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Abstract—Three-phase grid-following (GFL) inverter-based re-
sources (IBRs) play a vital role as an interface for integrating
renewable energy resources and flexible loads, such as electric
vehicles, into the power grid. This paper introduces a novel
set-theoretic adaptive control scheme for the primary control
of three-phase GFL IBRs, designed to mitigate the impacts of
uncertainties or non-ideal conditions affecting the control layer.
These uncertainties will risk losing the stability and intended
operation of three-phase GFL IBRs by potentially influencing
the control commands transmitted to pulse width modulators.
In order to address this issue, this study proposes an add-on
control signal generated through an adaptive architecture to
retrofit the existing (pre-designed) state feedback controller of
GFL IBRs. As the name implies, this retrofit control strategy
entails upgrading or modifying the existing feedback control
instead of completely replacing it. The proposed control scheme
is based on a set-theoretic adaptive controller design that employs
generalized restricted potential functions. A notable aspect of this
framework is its ability to ensure that the reference tracking
error bound remains below a user-defined threshold, making it
“computable” by providing the control design parameters. The
stability of the closed-loop system and the approximate reference
tracking performance of the proposed control scheme for GFL
IBRs are validated through a theoretical analysis employing
the Lyapunov theory. Simulation-based and experimental results
further confirm the efficacy of the proposed GFL IBR controller.
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Note to Practitioners—Given the strive to focus on renewables-
intensive and modern power grids, inverters must exhibit en-
hanced intelligence and versatility to accommodate various
functionalities. However, uncertainties or non-ideal conditions
originating from diverse sources significantly threaten the op-
timal operation of inverter-based resources. These uncertainties
introduce errors into the control loop of grid-following inverter-
based resources, potentially compromising their stability and
performance. In order to tackle this compelling challenge, this
paper proposes a novel set-theoretic adaptive current control
scheme for grid-following inverter-based resources using an add-
on control signal. The aim is to mitigate the adverse effects of
uncertainties affecting the control commands in grid-following
inverter-based resources. By incorporating the additional control
signals into the feedback controller, reference tracking is assured
despite uncertainties. This approach offers a more cost-effective
solution by enhancing the existing feedback control instead
of entirely replacing it. Lyapunov stability theory provides a
theoretical framework for analyzing stability and ensuring the
uniform boundedness of output trajectories in grid-following
inverter-based resources. Simulation and experimental results
confirm the feasibility and effectiveness of the proposed approach
in mitigating the uncertainties affecting the control commands.

Index Terms—Set-theoretic adaptive control, three-phase grid-
following (GFL) inverter-based resources (IBRs), uncertainties,
vector current control.

I. INTRODUCTION

I N recent years, three-phase grid-following (GFL) inverter-

based resources (IBRs) (hereinafter referred to as GFL

IBRs for simplicity) have gained widespread use due to the

increasing penetration of renewable generation resources and

energy storage systems as well as the growing demand in

electric vehicles [1]. These modern power electronic devices

play a critical role as an interface between diverse energy

sources and the main grid, boosting reliability, flexibility, and

overall capacity in modern power grids [2].

In the grid modernization paradigm, e.g., smart grids or

the grid edge, it is essential to implement an appropriate

control strategy for GFL IBRs. This strategy ensures that

GFL IBRs operate as close as possible to a current source

and remain synchronized with the main electrical grid. The

critical control objectives in the GFL IBRs are minimizing

the steady-state tracking errors of the output currents injected

into the grid and reducing the total harmonic distortion (THD)

of the output currents of GFL IBRs. Furthermore, ensuring
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the reliable, secure, and robust operation of GFL IBRs is

paramount, given their susceptibility to various unforeseen

uncertainties or non-ideal conditions due to internal faults,

failures, and external disturbances, such as cyberattacks [3].

The impact of uncertainties in power grid operations can

lead to instability and hazardous conditions, posing risks such

as blackouts, equipment damage, and failures. Implementing

advanced robust control methodologies remains crucial for

mitigating the effects of uncertainties and ensuring the “self-

adapting” of GFL IBRs. For a GFL IBR, the self-adapting

feature refers to the ability of the inverter to adapt itself to

either internal or external operational uncertainties.

Recent studies have introduced various control strategies

for grid following inverters under disturbances and faults;

see [4]–[9]. The authors in [4] have suggested an adaptive

controller resilient against additive sensor data manipulations.

In a noteworthy example, an active disturbance rejection

control presented in [5] provides resilience for GFL IBRs

with LCL filters against grid voltage variations and filter

resonance. Similarly, the study in [8] presents a robust active

damping method based on linear active disturbance rejection

control to address filter resonance issues. Also, the study [6]

designs an observer-based control strategy in the αβ stationary

frame for grid-tied inverters to cope with both balanced and

unbalanced grid voltages. The authors in [10] have proposed

an adaptive switching control approach to the primary control

of grid-connected inverters specifically designed to rectify

faulty signals in sensors. The proposed approach employs

a sliding-mode controller to improve the robustness of the

primary control in the direct-quadrature-frame (the dq-frame)

against sensor faults. Likewise, in [11], a control methodology

has been developed to diagnose and address issues arising

from current sensor malfunctions within a photovoltaic array.

In [12], researchers have proposed a two-degrees-of-freedom

estimator-based controller designed to minimize the THD.

The proposed controller aims to minimize tracking errors in

inverter output voltage even in the presence of an uncertain

system model. the study in [13] introduced a robust current

control strategy for grid-connected inverters, with a specific

emphasis on uncertain system models. However, this study

does not account for any uncertainties in the control command

of grid-connected inverters.

In the control literature, significant efforts have been made

to design control strategies that mitigate the effects of dis-

turbances and model uncertainties in dynamic systems. For

instance, a robust current control scheme is proposed in [9],

where grid impedance uncertainties are modeled as a polytope.

A tube-based stochastic MPC strategy with a probabilistic

tube is proposed in [14] to reject stochastic wind speed dis-

turbances. Additionally, [15] explores robust output feedback

model predictive control for constrained linear systems in the

presence of bounded state and output disturbances.

The control techniques discussed thus far for GFL IBRs in

the dq-frame generally address uncertainties in either model

parameters or voltage disturbances originating from the grid.

However, these control techniques may prove ineffective when

faced with additive and multiplicative uncertainties in the

control input channels (CICs). Emerging threats, such as

cyberattacks, can cause GFL IBRs to encounter these types of

uncertainties in the control layer, significantly degrading the

desired closed-loop dynamical performance of GFL IBRs; see

the simulation comparison presented in Section IV. A notable

example of such uncertainties is discussed in [16], where

an attacker manipulates control inputs by inserting false data

injection and a multiplier. In general, existing control strategies

for GFL IBRs assume controllers operate in ideal conditions

without any uncertainties. Yet, in practical scenarios, GFL

IBRs’ controllers are prone to uncertainties that can undermine

the reliability and performance of GFL IBRs, leading to

instability [17].

