can be beneficial; however, the extent of 
benefit is greater as one goes further down the pathway and increases 
the degree of unsaturation, with the benefit greatest with FAT-2, then 
Desat1, followed by FASN1 and FASN2.

Aging is a major risk factor for both ALS and FTD59,60. It is interest-
ing that overexpression of either FASN1 or Desat1 in neurons also sig-
nificantly increased wild-type fly lifespan (although to a lesser degree 
than in C9 flies), suggesting that this pathway may also be beneficial 
to aging neurons and warrants further investigation in this context. 
Furthermore, we observed lipid-related transcriptional dysregulation 
and decreased PUFA-containing phospholipids, not only in our C9 
models but also in non-C9 ALS/FTD postmortem material. Although 
our data show that C9 repeats are sufficient to drive lipid saturation 
changes, there must be other parallel pathways that induce these 
changes in sporadic forms of the disease and aging-related changes are 
an obvious candidate. Taken together, impaired lipid metabolism is a 
common dysregulated pathway in ALS/FTD and it will now be important 
to investigate the different drivers of lipid-related changes.

Lipid saturation, along with fatty acyl chain length and head 
group composition, influences membrane physicochemical proper-
ties and physiological functions61,62. The role of unsaturated lipids 
in modulating membrane fluidity has been well described36,63–67. 
Our study explored membrane fluidity in a physiological paradigm 
by testing the ability of flies to recover from cold stress. Flies neu-
ronally expressing (G4C2)36 were sensitive to cold stress, which was 
ameliorated by overexpressing either Desat1 or FAT-2 with the same 
neuronal driver, suggesting that these desaturase enzymes are flu-
idizing neuronal membranes. Future studies are now warranted to 
assess the role of neuronal membrane fluidity in neurodegeneration. 
In addition to altering membrane dynamics, other mechanisms may 
also be involved. For example, PUFAs can be de-esterified from mem-
brane phospholipids and converted to bioactive signaling molecules 
known as oxylipins68–71. Elevated levels of arachidonic acid-derived 
oxylipins, called eicosanoids, have previously been reported in ALS 
motor neurons, whereas inhibiting their production through 5-LOX 
inhibition has been shown to rescue toxicity in the developing eye 
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in a C9 Drosophila model31, thus highlighting another PUFA-related 
pathway that may contribute to disease.

Although we focus here on neuronal lipids, future work may ben-
efit from expanding these studies to glial and co-culture paradigms 
to unpick the interplay between different cell types. Indeed, recent 
work demonstrated that reactive astrocytes secrete saturated fatty 
acids, which promote motor neuron degeneration in ALS models72–75, 
whereas astrocyte-specific knockout of ELOVL1, an enzyme responsible 
for producing long-chain saturated lipids, reduced astrocyte-mediated 
neuronal toxicity in vitro and in vivo72. These data are in line with our 
findings because they converge on the hypothesis that PUFAs are 
protective to neurons whereas saturated fatty acids are harmful, which 
further highlights an important role for lipid desaturation in ALS/FTD 
pathogenesis. Overall, the results presented in the present study iden-
tify dysregulated lipid metabolism as a direct contributor to neuronal 
toxicity in C9 ALS/FTD and suggest that modulating neuronal lipid satu-
ration is a promising approach for ameliorating neurodegeneration.
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Methods
Ethics statement
Patient iPS cell lines were collected with prior informed patient consent 
and derived from biopsied fibroblasts. Ethical approval was received 
from the National Healtlh Service (NHS) Health Research Authority East 
of England, Essex Research Ethics Committee (REC, reference no. 18/
EE/0293). Brains were donated to the Queen Square Brain Bank (QSBB; 
UCL Queen Square Institute of Neurology) with full informed consent. 
Clinical and demographic data for all brains used in the present study 
were stored electronically in compliance with the 1998 Data Protection 
Act and are summarized in Supplementary Table 1. Ethical approval for 
the study was obtained from the NHS research ethics committee and 
in accordance with the human tissue authority’s code of practice and 
standards under license no. 12198. All cases underwent a pathological 
diagnosis for FTLD according to current consensus criteria76,77.

Drosophila maintenance
Drosophila stocks were maintained on SYA food (15 g l−1 of agar, 50 g l−1 
of sugar, 100 g l−1 of autolysed yeast, 30 ml l−1 of nipagin (10% in ethanol) 
and 3 ml l−1 of propionic acid) at 25 °C in a 12-h light:dark cycle with 60% 
constant humidity. For RU486-induced experiments, food was sup-
plemented with 200 µM RU486 (mifepristone). The elavGS stock was 
derived from the original elavGS 301.2 line78 and generously provided 
by H. Tricoire (CNRS, France)79. UAS-FASN1 and UAS-FASN2 lines were a 
gift from J. Montagne (Université Paris-Sud)80. The UAS-FASN RNAi line 
was obtained from Vienna Drosophila Resource Center (VDRC, cat. no. 
v29349). The w1118 line (BDSC, cat. no. 3605), GMR-GAL4 line (BDSC, 
cat. no. 9146) and UAS-Desat1 RNAi line (BDSC, cat. no. 37512) were 
obtained from the Bloomington Drosophila Stock Center (BDSC). The 
UAS-Desat1 (DGRC, cat. no. 118679), UAS-FAT-2 (DGRC, cat. no. 118682) 
and UAS-Desat1(42) (DGRC, cat. no. 118681) lines were obtained from 
the Kyoto Drosophila Stock Center33. The UAS-(G4C2)36, RO and (GR)36 
stocks have been previously described9,27. All stocks were backcrossed 
to either a w1118 strain or v-w1118 stock for six generations before use 
in experiments. Stocks used in the present study are listed in Supple-
mentary Table 2.

Fatty acid supplementation to Drosophila food
Fatty acids were added to SYA food, along with 200 µM RU486 
(Sigma-Aldrich), although it was still liquid but had cooled to 50 °C. 
The food was mixed thoroughly with an electric handheld blender, 
before dispensing into individual vials. Fatty acids used were palmitic 
acid (Merk, cat. no. W283215), stearic acid (Thermo Fisher Scientific, 
cat. no. 10002390), oleic acid (Merck, cat. no. W281506), linoleic acid 
(Merck, cat. no. 436305) and α-linolenic acid (Merck, cat. no. L2376).

