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Canonical analysis of unimodular Plebański gravity

Steffen Gielen * and Elliot Nash †

School of Mathematical and Physical Sciences, University of Sheffield,

Hicks Building, Hounsfield Road, Sheffield S3 7RH, United Kingdom

(Received 21 November 2024; accepted 28 January 2025; published 18 February 2025)

We present the canonical analysis of different versions of unimodular gravity defined in the Plebański
formalism, based on a (generally complex) SOð3Þ spin connection and set of (self-dual) two-forms. As in
the metric formulation of unimodular gravity, one can study either a theory with fixed volume form or work
in a parametrized formalism in which the cosmological constant becomes a dynamical field, constrained to
be constant by the field equations. In the first case, the Hamiltonian density contains a part which is not
constrained to vanish, but rather constrained to be constant, again as in the metric formulation. We also
discuss reality conditions and challenges in extracting Lorentzian solutions.

DOI: 10.1103/PhysRevD.111.044047

I. INTRODUCTION

General relativity can be defined in terms of a number of
different actions and using different dynamical variables.
One can work with a spacetime metric as the field encoding
spacetime curvature, or use an independent connection; one
can introduce an additional local gauge symmetry and work
with a tetrad and spin connection; or one can express the
dynamics of gravity in terms of torsion or nonmetricity.
Many of these formulations are reviewed in Ref. [1]. The
(chiral) Plebański formulation takes a slightly different
viewpoint from other connection-based approaches by
encoding the metric information not in a tetrad but in a
set of complex two-forms [2]. The formulation is funda-
mentally complex since both of the two-forms and the
SOð3;CÞ spin connection live in the self-dual part (under
Hodge duality) in the complexified algebra soð3; 1Þ

C
; since

the Hodge dual squares to −1 in Lorentzian signature a
complexification is required. The identification of solutions
that correspond to Lorentzian signature solutions to general
relativity then requires adding reality conditions to the
theory. In Euclidean signature, one can work with self-dual
real SOð3Þ variables instead.
The Hamiltonian formulation of the chiral Plebański

theory is equivalent to the complex Ashtekar formulation of
Hamiltonian general relativity [3], itself the basis for
canonical quantization in loop quantum gravity [4]. The

result is a simple and elegant version of Hamiltonian
general relativity with polynomial constraints and structural
similarities to Yang-Mills gauge theory. Again, one needs
to add reality conditions which has proven to be very
difficult in the quantum theory, so that alternative (non-
chiral) real-valued formulations of Plebański gravity were
introduced. The canonical analysis of these formulations is
also known, and more involved [5]. In this article we focus
on chiral complex formulations, and the Hamiltonian
analysis will be more straightforward; we will discuss
the issue of reality conditions.
Our focus in this article is a canonical analysis of unim-

odular gravity in the Plebański formulation. Unimodular
gravity is a term that can apply to a number of different
versions of general relativity based on different actions and
symmetry principles (see, e.g., Refs. [6,7]), which are locally
equivalent to general relativity but promote the cosmological
constant from a constant of nature to a global integration
constant. Hence, these theories have one global degree of
freedom in addition to those of standard general relativity.
This can be achieved by restricting the diffeomorphism
symmetry of general relativity by fixing a volume form
[8], or by introducing additional fields representing a
dynamical cosmological constant as done by Henneaux
and Teitelboim in Ref. [9]. Both approaches can be imple-
mented in the Plebański formalism as shown in Ref. [10]; a
version based on the Henneaux-Teitelboim approach was
already discussed in Ref. [11]. We will present the canonical
analysis of both approaches, including some results that can
already be found inRef. [11],while also discussing additional
issues of imposing reality conditions and obtainingametric of
different types of Lorentzian signature.Most expressionswill
apply to both Lorentzian and Euclidean cases.
We start in Sec. II by presenting the unimodular

formulations of Plebański gravity proposed in Ref. [10].
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In Sec. III we will first give an extended summary of the
canonical analysis of standard Plebański gravity, which will
then facilitate the extension to various unimodular versions
of theory given in Sec. IV. We conclude in Sec. V. In the
Appendix we derive the transformation behavior of
Lagrange multipliers under gauge transformations, based
on invariance of the action.

II. UNIMODULAR PLEBAŃSKI GRAVITY

The starting point for our discussions is the chiral
Plebański formulation of general relativity in four space-
time dimensions. The action can be written as

SPl½A;Σ;M;ω� ¼ 1

8
ffiffiffi

σ
p

πG

Z
�

Σi ∧ Fi −
1

2
Mij

Σi ∧ Σj

þ 1

2
ωðtrM − ΛÞ

�

; ð1Þ

where A is an SOð3Þ connection, F is the curvature two-
form of A, Σi are two-forms, Mij is a symmetric matrix
field, and ω is a four-form. At this point Λ is seen as a fixed
parameter corresponding to the cosmological constant. In
the Euclidean case, all variables are real valued and σ ¼ 1;
in the Lorentzian case all variables are complex valued and
σ ¼ −1 so that

ffiffiffi

σ
p ¼ i, and reality conditions are needed to

identify Lorentzian solutions.
The field equations

Σ
i
∧ Σ

j ¼ δijω; DAΣ
i ¼ 0;

Fi ¼ Mij
Σj; trM ¼ Λ ð2Þ

encode the dynamical content of general relativity: the
condition Σ

i
∧ Σ

j ¼ δijω means that Σi can be written in
terms of a tetrad eI , with the general solution in the
complex case given by [1,3,10]