These uncertainties may originate from diverse factors,

including actuator bias, aging effects and malfunctions in

sensors and actuators, degradation processes, modeling errors,

parameter variation, adverse environmental conditions, and

even deliberate interventions like cyberattacks. The recent

survey paper in [18] discusses several practical cyberattack

scenarios on inverter controllers. In addition, a new IEEE

1547.3-2023 [19] provides a guideline for cyber-security re-

quirements in grid-interfaced distributed energy resources.

This emphasizes the pressing need to investigate additional

requirements in control strategies for smart inverters in modern

power grids. To this end, control systems acting on inverters

should be retrofitted to effectively tolerate or compensate for

the uncertainties stated above, ensuring the robust and reliable

operation of GFL IBRs.

Among various control strategies that aim to mitigate the

impact of uncertainties in dynamic systems, the adaptive

control strategy stands out as a powerful tool for dealing with

additive and multiplicative uncertainties due to its inherent

advantages, including robustness and superior transient per-

formance [20]. Therefore, motivated by the identified gap in

the existing literature, this paper proposes a novel set-theoretic

adaptive control methodology for GFL IBRs subjected to un-

certainties in their control systems. This set-theoretic adaptive

control can ensure a performance guarantee at the pre-design

phase. Set-theoretic approaches focus on ensuring that the

system’s states stay within predefined sets. Therefore, they can

ensure that the system remains within a “safe set” or reaches

a desired set of states [21]. This capability makes them useful

in safety-critical systems, where maintaining operations within

safe bounds is paramount. Indeed, the critical feature of the

proposed control scheme is that it allows the tracking error

bound to remain below a predetermined, user-defined bound

(threshold). Since this bound is user-defined, this approach is

more practical as it does not rely on unknown parameters.

Consequently, designers are able to deploy the proposed

control scheme to establish guaranteed performance with a

tracking error characterized by a user-defined bound at the

pre-design stage. Therefore, this bound is “computable” using

the given adaptive control design parameters. This set-theoretic

approach significantly differs from standard model reference

adaptive control methods, such as the one presented in [22],

which can be conservative and have error bounds that rely on

unknown parameters, thus failing to provide practical and strict

performance guarantees. Another essential feature of the pro-

posed control scheme is that it involves upgrading/modifying
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the existing current feedback control rather than completely

replacing it, as the name suggests. This matter is notably

essential from the practical point of view, as this approach can

be more cost-effective than installing an entirely new control

system [23].

As discussed, uncertainties in CICs in GFL IBRs can

compromise the accuracy of control commands applied to

modulation signals. Any inaccuracies or corruption of such

commands could lead to erroneous switching sequences. If

a GFL IBR encounters a malfunction in its CIC, its ability

to function effectively will be sabotaged. Specifically, the

THD of the three-phase current—a pivotal metric for assessing

current tracking performance—may exceed the permissible

limits. Therefore, the proposed control scheme must guarantee

the accurate execution of switching and modulation processes.

In order to achieve this goal, an adaptive control architecture is

integrated into the conventional state feedback controller in a

retrofit manner. This augmentation is implemented to improve

robustness and ensure stability in the face of uncertainties

affecting CICs. To the best of the authors’ knowledge, the

ability to mitigate such uncertainties in the primary control

of GFL IBRs has not been discussed in the literature. Note

that the emphasis in this paper remains on the primary control

stage, which is responsible for controlling and regulating the

output currents (also referred to as zero-level or device-level

control) [10], [24]. The main contributions of this paper are

as follows.

1) It presents a novel vector current control scheme tailored

for the primary control in GFL IBRs. This scheme stands

out by integrating an adaptive structure, ensuring precise

pulse modulation and switching. Moreover, it addresses

the challenge of reference tracking in the presence of

additive and multiplicative uncertainties in the current

controller layer of GFL IBRs.

2) It devises a control framework to bolster the robust per-

formance of GFL IBRs and establishes a reliable and self-

adapting operation despite the additive and multiplicative

uncertainties in their control systems. Notably, incor-

porating a retrofit command enables the output current

trajectories to closely track the setpoint values—thereby

ensuring that the error remains within a user-defined

boundary determined by control design parameters.

3) It demonstrates that the proposed current controller guar-

antees the uniform ultimate boundedness of the output

tracking errors of GFL IBR. This accomplishment is

proven through a rigorous stability analysis grounded

in Lyapunov theory and generalized barrier Lyapunov

functions.

The superiority of the proposed vector current control

scheme is confirmed through comparative MATLAB simula-

tion results. Experimental results further validate and comple-

ment the findings obtained from the simulations.

The remaining sections of the paper are organized as fol-

lows. Section II presents the state-space representation of GFL

IBRs utilizing the LCL filter and states the research problem

addressed in this paper. Section III elaborates on the proposed

adaptive current control framework and stability analysis.

Section IV covers simulation and experimental verification.

Finally, Section V concludes the paper.

Notation. The notation employed in this paper follows

standard practice. R+ denotes the set of positive numbers, Rn

represents real column vectors with a length of n, and R
n×m

implies the set of n×m real matrices. The notation (.)T and

(.)−1 denotes the transpose and inverse operators for matrices,

respectively. ∥.∥2 signifies the standard 2-norm. Additionally,

∥x∥P ≜
√
xTPx represents the weighted Euclidean norm of

x ∈ R
n with the matrix P ∈ R

n×n. The trace operator is

denoted as tr(.). 0n×m and In×n are n ×m matrix of zeros

and n× n identity matrix, respectively.

II. MODELLING AND PROBLEM FORMULATION

This section presents a dynamic modeling framework of

GFL IBRs and uncertainties affecting their control system and

proposes the research problem this paper aims to address.

A. Dynamical Model of GFL IBRs

Consider a GFL IBR interfaced with the main grid by an

LCL filter, as depicted in Fig. 1. The dynamic model of such

a system can be derived using Kirchhoff’s circuit laws as

follows.

di1
dt

=
1

Lf1
(−(Rf1 +Rf )i1 +Rf i2 − vg + vi) (1a)

di2
dt

=
1

Lf2
(−Rf i1 − (Rf2 +Rf )i2 + vg − vi) (1b)

dvcf
dt

=
1

Cf

(i1 − i2) (1c)

where Lf1/Rf1 is the inductance/resistance corresponding

to the IBR side of the LCL filter; Lf2/Rf2 is the induc-

tance/resistance corresponding to the grid side of the LCL

filter; Cf is the shunt capacitance of the LCL filter; Rf is

the damping resistor; i1 and i2 are the inverter current and

grid current; vi and vg are the inverter voltage (input) and

grid voltage, respectively.

The mathematical model for GFL IBRs utilizing an LCL

filter in the dq-frame can be represented in the state-space

form by the following equations.