Drosophila behavioral and lifespan assays
Lifespan assays. The parental generation of experimental crosses was 
allowed to lay for 24 h on grape-agar plates supplemented with yeast 
paste. Eggs were washed briefly in 1× phosphate-buffered saline (PBS), 
pH 7.4 before being dispensed into bottles using a pipette at a stand-
ard density (20 µl of eggs in PBS, approximately 300 eggs). Then, 2-d 
post-eclosion flies were allocated to experimental vials at a density of 
15 flies per vial. Deaths were scored and flies tipped on to fresh food at 
least 3× a week. All lifespans were performed at 25 °C on mated females.

Drosophila eye phenotype analysis. Flies carrying the UAS-FASN1 
RNA interference (RNAi) or UAS-Desat RNAi construct were crossed 
to GMR-GAL4 flies at 25 °C. Then 2-day-old adult F1 female flies were 
used, with one eye per fly imaged using a stereomicroscope. All images 
were obtained under the same magnification; eye area was calculated 
from each image using Fiji.

Assessment of Drosophila feeding. The 2-day-old mated female flies 
were transferred to SYA food containing 200 µM RU486 or ethanol 

vehicle control with PUFAs at a density of five per vial on the evening 
before the assay, with between seven and nine replicate vials per experi-
mental group. Vials were coded and placed in a randomized order in 
rows on viewing racks at 25 °C overnight. The next day, observations 
were performed ‘blind’ for 90 min, commencing 1 h after lights on 
and 30 min after the arrival of the observer to the room. In turn, each 
vial was observed for approximately 5 s, during which the number of 
flies feeding was noted. A feeding event was scored when a fly had its 
proboscis extended and touching the food surface while performing a 
bobbing motion. Once all vials in the experiment had been scored, nine 
additional rounds of observations were carried out in the same way for 
the whole 90 min. At the end of the assay, the vial labels were decoded 
and the feeding data expressed as a proportion by experimental group 
(sum of scored feeding events divided by total number of feeding 
opportunities, where total number of feeding opportunities = no. 
of flies in vial × no. of vials in the group × no. of observations)81. For 
statistical analyses, comparisons between experimental groups were 
made on the totals of feeding events by all flies within a vial, to avoid 
pseudoreplication.

Cold-stress recovery assay. Drosophila were induced on SYA medium 
containing 200 µM RU486 or ethanol vehicle control for 7 d, before 
exposure to 4 °C for 18 h to cause a cold-induced paralysis response. 
At the end of this period, lies were moved to room temperature for 
1 h and recovery was assessed39. The number of flies exhibiting a full 
recovery (walking), partial recovery (partial paralysis) or death were 
quantified and expressed as a percentage of the total. The results were 
analyzed using the χ2 test.

Drosophila RNA-seq
Adult female flies were induced on SYA medium containing 200 µM 
RU486 or ethanol vehicle control for 5 d and subsequently snap fro-
zen. Total RNA was isolated from 15 heads per replicate using TRIzol, 
and the experiment was performed in quadruplicate. RNA-seq was 
performed with an Illumina NextSeq2000, using 16 million paired-end 
reads per sample and 100-bp read length. Raw sequence reads were 
aligned to the Dm6 reference genome. DESeq2 (default parameters) 
was used to perform differential expression analysis (DEGs provided 
in Supplementary File 2). The ‘runTest’ function from the topGO pack-
age (v.2.53.0)82 was used to perform GO enrichment analysis on DEGs 
(log2(fold-change) > 0.58). The ‘weight01’ algorithm and ‘fisher’ statis-
tic were used when running topGO. The ‘GenTable’ function was used 
to generate a table with the top biological process GO terms. Plots 
with topGO terms were plotted using ggplot2 (v.3.4.2). We generated a 
heatmap for topGO terms showing the percentage of significant DEGs 
among all genes of a GO term expressed in a dataset using the pheatmap 
function from the pheatmap package (v.1.0.12, https://CRAN.R-project.
org/package=pheatmap).

RT–qPCR
Total RNA from fly heads was extracted from 15 heads per replicate, 
as above. Total RNA from i3Neurons was extracted from one well of 
a six-well plate per technical replicate using the using the Promega  
ReliaPrep RNA Cell Miniprep System using the manufacturer’s protocol, 
including DNase I digestion.

For reverse transcription (RT) in fly head samples, approximately 
1 µg of RNA per sample (10.6 µl) was incubated with 2 µl of TURBO 
DNase (Thermo Fisher Scientific) and 1.4 µl of TURBO DNase buffer 
(Thermo Fisher Scientific) at 37 °C for 15 min. After this, the reaction 
was inhibited with addition of 2 µl of EDTA to a final concentration of 
3.4 mM, followed by incubation at 75 °C for 5 min. Then 2 µl of 0.5 µg µl−1 
of oligo dT and 2 µl of dNTP mix (10 mM stock made from individual 
100 mM dNTP stocks, Invitrogen) were added to each sample followed 
by a 5-min incubation at 65 °C. After this, samples were placed on ice. 
To each reaction, the following was added: 8 µl of 5× first-strand buffer, 
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8 µl of 25 mM MgCl2, 4 µl of 0.1 M dithiothreitol, 2 µl of RNaseOut RNase 
inhibitor (40 units µl−1) and 1 µl of SuperScript II reverse transcriptase 
(Invitrogen). Samples were incubated at 42 °C for 50 min, then heat 
inactivated at 70 °C for 15 min. Quantitative (q)PCR was performed 
using the QuantStudio 6 Flex Real-Time PCR System (Applied Biosys-
tems) using SYBR Green master mix (Applied Biosystems). Relative 
messenger RNA levels were calculated relative to αTub84B expression 
by the comparative Ct method. Primer sequences used are described 
in Supplementary Table 3.

Reverse transcription from i3Neuron samples was carried out with 
SuperScript IV Vilo (Thermo Fisher Scientific), using the manufac-
turer’s protocol and 75 ng of total RNA per technical replicate. Then 
qPCR was performed with the LightCycler 480 and SYBR Green master 
mix. Relative mRNA levels were calculated relative to glyceraldehyde 
3-phosphate dehydrogenase (GAPDH) expression using the compara-
tive Ct method. All primer pairs were from the predesigned catalog 
from IDT and were confirmed to have 90–110% efficiency in our hands 
with i3Neuron complementary DNA: GAPDH (Hs.PT.39a.22214836), 
FASN (Hs.PT.58.38567473), SCD (Hs.PT.58.45714389), SCD5 (Hs.
PT.58.40730206), FADS1 (Hs.PT.4716384) and FADS2 (Hs.58.15091651).

