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Abstract

Much work has been done to understand complex crowd dynamics and self-organ-
izing behaviors in high-density crowd situations. But most approaches for model-
ling pedestrian dynamics in emergencies require complex computations, making it
difficult to capture multiple individual behaviors within a single model. This paper
describes an agent-based model (ABM) that incorporates Bayesian game theory into
pedestrian simulations. It assumes that players (agents) are playing a Bayesian game
(i.e. games with incomplete information) and adopt strategies based on the antici-
pated behaviors of others to achieve a Bayesian Nash Equilibrium (BNE). Here, the
model agents make decisions based on the possible positions of neighbors in the
next time period to maximize their comfort and efficiently achieve their evacuation
goal. A series of simulation experiments were undertaken using corridors, bottle-
necks, and intersections in simulated evacuation spaces with the characteristics of
mass tramping accidents. BNE provides a realistic and efficient approach for model-
ling complicated pedestrian dynamics with strong applicability. The BNE-informed
ABM performance (evacuation times, routes, and behaviors) demonstrates its abil-
ity to realistically simulate emergent patterns of evacuation behaviors. The results
indicate that agents using game theory reflect the behaviors of individuals with
crowds well: BNE agents evacuate effectively at low densities and low blockages
but are confounded in situations with few route choices in highly constricted spaces.
The BNE-informed model provides a platform to better understand diverse crowd
behaviors (e.g. herding and self-organized queuing, etc.) in varied spatial contexts,
contributing to the designs of urban public space, evacuation planning, and crowd
management.
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1 Introduction

High-density and constricted public spaces (e.g. cinemas, shopping centers, etc.)
can be a potential safety hazard to the public especially in situations such as mass
gatherings during festivals, possibly leading to serious trampling accidents [1, 2].
Therefore, it is important to understand how pedestrians behave under these life-
threatening situations. Many efforts have been made to incorporate game theory
into behavioral and other elements in social sciences, resulting in various game-
theoretic models for crowd evacuation [3-7]. It has been shown that integrating
multiple crowd evacuation models (e.g. game-theoretical models, social force
models, and agent-based models, etc.) can contribute to better reproduction of
pedestrian movement under real-world scenarios [6, 8]. A number of microscopic
simulation models have attempted to convert real-world interactions into games
to further explore individual decision-makings. However, most focus mainly on
exit route choice or routing network optimization rather than concentrating on the
diverse escaping responses at an individual level [9—13]. Few studies have sought
to model pedestrian behaviors in detail in a complicated space through game-
theoretic and agent-based modelling approaches. One of the main obstacles is
that complex computations are required for both individual response and different
types of game-playing. Identifying an appropriate game structure and employing
it in pedestrian simulations also require considerable thought.

Discovering a realistic description of complicated pedestrian behaviors in
dense constricted urban space is a crucial issue that needs to be handled. Many
studies have been conducted to derive underlying laws of human crowd dynam-
ics, proposing that complex pedestrian behaviors are driven by both environmen-
tal constraints and social interactions among individuals [14]. Individual-level
models for crowd simulation have then been developed to capture pedestrian
behaviors at an agent level [15—19]. They reflect that most people in a crowd tend
to move in groups rather than walking alone [20, 21]. Some of these pedestrian
simulation models adopting physics-based approaches (e.g. social force models,
etc.) can also be applied to simulating crowd behaviors in high-density situations,
considering both external influences and local interactions among individuals to
provide relatively satisfactory observations [7, 16, 22—-24]. Many evacuation sim-
ulation studies mainly focus on a certain type of emergent phenomenon such as
herding, etc. caused by social interactions and public emotions (e.g. panic), mak-
ing it increasingly difficult to realistically capture multiple individual behaviors in
a single model [10, 19, 24, 25]. Some relevant studies have conducted large-scale
crowd evacuation modelling using agent-based models to explore the main ele-
ments influencing evacuation process in extreme social events (e.g. music festi-
vals, concert venues, etc.) [2, 26, 27]. However, they rarely consider understand-
ing complex crowd dynamics from the perspective of individual strategy-taking
and game-playing in life-threatening situations involving different types and
degrees of strategizing.

This paper develops an agent-based model (ABM) building upon the findings
of the existing research conducted by Wang et al. [28] and incorporating Bayesian
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game theory into pedestrian simulation to reproduce emergent behaviors of
pedestrians in varying high-density and life-threatening situations. It is based on
the assumption that intelligent agents participate in Bayesian games (i.e. games
with incomplete information) and strive to achieve a Bayesian Nash Equilibrium
(BNE) in which players take the strategy considered to be the best responses to
each other [29]. BNE was adopted to describe the interactive decision-making
process among intelligent and game-playing agents, since its application con-
text relaxes complete information constraints and adopts incomplete information
assumption [28]. An underlying BNE-informed model was therefore developed
to simulate emergent patterns of individual evacuating behaviors so as to pro-
vide a more realistic description of complicated pedestrian dynamics especially
in high-density and life-threatening situations. Relevant studies [30, 31] indicate
that serious incidents caused by mass crowds (e.g. Seoul Halloween crowd crush
shown in Fig. 1) and dense spaces with potential risk of stampedes (e.g. Oxford
Circus metro station in London, Fig. 2) generally have several common charac-
teristics: (1) they all took place in extremely constricted space (e.g. narrow alley)
with large crowds; (2) the spaces all had bad bottlenecks with clogging effects;
and (3) there are body collisions in intersecting flows. On this basis, this paper
performs a series of simulation experiments using varied corridors, bottlenecks,
and intersections to investigate the emergent patterns of human evacuating behav-
iors (e.g. herding and leader behaviors, etc.) with intelligent BNE agents in vary-
ing constricted spatial environments.