ẋ = Agx+Bgu+Bvd (2a)

y = Cgx (2b)

where x = [i1d i1q vcfd vcfq i2d i2q]
T ∈ R

6 represents

the state vector, u = [md mq]
T ∈ R

2 denotes the input

vector, y = [i2d i2q]
T ∈ R

2 is the output vector, and the

grid disturbance vector d is defined as [vPCCd
vPCCq

]T . Let us

define Rt1 ≜ Rf1 +Rf and Rt2 ≜ Rf2 +Rf . Then, the state

matrices are described as follows.
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(3b)

Cg =

[

0 0 0 0 1 0
0 0 0 0 0 1

]

(3c)

Referring to Fig. 1, id1 and iq1 represent the dq-frame

components of the inverter current phasor
−→
i1 , which imply i1a,

i1b, and i1c; id2 and iq2 represent the dq-frame components of

current phasor
−→
i2 , which imply i2a, i2b, and i2c; vcfd and vcfq

are the dq-frame components of RC-filter voltage; vPCCd
and

vPCCq
are the dq-frame components of −→v PCC, which depicts

the point of common coupling (PCC) voltages, including

vPCCa
, vPCCb

, and vPCCc
; md and mq stand for the modulation

indices of the switching for GFL IBR in the dq-frame. PPCC

and QPCC represent the values for the active power and reactive

power injected into the PCC, respectively.

The control input u described in (2) is designed to ensure

stability and achieve rapid and smooth current reference track-

ing performance, as outlined by IEEE Std 1547.P10-2018 [25].

Specifically, one of the main control objectives in GFL IBRs is

to maintain i2d tracking i2d-ref and i2q tracking i2q-ref at steady

state. Here, i2d-ref and i2q-ref are the setpoints of i2d and i2q ,

respectively. Note that in the operation of a GFL IBR using

the current-controlled technique and pulse width modulation

(PWM), the setpoint signals (i2d-ref and i2q-ref) are determined

by higher-level control layers [9].

B. Uncertainty Modeling in GFL IBRs’ Current Control Units

The uncertainties affecting GFL IBRs’ current control

systems can considerably degrade the attainable closed-loop

dynamical system performance in achieving offset-free current

tracking. These uncertainties may arise from various fac-

tors, including bias, aging, degradation, temperature, humidity,

faults, and even cyberattacks [18], [26], [27]. Here, a general

case of additive-multiplicative uncertainties in the current

controller of GFL IBRs is considered. Such uncertainties are

modeled as follows.

ũ = ∆(u+ δg(t)) (4)

where ∆ ∈ R
2×2 represents a time-invariant multiplicative

diagonal matrix, δg(t) ∈ R
2 denotes a time-varying additive

vector influencing modulation indices in the primary control

of GFL IBRs, and ũ is the control signal applied to modula-

tion signals. The following provides further details about the

practicality of the uncertainty model in (4) are provided.

• Additive term δg(t) models several sources of uncertain-

ties in the current controller—including bias, false data

injection attacks on CICs, and controller-firmware update

modification or insider attacks [18].

• Multiplicative term ∆, referred to as control effectiveness,

models modeling errors, parameter variation [28], and

different types of cyberattacks on the current control

systems of GFL IBRs [18]. This term, for example,

covers (i) sparse multiplicative attacks on control signals,

where a malicious attacker manipulates the control input

u by inserting a multiplier [16], [29] and (ii) malicious

control setting attacks, where the control parameters can

be compromised via edit parameters or parameter file

updates by a malicious grid operator in the control server

of IBRs or a malicious smart inverter portal user [18].

This paper makes the following assumption on the uncer-

tainty model in (4).

Assumption 1. This paper assumes that the multiplicative

uncertainty in CICs in (4) is unknown and time-invariant.

Furthermore, the additive uncertainty δg(t) is assumed to

unknown and bounded, i.e., ∥δg(t)∥ < δ1, and has a bounded

rate of change over time, i.e., ∥δ̇g(t)∥ < δ2, where the upper

bounds δ1 ∈ R and δ2 ∈ R are unknown to the control

designer.

Remark 1. This paper establishes a specific assumption

regarding uncertainties in the control input of GFL IBRs.

However, this assumption is realistic and not restrictive.

The research does not consider unbounded uncertainties, as

they are impractical for physical and operational realities.

Therefore, the assumption of the boundedness of the additive

uncertainty term in (4) is grounded in reality. It is worth noting

that Assumption 1 is made without loss of generality, as even

in the worst-case scenario of unbounded actuator uncertainty,

practical limitations like actuator amplitude saturation natu-

rally result in bounded behavior.

The multiplicative uncertainty in control inputs is usually

modeled as a constant scaling and remains relatively constant

over time. Although it may vary over the long term, it can be

reasonably approximated as time-invariant. The uncertainties

affecting the current control commands in (4) can lead to data

corruption and errors during the switching and modulation

process. Ultimately, this disruption might prevent GFL IBRs

from achieving optimal performance as intended and might

lead to instability issues; see the motivation example in Sub-

section II-C.

C. A Motivation Example: Shortcomings of the Conventional

Control Strategy for GFL IBRs

In order to achieve the dq-frame current reference tracking

in LCL-filter-based GFL IBRs, a state feedback controller

with an integrator is designed for the control loop system.

Afterward, the control input is represented as follows.

u = −Kgx−Kaxa,

ẋa = −y + r
(5)
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Fig. 1. Comprehensive block diagram of an LCL-filter-based GFL IBR employing voltage-source converter technology under multiplicative
(∆) and additive (δg(t)) uncertainties manipulating the control input u transmitted to pulse width modulators, along with the structure of
the proposed control scheme. This figure illustrates that the state feedback controller is designed based on the GFL IBR’s states using the
off-line linear matrix inequality (LMI) in (32). The calculated matrices K and P are applied to both the main controller (6) and the adaptive
control law (14). The retrofit signal ua introduced (13) is then updated through this adaptive structure to build up the main control command
u in the primary control layer of GFL IBRs, mitigating the impacts of uncertainties acting on the control layer.

where xa ∈ R
2 denotes the integrator state, Kg ∈ R

2×6

represents the feedback matrix, Ka ∈ R
2×2 is the integrator

gain matrix, and r ∈ R
2 stands for the current setpoints

vector. The control strategy in (5), which involves various

methods for determining optimal parameter designs, has been

widely proposed in the literature, as seen in [9], [30], [31],

and references therein. Given the dynamics of a GFL IBR

unit in (2), the conventional current controller in (5), and the

uncertainty model in (4), the closed-loop GFL IBR system can

be formulated as

ẋ = Agx+Bg∆(−Kgx−Kaxa + δg(t)) +Bvd, (6a)

ẋa = −y + r, (6b)

y = Cgx. (6c)

In the conventional current control design approach, the

control gains in the above closed-loop dynamics are designed

so that the closed-loop state matrix, as shown below, is

Hurwitz, i.e., all eigenvalues of Ar are located in the left half

complex plane.

Ar ≜

[

Ag −BgKg −BgKa

−Cg 02×2

]

. (7)

However, as modeled in (6), the closed-loop state matrix in

the presence of uncertainties in CICs is presented as

Ãr ≜

[

Ag −Bg∆Kg −Bg∆Ka

−Cg 02×2

]

. (8)

Obviously, the stability of Ar in (7) does not imply the

stability of Ãr for ∆ ̸= I2×2. In order to provide further details

and illustrate the limitations of the conventional state feedback

control strategy, a scenario where only the multiplicative

uncertainty impacts the control input u is considered. For

simplicity, this paper assumes that both diagonal elements

of ∆ are identical. Fig. 2 demonstrates how the maximum

real-part of the eigenvalues of the closed-loop state matrix in

(8) fluctuates with variations in the diagonal elements of ∆.
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Fig. 2. (a): Maximum real-part of the eigenvalues of the closed-

loop state matrix versus ∆ values. The red line indicates the

values of ∆ that render the system unstable, (b): Magnitude

Bode diagram of the closed-loop GFL IBR system from the

first element of output y to the first element of input δg(t).