DPR MSD immunoassays
Drosophila head protein preparation. Adult female flies were induced 
on SYA medium containing 200 µM RU486 or ethanol vehicle control 
for 7 d and subsequently 10 heads per sample were homogenized 
in 100 µl of 2% sodium dodecylsulfate (SDS) buffer (Merck, cat. no. 
428018) containing 1× radioimmunoprecipitation (RIPA) buffer 
(Sigma-Aldrich, cat. no. R0278) and complete mini EDTA-free protease 
inhibitor cocktail (Roche, cat. no. 11836170001) at room temperature 
for 30 s until the heads were no longer intact. Samples were then heated 
at 95 °C for 10 min. After centrifugation at 18,400g for 20 min at room 
temperature, the supernatants were collected in the new tubes. The 
protein concentration was determined using Pierce BCA Protein Assay 
Kit (Thermo Fisher Scientific, cat. no. 23325) according to the manu-
facturer’s manual.

Protein preparation of i3Neurons. The i3Neuron replicates for DPR 
Meso Scale Discovery (MSD) were collected alongside those used for 
lipidomic analyses from the same neuronal inductions. One well of a 
six-well plate was used per replicate for MSD. At DIV21, neurons were 
lifted with PBS, centrifuged and pelleted at 1,500g for 5–10 min, snap 
frozen on dry ice and stored at −80 °C until use. For protein prepara-
tion, cell pellets were resuspended in 200 µl of 2% SDS buffer (Thermo 
Fisher Scientific, cat. no. BP2436-200) containing 1× RIPA buffer and 
cOmplete mini EDTA-free protease inhibitor cocktail and sonicated 
2× for 10 s at 30 A and 4 °C. Sonicated samples were centrifuged at 
17,000g for 20 min at 16 °C, after which supernatants were collected 
and used in MSD assays.

Running MSD assays. Samples were diluted to the same concentra-
tion with homogenization buffer and 25 µl (fly samples) or 90 µl (cell 
samples) was loaded in duplicate on to the 96-well MSD immunoassay 
plate. Singleplex MSD immunoassays to measure poly(GA) or poly(GP) 
levels were previously validated83. The following antibodies were used: 
anti-poly(GP) (GP658, custom-made from Eurogentec, 2 µg ml−1) and 
anti-poly(GA) (Merck Millipore, clone 5E9, cat. no. MABN889, 1 µg ml−1) 
as capture antibodies, and biotinylated anti-poly(GP) (GP658*, 
1 µg ml−1) and biotinylated anti-poly(GA) (GA5F2*, kindly provided by 
D. Edbauer (Ludwig-Maximilians-Universität, Munich), biotinylated in 
house, 1 µg ml−1) as detector antibodies. Plates were read with the MSD 
reading buffer (cat. no. R92TC) using the MSD Sector Imager 2400. A 
four-parameter logistic regression curve was fit to the values obtained 
from a standard curve using GraphPad Prism and concentrations were 
interpolated. Signals correspond to the intensity of emitted light on 
electrochemical stimulation of the assay plate. Before analysis, the 

average reading from a calibrator containing no peptide was subtracted 
from each reading.

Differentiation of i3Neurons
C9 patient and isogenic control iPS cell lines were kind gifts of the 
Chandran laboratory at the University of Edinburgh42 and C9 repeat 
knock-in lines on the KOLF2.1J background were a gift from the Skarnes 
laboratory at Jackson Labs as part of the iPS cell Neurodegenerative Dis-
ease Initiative84,85 (line details in Supplementary Table 4). From these, 
we generated i3-compatible iPS cell lines via piggyBac-integration of 
a BFP-containing, doxycycline-inducible Neurogenin2 (Ngn2) mini-
gene (kind gift of M. Ward, NIH). After integration, iPS cells were 
subsequently doubly selected with puromycin and FACS, resulting 
in a pure population of stably expressing iPS cells. These i3iPS cells 
were then used for rapid differentiation into cortical neurons (i3Neu-
rons) using a previously described method28,29. Briefly, i3iPS cells were 
grown to 70–80% confluency, washed with PBS, lifted with Accutase 
(Gibco) and plated at 375,000 cells per well in a 6-well plate on to 
Geltrex-coated plates (DIV0). Cells were maintained from DIV0–3 
in an induction medium consisting of Dulbecco’s modified Eagle’s 
medium (DMEM-F12; Gibco), 1× N2 (Thermo Fisher Scientific), 1× Glu-
tamax (Gibco), 1× Hepes (Gibco), 1× nonessential amino acids (Gibco), 
doxycycline (2 µg ml−1) and 10 µM Y-27632 (DIV0 only; Tocris), which 
was exchanged daily. On DIV3, cells were dissociated with accutase 
and replated on to poly(l-ornithine)- (Merck) or poly(ethylenimine)- 
(Sigma-Aldrich) and laminin- (Sigma-Aldrich) coated 6-well plates at 
600,000 cells per well in neuronal maintenance medium consisting 
of Neurobasal medium (Gibco), supplemented with 1× B27 (Gibco), 
10 ng ml−1 of brain-derived neurotrophic factor (PeproTech), 10 ng ml−1 
of NT-3 (PeproTech) and 1 µg ml−1 of laminin. From DIV3 to DIV21, cells 
were maintained in neuronal maintenance medium, with one-third 
medium changes once weekly. Lentiviral transduction to overexpress 
(G4C2)92 or (G4C2)2 was done 1 h after DIV3 replating. Likewise, ASO 
treatments to target the C9orf72 sense strand or an NT control were 
also begun on DIV3 and supplemented in medium changes thereafter. 
In brief, 1 h after replating, ASOs were transiently transfected using 
Lipofectamine Stem (Invitrogen, cat. no. STEM00015) at 5 µM final 
concentration according to the manufacturer’s protocol. Then 1 d after 
ASO treatment, a full medium change was done to remove remaining 
Lipofectamine Stem and replaced with neuronal maintenance medium 
containing 5 µM ASO, which was then further re-supplemented in 
weekly medium changes at 5 µM. ASOs were published in ref. 7 and have 
fully modified phosphorothioate backbones. The sequences are as fol-
lows, with the five 2ʹ-O-methyl RNA base-pairs on either end (italicized):