Fig. 1 The narrow alley where
the deadly crush happened dur-
ing a Halloween event in Seoul’s
Itaewon district on 29 Oct 2022
(Retrieved from https://www.
theguardian.com/world/2022/
oct/31/how-did-the-seoul-itaew
on-halloween-crowd-crush-hap-
pen-unfolded-a-visual-guide)
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Fig.2 Crowd gatherings at an entrance to Oxford Circus metro station in London (Retrieved from
https://www.dailymail.co.uk/news/article-3186134/Tube-strike-begins-London-commuters-pack-Under
ground-trains.html)

2 Methods

This research develops an agent-based model (ABM) that introduces Bayesian game
theory to simulate pedestrian evacuation behaviors during emergent situations in
varying urban spaces. Bayesian Nash Equilibrium (BNE) has therefore been incor-
porated to describe the interactive decision-making process among intelligent, game-
playing agents. This BNE-informed ABM builds on a previous study conducted in
2023 [28], and three types of individual behavioral models (i.e. Shortest Route (SR),
Random Follow (RF), and BNE models) have been implemented to better model
people’s emergent evacuating behaviors in different spaces from an individual level.
The SR behavioral model employs Dijkstra’s searching algorithm to reproduce the
shortest pathfinding strategy. All SR agents know their final goal from the beginning
of each simulation and strive to evacuate through the shortest route to the exit while
avoiding the barriers on the way. RF behavioral model was implemented to simulate
the leader behavior often occurring in emergent situations. Among them, 20% of
the total are set as the leaders who intend to follow the shortest route to evacuate,
and the remaining agents (i.e. followers) randomly select a leader in view to follow,
inclined to gather around the nearest one to them. The BNE agents have clarity on
their final destination from the beginning and intend to find an evacuation route with
shorter exit time and higher comfort level. The following section mainly focuses on
the improvement details of the BNE behavioral model. The implementation details
of SR and RF models are described in Appendix B, Section B.3.4.

2.1 Software and data availability
The model was developed in NetLogo. The source code to reproduce the outputs of

this paper is available at CoMSES platform: https://doi.org/https://doi.org/10.25937/
8bf3-h968. Related experimental dataset is available at https://doi.org/https://doi.
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org/10.17632/9v4byyvgxh.1. The complete description of this BNE-informed ABM
following ODD + D protocol [32] is provided in Appendix B.

2.2 Improved BNE behavioral model
2.2.1 Theoretical background

This research adopts Bayesian Nash Equilibrium (BNE) to simulate the decision-
making process among rational and game-playing agents (evacuees). BNE is a
widely adopted concept in game theory, which extends the standard framework of
Nash equilibrium by accounting for the uncertainty brought by incomplete (private)
information [33]. It describes a correlated equilibrium with diverse payoff gradi-
ents that adapt to different game conditions, encompassing the Nash Equilibrium
as a specific instance, in contrast to the monotonic payoff gradient in the traditional
Nash Equilibrium. Therefore, BNE is considered to be more realistic in an evacua-
tion context when complete real-time information is generally missing for the indi-
viduals. In some real-world scenarios, participants may have no access to complete
information for the strategies and payoffs of other players in the same game. They
need to make their decisions only relying on their beliefs about others’ strategies
based on their experience and knowledge of the game [28]. BNE provides a more
comprehensive framework to analyze the interactions of strategies taken by differ-
ent participants in such scenarios, and an approach to updating the probabilities of
others’ decisions based on instant information obtained. It assumes that intelligent
agents in this model make their decisions based on incomplete information, coincid-
ing with individual information gaps occurring in reality [28]. That is, agents here
participate in games with incomplete information, also called Bayesian games, and
strive to maximize their expected utility to achieve a Bayesian Nash Equilibrium
(BNE), defined as a Nash Equilibrium in a Bayesian game, where the strategies
taken should be the optimal decisions to each other [29, 33].

Therefore, the primary element of individual decision-making is the probability
distributions of the next strategies played by nearby participants, especially the pos-
sibilities of other players choosing the same strategy as the player in the same game.
In this model, the rules of BNE are reflected as the probability distribution of nearby
evacuees’ next actions as well as a series of utility-related functions, quantifying
interactive decision-making process of individuals in scenarios in varying spatial
environments. BNE agents determine their next moves according to the Total Utility
(Upa) Of each navigable patch in their Moore neighborhood.

2.2.2 Utility functions

Each agent’s final utility payoff is associated with the possible strategies taken
by other agents, probable changes of their perceived surroundings and the

! Moore Neighborhood refers to a square-shaped neighborhood with radius of one cell.
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physical distance from current location to the exit point. This research defines
all BNE related utilities as patch attributes to reduce computational complexity
of simulation process. It assumes that each BNE agent will consider the poten-
tial congestion levels of all passable patches in its Moore neighborhood and then
choose one that could maximize its final utility payoff to move. A set of BNE
utility functions have been proposed to quantify each patch’s attraction (U,,,,)
for evacuees.

This model defines that individual decision-makings depend on the total util-
ity (U,,q) of surrounding patches, which is relevant to three main parameters:
Distance Utility (U;), Comfort Utility (U,) and Expected Comfort Utility (U,.),
and represented as the sum of U, and U,., as shown in Eq. 1. That is, BNE evac-
uees take their next actions after accounting for the distance from their current
positions to the exit, the number of evacuees who may move to the same patch
as themselves in the next time step, and the possible moves of evacuees on their
Moore neighborhood [28]. The adoption of BNE theory enables agents to avoid
barriers and clogged areas appearing on their pathways by predicting the pos-
sible actions taken by other nearby agents, so as to select an alternative evacua-
tion route with higher comfort level and shorter exit time. Each BNE agent will
evaluate the total utilities of all the passable patches in their Moore neighbor-
hood (see Fig. 15) to decide where to move in the next time step. Relevant utility
functions are shown as follows.

Utotal = Ud + Uec (1)

2.2.2.1 Distance utility The term U, is related to the distance from current posi-
tion to the exit point and defined as an increasing attribute value with getting
closer to the exit, as shown in Eq. 2.

Us=—F— @)

where, d represents the distance from the current patch to the exit; D refers to the
diagonal distance of the simulation space containing Horizontal/Random Squares,
and for Vertical Corridors mode, the value is set to be the route with the longest dis-
tance from one corner to the exit passing through two cramped bottlenecks.

2.2.2.2 Comfort utility The term U, is defined as a series of coefficients essential
to Expected Comfort Utility (U,,), reflecting the individual comfort level in every
navigable patch. According to the speed-density relation associated with the Spa-
tial-Grid Evacuation Model (SGEM) [34] (see Eq. 5), the value was assigned
as one when no more than two agents occupied this patch. The value of U, was
defined as a proportion of the free-moving speed (i.e. 1.4 m/s) related to the num-
ber of evacuees on the patch. That is, there is an inverse proportion of comfort
utility to the number of agents on the patch. Considering the limited space capac-
ity in the real-world scenario, U, was set to zero when over four agents occupied
the same patch, as shown in Eq. 3.
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1.00, n <2
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where, n represents the number of evacuees on the patch.

2.2.2.3 Expected comfort utility One of the main factors determining where an evac-
uee moves towards is the possible movements of his/her neighbors at next time step.
In this model, Expected Comfort Utility (U,,) is set as a dynamic patch attribute and
defined as the multiplication of Comfort Utility (U,) and the probability p(n) that a
certain number (n) of evacuees will move to this patch at the next time step. This cal-
culation accounts for the possible responses of both the evacuee and the other agents
on its Moore neighborhood, as illustrated in Eq. 4.