This graph utilizes the parameters outlined in Section IV. As

depicted in Fig. 2, the closed-loop GFL IBR system becomes

unstable for some values of ∆.

In order to assess the impact of the additive uncertainty

term δg in (6a), let us assume that ∆ = I2. As the closed-

loop system described in equation (6) is multi-input multi-
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output, for the sake of simplicity, this paper assesses the

magnitude of the Bode diagram of the closed-loop control

system from the first output to the first input. It can be seen

very high magnitudes at some frequencies in the Bode plot in

Fig. 2, which indicates that the closed-loop GFL IBR system

amplifies the additive uncertainty signal at those frequencies

significantly. This matter means that such uncertainties at some

frequencies can cause the GFL IBR system to resonate or

amplify, leading to undesirable behavior in current signals

injected into the grid.

D. Problem Statement

In order to supply the demanded power, a current con-

troller for GFL IBRs must be designed to track the setpoints

determined by the desired active power and reactive power.

The scenarios mentioned in Subsection II-C highlight that the

conventional feedback control scheme in (5) is inadequate

and unable to accomplish current tracking performance in

the presence of additive and multiplicative uncertainties in

control inputs. In order to enhance the reliable operation of

GFL IBRs in the face of such uncertainties, the conventional

current controller in (5) should be retrofitted so that a self-

adapting feature is added to the GFL IBRs. This action

enhances the ability of a GFL IBR to adapt itself to operational

uncertainties.

Now, the following states the research problem this paper

seeks to address.

Problem 1. Given the dynamics of a GFL IBR in (2) and the

uncertainty model in (4), the problem formulation is formed

in this paper to address how to retrofit the current controller

in (5) so that the following objectives are satisfied despite the

presence of such uncertainties.

1) The closed-loop stability is guaranteed.

2) The approximate current reference tracking performance

is achieved, i.e., limt→∞∥y(t)− r∥2 ≤ ϵI , where ϵI is a

small non-negative scalar. Therefore, the output currents

of GFL IBRs, i2d and i2q , can track i2d-ref and i2q-ref,

respectively, at steady state with a predetermined, user-

defined upper bound ϵI .

The solution to Problem 1 aims to estimate the uncertainties

introduced in (4) in the current controller of GFL IBRs and

mitigate their effects by adding a retrofit (corrective) signal to

the control input u. This signal is generated and updated by

the designed uncertainty estimator, which (14) describes. The

following section proposes an adaptive control scheme relying

on a retrofit signal.

III. SET-THEORETIC ADAPTIVE CONTROL SCHEME

This section presents an adaptive current control scheme

that relies on a set-theoretic approach and incorporates a

retrofit signal to improve the performance of GFL IBRs in

the presence of uncertainties discussed in Subsection II-B.

The proposed control scheme aims to provide a solution to

Problem 1 stated in Subsection II-D.

A. Proposed Adaptive Current Control Framework

This paper proposes an adaptive current control framework

for GFL IBRs. Before presenting the adaptive current control

framework, let us define the augmented state vector and the

augmented feedback control gain as xaug ≜ [xT xTa ]
T ∈ R

8

and K ≜ [Kg Ka] ∈ R
2×8. Next, the augmented form of the

system in (6) can be rewritten in a compact form as follows.

ẋaug = Axaug +B∆(−Kxaug + δg(t)) +Brr +Bvad,

y = Cxaug,
(9)

where

A ≜

[

Ag 06×2

−Cg 02×2

]

,

B ≜
[

BT
g 02×2

]T
, Bva ≜

[

BT
v 02×2

]T
,

Br ≜
[

0T6×2 I2×2

]T
, C ≜

[

Cg 02×2

]

.

(10)

Adding and subtracting BKxaug to and from (9) yields

ẋaug = Arxaug +B∆δTa (t)z(xaug) +Brr +Bvad, (11)

where Ar is given by (7), δa(t) ≜ [δg(t) (∆−1 −
I2×2)K]T ∈ R

2×9 is an aggregated uncertainty matrix;

z(xaug) ≜ [1 xTaug]
T ∈ R

9. Note that in (11), the term

∆δTa (t)z(xaug), where ∆δTa (t) is unknown, linearly param-

eterizes the uncertainty in CICs.

Afterward, a closed-loop reference model for GFL IBRs

given is considered and described by

ẋr = Arxr +Brr +Bvad,

yr = Cxr
(12)

where xr is the reference state vector, and yr is the reference

output vector for GFL IBRs. Due to the integral term in the

conventional control scheme and stability of Ar, one can show

that limt→∞ yr(t) = r.

Here, the main objective is to design a retrofit signal for

the current control law. This retrofit signal ensures that the

error between the state of the uncertain dynamical GFL IBR

system, described by (11), and the state of the reference model,

described by (12), remains uniformly bounded. In the next

step, adding the following retrofit signal modifies the current

control law.

ua(t) = −δ̂Ta (t)z(x) (13)

where δ̂a(t) ∈ R
9×2 is an estimate of δa(t) and it is updated

by the following adaptive control law.

˙̂
δa = β Projm

(

δ̂a(t), ψd(∥e∥P )z(x)eTPB
)

, (14)

where Proj is the projection operator defined in Appendix A

in Section VI, β ∈ R+ is the adaptation gain, referred to as

learning rate, e ≜ xaug − xr is the state of the error system,

ψd(∥e∥P ) can be obtained using (38) in Appendix B, and P ∈
R

8×8 is a positive-definite solution of the following Lyapunov

equation.

AT
r P + PTAr +R = 0 (15)

where R ∈ R
8×8 is a positive-definite matrix.
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Remark 2. The projection operator in (14) is employed to

provide a bounded estimation δ̂a.

Remark 3. As Ar is Hurwitz, according to converse Lyapunov

theory [32], for a given positive-definite matrix R, there is a

unique positive-definite matrix P satisfying (15).

The following discusses the stability of the closed-loop GFL

IBR with the adaptive control scheme in (13) and (14).

B. Closed-Loop Stability Analysis

This subsection is dedicated to proving the stability of

GFL IBRs equipped with the proposed control scheme and

demonstrating the achievement of the objectives stated in II-D.

For the next theorem, which presents the main theoretical

result of this paper, let us define δ̃a(t) ≜ δ̂a(t)− δa(t). Then,

deploying (11)-(14), the error dynamics are described by

ė =Are−B∆δ̃Ta (t)z(x). (16a)

˙̃
δa =β Projm

(

δ̂a(t), ψd(∥e∥P )z(x)eTPB
)

− δ̇a(t). (16b)

The following theorem discusses the boundeness of (e, δ̃a).