Σ
i ¼ ie0 ∧ ei −

1

2
ϵijke

j
∧ ek: ð3Þ

Then the second equation means that the connection is
torsion free. The equations in the second line of Eq. (2)
encode the Einstein condition Rμν ∝ gμν and the trace part
of the Einstein equations, R ¼ 4Λ. More details on all of
these identifications can be found in Ref. [1]. Again, we
stress that in the complex case Lorentzian solutions need to
be identified by imposing separate reality conditions.
[Internal SOð3Þ indices i, j can be raised and lowered
with the Kronecker delta δij so their positioning is not
important.]
An important insight in the metric formulation of general

relativity is that the trace equation R ¼ 4Λ is almost
redundant: from the trace-free part of the Einstein equations
and the Bianchi identities it follows that R must be a
spacetime constant, which one may then identify with what

is usually thought of as Λ [12]. The same goes through in
the Plebański formulation; assuming the other three equa-
tions, the trace of M must be an arbitrary constant. Hence,
one can seek modified action principles in which the trace
equation is not separately imposed. One finds a preferred-
volume version

SPV½A;Σ;M;ω0� ¼
1

8
ffiffiffi

σ
p

πG

Z
�

Σi ∧ Fi −
1

2
Mij

Σi ∧ Σj

þ 1

2
ω0 trM

�

; ð4Þ

where ω0 is a background volume form and not dynamical,
and a parametrized Henneaux-Teitelboim version

SHT½A;Σ;M; T� ¼ 1

8
ffiffiffi

σ
p

πG

Z
�

Σi ∧ Fi −
1

2
Mij

Σi ∧ Σj

þ dT trM

�

; ð5Þ

which now depends on a three-form field T. Notice that
neither of these actions contains a parameter Λ, as expected
in unimodular formulations.
In the preferred-volume theory we now no longer impose

the trace equation, but show that it emerges as a conse-
quence of the other three; in the parametrized version we
have a new equation dtrM ¼ 0 setting trM to an arbitrary
constant, and the volume form is now proportional to dT for
some T. This last property allows constructing a global
“volume time” from T as we will detail below.
As in the conventional Plebański approach, one can

obtain alternative formulations by “integrating out” fields,
starting by replacing Σ

i ¼ ðM−1ÞijFj and then also elimi-
nating the matrix field M to obtain “pure connection”
formulations of these theories, in analogy with what is done
for general relativity [13]. These constructions are detailed
in Ref. [10] and we will comment on them below.

III. CANONICAL PLEBAŃSKI GRAVITY

We start by presenting a canonical analysis of chiral
Plebański gravity defined by the action (1). While this has
been discussed in the literature previously, the purpose of
our discussion here is to introduce our conventions which
will then also be used when moving to unimodular
formulations. We also aim to be particularly explicit in
interpreting the gauge transformations generated by con-
straints, and in discussing reality conditions and the role of
a spacetime metric.
As usual, we assume that spacetime has topology

M ¼ R × S, where S is either compact without boundary
or suitable falloff conditions are imposed on the fields. We
introduce coordinates ðt; xaÞ and decompose the connec-
tion and two-forms as
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Ai ¼ Ai
0dtþ Ai

adxa;

Σ
i ¼ Σ

i
0adt ∧ dxa þ 1

2
Σ
i
abdx

a
∧ dxb: ð6Þ

In addition, the four-form ω can be written as ω ¼ −2Ñd4x
for some scalar density Ñ.
The spatial components Σi

ab define a densitized triad

Ẽa
i ¼

1

2
ϵ̃abcΣibc; ð7Þ

where ϵ̃abc is the usual totally antisymmetric tensor density
of weight þ1 with ϵ̃123 ¼ 1. Here and in the following, we
use tildes to indicate density weights. Ẽa

i is the densitized
triad appearing in the Ashtekar formulation of general
relativity [4], as already identified in Ref. [3]. Assuming
that the matrix Ẽa

i is invertible, it has an inverse

E
˜

i
a ¼

ϵ
˜
abcϵ

ijkẼb
j Ẽ

c
k

2 det Ẽ
; ð8Þ

where det Ẽ is the determinant of the matrix with entries Ẽa
i .

E
˜

i
a defines a densitized cotriad, a Lie algebra valued

covector density of weight −1 (as indicated by the tilde
underneath).
As the last step in introducing canonical variables, it is

convenient to parametrize the components Σi
0a as

Σ
i
0a ¼ −ϵ

˜
abcV

bẼic − Φ̃
ijE

˜
ja; ð9Þ

where Φ̃ij is a symmetric matrix field of density weightþ1.
This parametrization is nondegenerate, i.e., Σi

0a ¼ 0 only
when Vb ¼ Φ̃

ij ¼ 0. We also write the field Ai
0, which

appears without time derivatives in the action, as
Ai
0 ¼ αi þ VaAi

a. With all these definitions, one finds

Σi ∧

�

Fi −
1

2
Mij

Σj

�

¼ d4x

�

Ȧi
aẼ

a
i þ αiDaẼ

a
i − VaðFi

abẼ
b
i − Ai

aDbẼ
b
i Þ

− Φ̃ij

�

Fi
abϵ

jklẼa
kẼ

b
l

2 det Ẽ
−Mij

�

− ∂aðAi
0Ẽ

a
i Þ
�

; ð10Þ

where the overdot is shorthand for derivatives with respect
to t, andDa is a spatial SOð3Þ covariant derivative acting as
DaB

i ¼ ∂aB
i þ ϵijkA

j
aB

k. The final term in Eq. (10) gives a
boundary term after integration over S, which we will
assume vanishes. The action (1) then becomes the extended
canonical Plebański action,