U, =Y pmU.(n)
. 4

4
=Y cip(1-p,)" "Um)
n=0

where, n represents the number of agents on this patch; U, .(n) refers to the indi-
vidual comfort utility that a specific number (n) of agents occupying this patch at
the next time step; N refers to the total number of evacuees on this patch and its
Moore neighbourhood; P,, represents the probability of agents moving to this patch,
defaulting to a random value in a range between 40 and 60%. The median, with a
default setting of 50%, can be regulated through the slider Probability-competing.

2.2.3 Speed calibration

This model assumes that individual moving speed should be dynamic instead of
a static attribute. In real-world scenarios, the variation of moving speed is closely
associated with the crowd density in the surroundings and the speed attribute in this
model should be calibrated accordingly. On this basis, several of the main pedestrian
speed-crowd density models that were widely adopted in recent years [35-37] have
been compared and the Spatial-Grid Evacuation Model (SGEM) [34] was consid-
ered as an appropriate speed-density relation model for this research, as it accounts
for both social interactions and the potential influences of local communications
among pedestrians on individual moving speed [28].

In this model, the moving speed of each agent is tailored based on crowd den-
sity in surrounding area (i.e. the patch occupied and patches in its Moore neigh-
borhood) and keeps updating every time step throughout each simulation run.
The speed-density relation in this study is in accordance with the Spatial-Grid
Evacuation Model (SGEM) [34], and individual speed regulations depend on the
reference speed assigned through the slider Moving-speed at model initialization

@ Springer
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with a default value of one patch per time step. The individual moving speed
is inversely proportional to the number of neighboring evacuees. Specifically,
the general trend among these speed-density relation models remains consistent
when the crowd density is lower than 4 person/m?, with pedestrians in a free-
moving status at the speed of around 1.4 m/s. Pedestrians are considered to be in
a state of constrained motion and move at approximately 0.1 m/s when the crowd
density is greater than 8 person/m?. And when the crowd density ranges between
4 and 8 person/m?, pedestrian movements start being restricted and their mov-
ing speed reduces with the increasing number of persons [28]. Since the average
step length of adults is around 0.7 m with an average response time of about 0.5 s
[38], several related parameters were adjusted in the SGEM model to match the
settings of simulation space. In this model, the reference speed can be adjusted
through the slider Moving-speed rather than imposing a fixed value (e.g. 1.4 m/s),
and individual moving speed is set to be in an inverse proportion to the number of
evacuees (i.e. crowd density) on its Moore neighborhood. As high crowd density
has a decay influence on individual moving speed, evacuees encircled by a crowd
of agents are incapable of hopping large distances to a free patch near the exit. On
this basis, the suitable speed-density relationship for this model is demonstrated
in Eq. 5.

1.4, 0<p<d
V =20.03p>—0.64p+3.36, 4 < p < 8 5)
0.1, p=>38

where, p is density of agents on the patch and its Moore neighborhood.

The relationship and derivation process of relevant BNE utilities is briefly
illustrated in Fig. 3. The full details of the crucial components forming total util-
ity (U,,q) can be found in Appendix B, Sect. 3.4.3.

Total Utility Distance Utility Expected Comfort Utility
n
— — _ n =
Ut = Ua=(@=d}D + Up=) CRB"(1= Py "Ue()
0
1.00,n <2
14,0<p<4 051.n =3
V =1{0.03p? — 0.64p +3.36,4 <p < 8 UM =9007n=24
0.1(= 0),p > 8 0,n=>5
Speed-Density Relationship Comfort Utility
(SGEM)

Fig.3 The schematic diagram of Total Utility (U,,,) and related utilities. The equation of Comfort Util-
ity (U,) is derived from the SGEM speed-density relationship. Where, p represents the density of agents
on the patch and its Moore neighborhood
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2.2.4 Improved details

The initial version of the BNE behavioral model [39] implemented agent movement
by a utility maximization approach in which 100% of agents choose the patch with
the highest total utility to move. However, the experimental results revealed that this
decision-making criterion might induce all agents on the same patch to take coinci-
dent actions especially in the latter stages of simulations, leading to local congestion
and low evacuation speed [28]. In this case, the patch with the highest total utility
definitely cannot be their best choice to move at next time step. This is an impor-
tant issue caused by the excessive pursuit of simplifying computational complex-
ity and neglecting the heterogeneity in agents. Some errors occurred in the conver-
sion process from individual utility payoffs to patch attractions as well as the BNE
related calculations. This research addressed above challenges by including some
noise to the individual probability of taking each strategy (P,,). The term P,, has
been changed from a fixed value of 50% to a random value selected within a prede-
fined range from 40 to 60%. In this model, each evacuee has been assigned a spe-
cific value of P,, to mitigate potential biases introduced by a fixed parameter setting,
thereby contributing to the overall robustness of this model. The range of P,, can be
configured via the corresponding slider in the model to improve the model’s adapt-
ability to diverse scenarios.

Furthermore, this research has also introduced variability into the initial decision-
making criterion of BNE agents and proposed a multi-strategy combination: with
around 80% of agents selecting the patch with the highest U,,,,;, 15% choosing the
patch with second-highest U, ,;, and 5% selecting the patch with third-highest U, ,;,
to assist intelligent BNE agents in dispersing and taking the best responses to each
other. In this model, all BNE related utilities are computed at the beginning of each
simulation and updated every time step. The patches representing impassable block-
ages have been excluded from BNE-related calculations. The patch visited by a BNE
agent in the last time step will be removed from the candidate patch-set that this
agent intends to move at the next time step to avoid being trapped where it was.

2.3 Experimental design

The hypothetical evacuation space (Fig. 4) was made up of 1360 (68%20) patches
where multiple occupations for each of them are allowed in this model, making it
possible to explore whether and how this model can simulate emergent patterns of
pedestrian behaviors in evacuation scenarios with different environmental contexts.

Three sets of experiments—each containing 12,750 simulations i.e. 382,500 runs
in total—were conducted in NetLogo BehaviorSpace under different environmental
and behavioral contexts, by varying several model parameters:

1. Barriers-mode. Three types of barriers were explored, which are Horizontal Cor-

ridors, Vertical Corridors, and Random Squares, standing for corridors (alleys),
bottlenecks and intersections as noted above. These were designed to assess model
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performance in simulating unexpected patterns of human evacuating behaviors in
varied constricted spaces. The layouts of simulation space are shown in Fig. 4.