Theorem 1. Consider the GFL IBR system described by (2)

under both multiplicative and additive uncertainties in CICs,

as per Assumption 1. Utilizing the reference model provided in

(12), along with the feedback control law presented in (6) and

the proposed adaptive control law in (13) and (14), the error

dynamics of e and δ̃a(t) in (16) remain bounded for all initial

conditions (e(0), δ̃a(0)). Furthermore, if ∥e(0)∥P < ϵP , then

the bound on the error satisfies a-priori given, user-defined

worst-case performance ∥e(t)∥P < ϵP , ∀t ≥ 0. Moreover, in

the case where the additive uncertainty is time-invariant, i.e.,

δg(t) = δ, then limt→∞ e = 08×1.

Proof. In order to demonstrate the boundedness of the error

dynamics in (16), the Lyapunov candidate of V : Dϵ×R
9×2 →

R+ with Dϵ = {∥e∥P : ∥e∥P < ϵP } is chosen.

V (e, δ̃a) = ψ(∥e∥P ) + β−1tr
(

(δ̃a∆
1

2 )T (δ̃a∆
1

2 )
)

(17)

where P is the solution of the Lyapunov equation in (15). It

is clear that V (0, 0) = 0, and V (e, δ̃a) > 0 for all (e, δ̃a) ̸=
(0, 0). Considering the cyclic property of the trace operator

[33], the time derivative of (17) is derived as follows.

V̇ (e, δ̃a) =
dψ(∥e∥P )

d∥e∥2P
d∥e∥2P

dt
+ 2β−1tr

(

δ̃Ta
˙̃
δa∆

)

. (18)

From the definition of the weighted Euclidean norm and the

derivative of the generalized barrier Lyapunov function in (38)

and by considering the weight estimation error dynamics in

(16b), one concludes that

V̇ (e, δ̃a) = 2ψd(∥e∥P )eT (t)P ė(t) + 2tr
(

δ̃Ta
(

Projm(δ̂a(t),

ψd(∥e∥P )z(x)eT (t)PB)− β−1δ̇a(t)
)

∆
)

.

(19)

Using (16a), one can obtain

V̇ (e, δ̃a) = 2ψd(∥e∥P )eT (t)PAre

− 2ψd(∥e∥P )eT (t)PB∆δ̃Ta (t)z(x) + 2tr

(

δ̃Ta

× Projm

(

δ̂a(t), ψd(∥e∥P )z(x)eT (t)PB
)

∆

)

− 2β−1tr
(

δ̃Ta (t)δ̇a(t)∆
)

.

(20)

Applying the cyclic and linear mapping properties of the trace

operator to (20), V̇ (e, δ̃a) can be described as

V̇ (e, δ̃a) = 2ψd(∥e∥P )eT (t)PAre

+ 2tr

(

δ̃Ta

(

− ψd(∥e∥P z(x)eT (t)PB

+ Projm(δ̂a(t), ψd(∥e∥P )z(x)eT (t)PB)∆

))

− 2β−1tr
(

δ̃a(t)δ̇a(t)∆
)

.

(21)

Next, given (15) and the property of the projection operator

for matrices in (36), one can get the following inequality.

V̇ (e, δ̃a) ≤ −λmin(R)ψd(∥e∥P )eT (t)Pe+ σ, (22)

with σ ≜ 2β−1δa1δa2∥∆∥2, where ∥δa∥ < δa1 and

∥δ̇a∥ < δa2. By adding and subtracting 1
2αψ(∥e∥P ) and

1
2αβ

−1tr

(

(

δ̃a∆
1

2

)T (

δ̃a∆
1

2

)

)

to and from (22), one con-

cludes that

V̇ (e, δ̃a) ≤− 1

2
α

(

ψ(∥e∥P ) + β−1tr
(

(δ̃a∆
1

2 )T (δ̃a∆
1

2 )
)

)

− α

(

ψd(∥e∥P )eT (t)Pe−
1

2
ψ(∥e∥P )

)

+
1

2
αβ−1tr

(

(

δ̃a∆
1

2

)T (

δ̃a∆
1

2

)

)

+ σ

(23)

where α = λmin(R)
λmax(P ) . By referring to (39) and (17), the

following inequality is expressed.

V̇ (e, δ̃a) ≤ −1

2
αV (e, δ̃a) + γ, (24)

where γ ≜ 1
2αβ

−1δ2a1∥∆∥2 + σ. Therefore, one can obtain

V (e, δ̃a) ≤ exp(−1

2
αt) +

2γ

α
. (25)

As a result, limt→∞ sup V (e, δ̃a) = 2γ
α

. Then, according

to [32], [34], the weight estimation error dynamics in (16b)

remain bounded, and the error dynamics in (16a) are proven

to be Lyapunov stable for all initial conditions. This matter

establishes the uniform boundedness of the error trajectories

of e in (16a). Given (17) and the properties of the generalized

barrier Lyapunov function in (37), the following limit for the

error can be obtained.

ψ(∥e∥P ) =
∥e∥2P

ϵ2p − ∥e∥2P
≤ 2γ

α
, (26)
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which follows by

∥e∥P ≤
ϵP

√

2γ
α

√

2γ
α

+ 1
≤ ϵP . (27)

In the scenario where the additive uncertainty is time-

invariant, σ = 0 as δ̇a = 0. In order to advance with the

proof, let us define the zero-dissipation set as

Λ :=
{

(e, δ̃a) ∈ Dϵ × R
9×2 | V̇ (e, δ̃a) = 0

}

, (28)

and Γ ⊆ Λ, which is the largest invariant set in Λ. Thus,

it implies that all solutions approach the largest invariant set

Γ. As a result, in this scenario (e, δ̃a) → Γ =
{

(0, 0)
}

as

t → ∞. Consequently, based on (6a), it can be concluded

that limt→∞ e = 08×1 and limt→∞ y(t) = r, which implies

Lyapunov asymptotic stability. This completes the proof. ■

The results in Theorem 1 show that the proposed set-

theoretic adaptive control scheme in (13) and (14) ensures the

stability of GFL IBRs in the face of uncertainties in (4) (first

objective in Problem 1).

C. Current Reference Tracking Performance

According to the results in Theorem 1 in (27), the Euclidean

norm of the error signal between the states of uncertain GFL

IBR and the states of the reference model in (12) is upper-

bounded by

∥e(t)∥2 ≤ ϵP
√

λmin(P )
, ∀t ≥ 0. (29)

This upper bound is solely determined by the user-defined

values of ϵP and the design matrix parameter P . As mentioned

in Section I, the designer is able to determine this tracking

error bound since it only relies on the control parameter in

(15) and the constant design parameter in (26). In other words,

since (29) does not depend on the unknown uncertainties ∆,

δg(t), or any other unknown parameters, this error bound can

be computed during the pre-design stage, ensuring desired

GFL IBR performance. Due to the properties of the Euclidean

norm and (29), the upper bound of the output error is obtained

as follows.