C9 sense targeting: UACAGGCTGCGGTTGUUUCC

NT: CCUUCCCTGAAGGTTCCUCC

(G4C2)92 or (G4C2)2 lentiviral construct subcloning
The pCDH-EF1-MCS-IRES-copGFP lentiviral plasmid (System Bio-
sciences) was used as the backbone to create (G4C2)92 and (G4C2)2 
lentiviral constructs. Subcloning to insert the repeats was under-
taken in a two-step process. First, we synthesized a DNA fragment 
consisting of a customized multiple cloning site (MCS) sandwiched 
in between 300 bp each of repeat-adjacent upstream and downstream 
sequences from C9orf72 intron 1 and then inserted into the internal 
MCS of pCDH-EF1-MCS-IRES-copGFP with InFusion cloning (Takara 
Bio) in between XbaI and NotI restriction sites. This interim construct, 
termed ‘pCDH-EF1-C9up-MCS-C9down-IRES-copGFP’ was verified 
with diagnostic restriction digests and Sanger sequencing across the 
insert. Then, to create the (G4C2)92 construct, a 92-repeat sequence 
was isolated from a previously verified in-house construct with NheI 
and NotI restriction digests and subcloned into the MCS of pCDH-E
F1-C9up-MCS-C9down-IRES-copGFP with overnight ligation at 4 °C 
(T4 ligase, NEB). To maintain repeat stability, bacterial clones were 
grown at room temperature, in half the standard ampicillin concen-
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tration (0.5 mg ml−1), and in low-salt lysogeny broth (Sigma-Aldrich).  
A repeat-stable clone was selected and subsequently maxi-prepped 
(QIAGEN) for use in lentiviral production. Thus, the final construct 
consisted of 92 repeats immediately surrounded on either side by 
300 bp of endogenous C9orf72 intronic sequence to facilitate RAN 
translation and upstream of an IRES-copGFP sequence for fluorescent 
visualization of transduction efficiency. To create the (G4C2)2 control 
lentiviral constructs, two complementary short oligos were synthe-
sized containing two G4C2 repeats and NheI and NotI restriction site 
overhangs. Oligos were resuspended in annealing buffer (NEB buffer 
2.1), heated to 95 °C and allowed to cool slowly to room temperature 
to anneal. Annealed oligos were used directly in ligation reactions into 
pCDH-EF1-C9up-MCS-C9down-IRES-copGFP with the same protocol 
as used for the 92-repeat construct.

Lentiviral production
HEK293T cells were grown at 37 °C and 5% CO2 in T175 flasks. At ~70% 
confluency, cells were transfected with either (G4C2)92 or (G4C2)2 len-
tiviral transfer plasmids along with PAX (Addgene, cat. no. 12260) 
and vesicular stomatitis virus G (Addgene, cat. no. 12259) lentiviral 
packaging plasmids with Lipofectamine 3000 Transfection Reagent 
(Invitrogen) according to the manufacturer’s protocol. After 48 h, 
medium was collected and centrifuged at 500g for 10 min at 4 °C to 
remove cell debris, after which Lenti-X Concentrator (Takara Bio) 
was added at a 1:3 ratio. After a minimum incubation of 24 h at 4 °C, 
the concentrator-medium mix was centrifuged at 1,500g and 4 °C for 
45 min and the resulting concentrated lentiviral pellet was resuspended 
in sterile PBS, aliquoted and stored at −80 °C until use.

Targeted lipidomics of Drosophila brains, human i3Neurons 
and postmortem brain samples
Sample collection. Adult female flies were induced on SYA medium 
containing 200 µM RU486 or ethanol vehicle control for 7 d. 60 flies per 
condition were dissected in PBS on ice, with 20 brains per biological rep-
licate. The brains were collected in 300 µl of PBS and centrifuged at 375g 
for 5 min at 4 °C. Then, 200 µl of supernatant was removed and samples 
were homogenized before fast-freezing on dry ice. Samples were stored 
at −80 °C until analysis. For i3Neurons, at DIV21 cells were pelleted and 
stored at −80 °C until analysis. Postmortem brain samples were from 
pathologically diagnosed cases of FTLD without C9orf72 expansion 
(n = 32), FTLD with C9orf72 expansion (n = 15) and neurologically normal 
controls (n = 13). One sample from a non-C9 FTLD patient was included 
twice as a technical replicate. Frontal cortex gray matter and cerebel-
lum were dissected from each brain and stored at −80 °C until analysis.

Targeted lipidomic measurements. Comprehensive targeted lipidom-
ics was accomplished using a flow-injection assay based on lipid class 
separation by differential mobility spectroscopy and selective multiple 
reaction monitoring (MRM) per lipid species (Lipidyzer platform, 
SCIEX). A very detailed description of lipid extraction, software and 
the quantitative nature of the approach can be found elsewhere86–88. 
In short, after the addition of >60 deuterated internal standards (ISs), 
lipids were extracted using methyl tert-butyl ether. Organic extracts 
were combined, dried under a gentle stream of nitrogen and reconsti-
tuted in running buffer. Lipids were then analyzed using flow injection 
in MRM mode employing a Shimadzu Nexera series HPLC and a Sciex 
QTrap 5500 mass spectrometer. For the internal calibration, deuterated 
IS lipids for each lipid class were used within the lipidomics workflow 
manager. Each lipid species was corrected by the closest deuterated 
IS within its lipid class and afterwards the obtained area ratio was 
multiplied by the concentration of the IS.

Analyses of targeted lipidomic datasets
Filtering and normalizations. Raw amounts of individual lipid species 
were obtained from the Lipidyzer platform as above and subsequently 

filtered and normalized. Datasets were first filtered for low-abundance 
and undetected lipid species. To pass filtering, a lipid species must 
be detected in at least 80% of all samples in the analysis or in 60% of 
samples in any one group, and must also be at least twofold above 
the average of the blanks. After filtering, missing sample values were 
imputed as the median of other samples in their group; this step was 
found to be necessary for subsequent normalizations, because miss-
ing values greatly skewed the proportional datasets. Next, filtered and 
imputed datasets were normalized either to total lipids (for analysis of 
class-level lipid alterations, as in Extended Data Figs. 5a and 6c,d) or 
by lipid class individually (as in Figs. 2b,c and 3b,c and Extended Data 
Fig. 3a–e). Thus, these processing steps result in proportional lipidomic 
measurements, relative to either the total lipidome or total amount of 
lipid within each class, respectively.