2. Moving-pattern. As previously stated, three types of behavioral models were
explored, which are Shortest Route (SR) model, Random Follow (RF) model,
and BNE model. These were developed to reproduce various pedestrian behaviors
(e.g. shortest pathfinding and leader behavior, etc.) in emergency situations. Each
agent (i.e. evacuee) was assigned one of the above behavioral models and adhered
to this decision-making logic throughout each simulation. The detailed descrip-
tion of simulation experimental design is provided in Section B.3.2 in Appendix
B.

The model also mixed intelligent BNE agents with relatively naive ones (i.e.
evacuees following the SR/RF model) in proportions from 0 to 100% at intervals of
2% in order to further explore the impact of intelligent and game-playing agents in
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the crowd. Two agent combinations (i.e. BNE-SR and BNE-RF) have been inves-
tigated in this research. Table 1 provides a brief overview of the key parameters
in each set of experiments. The full details of experimental parameter settings are
outlined in Table 5.

3 Results
3.1 Horizontal corridors

The model was first evaluated in an evacuation space involving three horizontal cor-
ridors with adjustable widths, to explore the relationship between evacuation effi-
ciency and individual intelligence in complicated spaces with varied levels of con-
striction. The agents with high intelligence (i.e. BNE evacuees) were mixed with
the naive agents (i.e. SR/RF evacuees) at varying proportions to simulate evacua-
tions under different levels of individual intelligence. Figure 5 shows the variation in
evacuation time with an increasing proportion of intelligent BNE agents for varied
constricted spatial environments. A local line of fit is shown in each plot with 95%
confidence interval. Figure 5 indicates that an increasing ratio of intelligent agents
provides little advantage for evacuation efficiency in highly constricted spaces (i.e.
scenarios with the width of the middle corridor setting to 1 and 2 patches respec-
tively). This is because highly confined spaces result in limited or no alternative
strategies for agents to take, and thus the extra intelligence of BNE has minimal
effects on reducing exit time. A clear reduction in evacuation time is found with
increasing BNE proportion with wider corridors. The same correlation among indi-
vidual intelligence, evacuation efficiency and spatial constricted level was found in
both BNE combinations (BNE-SR and BNE-RF).

The screenshots in Fig. 6 illustrate what happens during evacuations. All of the
naive SR agents (shown in green) follow the shortest route (i.e. the middle corridor)
to the exit point (i.e. red patches). The intelligent BNE agents (shown in orange)

Corridor
Patch
Width

Interface

BNE + SR

BNE + RF

Fig.5 Plots of evacuation time (y-axis) against the percentage of BNE-SR and BNE-RF combinations
(x-axis) in complicated space with varied horizontal corridor widths from 1 to 5 patches at a 1-patch
interval, for 2000 evacuees, with 50 simulations conducted for each BNE percentage fraction in Horizon-
tal Corridors. (12,750 runs in total)
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()

(b)

Fig.6 An illustration of evacuees in the BNE-SR combination, with intelligent agents (BNE) shown in
orange and naive agents (SR) shown in green in a Horizontal Corridor with a 3-patch width. Intelligent
agents in the red circle display turning behaviors in anticipation of a crowded path ahead

have the capability to disperse (Fig. 6A) or turn around (Fig. 6B) and choose a dif-
ferent route in anticipation of the crowded path ahead, despite it potentially being
longer. The multiple path selections of intelligent agents in this model could be
better represent individual evacuating behaviors in real-world scenarios, compared
to the single evacuation route taken by naive agents. The incorporation of Bayes-
ian game theory brings the extra intelligence into agent navigation in high-density
and life-threatening situations, as BNE agents adopt strategies to avoid barriers and
crowds in advance, by considering the potential moves of other agents.
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Fig.7 Plots of evacuation time (y-axis) against the percentage of BNE-SR and BNE-RF combinations
(x-axis) in a complicated space with varied vertical corridor widths from 1 to 9 patches at a 2-patch
interval, for 2000 evacuees, with 50 simulations conducted for each BNE percentage fraction for Vertical
Corridors. (12,750 runs in total)
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3.2 Vertical corridors

A second set of model assessments was undertaken using a heavily confined space
with narrow bottlenecks in order to explore the emergent behaviors of BNE agents
in varying constricted spatial environments. Figure 7 shows how evacuation times
change with increasing proportion of BNE agents, in a space with different levels of
constriction. Similar to the results displayed in Fig. 5, the increasing BNE ratio may
negatively affect evacuation efficiency in highly confined spaces (i.e. scenarios with
the bottleneck set to 1 or 3 patches). However, little advantage was brought by BNE
in reducing evacuation time even with wider bottlenecks. One of the main causes is
that only one exit route option—evacuating through two bottlenecks—is available
in these scenarios and extra BNE intelligence has done little to shorten evacuation
time in these cases. Thus, this research identifies a situation where there is a case for
little or no alternative intelligent strategy (i.e. evacuation route) in scenarios with
highly cramped bottlenecks. In such cases, where space and thus route choices are
extremely limited, additional intelligence and game-playing of BNE agents nega-
tively affects evacuation efficiency — they effectively outsmart themselves.

To unpick this finding, the evacuation process was examined in more detail in
spaces containing varying cramped bottlenecks. Figure 8A shows how none-BNE
agents (shown in green) follow the shortest exit route and form a long queue dur-
ing evacuations. Some of the BNE agents (shown in orange) were trapped in the
corner and cannot navigate to the relatively uncrowded area. This illustrates how
that in highly constricted spatial environments, more BNE agents attempt to employ

()

(b)

Fig.8 An illustration of evacuees in the BNE-SR combination, with intelligent agents (BNE) shown
in orange and naive agents (SR) shown in green for a Vertical Corridor with a width of 3 patches.
Intelligent agents in the red circle (a) were blocked in the corner and would navigate to the relatively
uncrowded area when they have more route options, as marked in (b)
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strategies instead of exiting directly and how this is detrimental to their evacuation
efficiency. In some instances, clogging was found at bottlenecks where a large group
of agents competed to evacuate through the narrow space (Fig. 8B). In such circum-
stances, with a highly confined space offering few route options, a large proportion
of intelligent BNE agents may have a negative impact on evacuation efficiency.