∥y(t)− yr(t)∥2 ≤ ϵP
√

λmin(P )
, ∀t ≥ 0. (30)

The inequality in (30) indicates that the tracking error of the

output currents of GFL IBRs, i.e., i2d− i2d-ref and i2q − i2q-ref,

is less than or equal to ϵI = ϵP√
λmin(P )

at steady state. Thus,

one can conclude that

lim
t→∞

∥y(t)−yr(t)∥2 = lim
t→∞

∥y(t)− r∥2 ≤ ϵP
√

λmin(P )
. (31)

As a result, the approximate current reference tracking in

Problem 1 is ensured with ϵI (second objective in Problem 1).

Remark 4. For the case of time-invariant additive uncertainty

term δg , an exact current reference tracking is achieved, i.e.,

ϵI = 0.

IV. SIMULATIONS AND EXPERIMENTS

This section meticulously presents comparative simulations

and experimental results of the proposed vector current control

methodology for two distinct uncertainty cases. Both cases

involve additive and multiplicative uncertainty in the control

inputs of the GFL IBR. MATLAB/Simulink simulations are

conducted in order to evaluate the effectiveness of the pro-

posed control methodology. Additionally, experimental out-

comes from a GFL IBR setup for both cases are presented

to underscore the practicality of the proposed adaptive control

methodology. Fig 1, with parameters outlined in Table I,

is considered for the tests. A sinusoidal signal is employed

to emulate the bounded additive uncertainty, consistent with

Assumption 1. A diagonal matrix of size 2 × 2 is applied to

CIC for the multiplicative uncertainty. The adaptation gain for

the adaptive control law in (14) is selected as β = 900. In the

generalized barrier Lyapunov function (37), ϵP is configured

to 0.01. In order to compute the values of P and the state

feedback matrix K, solving a LMI problem using YALMIP

is required [35]. The formulation of the LMI problem with

α = 1000 is provided by

PAT +AP −KTBT −BK + αP < 0,

P > 0.
(32)

The solution to the above sets of LMIs is (K,P ).
This paper also includes simulation results comparing the

conventional feedback controller with the proposed control

scheme. Furthermore, it provides the results of the sliding

mode controller suggested in [10] with a control structure in

(33) and the robust multi-variable controller in [30] for GFL

IBRs. It is noteworthy that the robust multi-variable controller

is derived as a solution to the optimization problem with the

cost function in (34). These results highlight the inability

of the controllers mentioned earlier to achieve satisfactory

performance in the presence of additive and multiplicative

uncertainties. For more details on the design process of these

controllers and their stability analysis, the reader is referred to

the pertinent papers cited.































u = −K(Cgx+ s)

s = z − y

ż = −(β̂||x||2 + α̂+ kr)sign(s)
˙̂α = η||s||2
˙̂
β = γ||s||2||x||2

(33)

J =

∫

∞

0

(

eT (t)Q(0)e(t) + zTp (t)Qpzp(t) + νT (t)Rνν(t)
)

dt

(34)

where Q(0), Qp, and Rnu are the positive definite diagonal

matrices. e(t) represents the error signals, zp(t) is the time

derivative of currents, and ν(t) is the actual control input.

A. Simulation Results

1) Case Study I: The bounded additive uncertainty sig-

nal vector for this case study is selected to be δg(t) =
[

2 sin(10t) sin(20t)
]T

. The multiplicative uncertainty is cho-

sen as ∆ = [0.35 0; 0 0.15]. This case study assumes that
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TABLE I
PARAMETERS OF THE GFL IBR EMPLOYED IN

THE SIMULATIONS AND EXPERIMENTS IN SECTION IV.

Parameter Value

Lf1/Rf1 5 mH/0.06 Ω
Lf2/Rf2 5 mH/0.06 Ω
Cf/Rf 19 µF/2.5 Ω
VDC 500 V

fs 8.1 kHz

VPCCrms
208 V

ωo 2π60

both uncertainties begin at t = 1.5 s and persist until the end

of the simulation time. Fig. 3 presents the simulation results

for the signals of interest, namely the dq-frame currents i2d
and i2q , active power PPCC, reactive power QPCC, three-phase

output current
−→
i2 , and harmonic spectrum of the GFL IBR’s

three-phase output current
−→
i2 . In order to avoid redundancy,

only the harmonic spectrum of one phase is presented, as the

harmonic spectra of the other two phases are similar.

Initially, the desired values of the active power and reactive

power dictate that both i2d-ref and i2q-ref are set to 0. The load

changes occur suddenly at t = 0.5 s and t = 1 s, respectively,

to reach the setpoint values. In this scenario, a voltage sag in

the grid is also considered. Voltage sags are grid disturbances

primarily caused by faults, resulting in a decrease in the root

mean square (RMS) voltage. The voltage sags occur at t = 1.2
s and t = 1.4 s, resulting in a 10% drop in the grid voltage.

As depicted in Fig. 3, the proposed adaptive current control

strategy can effectively mitigate the adverse impacts of uncer-

tainties. Furthermore, following the uncertainties, the three-

phase output current signal promptly reverts to the setpoint

values within a brief period—specifically, less than 0.04 s—

and maintains its sinusoidal shape.

Figs. 4 and 5 illustrate the simulation outcomes for the GFL

IBR equipped with the conventional state feedback controller

and the sliding mode controller, respectively. As can be seen,

both controllers successfully achieve current reference tracking

before the occurrence of uncertainties. After the uncertainties,

however, the current, active, and reactive power signals fail to

track their nominal values. As a result, the state trajectories of

the GFL IBR are directed toward unintended operating points.

In particular, the three-phase current is unable to quickly

regain its sinusoidal shape, which is a critical requirement as

specified by IEEE Std 1547.P10-2018 [25]. Furthermore, the

three-phase currents’ THD values, key metrics for assessing

current tracking performance, exceed the permissible limits set

by IEEE Std 519-2014 [36].

2) Case Study II: In this case study, CIC is subjected to un-

certainties represented by δg(t) =
[

4 sin(100t) 2 sin(200t)
]T

and ∆ = [0.4 0; 0 0.5]; see Fig. 6. The load changes occur

at times similar to those in the previous case. Likewise, the

voltage sag occurs at the exact times detailed in the previous

case study, resulting in a 5% drop in the grid voltage across

all phases. Despite uncertainties occurring at t = 1.5 s in CIC,

the proposed control strategy effectively maintains the stability

of the GFL IBR. Furthermore, it accurately tracks the setpoint

values of the current signals, thereby achieving the desired
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Fig. 3. Performance of the proposed adaptive control scheme for
Case Study I: (a) dq-frame components of the vector of the current
injected to PCC (i2d and i2q), (b) active power and reactive power

injected to PCC (PPCC and QPCC), (c) three-phase current (
−→

i2 ), and

(d) harmonic spectrum of the three-phase current
−→

i2 with a THD of
– 55.99 dB or, equivalently, 0.15%.

active power and reactive power outputs of the GFL IBR.

Figs. 7 and 8 depict this case study’s simulation results

of the conventional state feedback current controller and the

robust controller, respectively. Similar to the previous case,

the GFL IBR controlled with these two controllers does

not achieve setpoint current tracking after encountering both

additive and multiplicative uncertainty in the control layer.

Although the robust control strategy may eventually restore

the dq-frame currents in addition to active power and reactive

power, Fig. 8 demonstrates that it falls short in providing the

desired and rapid performance in the presence of uncertain-

ties compared to the proposed control scheme. Specifically,

the robust controller exhibits a much slower and oscillatory

transient response when the GFL IBR faces uncertainties in

the control command.