Fold-changes in Drosophila brains. Biological replicates for these 
analyses contained 20 fly brains per condition. Each replicate was fil-
tered and normalized individually by lipid class and then fold-changes 
and significance were calculated as the average of either C9/RO/
GR36 over the average of the control (w1118) or (G4C2)36 + Desat1 /
(G4C2)36 + FAT-2 over the average of (G4C2)36, using lipid class-normalized 
data.

Fold-changes in i3Neurons. For comparisons of C9 lines to their iso-
genic controls, we defined biological replicates as individual iPS cell 
lines and employed three separate C9 lines for lipidomic analysis. 
Technical replicates were defined as individual wells that were grown, 
collected and analyzed separately. To ensure reproducibility, technical 
replicates were collected across multiple neuronal inductions, and each 
lipidomic dataset was normalized to the average of the control condi-
tion within induction. For our main analysis, we compared each line 
with its own isogenic control, using technical replicates across induc-
tions for statistical analysis and displayed the results for each individual 
line separately (Fig. 2c and Extended Data Fig. 3b,c). To demonstrate 
reproducibility across inductions, we also show fold-change from each 
individual neuronal induction separately in Extended Data Fig. 3a. The 
same rationale and analysis were applied to the ASO experiments, but 
rather comparing C9 ASO-treated lines with their own NT ASO-treated 
conditions, again with normalizations within induction (Fig. 2c and 
Extended Data Fig. 3d,e). For the 92-repeat lentiviral experiments, 
because this is an exogenous overexpression paradigm, we instead 
defined biological replicate units as individual neuronal inductions 
and performed three separate inductions for lipidomic analyses. Two 
of these inductions were done with control line 1 and the other with 
control line 2. For our main analysis in Fig. 2c, we then combined and 
compared technical replicates across the three inductions between 
92-repeat and 2-repeat treated conditions; however, to demonstrate 
reproducibility across inductions, we also show fold-changes from each 
neuronal induction separately in Extended Data Fig. 3a. All i3Neuron 
lipidomic datasets are publicly available in user-friendly format at 
https://neurolipidatlas.nl, where any user can view and analyze each 
experiment, with full statistical analysis, either by induction separately 
or by all technical replicates combined by line or treatment condition.

Fold-changes and unsaturation indices in postmortem brain sam-

ples. Fold-changes in FTLD versus control samples, as used in the 
heatmap in Fig. 3b, were calculated for each lipid species separately 
as the average of the FTLD condition over the average of the control 
condition, using lipid class-normalized data. To calculate the unsatura-
tion index in Fig. 3c, a composite score was calculated for each sample 
individually, using the ratio of the sum of phospholipid species with 
four to six double bonds in their most highly unsaturated fatty acyl 
chain over the sum of species with zero to three double bonds, after 
lipid class normalization. Each individual was considered a separate 
biological replicate and two-way analysis of variance (ANOVA) was 
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used to calculate statistical significance across the two brain regions 
and between the FTLD and control. Normality tests were performed 
for each group with D’Agostino and Pearson’s test which determined 
each group to be normally distributed (α = 0.05).

Glutamate-induced excitotoxicity assays in iPS cell-SNs
Subcloning for BFP, FAT-1 and FAT-2 overexpression constructs. 
The mTagBFP (Addgene, cat. no. 89685), FAT-1 (Genscript) and  
FAT-2 (Genscript) cDNAs were amplified with PCR and subcloned into 
the pHR-hSyn-eGFP vector (Addgene, cat. no. 114215), along with a 
T2A-NLS-mApple minigene for fluorescent visualization. In brief, 
enhanced green fluorescent protein (eGFP) was removed with BamHI 
and NotI (NEB) and BFP/FAT-1/FAT-2 and T2A-NLS-mApple fragments 
were inserted with InFusion cloning (Takara Bio), as per the manufac-
turer’s protocol. The resulting plasmids were verified with diagnostic 
restriction digest and Sanger sequencing before being maxi-prepped 
(QIAGEN) for subsequent use in excitotoxicity assays.

Excitotoxicity assays. Non-neurological control and C9orf72 iPS cells 
were obtained from the Answer ALS repository at Cedars Sinai (see 
Supplementary Table 5 for demographics) and maintained in mTeSR 
Plus medium at 37 °C with 5% CO2. The iPS cell-SNs were differenti-
ated according to a modified diMNs protocol56,89–91 and maintained at 
37 °C with 5% CO2. The iPS cells and iPS cell-SNs were routinely tested 
negative for Mycoplasma. On day 12 of differentiation, iPS cell-SNs 
were dissociated with trypsin; 5 × 106 iPS cell-SNs were nucleofected 
with 4 µg of plasmid DNA in suspension. After nucleofection, 100 µl of 
cell suspension was plated in each well (total of 6 wells per cuvette) of 
a glass-bottomed or plastic 24-well plate for propidium iodide (PI) and 
Alamar Blue toxicity and viability experiments, respectively. Medium 
was exchanged daily for a total of 20 d to facilitate the removal of 
iPS cell-SNs that failed to recover post-nucleofection. On the day of 
the experiment (day 32 of differentiation), iPS cell-SN medium was 
replaced with artificial cerebrospinal fluid solution containing 10 µM 
glutamate. For those iPS cell-SNs undergoing Alamar Blue viability 
assays (plastic dishes), Alamar Blue reagent was additionally added to 
each well according to the manufacturer’s protocol at this time. After 
incubation, iPS cell-SNs for PI cell death assays were incubated with PI 
and NucBlue live ready probes for 30 min and subjected to confocal 
imaging. The number of PI spots and nuclei were automatically counted 
in Fiji. Alamar Blue cell viability plates were processed according to the 
manufacturer’s protocol. As a positive control, 10% Triton X-100 was 
added to respective wells 1 h before processing.