3.3 Random squares

It is difficult to capture salient herding behavior in a highly crowded space with few
choices of strategies available to be played, as people generally consider that the
optimal survival strategy is to avoid the majority and find an alternative evacuation
route [40]. The above results (see Figs. 6, 8) illustrate that intelligent BNE agents
may choose an alternative path rather than following the shortest exit route in highly
constricted spatial environments. However, it is hard to distinguish herding with
more intelligent behaviors in such cases, because the spaces are so confined that
intelligent agents have little room to navigate the space better than others. Conse-
quently, this research relaxed the level of spatial constriction in a simulation envi-
ronment containing multiple square barriers, in order to provide intelligent agents
with more route choices and to better observe collective behaviors during evacu-
ations. Figure 9 shows a consistent reduction in evacuation time in all scenarios
with the increasing proportion of BNE evacuees, suggesting that agents with BNE
were able to employ their intelligence when they have more routes to choose from in
extremely constricted spaces. A gradually significant benefit from BNE intelligence
in improving evacuation efficiency was also found with relaxing levels of spatial
constriction.

Figure 10 illustrates evacuations in which herding behaviors were captured in
both agents with high and low intelligence during evacuations. Naive (none-BNE)
agents (shown in green and magenta) follow the decisions taken by the majority,
resulting in collective behaviors being observed across various evacuation contexts.
For intelligent (BNE) agents (shown in orange), noticeable herding behaviors were

Patch Side
Length of 11 10 9 8 7
Barriers

Interface : .-. |
-

BNE + SR

BNE + RF

Fig. 9 Plots of evacuation time (y-axis) against the percentage of BNE-SR and BNE-RF combinations
(x-axis) in complicated space with varied barrier side-lengths from 11 to 7 patches at a 2-patch interval,
for 2000 evacuees, with 50 simulations conducted for each BNE percentage fraction in Random Squares.
(12,750 runs in total)
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Fig. 10 An illustration of evacuees in the BNE-RF combination, with intelligent agents (BNE) shown
in orange and naive agents (SR agents shown in green; RF agents shown in magenta), with Narrow Cor-
ridors and Random Squares. Both intelligent and naive agents highlighted in red circles display salient
herding behaviors during evacuations

also captured in the situations when they need shift their original escape direction to
one of the nearby corridors (see Fig. 10A). It was also found that intelligent agents
displayed evident herding behavior in cramped bottlenecks when their proportion
was over 50%. Figure 10B, C indicate that intelligent evacuees also tend to clus-
ter similar to naive agents in the latter half of simulations due to the lack of route
choices. This finding has important implications in urban space design suggesting
that evacuation routes need to be devised to take advantage of the intelligence and
BNE behaviors.

Large crowd gatherings can lead to very dense public space, resulting in discom-
fort, injuries, and even deaths during serious trampling incidents. In this research,
an Expected Comfort Utility parameter, U,,, was used to represent individual agent
comfort levels and recorded at every time step over each simulation run. An average
value of agent comfort levels was then calculated at the end of each run. As shown
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in Figs. 11, 12 and 13, this average U,. shows a significant uptrend with increas-
ing ratio of BNE agents in all scenarios, indicating that although intelligent BNE
agents perform better with more personal space, herding behaviors are still observed
in both naive and intelligent agents (Fig. 10). The variations in average U, also
indicate that the intelligence from BNE can still make a difference in high-density
and life-threatening situations by improving individual comfort levels and reducing
the chances of injuries or deaths among evacuees, even if it does not necessarily
improve evacuation efficiency in these cases.

4 Discussion

The performance of the BNE-informed model, as shown through the evacuation
times and illustrations, suggests how simulation models incorporating such agent
intelligence can reproduce individual behaviors in real-world scenarios. This model
implements an evacuee response to their perceived surroundings in an integrated
approach that considers both physical constraints and real-time information (e.g.
potential actions of other nearby agents). This in turn makes it possible to model
emergent patterns of evacuation behaviors in varying constricted spatial environ-
ments. This research overcomes individual information gaps through Bayesian Nash
Equilibrium (BNE) in which players could adapt their next strategies by predicting
the actions of others, closely matching the real-world context of incomplete real-
time information when evacuating from a complicated space. In this way, this BNE-
informed ABM is able to accurately simulate individual behaviors in life-threatening
situations where spaces contain blockages and congestion-inducing barriers and
objects. It provides an agile way to explore crowd management, evacuation plan-
ning, as well as the design of public spaces (e.g. train stations, theatres, schools,
and universities, etc.) [3]. It considers intelligent and game-playing behaviors of
individual agents in order to understand the impact of their behaviors on evacuation
efficiency, comfort level and the probability of accidents. Additionally, the results
also indicated that more than one solution should exist for an evacuation scenario so
as to assist BNE agents in finding other solutions besides shortest path or randomly
following another agent. The findings suggest that evacuation plans with multiple
viable alternatives could accommodate varying human emergent behaviors and bet-
ter reduce the risk of stampedes to protect public safety.

This examination of BNE-informed ABMs explored the characteristics of intelli-
gent agent behaviors. The model is capable of simulating various established crowd
behaviors (e.g. herding behavior, self-organized queuing behavior, leader behavior,
etc.) depending on various spatial contexts. Intelligent agents in this model perform
a series of BNE-related calculations based on anticipated future movements of other
agents nearby. It is one of the first crowd-simulation models to incorporate intel-
ligent and game-theoretical pedestrians especially in highly crowded spaces [40].
The results demonstrate that BNE-intelligent agents can exhibit established pedes-
trian patterns (e.g. herding and self-organized queuing, etc.) in different evacuation
scenarios. The evacuation illustrations indicate that agents tend to follow neighbors
with shared preferences, i.e. similar decision logic, demonstrating strong social
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interactions among rational agents [41]. It was also shown that this model captures
the adverse impacts of outsmarting behaviors on individual decisions in situations
with limited strategies, in which people may get little benefit from having higher
intelligence, sometimes this outsmarting can even negatively affect their efficiency.