3) Case Study III: This case study investigates weak-grid

scenarios for simulation, where the short-circuit capacity ratio

(SCCRs) or SCRs are set to 1.5. Various factors, such as

grid impedance, type of grid impedance, and the phase-locked

loop controller, can influence weak-grid integration [37]–[40].
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Fig. 4. Performance of the conventional state feedback current
controller for Case Study I: (a) dq-frame components of the vector
of the current injected to PCC (i2d and i2q), (b) active power and
reactive power injected to PCC (PPCC and QPCC), (c) three-phase

current (
−→

i2 ), and (d) harmonic spectrum of three-phase current
−→

i2
with a THD of – 14.84 dB or, equivalently, 18.11%.

It is worth noting that designing a controller for weak-grid

integration is beyond the scope of this paper. However, simu-

lation results are provided to demonstrate the performance of

the proposed controller when integrating GFL IBR into weak

grids. The timing of the load change and the uncertainties

remain consistent with Case Study I; however, the voltage sag

scenario is not considered in this case. As shown in Fig. 9, the

proposed control scheme proves effective even under weak-

grid integration conditions.

B. Discussion on Simulation Results

The results presented in this section indicate that the GFL

IBR equipped with the proposed control scheme demonstrates

a remarkable capacity to mitigate the adverse effects of un-

certainties. The three-phase and the dq-frame current signals

quickly return to their reference values within a very short

duration, precisely under approximately 0.025 seconds. The

three-phase current signal effectively maintains its sinusoidal

shape with a THD of less than 1%, within the range per-

missible by standards, e.g., IEEE Std 519-2014 [36]. The
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Fig. 5. Performance of the sliding mode current controller for Case
Study I: (a) dq-frame components of the vector of the current injected
to PCC (i2d and i2q), (b) active power and reactive power injected to

PCC (PPCC and QPCC), (c) three-phase current (
−→

i2 ), and (d) harmonic

spectrum of three-phase current
−→

i2 with a THD of – 19.49 dB or,
equivalently, 10.6%.

deviations in active and reactive power from their setpoints

are approximately 1%, a negligible error compared to the scale

of output active power and reactive power. As observed, the

output signals of GFL IBR controlled by the conventional state

feedback controller cannot meet the standards defined by IEEE

Std 1547.P10-2018 [25], reaching an undesired operating

point. While the sliding mode and robust controllers perform

well in reference tracking under normal circumstances, they

fail to quickly restore the signals to their nominal values

when faced with additive and multiplicative uncertainties.

Particularly, the excessive current changes—nearly 1 pu or

higher—at the moment the uncertainties occur could cause

damage to the inverter and connected devices or result in

disconnection from the grid in real-world scenarios. Moreover,

the peak-to-peak value of the three-phase current signals fluc-

tuates by approximately 0.5 pu after the onset of uncertainties,

impacting the proper functioning of GFL IBRs.

The THD of the three-phase current signal for one phase,

following uncertainty for all strategies used in the simulations,
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Fig. 6. Performance of the proposed adaptive control scheme for
Case Study II: (a) dq-frame components of the vector of the current
injected to PCC (i2d and i2q), (b) active power and reactive power

injected to PCC (PPCC and QPCC), (c) three-phase current (
−→

i2 ), and

(d) harmonic spectrum of the three-phase current
−→

i2 , with a THD of
– 55.99 dB or, equivalently, 0.15%.

is presented in Table II. The table also provides the error

metric integral time absolute error (ITAE) for the dq-frame

currents, offering a comparative analysis of tracking errors

across the methodologies discussed in this paper. These indices

are crucial in ensuring precise control and robustness in vari-

ous engineering applications [41]. These performance metrics

assign greater penalties to errors that persist over time. A

lower ITAE value indicates a more effective control strategy in

promptly correcting errors. Specifically, smaller ITAE values

suggest that the control strategy reduces errors early in the

transient response, minimizing cumulative error and enhancing

overall system performance. Conversely, higher ITAE values

are associated with slower error correction, potentially due to

oscillations or delays in the transient response. As shown in

Table II, the smaller values of this metric for the proposed

adaptive control scheme, compared to other methodologies,

further validate its effectiveness in achieving accurate refer-

ence tracking.
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Fig. 7. Performance of the conventional state feedback current
controller for Case Study II: (a) dq-frame components of the vector
of the current injected to PCC (i2d and i2q), (b) active power and
reactive power injected to PCC (PPCC and QPCC), (c) three-phase

current (
−→

i2 ), and (d) harmonic spectrum of three-phase current
−→

i2
with a THD of – 15.58 dB or, equivalently, 16.63%.

C. Experimental Results

There are many approaches to testing the effectiveness and

practicality of zero-level controls of advanced technologies

to be integrated into modern power and energy systems. For

example, the authors in [42] and [43] have detailed the testing

based on various hardware-in-loop-based simulations—and

those in [44] have applied the testing based on the rapid control

prototyping (RCP) method. As there is no need for a large-

scale power system in this paper, it utilizes the latter, i.e., the

RCP method, to implement the proposed set-theoretic adaptive

current control for GFL IBRs on a prototype unit of a GFL

IBR. Fig. 10 demonstrates the test rig deployed to conduct

experiments. It utilizes power modules based on insulated gate

bipolar transistors, specifically the Semikron Danfoss “SKM

50 GB 123 D” intelligent power modules. The Semikron

Danfoss “SKHI 21A (R)” gate drives and protection circuitry

are employed to enable the functioning of the GFL IBR

prototype. The Verivolt “IsoBlock I-ST-1c”/“IsoBlock V-1c”

current/voltage sensors are also hooked up to the inputs of a
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TABLE II
PERFORMANCE INDICES OF THE CURRENT SIGNALS FOLLOWING UNCERTAINTIES FOR

THE SIMULATION SCENARIOS DISCUSSED IN SUBSECTION IV-A

Control Method (Case No.) THD ITAE of id ITAE of iq
Proposed Adaptive (I) – 55.99 (dB) (or 0.15 %) 0.16 (s) 0.22 (s)

Proposed Adaptive (II) – 55.99 (dB) (or 0.15 %) 0.18 (s) 0.21 (s)

Proposed Adaptive (III) – 44.53 (dB) (or 0.59 %) 0.24 (s) 0.44 (s)

State Feedback (I) – 14.84 (dB) (or 18.11 %) 11.95 (s) 12.02 (s)

State Feedback (II) – 15.58 (dB) (or 16.6 %) 5.03 (s) 7.95 (s)

Sliding Mode (I) – 19.49 (dB) (or 10.6 %) 3.19 (s) 3.98 (s)

Robust (II) – 20.43 (dB) (or 9.51 %) 1.78 (s) 2.89 (s)
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Fig. 8. Performance of the robust controller for Case Study II: (a) dq-
frame components of the vector of the current injected to PCC (i2d
and i2q), (b) active power and reactive power injected to PCC (PPCC

and QPCC), (c) three-phase current (
−→

i2 ), and (d) harmonic spectrum

of three-phase current
−→

i2 with a THD of – 20.43 dB or, equivalently,
9.51%.

dSPACE “MicroLabBox (MLBX)” digital real-time controller

to measure currents and voltages. The dSPACE MLBX digital

real-time controller’s input/output channels also interface with

the GFL IBR under test, as well as the measurement and drive

circuitry. A field-programmable gate array generates the PWM

signals; see [44] for details. Moreover, all the parameters

deployed in the experiments are consistent with those in the
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Fig. 9. Performance of the proposed adaptive control scheme for
Case Study III: (a) dq-frame components of the vector of the current
injected to PCC (i2d and i2q), (b) active power and reactive power

injected to PCC (PPCC and QPCC), (c) three-phase current (
−→

i2 ), and

(d) harmonic spectrum of the three-phase current
−→

i2 , with a THD of
– 44.53 dB or, equivalently, 0.59%.

simulations, as outlined in Table I.