SxC ¼ 1

8
ffiffiffi

σ
p

πG

Z

d4x

�

Ȧi
aẼ

a
i þ αiDaẼ

a
i − ÑðtrM − ΛÞ

− VaðFi
abẼ

b
i − Ai

aDbẼ
b
i Þ

− Φ̃ij

�

F
ði
abϵ

jÞklẼa
kẼ

b
l

2 det Ẽ
−Mij

��

: ð11Þ

The densitized triad now appears as the canonically
conjugate variable to the SOð3Þ connection Ai

a, as
expected. The fields αi, Va, and Ñ are most naturally
interpreted as Lagrange multipliers since the action does
not depend on their time derivatives. In addition, we have
the fields Φ̃ij and Mij which are likewise nondynamical.
Including these fields into the canonical formulation would
lead to a large phase space with second class constraints,
since we would need to give these fields conjugate
momenta. It is more convenient to eliminate these fields
directly at the level of the action, by substituting
F
ði
ab
ϵjÞklẼa

k
Ẽb
l

2 det Ẽ
¼ Mij back into the action. We obtain

SCan ¼
1

8
ffiffiffi

σ
p

πG

Z

d4x

�

Ȧi
aẼ

a
i þ αiDaẼ

a
i

−VaðFi
abẼ

b
i −Ai

aDbẼ
b
i Þ− Ñ

�

ϵijkF
k
abẼ

a
i Ẽ

b
j

2det Ẽ
−Λ

��

;

ð12Þ

which yields the same field equations as the extended
canonical action (11) for the remaining variables. Notice
that one of the field equations coming from Eq. (11) would
be Φ̃ij ¼ Ñδij. We can view this equation as a restriction of
our ansatz for Σi

0a, which now reads

Σ
i
0a ¼ −ϵ

˜
abcV

bẼic − ÑE
˜

i
a: ð13Þ

This restricted ansatz is a parametrization of solutions to the
Lagrangian field equation Σ

i
∧ Σ

j ¼ δijω; see Ref. [3] for
a similar treatment. We can use the canonical Plebański

action (12) as a starting point for a canonical formulation of
Plebański gravity. It is now clear that this action encodes
exactly the Hamiltonian formulation of general relativity in
terms of Ashtekar variables: we have a fundamental
Poisson bracket

fAi
aðxÞ; Ẽb

j ðx0Þg ¼ 8
ffiffiffi

σ
p

πGδijδ
b
aδ

ð3Þðx − x0Þ ð14Þ

and local constraints

G̃i ¼ −DaẼ
a
i ≈ 0; ð15Þ

D̃a ¼ Fi
abẼ

b
i − Ai

aDbẼ
b
i ≈ 0; ð16Þ

CANONICAL ANALYSIS OF UNIMODULAR PLEBAŃSKI … PHYS. REV. D 111, 044047 (2025)

044047-3



H ¼
ϵijkF

k
abẼ

a
i Ẽ

b
j

2 det Ẽ
− Λ ≈ 0: ð17Þ

These are the usual Gauss, diffeomorphism, and
Hamiltonian constraints of the Ashtekar formulation.
Their smeared versions

GðαÞ ¼ 1

8
ffiffiffi

σ
p

πG

Z

d3xαiG̃i;

DðVÞ ¼ 1

8
ffiffiffi

σ
p

πG

Z

d3xVaD̃a;

HðÑÞ ¼ 1

8
ffiffiffi

σ
p

πG

Z

d3xÑH ð18Þ

satisfy a closed (first class) Poisson algebra

fGðαÞ;GðβÞg ¼ −Gð½α; β�Þ;
fGðαÞ;DðVÞg ¼ −GðLVαÞ;
fGðαÞ;HðÑÞg ¼ 0;

fDðUÞ;DðVÞg ¼ Dð½U;V�Þ;
fDðVÞ;HðÑÞg ¼ HðLVÑÞ;

fHðÑ1Þ;HðÑ2Þg ¼ D0ðXðÑ1; Ñ2ÞÞ; ð19Þ

where LV denotes the Lie derivative along the vector field
Va and for the last line we define

D0ðVÞ ¼ 1

8
ffiffiffi

σ
p

πG

Z

d3xVaFi
abẼ

b
i ;

XaðÑ1; Ñ2Þ ¼
Ẽa
i Ẽ

ibðÑ2∂bÑ1 − Ñ1∂bÑ2Þ
ðdet ẼÞ2 : ð20Þ

Note that D0ðVÞ is not a new constraint but a linear
combination of the Gauss and diffeomorphism constraints.
In many treatments in the literature, D0ðVÞ rather than D̃a

is defined as the diffeomorphism constraint but, as we can
already see from the algebra, it is D̃a which generates
spatial diffeomorphisms via Lie derivative along a vector
field (see, e.g., Ref. [14] for a similar discussion).
Concretely, we have δVO ¼ fO;DðVÞg with

δVA
i
a ¼ VbFi

ba þDaðVbAi
bÞ;

δVẼ
a
i ¼ ∂bðVbẼa

i Þ − Ẽb
i ∂bV

a ð21Þ

which is exactly the action of the Lie derivative on these
variables. Likewise, one can check that the Gauss con-
straint generates local SOð3Þ gauge transformations via
δαO ¼ fO;GðαÞg. H generates transformations corre-
sponding to reparametrizations of the embedding parameter
t, so that together with D̃a one obtains the full diffeo-
morphism group.

The total Hamiltonian is now given by

HPle ¼ GðαÞ þDðVÞ þHðÑÞ ð22Þ

which depends on the unconstrained fields αi, Va, and Ñ,
whose choice determines a gauge used in the evolution.