Statistics and reproducibility
The statistical test used for each experiment is indicated in the figure 
legends. The log-rank tests for fly survival were performed in Microsoft 
Excel (template described in ref. 92). ANOVA or Student’s t-test analyses 
were performed in GraphPad Prism v.10.0.2. For all statistical tests, 
P < 0.05 was considered significant. Data distribution was tested for 
normality only where specifically stated in Methods, otherwise data 
distribution was assumed to be normal, but this was not formally tested. 
No statistical methods were used to predetermine sample sizes but our 
sample sizes are similar to those reported in previous publications9,52,90 
and are listed in the figure legends for each experiment. For fly survival 
assays, roughly n = 150 flies were used per condition. For iPS cell-neuron 
experiments, the number of lines used is listed in Supplementary 
Tables 4 and 5 and, for lipidomics, the individual inductions are shown 
separately in Extended Data Fig. 3a. For human postmortem brain lipi-
domic experiments, there were n = 13 control and n = 45 FTLD frontal 
cortex samples, and n = 13 control and n = 47 FTLD cerebellum samples. 
Experimental groups were determined by genetic status and not rand-
omized. Data collection and analysis were not performed blind to the 
conditions of the experiments unless specifically stated in Methods. 
No datapoints were excluded from the analyses.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All transcriptomic data generated in the present study are deposited 
in the Genome Expression Omnibus, accession no. GSE255099. All 
lipidomic data generated from Drosophila brains, i3Neurons and post-
mortem brains are publicly available for user-friendly exploration in 
the recently described Neurolipid Atlas (https://neurolipidatlas.nl) and 
can be found by selecting ‘Isaacs’ as the contributing lab93. Source data 
are provided with this paper.
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Extended Data Fig. 1 | Fatty acid synthesis and desaturation pathway genes 

are downregulated in C9 ALS post-mortem cervical spinal cord and C9 

Drosophila. (a) GO enrichment of upregulated genes in RNA-seq comparison 

of C9 fly heads versus controls. Differentially expressed genes were calculated 

with DEseq2 using default parameters (see Methods). Genotype: UAS-(G4C2)36; 

elavGS (b) Confirmation of C9 Drosophila RNA-seq result by RT-qPCR, showing 

significant downregulation of AcCoAS, FASN1 and Desat1 in C9 Drosophila heads 

versus controls, normalised to tubulin (n = 4 biological replicates, with 15 fly 

heads per replicate). Two-sided, unpaired Students t-test, data presented as 

mean ± s.d. (c) Volcano plots of RNA-seq data from patient post-mortem cervical 

spinal cord comparing either all ALS (left; n = 138) or just the C9 ALS subset 

(right; n = 28) with non-neurological disease controls (n = 36) from the New York 

Genome Center ALS Consortium26 highlighting conserved downregulation 

of canonical fatty acid synthesis and desaturation pathway genes. These data 

are publicly available at https://rstudio-connect.hpc.mssm.edu/als_spinal_

cord_browser/ and all DEGs have also been included in Excel format with this 

manuscript as Supplementary Data File 1.
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Extended Data Fig. 2 | Lipidomic analyses in RNA-only (RO) and GR36 fly 

brains. (a) Heatmap displaying all detected phospholipids as log2(fold-change) 

over control fly brains (n = 3 biological replicates per condition with 15 fly brains 

per replicate). Lipids were normalized by lipid class. (b, c) Volcano plots of all 

detected phospholipid species in RO (b) or GR36 (c) fly brains compared to 

wild-type control flies. Values represent log2(fold-change) over control and 

significance (two-sided Student’s t-test) across all replicates within the labeled 

group. In top plot, color corresponds to the number of double bonds in the 

phospholipid species’ most unsaturated fatty acyl chain. In bottom, PUFA-

containing species (≥2 double bonds) are highlighted in blue. Genotypes: elavGS, 

UAS-(G4C2)36 RO; elavGS, UAS-(GR)36; elavGS.
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Extended Data Fig. 3 | Phospholipid levels in i3Neurons, displayed as separate 

neuronal inductions/lines. (a) Heatmap displaying all detected phospholipids 

as log2(fold-change) over control in each neuronal induction separately. Lipids 

are normalized by lipid class. Grey boxes indicate phospholipid species that are 

outside the fold-change range or were not detected in that induction. Loss of 

highly unsaturated species is consistently observed across neuronal inductions 

in C9 lines and control lines expressing 92-repeats, while phenotype is prevented 

by C9-ASO treatment. (b, c) Volcano plots of all detected phospholipid species 

in C9 lines 1 (b) and 3 (c) compared to their individual isogenic control lines, 

displaying downregulation of highly unsaturated species (≥4 double bonds). 

(d, e) Volcano plots displaying all phospholipid species in C9 lines 1 (d) and 3 (e) 

treated with a C9-ASO compared to a NT-ASO control. In (b-e), values represent 

log2(fold-change) over control and significance (two-sided Student’s t-test) 

across all replicates/inductions within the labeled group. In top plots, color 

corresponds to the number of double bonds in the phospholipid species’ most 

unsaturated fatty acyl chain.
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Extended Data Fig. 4 | Poly(GA) levels in i3Neuron lines treated with 

(G4C2) lentiviruses or sense repeat-targeted antisense oligonucleotides 

(ASOs). (a) Lentiviral 92 (Lentivirus-(G4C2)92) and 2 (Lentivirus-(G4C2)2) 

repeat constructs have 300 bp of endogenous repeat-flanking sequence to 

facilitate RAN translation and include an IRES-GFP for live-cell visualization. 