Figs. 11 and 12 display the experimental results obtained

for Test Case I and Test Case II of the GFL IBR shown in

Fig. 1 for normal voltage. The results presented in this section

clearly demonstrate the effectiveness of the proposed control

scheme in mitigating the adverse effects of uncertainties. Upon

the occurrence of such uncertainties, both the three-phase and

the dq-frame current signals quickly return to their reference
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MicroLabBox 
(MLBX) from 

dSPACE

Intelligent Power 
Module from 

Semikron Danfoss

AC-Side 
Filter

DC-Side 
Filter

IsoBlock I-ST-1c 
and 

IsoBlock V-1c 
sensors from Verivolt

Fig. 10. Test rig deployed to carry out experiments—including the
details of the GFL IBR under test—in the Laboratory for Advanced
Power and Energy Systems (LAPES) at Georgia Southern Universtiy.

values within a very short timeframe. These experimental

findings validate the effectiveness of the proposed control

scheme based on the available resources.

D. Discussion on Experimental Results

Figs. 11 and 12 demonstrate that the dq-frame currents,

active power, and reactive power of the GFL IBR equipped

with the proposed adaptive control methodology quickly return

to the reference values after encountering uncertainties in

the control command. In order to calculate the THD and

tracking error indices, we used data obtained from our setup, as

illustrated in Fig. 11 (c) and Fig. 12 (c). These figures show

that the dq-frame current signals closely follow the desired

reference values. Additionally, the three-phase current signals

maintain their sinusoidal shapes following the impact on the

GFL IBR. Fig. 11 (d) and Fig. 12 (d) display their harmonic

spectra in dB only for one phase. This matter is because the

spectra of the other two phases are similar. The experimental

results reveal that both THD values comply with the IEEE Std

519-2014 (i.e., less than 5 %) [36]. The THD values and other

tracking error indices of the experimental results are presented

in Table III. In addition to ITAE and THD, Table III consists

of the settling time of the dq-frame current signals to return to

the reference values after the uncertainty. Specifically, it takes

less than approximately 0.3 seconds for the dq-frame current

signals to restore to their reference values. These values for

the different indices validate the efficacy of the experimental

results, which are consistent with the simulation outcomes.

V. CONCLUSION

This paper has introduced a set-theoretic adaptive control

framework for the primary control of grid-following inverter-

based resources. It has mitigated the adverse effects of both

additive and multiplicative uncertainty in control inputs. The

proposed control methodology, designed with a retrofit control

signal, has guaranteed stability and output tracking despite the

existence of such uncertainties. Furthermore, the paper has

conducted a rigorous stability analysis based on Lyapunov
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Fig. 11. Experimental results of Case I: (a) active and reactive power
and the dq-frame components of the vector of the current injected to
PCC (100 ms/div for the horizontal axis), (b) the abc currents injected
to PCC (10 ms/div for the horizontal axis), (c) tracking errors of
the dq-frame currents, and (d) harmonic spectrum of the three-phase
current (for one phase) with a THD of – 55.97 dB or, equivalently,
0.15%.

theory and generalized barrier Lyapunov functions. The ef-

fectiveness and superiority of the proposed control scheme

have been validated through comparative MATLAB/Simulink

simulations and experimental results.
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TABLE III
PERFORMANCE INDICES OF THE CURRENT SIGNALS FOLLOWING UNCERTAINTIES FOR

THE EXPERIMENTAL SCENARIOS DISCUSSED IN SUBSECTION IV-C

Case No. Settling Time of id Settling Time of iq THD ITAE of id ITAE of iq
(I) 0.22 (s) 0.24 (s) – 55.97 (dB) (or 0.15%) 0.17 (s) 0.22 (s)

(II) 0.24 (s) 0.29 (s) – 55.91 (dB) (or 0.16%) 0.19 (s) 0.22 (s)

VI. APPENDICES

Appendix A: Projection Operator

Let Ω = {θ ∈ R
n : (θmin

i ≤ θi ≤ θmax
i )i=1,2,...,n} denote

a convex hypercube in R
n, where θmin

i and θmax
i represent

the minimum and maximum bounds for the i-th element

of the n-dimensional vector θ. Moreover, for a sufficiently

small positive constant ϵ, another hypercube is defined as

Ωϵ = {θ ∈ R
n : (θmin

i + ϵ ≤ θi ≤ θmax
i − ϵ)i=1,2,...,n},

where Ωϵ ⊂ Ω. Provided that another n-dimensional vector

ϕ =
[

ϕ1, ..., ϕi, ..., ϕn
]T

, the projection operator Proj : Rn ×
R

n → R
n for i = 1, 2, ..., n is defined as follows [45].

Proj(θ, ϵ) ≜































(

θmax
i −θi

ϵ

)

ϕi, if (θi > θmax
i − ϵ

and θi > 0)
(

θi−θmin
i

ϵ

)

ϕi, if (θi < θmin
i + ϵ

and θi < 0)
ϵ, otherwise

(35)

This definition can be further ex-

tended to matrices as Projm(Θ, ε) =
(Proj(col1(Θ), col1(ε)), ..., Proj(colm(Θ), colm(ε)), where

Θ ∈ R
n×m, ε ∈ R

n×m, and coli denotes the i-th column of

the respective matrix. For the matrix form of the projection

operator with a given matrix Θ∗, the following inequality is

satisfied [45].

tr
(

(Θ−Θ∗)T
(

Projm(Θ, ε)− ε
))

≤ 0. (36)

Appendix B: Generalized Barrier Lyapunov Functions

The suggested generalized barrier Lyapunov function on the

set Dϵ ≜ {∥x∥P : ∥x∥P ∈ [0, ϵ)}, where ϵ ∈ R+ is a user-

defined constant, is expressed as follows [46].

ψ(∥x∥P ) =
∥x∥2P

ϵ2 − ∥x∥2P
. (37)

This function is continuously differentiable with the partial

derivative

ψd(∥x∥P ) ≜
dψ(∥x∥P )

d∥x∥2P
, (38)

which satisfies

2ψd(∥x∥P )∥x∥2P − ψ(∥x∥P ) > 0. (39)

Further details and the conditions this function must satisfy

can be found in [46].
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