A. Reality conditions and the metric

So far, this defines a canonical formulation for either
Euclidean general relativity (σ ¼ þ1) or for complex
general relativity (σ ¼ −1). To identify Lorentzian solu-
tions in the latter case, we need to impose reality con-
ditions. In the Plebański formulation these are given by

Σ
i
∧ Σ

j ¼ 0; ReðΣi ∧ Σ
iÞ ¼ 0: ð23Þ

Notice that so far, we could work in a holomorphic
formalism: the Lagrangian was holomorphic in the fields,
and the Hamiltonian theory can be defined in terms of a
holomorphic Poisson bracket. These properties are now
broken by the reality conditions, which involve Σ

i and its
complex conjugate rather than Σ

i alone. In practice, we
treat the reality conditions as additional, nonholomorphic
constraints on initial data, whose consistency under time
evolution must be checked; see Ref. [15] for an analysis of
this approach in Ashtekar variables.
Using Eqs. (6), (7), and (13), we can write the two-forms

Σ
i as

Σ
i ¼ −ÑE

˜

i
adt ∧ wa þ 1

2
Ẽiaϵ

˜
abcw

b
∧ wc ð24Þ

with wa ¼ Vadtþ dxa, and the reality conditions become

ÑðẼiaE
˜

j
a − ẼiaE

˜

j
aÞ ¼ ϵ

˜
abcẼ

ibẼjcðVa − VaÞ;

ReÑ ¼ 0: ð25Þ

These conditions can be understood in terms of the tetrad
derived from the Σ

i: the tetrad eI defined by

e0 ¼ Ñ
ffiffiffiffiffiffiffiffiffiffi

det Ẽ
p dt; ei ¼ i

ffiffiffiffiffiffiffiffiffiffi

det Ẽ
p

E
˜

i
aw

a ð26Þ

indeed satisfies Eq. (3) with Eq. (24). The associated
(Urbantke) metric is then defined by

g ¼ −
Ñ2

det Ẽ
dt ⊗ dt − ðdet ẼÞE

˜

i
aE
˜
ibw

a ⊗ wb: ð27Þ

We can see that, when compared to the usual Arnowitt-
Deser-Misner canonical decomposition of the metric, Ñ is a
rescaled or densitized lapse function, and Va encodes the
shift vector. The reality conditions tell us that Ñ should be
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purely imaginary; if we then choose Va to be real valued,
we find a second reality condition,

ImðE
˜

i
aE
˜
ibÞ ¼ 0: ð28Þ

This also implies that Imððdet ẼÞ2Þ ¼ 0 and det Ẽ must
either be real valued or purely imaginary, and there are four
separate solution sectors to the reality conditions: the
metric (27) can be real Lorentzian with signature ð−þ
þþÞ or ðþ − −−Þ or it can be of the form i times a
Lorentzian metric. This ambiguity in the solutions to the
reality conditions in Plebański gravity is known [1], and it
is discussed in the context of cosmological models in
Ref. [16]; one could see it as a feature which allows for
dynamical signature change in the metric (see also
Ref. [17]). Once we require the fields to solve all field
equations, the field equation trM ¼ Λ, for real Λ, would
exclude the imaginary metric sectors. In the next section we
will consider unimodular extensions in which Λ is an
integration constant which is in general complex, and so
these imaginary sectors are allowed by the theory [10].
This way of imposing reality conditions is rather differ-

ent from the usual treatment in the Ashtekar formalism,
where Ẽa

i itself is required to be real, perhaps up to local
complex SOð3Þ rotations [15].
In the Euclidean formulation, reality conditions are not

needed and the reconstructed metric is of the same form
(27) and now always real Euclidean, but for det Ẽ > 0 it
would be negative definite, so the signature ambiguity
persists even in this case.

B. First order and pure connection theories

As we mentioned above, the Plebański action (1) can be
used as a starting point for equivalent formulations in terms
of fewer independent variables. In particular, substituting
Σ
i ¼ ðM−1ÞijFj into Eq. (1) yields a first-order action,

SFO½A;M;ω� ¼ 1

16
ffiffiffi

σ
p

πG

Z

½M−1
ij F

i
∧ Fj þ ωðtrM − ΛÞ�;

ð29Þ

which could also be used as a starting point for a canonical
analysis. Decomposing the connection Ai as in Eq. (6), one
now obtains immediately

SFO ¼ 1

8
ffiffiffi

σ
p

πG

Z

d4x

�

1

2
Ȧi
aM

−1
ij F

i
bcϵ̃

abc − ÑðtrM − ΛÞ

þ 1

2
Ai
0DaðM−1

ij F
i
bcϵ̃

abcÞ
�

: ð30Þ

This contains fewer independent variables than Eq. (11) but
the canonical phase space structure is not immediately
apparent. From the first term in the action, if we introduce

canonical momenta Ẽa
i for the connection we obtain a

primary constraint,

Ẽa
i −

1

2
M−1

ij F
i
bcϵ̃

abc ≈ 0 ð31Þ

which, using the inverse triad (8), can be written as

Mij ≈
Fi
bcϵ

jklẼb
kẼ

c
l

2 det Ẽ
: ð32Þ

This constraint splits into a symmetric and an antisym-
metric part, and given the symmetry of Mij we find
Fi
abẼ

b
i ≈ 0. These constraints are precisely the additional

constraints appearing in the extended canonical action (11),
and the theories are seen to be equivalent.
In short, the transition to the canonical theory requires us to

reintroduce the Σi fields, which were integrated out to derive
the first order theory, as canonical momenta to the con-
nection. The same is true in a pure connection theory where
one also eliminates the matrix Mij at the Lagrangian level.
The canonical analysis of the pure connection formalism for
standard (nonunimodular) general relativity can be found in
Ref. [18]. The intermediate first order theorywas also used in
the canonical analysis of Ref. [11]. At the Hamiltonian level,
using these actions seems to give no new insights compared
to the original Plebański formulation, although one can
obtain the same results more directly.

IV. CANONICAL UNIMODULAR PLEBAŃSKI

GRAVITY

We can now extend the results of the canonical analysis
of standard Plebański gravity to the unimodular versions
proposed in Eqs. (4) and (5). The analysis of the preferred-
volume theory is new, whereas the analysis of the para-
metrized Henneaux-Teitelboim version has been partially
discussed in Ref. [11].