(b) (G4C2)92 and (G4C2)2 lentiviruses were titrated via GFP signal (live imaged) 

to high transduction efficiencies for lipidomic experiments. (c-e) poly(GA) 

immunoassay in (c) C9 lines (n = 1–3 inductions per line), (d) control lines 

treated with (G4C2)92 or (G4C2)2 (n = 3 inductions per line), and (e) C9 lines 

treated with sense repeat-targeted (C9) ASOs or non-targeted (NT) control 

ASOs from7 (n = 2–4 inductions per line). All measurements were taken on DIV21 

from the same neuronal inductions used for lipidomic analyses. Each dot is an 

independent induction. Error bars show ± s.d.
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Extended Data Fig. 5 | Lipid class distributions and lipid gene qPCRs in 

i3Neurons. (a) Lipid classes displayed as proportion of total lipidome in 

i3Neurons. Data points represent average lipid class level for each separate 

i3Neuron line (biological replicate), averaged across inductions (n = 2 control 

lines; n = 3 C9 lines; n = 3 C9 lines + NT-ASO; n = 3 C9 lines + C9-ASO). For lentiviral 

experiments, biological replicates were considered separate inductions,  

and the single datapoints in this figure represent the average of n = 3 inductions 

per virus. CE = cholesterol ester; Cer = ceramide; DG = diacylglyceride;  

FA = fatty acid; HexCER = hexosylceramide; LacCER = lactosylceramides;  

LPC = lysophosphatidylcholine; LPE = lysophosphatidylethanolamine;  

PA = phosphatidic acid; PC = phosphatidylcholine; PE = phosphatidylethanolamine;  

PG = phosphatidylglycerol; PI = phosphatidylinositol; PS; phosphatidylserine; 

SM = sphingomyelin; TG = triacylglyceride. (b) RT-qPCRs of fatty acid synthase 

(FASN) and neuronal desaturases, showing no significant changes in C9 

compared to isogenic controls (One-way ANOVA for control line 3 and C9 lines 

2 and 3; two-sided unpaired Student’s t-test for control line 1 and C9 line 1; no 

significant differences found). Error bars show mean ± s.d.
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Extended Data Fig. 6 | Volcano plots of phospholipid species and lipid class 

distributions in FTLD versus control post-mortem tissues. (a, b) Volcano plots 

of all detected phospholipid species in FTLD compared to non-neurological 

control in cerebellum (a) and frontal cortex (b), displaying downregulation  

of highly unsaturated species (≥4 double bonds) in the frontal cortex.  

Values represent log2(fold-change) over control and significance (two-sided 

Student’s t-test). (c, d) Lipid classes displayed as proportion of total lipidome in 

control and FTLD post-mortem cerebellum (c) and frontal cortex (d).  

Bars represent average across all samples (n = 45–47 FTLD,  

n = 13 control). CE = cholesterol ester; Cer = ceramide; DG = diacylglyceride;  

FA = fatty acid; HexCER = hexosylceramide; LacCER = lactosylceramides;  

LPC = lysophosphatidylcholine; LPE = lysophosphatidylethanolamine;  

PA = phosphatidic acid; PC = phosphatidylcholine; PE = phosphatidylethanolamine; 

PG = phosphatidylglycerol; PI = phosphatidylinositol; PS; phosphatidylserine; 

SM = sphingomyelin; TG = triacylglyceride.

http://www.nature.com/natureneuroscience


Nature Neuroscience

Article https://doi.org/10.1038/s41593-025-01889-3

Extended Data Fig. 7 | Lifespans of C9 flies fed saturated, monounsaturated, 

and polyunsaturated long chain fatty acids. (a) Structure and saturation of 

selected fatty acids. (b) Linoleic acid significantly increased survival of C9 flies 

at 0.15 mM (P = 0.031) and 1.5 mM (P = 0.001) concentrations, but not at 15 mM 

(P = 0.699). n = 148 (0 mM), n = 151 (C18:2 0.15 mM), n = 144 (C18:2 1.5 mM), 

n = 135 (C18:2 15 mM). Log-rank test used for all comparisons. (c) α-linolenic acid 

significantly increased survival of C9 flies at 0.015 mM (P = 0.048) and 0.15 mM 

(P = 0.044) concentrations, but not at 1.5 mM (P = 0.495). Log-rank test used 

for all comparisons. (d) Palmitic acid had no significant effect on survival of C9 

flies at any of the concentrations tested (0.15 mM, P = 0.052, 1.5 mM P = 0.182, 

15 mM P = 0.473). n = 148 (0 mM), n = 145 (C16:0 0.15 mM), n = 146 (C16:0 1.5 mM), 

n = 147 (C16:0 15 mM). Log-rank test used for all comparisons. (e) Stearic acid 

had no significant effect at 0.15 mM (P = 0.079) or 1.5 mM (P = 0.992), but 

significantly decreased survival at 15 mM (P = 0.008). n = 148 (0 mM), n = 146 

(C18:0 0.15 mM), n = 149 (C18:0 1.5 mM), n = 150 (C18:0 15 mM). Log-rank test 

used for all comparisons. (f) Oleic acid had no significant effect on survival at 

any of the concentrations tested (0.15 mM, P = 0.285, 1.5 mM P = 0.782, 15 mM 

P = 0.186). n = 148 (0 mM), n = 143 (C18:1 0.15 mM), n = 142 (C18:1 1.5 mM), n = 150 

(C18:1 15 mM). Log-rank test used for all comparisons. Genotype: UAS-(G4C2)36; 

elavGS. (g) Linoleic acid supplementation had no effect on wild-type lifespan at 

0.15 mM (P = 0.162) and significantly shortened wild-type lifespan at the 1.5 mM 

(P = 4.352×10−5) concentration. n = 150 (0 mM), n = 151 (C18:2 0.15 mM), n = 152 

(C18:2 1.5 mM). Log-rank test used for all comparisons. (h) α-linolenic acid had no 

effect on wild-type lifespan at 0.015 mM (P = 0.599), and significantly shortened 

wild-type lifespan at the 0.05 mM concentration (P = 6.22×10−6). n = 150 (0 mM), 

n = 150 (C18:3 0.015 mM), n = 148 (C18:3 0.15 mM). Log-rank test used for all 

comparisons. (i, j) Food supplementation with linoleic or α-linolenic acid does 

not alter proboscis extension response of wild-type (i) or C9 (j) flies. Flies were 

placed onto new food 24 hours before assay was performed, at a density of five 

flies per biological replicate vial. All groups were induced with RU486 except for 

the uninduced conditions. Two-way ANOVA with Tukey’s multiple comparison 

test was used to calculate statistical significance. Data presented as mean ± s.d. 

(i) n = 7 flies (18:2 1.5 mM) n = 8 flies (uninduced 0 mM, 0 mM, 18:3 0.015 mM, 

18:3 0.15 mM), n = 9 flies (18:2 0.15 mM). (j) n = 7 flies (0 mM, 18:2 1.5 mM) n = 8 

flies (uninduced 0 mM, 18:3 0.015 mM, 18:3 0.15 mM), n = 9 flies (18:2 0.15 mM). 