The study has demonstrated several basic principles of group forming and crowd
avoidance that resonate with the literature. However, there are several limitations in
the current research: (1) Finding an appropriate reference dataset for model valida-
tion is very challenging at the current stage. The authors have attempted to introduce
some realistic and spatially articulated datasets to validate the emergent behaviors of
agents, yet most are inapplicable to the current study. Specifically, evacuation video
databases [42, 43] generally focus on people’s first responses (e.g. filming, delayed
actions, etc.) to emergency incidents [44]. It is a difficulty to capture the nuances
between individual emergent behaviors during evacuations in dense public spaces
through some video clips with limited sample size. Related questionnaire survey
data [45, 46] describes people’s likely behaviors under emergencies. The issue is
that it is hard to understand and predict the actual responses of the participants in
real emergency situations in hypothetical studies. Although we acknowledge the
challenges in obtaining suitable datasets for model validation, future research could
focus on incorporating advanced data collection methods to bridge this gap. One
promising approach is the utilization of virtual reality (VR) environments combined
with human participants. VR simulations could replicate emergency scenarios with
controlled variables in order to capture detailed data on individual/group behaviors
during extreme panic. Such data could provide quantifiable metrics for validating
the model’s predictions, such as evacuation time, decision-making processes, crowd
movement patterns, etc. Modeling pedestrian dynamics in public buildings involv-
ing varying facilities and elevations is more complex than those in an abstracted 2D
space, which is also a matter of concern in the ongoing research. (2) The current
model could be further improved to simulate the emergent behaviors displayed by
agents who get stuck in the crowd. This research assumes that intelligent agents are
repelled by large congestions and mainly focuses on modelling evacuating behav-
iors that avoid barriers and clogged areas. Here the simulations were conducted in
highly constricted spatial environments, with little opportunity to clearly observe the
interactions between agents blocked in the congestion. Therefore, a simulation space
with appropriate environmental context and additional cognitive approaches based
on behavioral heuristics [24] could be further incorporated within this ABM to pro-
vide a more comprehensive simulation of pedestrian dynamics, and to reproduce
emergent patterns of individual evacuating behaviors in crowded spaces.

5 Conclusions

In conclusion, crowd dynamics in complicated real-world environments (e.g. shop-
ping centers and train stations, etc.) can be highly complex due to a variety of factors
including heterogeneous individual behaviors, diverse spatial structures and public
facilities that influence pedestrian motion. This model provides a platform to unpick
intelligent behaviors and underlying interactions among pedestrians in emergency
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situations, explaining why crowd behaviors in life-threatening and high-density
situations appear similar regardless of intelligence. Intelligent game-playing agents
can exhibit various unexpected behaviors in emergency situations, matching crowd
evacuations in real-world scenarios. They can evacuate effectively in uncrowded
spaces with low blockages but are puzzled in densely populated areas with high con-
striction level, limiting their strategies and route choices. The model can be further
applied to understand individual reactions and crowd behaviors during life-threaten-
ing circumstances such as serious stampedes (e.g. Seoul Halloween crowd crush in
Fig. 1) and potential safety hazards in public spaces (e.g. large congestions at nar-
row entrances of metro stations in Fig. 2). The model also explains why intelligent
BNE agents seemingly display herding behavior in confined spaces with fewer route
choices. These findings have critical implications for urban space design suggesting
that evacuation routes, entry points and emergency facilities need to be designed to
take advantage of human intelligence. This BNE-informed model offers opportu-
nities to simulate human behaviors and individual responses during extreme social
or natural events [2, 27, 47], such as in crowded social gatherings, social unrest,
and evacuations during a natural disaster, etc., to support the formulations of urban
emergency preplanning as well as policies for effective crowd management.

6 Supplementary material

Supplementary available in https://doi.org/10.25937/8bf3-h968
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Fig. 11 Plots of average expected comfort utility (y-axis) against the percentage of BNE-SR and BNE-
RF combinations (x-axis) in a complicated space with varied horizontal corridor widths from 1 to 5
patches at a 1-patch interval, for 2000 evacuees, with 50 simulations conducted for each percentage frac-
tion in Horizontal Corridors (12,750 runs in total)
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Fig. 12 Plots of average expected comfort utility (y-axis) against the percentage of BNE-SR and BNE-
RF combinations (x-axis) in a complicated space with varied vertical corridor widths from 1 to 9 patches
at a 2-patch interval, for 2000 evacuees, with 50 simulations conducted for each percentage fraction in
Vertical Corridors (12,750 runs in total)
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Fig. 13 Plots of average expected comfort utility (y-axis) against the percentage of BNE-SR and BNE-
RF combinations (x-axis) in a complicated space with varied barrier side lengths from 11 to 7 patches
at a 2-patch interval, for 2000 evacuees, with 50 simulations conducted for each percentage fraction in
Random Squares (12,750 runs in total)

Appendices

Appendix A: Facets: variations in expected comfort utility

Figures 11, 12, and 13 illustrate how the average expected comfort utilities change
with the increasing proportion of BNE agents in varying constricted spaces. Related

barrier settings were tailored to create simulation space with varied levels of spatial
constriction.

Appendix B. Model description (ODD + D protocol)

Our research proposes an agent-based model (ABM) incorporating Bayesian game
theory into pedestrian simulation to simulate the emergent patterns of individual
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behaviors with strong applicability. Bayesian Nash Equilibrium (BNE) was adopted
to simulate the interactive decision-making process among rational and game-play-
ing agents. A complete description of this BNE-informed ABM following ODD +D
protocol [32] is provided.

Overview

Purpose This ABM ultimately aims to provide a realistic description of complicated
pedestrian behaviors especially in high-density or life-threatening situations. To
achieve it, Bayesian Nash Equilibrium (BNE) was introduced to bring extra intel-
ligence into agent navigations and to simulate social interactions among individu-
als. The implementations of three behavioral models, which are Shortest Route (SR)
model, Random Follow (RF) model, and BNE model, make it possible to reproduce
emergent behaviors of pedestrians (e.g. shortest pathfinding and leader behaviors,
etc.) in emergency situations.

Entities, state variables and scales The model contains three main types of enti-
ties: Patches (i.e. simulation space), Evacuees (i.e. agents) and Nodes applied to
reproducing shortest pathfinding. The names of state variables here are same as
those implemented in NetLogo.

The Global Environment is defined as model parameters at the system level,
which involves all the global variables relating to simulation environmental set-
tings. See Table 2 for an outline of global environment state variables.

Patches compose the simulation environment. In this model, evacuation space
consists of 1360 (68*20) patches with a set of patch state variables. These util-
ity-related attributes provide support for modelling interactive decision-making
process of rational and game-playing agents. Details of patch state variables are
shown in Table 3.

Evacuees represent the agents participating into evacuation simulations. Each
evacuee (i.e. agent) has been assigned one of three behavioral models (i.e. SR,
RF, and BNE models) and remained following the decision-making logic allo-
cated over each simulation. The related state variables are shown in Table 4.

Nodes refer to the markers placed over the simulation space to support for
reproducing shortest wayfinding strategy of SR evacuees.

Scales. The spatial extent of this model is an enclosure rectangular area of 68 *
20 square patches (see Fig. 14), in which evacuees can only evacuate through the
exit on the right side. The model keeps running until all the evacuees leave the
simulation space. That is, no absolute temporal scale exist in this model and the
value of time step depends on the initial environmental and individual settings.