A. Preferred-volume theory

Starting with the preferred-volume theory defined by
Eq. (4), we note that it differs from the Plebański action (1)
by the absence of a Λ term and by the replacement of the
dynamical field ω by a background field ω0, which can be
written as ω0 ¼ −2Ñ0d4x for some background scalar
density Ñ0. The other fields in the theory ðAi;Σi;MijÞ
are the same as in the conventional Plebański formalism, so
most of the steps of the previous section go through with
very minor modifications.
In analogy with Eq. (11), we can define an extended

canonical preferred-volume action:
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SxCPV ¼ 1

8
ffiffiffi

σ
p

πG

Z

d4x

�

Ȧi
aẼ

a
i þ αiDaẼ

a
i − Ñ0trM

− VaðFi
abẼ

b
i − Ai

aDbẼ
b
i Þ

− Φ̃ij

�

F
ði
abϵ

jÞklẼa
kẼ

b
l

2 det Ẽ
−Mij

��

: ð33Þ

where we have only replaced Ñ → Ñ0 and Λ → 0 com-
pared to Eq. (11). As with the nonunimodular version, we

can fix Φ̃ij ¼ Ñ0δij and replace Mij ¼ F
ði
ab
ϵjÞklẼa

k
Ẽb
l

2 det Ẽ
to elimi-

nate the redundant fields Φ̃ij and Mij, and find a canonical
preferred-volume action:

SCanPV ¼ 1

8
ffiffiffi

σ
p

πG

Z

d4x

�

Ȧi
aẼ

a
i þ αiDaẼ

a
i

− VaðFi
abẼ

b
i − Ai

aDbẼ
b
i Þ − Ñ0

ϵijkF
k
abẼ

a
i Ẽ

b
j

2 det Ẽ

�

:

ð34Þ

There is now a difference between the canonical formu-
lation of this preferred-volume theory and the previously
discussed canonical Plebański formulation: since Ñ0 is not
a Lagrange multiplier but a fixed background field, we do
not initially have a Hamiltonian constraint, but only the
Gauss constraints G̃i and diffeomorphism constraints D̃a

which take the same form as in Eqs. (15) and (16).
The total (naive) Hamiltonian is given by

Hð0Þ ¼ GðαÞ þDðVÞ þ 1

8
ffiffiffi

σ
p

πG

Z

d3xÑ0

ϵijkF
k
abẼ

a
i Ẽ

b
j

2 det Ẽ

ð35Þ

which includes a nonconstraint part, hence the time
evolution it generates is not pure gauge. The nonconstraint
part of this Hamiltonian coming from the integral term in
the above expansion has a nonweakly vanishing Poisson
bracket with the diffeomorphism constraint, and the con-
sistency condition fDðUÞ; Hð0Þg ≈ 0 yields a secondary
constraint on the variables given by

Ka ¼ ∂a

�

ϵijkF
k
abẼ

a
i Ẽ

b
j

2 det Ẽ

�

; ð36Þ

which is the spatial gradient of the Hamiltonian constraint
H encountered in the nonunimodular version in Eq. (17).
We can define its smeared form by

KðT̃Þ ¼ 1

8
ffiffiffi

σ
p

πG

Z

d3xT̃aKa; ð37Þ

where T̃a is aweightþ1 vector density. This new constraint is
first class with the Gauss and diffeomorphism constraints as

fGðαÞ;KðT̃Þg ¼ 0;

fDðVÞ;KðT̃Þg ¼ KðLVT̃Þ;
fKðT̃Þ;KðL̃Þg ¼ D0ðXð∂aT̃a; ∂bL̃

bÞÞ ð38Þ

with D0 and Xa defined as in Eq. (20). We must add a term
KðT̃Þ to the naive Hamiltonian Hð0Þ to obtain the full
Hamiltonian HPV of this theory, which defines the most
general consistent time evolution:

HPV ¼ Hð0Þ þKðT̃Þ: ð39Þ

We already understand the nature of the gauge trans-
formations generated by the Gauss and diffeomorphism
constraints. To understand the nature of the gauge trans-
formations generated by the new constraint K, notice that
KðT̃Þ ¼ Hð−∂aT̃aÞ and, hence, for any O

fO;KðT̃Þg ¼ −fO;Hð∂aT̃aÞg: ð40Þ

We see the gauge transformations generated from K are the
same as the ones generated by H in the nonunimodular
theory, except that the gauge parameter Ñ is restricted to be
a total divergence −∂aT̃

a. These are a restricted set of time
reparametrization transformations, corresponding to the
reduced symmetry from all diffeomorphisms to volume-
preserving diffeomorphisms.
In the complex version of the theory, the tetrad and

metric associated to the two-forms Σi are now obtained as

e0 ¼ Ñ0
ffiffiffiffiffiffiffiffiffiffi

det Ẽ
p dt; ei ¼ i

ffiffiffiffiffiffiffiffiffiffi

det Ẽ
p

E
˜

i
aw

a; ð41Þ

g ¼ −
Ñ2

0

det Ẽ
dt ⊗ dt − ðdet ẼÞE

˜

i
aE
˜
ibw

a ⊗ wb: ð42Þ

In particular, one finds that
ffiffiffiffiffi

jgj
p

¼ jÑ0j, as expected. The
reality conditions take the same form as in Eq. (25), except
that ReÑ0 ¼ 0 now refers to the background field Ñ0.
Hence, Lorentzian solutions only exist when the back-
ground scalar density Ñ0 is purely imaginary. In contrast,
Euclidean signature solutions only exist when Ñ0 is real
valued. In this case, one takes all of the dynamical fields
and Lagrange multipliers to be real also.
While this theory does not have the same Hamiltonian

constraint as standard Plebański gravity, the constraint Ka

implies that H is constant on each constant-time hyper-
surface. A quick calculation shows that we also have

Ḣ ¼ fH; HPVg ≈ 0: ð43Þ

Hence, we see that the constraint (17) is replaced by a
version in which Λ is a free integration constant of the
theory, as expected in unimodular formulations of gravity.
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Notice that this integration constant can in general be
complex, and even if reality conditions are imposed can be
purely imaginary. One could impose an additional reality
condition to exclude these solutions [10].