Genotypes: elavGS, UAS-(G4C2)36; elavGS.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Overexpression of fatty acid synthases extends C9 

survival, while fatty acid synthase and desaturase overexpression does not 

alter poly(GP) levels. (a, b) Neuronal overexpression of FASN1 (a) or FASN2 (b) 

extended C9 fly survival (FASN1 P = 1.16×10−5; FASN2 P = 0.003), log-rank test 

used for each comparison. n = 151 ((G4C2)36), n = 144 ((G4C2)36 + FASN1), n = 132 

(G4C2)36 + FASN2. (c) Confirmation of FASN1, FASN2 and Desat1 overexpression in 

(G4C2)36 fly heads after 7 days of neuronal expression (n = 4 biological replicates 

with 15 heads per replicate). Two-sided, unpaired Students t-test, data presented 

as mean ± s.d. (d) Neuronal overexpression of Desat1 extended C9 fly survival 

(P = 5.839×10−20). n = 147 ((G4C2)36), n = 143 ((G4C2)36 + Desat1), log-rank test. 

(e) Neuronal expression of Desat1 results in conversion of C18:0 into C18:1 in 

phospholipids from dissected C9 fly brains. Lipids normalized by lipid class. 

Values represent log2(fold-change) over control and significance (two-sided 

Student’s t-test). (f) Neuronal expression of FASN1 (P = 0.989) or FASN2 (P = 0.992) 

did not alter poly(GP) levels in C9 fly heads. One-way ANOVA, followed by Tukey’s 

post-hoc test. n = 4 biological replicates per condition, consisting of 10 heads 

per replicate. Data presented as mean ± s.d. (g) Neuronal expression of Desat1 

(P = 0.401) or FAT-2 (P = 0.920) did not alter poly(GP) levels in C9 fly heads. One-

way ANOVA, followed by Tukey’s post-hoc test. n = 4 biological replicates per 

condition, consisting of 10 heads per replicate. Data presented as mean ± s.d. (h) 

Desat1 neuronal overexpression significantly increased the proportion of flies 

experiencing a full recovery compared to (G4C2)36 alone, whereas loss of one copy 

of Desat1 in C9 flies significantly increased death and partial paralysis after cold 

stress. n = 3 biological replicates, containing 15 flies per replicate vial.  

Results were analyzed by Chi-square test. Data presented as mean ± s.d.  

Note that the (G4C2)36; elavGS uninduced and induced data are the same as in  

Fig. 4g. Genotypes (a-h): UAS-(G4C2)36; elavGS, UAS-(G4C2)36; elavGS/UAS-Desat1, 

UAS-(G4C2)36; elavGS/UAS-Desat1[42]. (i) Knocking down FASN1 in neurons 

of (G4C2)36 flies does not significantly alter C9 fly survival (P = 0.767), n = 124 

((G4C2)36), n = 136 ((G4C2)36+ FASN RNAi), log-rank test. (j) Loss of one copy of 

Desat1 significantly worsens C9 fly survival (P = 0.016), n = 154 ((G4C2)36), n = 148 

((G4C2)36 + Desat1 +/−), log-rank test. (k, l) Knocking down FASN1 (P = 0.127) (k) or 

Desat1 (P = 0.984) (l) in wild-type eye neurons does not cause neurodegeneration. 

Two-sided, unpaired Students t-test, n = 25 biological replicates per genotype, 

data presented as mean ± s.d. Scale bars represent 0.1 mm. Genotypes (k, l): GMR-

Gal4, GMR-Gal4; UAS-FASN RNAi, GMR-Gal4; UAS-Desat1 RNAi. Genotypes: GMR-

Gal4, GMR-Gal4; UAS-FASN RNAi, GMR-Gal4; UAS-Desat1 RNAi. (m) Knocking 

down FASN1 in wild-type neurons slightly increases lifespan (P = 0.003), log-rank 

test, n = 133 (FASN1 RNAi induced), n = 148 FASN1 RNAi uninduced. Genotype: 

UAS-FASN1 RNAi; elavGS. (n) FASN1 overexpression in neurons of wild-type flies 

extended lifespan (P = 3.386×10−8), log-rank test, n = 156 (FASN1 induced), n = 151 

(FASN1 uninduced). (o) FASN2 overexpression in neurons of wild-type flies had 

no effect on lifespan (P = 0.866), log-rank test, n = 156 (FASN2 induced), n = 141 

(FASN2 uninduced). (p) Desat1 overexpression in neurons of wild-type flies 

extended lifespan (P = 1.567×10−10), log-rank test, n = 114 (Desat1 induced), n = 116 

(Desat1 uninduced). (q) Overexpression of FAT-2 in neurons of wild-type flies had 

no effect on lifespan (P = 0.590), log-rank test, n = 123 (FAT-2 induced), n = 105 

(FAT-2 uninduced). Genotypes (n-q): elavGS, UAS-FASN1; elavGS, UAS-FASN2; 

elavGS, elavGS/UAS-Desat1, elavGS/UAS-FAT-2.
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Extended Data Fig. 9 | Lipidomic assessment of FAT-1 and FAT-2 

overexpression in C9 i3Neurons. (a) Schematic of lentiviral constructs used 

to overexpress FAT-1, FAT-2, or a BFP-only control in vitro. (b) Live-cell images 

of C9 i3Neuron lines overexpressing BFP, FAT-1, or FAT-2, demonstrating high 

efficiency transduction (as shown by expression of the 2XNLS-mApple reporter). 

Images representative of at least two inductions per line (n = 3 C9 line 1; n = 2 

C9 line 2; n = 3 C9 line 3). (c, d) Heatmap displaying all detected (c) free fatty 

acids and (d) phospholipids as log2(fold-change) over BFP-only control in each 

C9 line, averaged across three separate neuronal inductions per line. Lipids are 

normalized by lipid class and sorted by number of double bonds in the most 

unsaturated fatty acyl chain. Grey boxes indicate lipid species that were either 

not detected in a condition or are outside the fold-change range. (e) Volcano 

plots of all detected free fatty acid species in FAT-1 or FAT-2 overexpression 

compared to BFP-only control. Values represent log2(fold-change) over BFP-

only control and significance (two-sided Student’s t-test) across all replicates/

inductions within the labeled group.
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