Progress overview and scheduling This ABM simulates complete pedestrian
evacuation processes in varied constricted spatial environments and reproduces
interactive decision-making process of agents (i.e. evacuees) following different
behavioural model (i.e. SR, RF, and BNE models). The pathfinding-related vari-
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Fig. 14 The interface of the simulation model, with barriers in blue and exit in red for Vertical Corridors

ables of both patches and evacuees keep being updated every time step throughout
each simulation run.
The basic schedule of the model is shown as follows:

IL.

III.

IV.

The simulation begins with an initial simulation space where sets up by the
observers, involving as series of pre-set environmental variables, such as the
percentage of BNE agents, the number of evacuees, the width of exit, and other
state variables. The type of moving combinations being observed as well as
which kind of barriers placed are also selected at this step. It should be noted
that all the environmental attributes remain constant throughout the entire
simulation process.

The decision-making processes of evacuees deferring to different behavioural
models (i.e. SR, RF and BNE) are conduced respectively during evacuation
simulations. SR agents tend to follow the route with the shortest distance to
the exit point. RF agents randomly choose a leader to follow, seeking to gather
around the closest leader who knows the shortest exit route. BNE evacuees
make inference about others’ next actions and take the strategy considered to
be the best responses to each other.

Agents adjust their moving directions (i.e. repeat patch-selection process)
based on their own behavioural model every time step in response to the
updated environmental conditions.

Relevant state variables, plots, model views and interfaces are updated during
the whole process of simulations.

Design concepts

Theoretical background Bayesian Nash Equilibrium Bayesian Nash Equilibrium
(BNE) was introduced into this model as the underlying theory to better describe
interactive decision-making process of rational and game-playing agents (evacuees).
BNE provides a more comprehensive framework to analyze the interactions of strate-
gies taken by different participants in such scenarios, and an approach to updating
the probabilities of others’ decisions based on real-time information obtained. Spe-
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cifically, players in a game with incomplete information (e.g. Bayesian game) strive
to maximize their own expected utility to achieve a Nash equilibrium, also called
Bayesian Nash Equilibrium (BNE), where the strategies taken by players must be the
optimal responses to each other [29, 33].

In this model, the rules of BNE are reflected as the probability distribution of
nearby evacuees’ next actions as well as a series of utility-related calculations,
quantifying the interactive decision-making process of rational individuals in
scenarios with varied environmental contexts.

Dijkstra’s Algorithm Dijkstra’s algorithm is defined as a widely adopted graph
searching algorithm for shortest wayfinding between the source node and all the
others, with a shortest-path tree produced [48]. It was employed in this model as
the fundamental theory to implement the individual decision-making process of
agents using Shortest Route (SR) behavioral model.

Individual decision-making In this model, decision-making process is simulated
at an individual level and depends on the behavioral model (i.e. SR, RF and BNE)
assigned to each evacuee.

SR evacuees The decision-making logic of the evacuees using SR model is
to find the evacuation routes with the shortest distance from their current loca-
tions to the exit points in the meantime with avoiding the barriers placed on their
pathways.

RF evacuees A certain number of RF evacuees are set as leaders, defaulting to
20% of the total, at the initial stage of simulations. The remaining evacuees ran-
domly follow a leader in views, tending to gather around the closest leader who
defers to SR model. Followers will find a new leader once the previous one is out of
their sights, and this leader-finding process repeats until the end of the simulation.

BNE evacuees An evacuee following BNE model determines his/her response
to perceived surroundings in an integrated way considering both physical con-
strains (e.g. cognition map of evacuation space) and instant information (e.g.
neighbors’ movements). A set of utility-related calculations was conducted every
time step to assist in path selection. Instead of a utility maximization approach
in the initial implementation [28], some noise was introduced in this model to
improve the decision-making logic of BNE agents to a multi-strategy combina-
tion: with 80% of agents choosing the path with highest U,,,,;, 15% selecting the
patch with second-highest U,,,,;, and 5% choosing the third-highest U,,,,;, to assist
smart agents in taking the best responses to each other.

Individual sensing In this model, RF evacuees are able to sense the area in front of
themselves within a cone of vision with a 60-degree viewing angle and an assigned
vision distance. The value of this radius remains constant over each simulation
run and could be adjusted by the corresponding slider Radius. BNE evacuees have
capability to perceive ambient conditions in their Moore neighborhood and predict
others’ next moves.
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Individual prediction BNE evacuees are capable to make inference about the
congestion level of their surrounding areas at next time step by analyzing instant
environmental information and the probabilities of their neighbors’ next actions.
That is, the expected comfort utility (U,,) of each patch is estimated based on the
explicit prediction of the movements of evacuees located on its Moore Neighbour-
hood as well as its comfort coefficient over a time step.

Interaction Interactions among BNE evacuees are mediated by the variations of
expected comfort utilities (U,,) of the patches in their Moore neighbourhoods. In this
model, the value of U, is associated with the expected number of evacuees who may
move to this patch at the next time step, which in turn impacts the actual number of
neighbouring agents. Evacuees following BNE model can adjust their directions after
comparing the patch values of total utility (U,,,,,) in their Moore neighbourhoods.

That is, the current positions and expected next moves of evacuees influence the U,,
of patches, which in turn affects the next decisions of neighbouring evacuees.

Heterogeneity In this model, the decision-making process of evacuees are heteroge-
neous depending on their allocated behavioral models. SR evacuees sought to select
the shortest exit path in the meantime with avoiding the blockades placed on their
pathways, with Dijkstra’s searching algorithm underlying the design. The evacuees
using RF model are divided into two groups: leaders and followers. The evacuation
movements of RF leaders comply with the laws of SR model, and the remaining
evacuees (i.e. followers) randomly choose a leader in views to follow, tending to
gather around the closest leader who knows the shortest evacuation route. Followers
will search another leader once the previous one is out of sight, and this leader-find-
ing process repeats until the end of simulations. The evacuees following BNE model
keep updating the probabilities of others’ next moves in light of instant environmental
information, and then adjust their moving directions based on the values of U, in
their neighbouring patches. The decision-making procedures mentioned above will
take place in every time step until the agents evacuate successfully.

Stochasticity Stochasticity has been introduced in three main mays in this model.
Firstly, the model is initialized based on the environmental and agent settings assigned
by the observer. Specifically, (a) initial locations of evacuees, (b) random allocations
of evacuees’ behavioral models, especially in BNE-SR/RF combinations, and (c) ini-
tial headings of evacuees are set to be randomly initialized in the model. Secondly,
the decision making of an evacuee deferring to RF model is considered to be partly
stochastic, as it is able to randomly choose a leader to follow when multiple leaders
are in view, but the selection range is limited by its vision distance. Randomized
decision-makings also exist in BNE evacuees: when facing over one neighboring
patches with highest U, ,,;, this BNE agent will randomly choose one to move.