B. Parametrized theory

Here the starting point is the parametrized action defined
à la Henneaux-Teitelboim, Eq. (5). It contains a new
dynamical variable T, which can be expanded as

T ¼ τ̃w1
∧ w2

∧ w3 −
1

2
T̃aϵ

˜
abcdt ∧ wb

∧ wc

¼ τ̃d3x −
1

2
ðT̃a − τ̃VaÞϵ

˜
abcdt ∧ dxb ∧ dxc; ð44Þ

where the one-forms wa ¼ Vadtþ dxa were introduced
below Eq. (24), τ̃ is a weight þ1 scalar density, and T̃a is a
weight þ1 vector density. The exterior derivative of the
three-form T is computed to be

dT ¼ d4x½ ˙̃τ þ ∂aðT̃a − τ̃VaÞ�: ð45Þ

With the other variables defined as in Sec. III, we see that
the action (5) becomes

SxCHT ¼ 1

8
ffiffiffi

σ
p

πG

Z

d4x

�

Ȧi
aẼ

a
i þ ˙̃τtrM þ αiDaẼ

a
i

− VaðFi
abẼ

b
i − Ai

aDbẼ
b
i − τ̃∂atrMÞ

− Φ̃ij

�

F
ði
abϵ

jÞklẼa
kẼ

b
l

2 det Ẽ
−Mij

�

− T̃a
∂atrM

�

: ð46Þ

On inspection, we see an extra term ˙̃τtrM which contrib-
utes to the symplectic part of the action; τ̃ and trM are now
canonically conjugate. To make this explicit we can
decompose Mij ¼ Ψ

ij þ 1
3
λδij, where Ψ

ij is the trace-free
part and λ ¼ trM. We can also decompose Φ̃ij ¼ χ̃ij þ Ñδij
in a similar fashion. We then have

Φ̃ij

�

F
ði
abϵ

jÞklẼa
kẼ

b
l

2det Ẽ
−Mij

�

¼ χ̃ij

�

F
ði
abϵ

jÞklẼa
kẼ

b
l

2det Ẽ

�

�

�

�

tf
−Ψ

ij

�

þ Ñ

�

Fi
abϵi

klẼa
kẼ

b
l

2det Ẽ
− λ

�

;

ð47Þ

where jtf denotes the trace-free part, explicitly

F
ði
abϵ

jÞklẼa
kẼ

b
l

2det Ẽ

�

�

�

�

tf
¼ F

ði
abϵ

jÞklẼa
kẼ

b
l

2det Ẽ
−
1

3
δij

Fm
abϵm

klẼa
kẼ

b
l

2det Ẽ
: ð48Þ

In the nonunimodular Plebański formalism and in the
preferred-volume unimodular theory, we were able to

eliminate the fields Mij and Φ̃ij in their entirety. In this
case, we may only eliminate the trace-free parts Ψij and χ̃ij
since the trace parts are now dynamical. Removing the
redundant trace-free variables, we obtain the canonical

parametrized unimodular Plebański action,

SCanHT ¼ 1

8
ffiffiffi

σ
p

πG

Z

d4x

�

Ȧi
aẼ

a
i þ ˙̃τλþ αiDaẼ

a
i

− VaðFi
abẼ

b
i − Ai

aDbẼ
b
i − τ̃∂aλÞ

− Ñ

�

ϵijkF
k
abẼ

a
i Ẽ

b
j

2 det Ẽ
− λ

�

− T̃a
∂aλ

�

: ð49Þ

The transformation into the Hamiltonian setting is then
clear. We have dynamical fields Ai

a, Ẽ
a
i , τ̃, λ with

fAi
aðxÞ; Ẽb

j ðx0Þg ¼ 8
ffiffiffi

σ
p

πGδijδ
b
aδ

ð3Þðx − x0Þ;
fτ̃ðxÞ; λðx0Þg ¼ 8

ffiffiffi

σ
p

πGδð3Þðx − x0Þ;

the fields αi, Va, Ñ, and T̃a are Lagrange multipliers
enforcing constraints

G̃i ¼ −DaẼ
a
i ≈ 0; ð50Þ

D̃0
a ¼ Fi

abẼ
b
i − Ai

aDbẼ
b
i − τ̃∂aλ ≈ 0; ð51Þ

H0 ¼
ϵijkF

k
abẼ

a
i Ẽ

b
j

2 det Ẽ
− λ ≈ 0; ð52Þ

J a ¼ ∂aλ ≈ 0: ð53Þ

The Gauss constraint takes the same form (15) as in the
usual Plebański theory, whereas the diffeomorphism con-
straint D̃0

a picks up an additional term compared to Eq. (16).
This corresponds to the fact that the new fields λ and τ̃

transform nontrivially (as a scalar and as a scalar density)
under spatial diffeomorphisms. The new Hamiltonian
constraint H0 shows that the dynamical variable λ replaces
the cosmological constant in usual Plebański gravity.
Finally, the new constraint J a forces λ to be constant on
each spatial hypersurface.
The constraints G̃i, D̃

0
a, and H0 satisfy the same Poisson

algebra as their nonunimodular counterparts, given in
Eq. (19). We may define a smeared version of J a by

J ðT̃Þ ¼ 1

8
ffiffiffi

σ
p

πG

Z

d3x T̃aJ a; ð54Þ

then the only nonvanishing Poisson bracket of J is with the
diffeomorphism constraint,

fD0ðVÞ;J ðT̃Þg ¼ J ðLVT̃Þ:
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Hence, we have a first-class constraint algebra and no
further constraints need to be added. The total Hamiltonian
of the theory can be defined as

HHT ¼ GðαÞ þD0ðVÞ þH0ðÑÞ þ J ðT̃Þ: ð55Þ

The gauge transformations generated by these constraints
correspond to local SOð3Þ transformations, spatial diffeo-
morphisms, and time reparametrizations as in the standard
nonunimodular Plebański theory; the constraint J a only
generates transformations on τ̃, namely,

δ
L̃
τ̃ ¼ fτ̃;J ðL̃Þg ¼ −∂aL̃

a: ð56Þ

These transformations correspond to symmetries of the
action (5) under T → T þ θ, where θ is a closed three-form
satisfying dθ ¼ 0, which may be seen as an additional
gauge symmetry. To recover this symmetry in the
Hamiltonian picture, we need to define the behavior of
the Lagrange multiplier field T̃a under these gauge trans-
formations using the invariance of the action (see the
Appendix). For the transformations generated by J , we
find

δ
L̃
T̃a ¼ ˙̃L

a
− LVL̃

a ð57Þ

and hence

δ
L̃
T ¼ −∂aL̃

ad3x

−
1

2
ð ˙̃La

− ∂dðVdL̃a − L̃dVaÞÞϵ
˜
abcdt ∧ dxb ∧ dxc

ð58Þ

using the parametrization of T defined in Eq. (44).
Evaluating the exterior derivative dδ

L̃
T reveals that δ

L̃
T

is closed, dδ
L̃
T ¼ 0. The same symmetry is discussed in

the usual Henneaux-Teitelboim formulation of unimodular
gravity in Ref. [9].
The Hamiltonian equations of motion for the field λ

imply that λ̇ ¼ fλ; HHTg ¼ 0 so that λ is again constant in
spacetime, not just on each spatial hypersurface.
The discussion of reality conditions in this theory largely

mirrors the one of Sec. III A, except that there is now also a
dynamical field λ which represents the cosmological
constant in Einstein’s equations. By imposing reality
conditions on λ, we can exclude unwanted sectors of
theory. In particular, demanding λ to be real excludes
the solutions with imaginary metric.
A significant property of the parametrized approach,

whether in metric [9] or connection variables [11], is that
the volume form is exact; the total volume of a portion of
spacetime of the form ½t0; t1� × S can be written as a
difference between two integrals over the boundary hyper-
surfaces. Hence, these boundary integrals can be used to

define a preferred time variable, the volume time, in this
formulation of unimodular gravity.
In the Lagrangian setting, this property can be seen in

one of the field equations arising from the action (5),

Σ
i
∧ Σ

j ¼ 2δijdT; ð59Þ

see also Ref. [10] for more discussion on this. One can
recover this result from the canonical theory also. To see
this, consider the equation of motion for τ̃ computed via

˙̃τ ¼ fτ̃; HHTg ¼ −Ñ − ∂aðT̃a − τ̃VaÞ: ð60Þ

Hence, from Eq. (45) we have dT ¼ −Ñd4x.
Now recall that the metric (27) associated to the variables

of the Plebański theory has determinant Ñ2. The reality
conditions in the Lorentzian theory imply that Ñ is
imaginary, so that dT is also imaginary. In the Euclidean
theory all fields are real. Hence, an exact volume form
compatible with the metric is given by ωHT ¼ ffiffiffi

σ
p

dT for
both Lorentzian and Euclidean solutions (the overall sign
represents a choice of orientation, which cannot be deter-
mined from the metric alone).
If we now define the volume time tVol between hyper-

surfaces t ¼ t0 and t ¼ t1 to be the spacetime volume of the
region bounded by them, we find

tVolðt0; t1Þ ¼
Z

½t0;t1�×S
ωHT

¼
ffiffiffi

σ
p �

Z

t¼t1

d3x τ̃ −
Z

t¼t0

d3x τ̃

�

: ð61Þ

This provides a geometric interpretation for the field τ̃ as
encoding the volume time between constant t hypersurfa-
ces. This volume time is not fully gauge invariant; the
transformations on the variable τ̃ generated from the
constraint H0ðÑÞ produce the time reparametrization trans-
formations on tVol that we might expect, namely,

δÑtVolðt0; t1Þ ¼ −
ffiffiffi

σ
p �

Z

t¼t1

d3x Ñ −

Z

t¼t0

d3x Ñ

�

¼
ffiffiffi

σ
p �

Z

t¼t1

d3x ˙̃τ −
Z

t¼t0

d3x ˙̃τ

�

ð62Þ

¼ ∂tVol

∂t0
þ ∂tVol

∂t1
: ð63Þ

In the first equality we use the shift δÑ τ̃ ¼ fτ̃;
H0ðNÞg ¼ −Ñ, and in the second equality we use the
equation of motion (60). Gauge transformations generated
from the other constraints have no effect on tVol. The clock
function tVol satisfies
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tVolðt0; t1Þ ¼ tVolðt0; t2Þ þ tVolðt2; t1Þ ð64Þ

and it is monotonic with respect to the coordinate distance
jt1 − t0j when

R

d3xτ̃ is a monotonic function of coordinate
time t, which corresponds to choosing Ñ such that
ffiffiffi

σ
p R

d3xÑ is either non-negative or nonpositive. In stan-
dard general relativity we would usually assume that the
lapse function is positive definite, which would be a similar
restriction. The volume time is sensitive to the ordering of
events, since tVolðt0; t1Þ ¼ −tVolðt1; t0Þ.