Observation The simulating performance of this BNE-informed ABM is indicated
through two main measurements: evacuation time and pedestrian comfort level.
Evacuation time has been recorded at the end of each simulation and the average U,,
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which is a mean value of all patches’ U,,., has been collected every time step over each
simulation run, in order to better represent the average comfort level of individuals

during evacuations in evacuation scenarios with varied environmental contexts.

Details

Implementation details The model was developed in NetLogo. The source code and
experimental data are available at https://doi.org/https://doi.org/10.25937/8bf3-h968.

Initialization By default, the model was initialized with 2000 evacuees randomly
scattering over the designated area on the one side of simulation space and presumed
that all the agents (i.e. evacuees) can evacuate through the exit point with a width
of 4 patches located on the right side. Agents were coded to navigate in varied con-
stricted spatial environments in according to their assigned behavioral model (i.e.
Shortest Route (SR) model, Random Follow (RF) model, or BNE model). Observers
can regulate the initial settings of agents and evacuation space by assigning the total
number of evacuees, the proportion of BNE evacuees, moving patterns, and so on
through corresponding sliders. The movement combinations can be selected by the
chooser Moving-pattern in which four patterns are available to choose from: Shortest
Route (SR), Random Follow (RF), BNE mixed with SR, and BNE mixed with RF.
In the first two patterns, all the evacuees are assigned the same behavioral model
corresponding to which moving pattern was chosen. In RF pattern, the percentage of
leaders who follows SR model defaults to 20% of the total and can be adjusted by the
slider Percent-of-RFleaders. In the last two BNE combinations, the default percent-
age of BNE evacuees was set to 100% and the mixing proportions can be tuned as
needed. In addition, to better observe the evacuation processes of evacuees follow-
ing different behavioral models, each type of evacuees was assigned a specific color
for distinguishing: SR evacuees are in green, RF evacuees are displayed in magenta
while the leaders who follow SR model are still shown in green, and BNE evacuees
are in orange.

The hypothetical evacuation space was made up of 1360 (68*%20) patches where
multi-occupations for each of them are allowed in this model, making it possible
to explore whether and how this model can simulate emergent patterns of pedes-
trian behaviors in evacuation scenarios with different environmental contexts. The
moving speed of each agent is tailored based on crowd density in surrounding area
(i.e. the patch stayed and patches in its Moore neighborhood) and keeps updating
every time step throughout each simulation run. The speed-density relation in this
study is accordance with the Spatial-Grid Evacuation Model (SGEM) [44], and indi-
vidual speed regulations depend on the reference speed assigned through the slider
Moving-speed at model initialization with a default value of 1 patch per time step.
The individual moving speed is inversely proportional to the number of neighboring
evacuees, with full details in Sect. 2.2.2 Speed Calibration.
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To further observe human emergent behaviors in high-density or life-threatening
situations, this model implemented three types of barriers, which are Horizontal
Corridor, Vertical Corridors, and Random Squares, standing for corridors, bottle-
necks, and intersections respectively (see Fig. 3 in main text). The first one allows
the placements of two oblong blockades with assigned size to form three narrow
corridors so as to observe pedestrian dynamics in evacuation space with varied spa-
tial constricted level. The second barrier mode consists of two vertical walls with an
adjustable-wide gate separately. These two gates were placed at different locations,
one is lower, and the other is upper, making it possible to capture individual behav-
iors when passing through cramped bottlenecks and narrow corridors. In the last
type of barrier, several square blockades with adjustable size were placed randomly
over the simulation space to explore the simulating performance of this model on
pedestrian behaviors in evacuation scenarios containing intersections. Observers can
select which type of barriers to set up by the chooser Barriers-mode.

Input data So far, no input is read in this model.

Behavioral models for pedestrian decision-making In this model, agent movements
are determined by their allocated behavioral models. Three behavioral models have
been implemented and described as follows.

Shortest route (SR) model Dijkstra’s searching algorithm was adopted in this
model to replace the weak SR strategy (i.e. choosing the path with shortest Euclid-
ean distance between current location and exit point) in the initial implementation
[49] to take into account congestion costs during evacuations. Nw Extension,” a pre-
bundled NetLogo tool adopted Dijkstra’s algorithm as the underlying theory, was
employed to describe individual decision process of SR agents through generating a
network composed by mass nodes for path calculations. Agents (i.e. evacuees) fol-
lowing SR model strive to find the route with shortest distance to the exit in the
meantime with avoiding the barriers on the way.

Random follow (RF) model The RF model designated a set number of agents,
defaulting to 20% of the total, as the leaders at the beginning of simulations. Evacu-
ation movements of RF leaders were in accord with the rules of SR model. The
remaining agents (i.e. followers) randomly selected a leader in views (radius of view
can be regulated through the slider Radius) to follow, inclined to gather around the
nearest one to them. Followers will look for a new leader once the previous one was
out of sight and this leader-finding process repeats till the end of simulation.

BNE behavioral model Bayesian game theory was adopted in this study to
describe the interactive decision-making process among rational and game-playing
individuals. A set of mathematic expressions for utility calculations were introduced
in this model to convert BNE theory into concrete decision-making rules. Since
players in a Bayesian game make their decisions out-of-sequence, BNE evacuees in
this model determine their next actions hinging on the values of Toral Utility (U,,,,;)

2 The complete documentation of NetLogo NW extension is available at https:/github.com/NetLogo/
NW-Extension.
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Fig. 15 The schema of decision-making process of the agents following BNE behavioral model

for the patches in their Moore neighbourhood. The full details of the BNE model
have been described in Sect. 2.2.2.

Simulation experiments

Experimental settings A series of simulation experiments were conducted in three
main scenarios: corridors, bottlenecks and intersections respectively using NetLogo
BehaviorSpace. The experimental results were evaluated in terms of evacuation time
and average U, to explore simulating performances of this BNE-informed ABM on
emergent patterns of pedestrian evacuating behaviours. See Table 5 for an outline of
all model inputs in each set of experiments (Fig. 15).

Data availability The model was developed in NetLogo. The source code to reproduce the outputs of
this paper is available at COMSES platform: https://doi.org/https://doi.org/10.25937/8bf3-h968. Related
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experimental dataset is available at https://doi.org/https://doi.org/10.17632/9v4byyvgxh.1. The complete
description of this BNE-informed ABM following ODD + D protocol [32] is provided in Appendix B.
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