V. CONCLUSIONS

The canonical structure of unimodular formulations of
Plebański gravity largely mirrors what is seen in the
conventional metric approach [7,19,20] or in connection
variables [21]. In the preferred-volume version, we do not
initially have a Hamiltonian constraint since the volume
form is a fixed background field. Instead, a nonconstraint
part of the Hamiltonian generates “true” time evolution in
the preferred time. Demanding that the constraints are
preserved under time evolution then implies that the
Hamiltonian density is equal to some undetermined inte-
gration constant, which replaces the cosmological constant
of general relativity. In a parametrized (Henneaux-
Teitelboim) version of the theory, we have a new pair of
canonically conjugate fields λ and τ̃. λ is constrained by the
equations of motion, and a new constraint, to be a
spacetime constant, while τ̃ can be used to construct a
preferred volume time in the theory. In either approach, one
adds only a single global degree of freedom compared to
the degrees of freedom in the usual Plebański formalism for
general relativity. Since we are working in a connection-
based formulation closely related to Ashtekar variables,
there is an additional Gauss constraint representing local
SOð3Þ transformations, but the interaction of this constraint
with the others is straightforward to understand and as
expected.
As we discussed at numerous points, additional com-

plications arise from the need for reality conditions when
we aim to find Lorentzian solutions in the complex theory
(these are not discussed in Ref. [11] which presents a
shorter version of the canonical analysis for the para-
metrized theory). These subtleties are mostly known from
the usual Plebański formalism, where they mean that the
signature of the “effective” spacetime metric arising from
the Urbantke construction cannot be fixed a priori, and the
reality conditions even admit solutions for which the metric
would be purely imaginary. In the standard Plebański
approach, the latter would be excluded by the Einstein
equations for real Λ, but here Λ could be an arbitrary
complex integration constant. Hence, to exclude imaginary
metric solutions an additional reality condition would need
to be imposed [10]. When attempting a canonical

quantization for instance with the methods of loop quantum
gravity, as advocated in Ref. [11], this need for an addi-
tional reality condition would be an additional complica-
tion. One could focus on the Euclidean theory instead,
where all fields are real and there is no need for reality
conditions. Even in this case, one would have to accept
solutions with negative definite metric. Hence, while there
is a close connection between formulations of gravity based
on self-dual two-forms and the Ashtekar formalism, the fact
that the densitized triad is not a fundamental variable in the
Plebański theory does lead to differences between these
approaches.
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APPENDIX: GAUGE TRANSFORMATIONS AND

LAGRANGE MULTIPLIERS

In the canonical formulation, local gauge transforma-
tions on the dynamical fields are generated symplectically
from the first class constraints. However, the Poisson
structure does not prescribe gauge transformations for
Lagrange multiplier fields as these are not phase space
functions. It is possible to derive the gauge transformations
of these Lagrange multiplier fields by requiring that the
action should be invariant under arbitrary gauge trans-
formations. This then connects with the transformation
behavior of these fields in the Lagrangian theory. Our
discussion here follows Refs. [22,23].
Consider a general theory with first-class constraints

generating gauge transformations, with action

S½q; p; λ� ¼
Z

t1

t0

dt½q̇ipi −Hðq; pÞ − λαGαðq; pÞ�: ðA1Þ

Here ðqi; piÞ are canonical coordinates and momenta,
Hðq; pÞ is the nonconstraint part of the Hamiltonian, λα

are Lagrange multipliers, and Gα are the constraints. We
have written this action for a finite-dimensional mechanical
system but the generalization to field theory is
straightforward.
Under a gauge transformation generated by some linear

combination εβGβ of the constraints, we have δεf ¼
εβff;Gβg for any phase-space function f. Then the action
S changes as
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δεS ¼
Z

t1

t0

dt½piδεq̇
i þ q̇iδεpi − δεH −Gαδελ

α − λαδεGα�

¼
�

εβ
∂Gβ

∂pi

pi

�

t1

t0

−

Z

t1

t0

dt½εβĠβ − εβfGβ; H þ λαGαg þGαδελ
a�

¼
�

εβ
∂Gβ

∂pi

pi − εβGβ

�

t1

t0

þ
Z

t1

t0

dt½ε̇βGβ þ εβfGβ; H þ λαGαg − Gαδελ
a�; ðA2Þ

where we use Ġβ ¼ ṗifqi; Gβg − q̇ifpi; Gβg, δεH ¼
εβfH;Gβg, and δεGα ¼ εβfGα; Gβg and we used two
integrations by parts. If the gauge transformation param-
eters εβ are assumed to vanish at the initial and final times,
the first line in Eq. (A2) vanishes. The change δελa in the
Lagrange multiplier fields can then be defined by demand-
ing that also the second line vanishes. Assuming the
constraints Gα are independent, this gives as many inde-
pendent equations as there are constraints.
We can now demonstrate this formalism for the canoni-

cal Plebański action (12). Consider a smeared constraint
ΦðεÞ which can be a linear combination of the constraints
(15)–(17) with some Lagrange multiplier field εðt; xÞ. We
assume εðt0; xÞ ¼ εðt1; xÞ ¼ 0. Then under a gauge trans-
formation generated by ΦðεÞ, the action changes as

δεSCan ¼
Z

t1

t0

dt½Φðε̇Þ þ fΦðεÞ; HPleg

−GðδεαÞ −DðδεVÞ −HðδεÑÞ�; ðA3Þ

where the total Plebański Hamiltonian HPle was defined
in Eq. (22). As an illustrative example, consider the

transformation of the canonical action generated from
the constraint D̃a with gauge parameter Ua, which reads

δUSCan ¼
Z

t1

t0

dt½GðLUα − δUαÞ þHðLUÑ − δUÑÞ

þDðU̇þ ½U;V� − δUVÞ�: ðA4Þ

By demanding that the action is invariant, we can read off
the required transformation behavior of the Lagrange
multipliers under diffeomorphisms:

δUα
i ¼ LUα

i; δUÑ ¼ LUÑ; δUV
a ¼ U̇a þ ½U;V�a:

These include the usual action via Lie derivative, but there
is now a time-dependent piece U̇a which takes care of the
time-dependent gauge transformation. One could see δUVa

as the spatial part of a commutator of spacetime vector
fields Uμ and Vμ with U0 ¼ 0 and V0 ¼ −1.
The same formalism can be used to compute the trans-

formation behavior of Lagrange multiplier fields in all
theories considered in this article [24], and to identify
Lagrangian symmetries at the Hamiltonian level.
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