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Abstract:

Much work has been done to understand complex crowd dynamics and self-organizing behaviors in high-
density crowd situations. But most approaches for modelling pedestrian dynamics in emergencies require
complex computations, making it difficult to capture multiple individual behaviors within a single model. This
paper describes an agent-based model (ABM) that incorporates Bayesian game theory into pedestrian
simulations. It assumes that players (agents) are playing a Bayesian game (i.e. games with incomplete
information) and adopt strategies based on the anticipated behaviors of others to achieve a Bayesian Nash
Equilibrium (BNE). Here, the model agents make decisions based on the possible positions of neighbors in the
next time period to maximize their comfort and efficiently achieve their evacuation goal. A series of simulation
experiments were undertaken using corridors, bottlenecks, and intersections in simulated evacuation spaces
with the characteristics of mass tramping accidents. BNE provides a realistic and efficient approach for
modelling complicated pedestrian dynamics with strong applicability. The BNE-informed ABM performance
(evacuation times, routes, and behaviors) demonstrates its ability to realistically simulate emergent patterns of
evacuation behaviors. The results indicate that agents using game theory reflect the behaviors of individuals
with crowds well: BNE agents evacuate effectively at low densities and low blockages but are confounded in
situations with few route choices in highly constricted spaces. The BNE-informed model provides a platform
to better understand diverse crowd behaviors (e.g. herding and self-organized queuing, etc.) in varied spatial
contexts, contributing to the designs of urban public space, evacuation planning, and crowd management.
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1 Introduction

High-density and constricted public spaces (e.g. cinemas, shopping centers, etc.) can be a potential safety
hazard to the public especially in situations such as mass gatherings during festivals, possibly leading to serious
trampling accidents [1, 2]. Therefore, it is important to understand how pedestrians behave under these life-
threatening situations. Many efforts have been made to incorporate game theory into behavioral and other
elements in social sciences, resulting in various game-theoretic models for crowd evacuation [3-7]. It has been
shown that integrating multiple crowd evacuation models (e.g. game-theoretical models, social force models,
and agent-based models, etc.) can contribute to better reproduction of pedestrian movement under real-world
scenarios [6, 8]. A number of microscopic simulation models have attempted to convert real-world interactions
into games to further explore individual decision-makings. However, most focus mainly on exit route choice
or routing network optimization rather than concentrating on the diverse escaping responses at an individual
level [9-13]. Few studies have sought to model pedestrian behaviors in detail in a complicated space through
game-theoretic and agent-based modelling approaches. One of the main obstacles is that complex
computations are required for both individual response and different types of game-playing. Identifying an
appropriate game structure and employing it in pedestrian simulations also require considerable thought.

Discovering a realistic description of complicated pedestrian behaviors in dense constricted urban space is a
crucial issue that needs to be handled. Many studies have been conducted to derive underlying laws of human
crowd dynamics, proposing that complex pedestrian behaviors are driven by both environmental constraints
and social interactions among individuals [14]. Individual-level models for crowd simulation have then been
developed to capture pedestrian behaviors at an agent level [15-19]. They reflect that most people in a crowd
tend to move in groups rather than walking alone [20, 21]. Some of these pedestrian simulation models
adopting physics-based approaches (e.g. social force models, etc.) can also be applied to simulating crowd
behaviors in high-density situations, considering both external influences and local interactions among
individuals to provide relatively satisfactory observations [7, 16, 22-24]. Many evacuation simulation studies
mainly focus on a certain type of emergent phenomenon such as herding, etc. caused by social interactions and
public emotions (e.g. panic), making it increasingly difficult to realistically capture multiple individual
behaviors in a single model [10, 19, 24, 25]. Some relevant studies have conducted large-scale crowd
evacuation modelling using agent-based models to explore the main elements influencing evacuation process
in extreme social events (e.g. music festivals, concert venues, etc.) [2, 26, 27]. However, they rarely consider
understanding complex crowd dynamics from the perspective of individual strategy-taking and game-playing
in life-threatening situations involving different types and degrees of strategizing.

This paper develops an agent-based model (ABM) building upon the findings of the existing research
conducted by Wang et al. [28] and incorporating Bayesian game theory into pedestrian simulation to reproduce
emergent behaviors of pedestrians in varying high-density and life-threatening situations. It is based on the
assumption that intelligent agents participate in Bayesian games (i.e. games with incomplete information) and
strive to achieve a Bayesian Nash Equilibrium (BNE) in which players take the strategy considered to be the
best responses to each other [29]. BNE was adopted to describe the interactive decision-making process among
intelligent and game-playing agents, since its application context relaxes complete information constraints and
adopts incomplete information assumption [28]. An underlying BNE-informed model was therefore
developed to simulate emergent patterns of individual evacuating behaviors so as to provide a more realistic
description of complicated pedestrian dynamics especially in high-density and life-threatening situations.
Relevant studies [30,31] indicate that serious incidents caused by mass crowds (e.g. Seoul Halloween crowd
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crush shown in Fig. 1) and dense spaces with potential risk of stampedes (e.g. Oxford Circus metro station in
London, Fig.2) generally have several common characteristics: 1) they all took place in extremely constricted
space (e.g. narrow alley) with large crowds; 2) the spaces all had bad bottlenecks with clogging effects; and 3)
there are body collisions in intersecting flows. On this basis, this paper performs a series of simulation
experiments using varied corridors, bottlenecks, and intersections to investigate the emergent patterns of
human evacuating behaviors (e.g. herding and leader behaviors, etc.) with intelligent BNE agents in varying

constricted spatial environments.

Figure 1 The narrow alley where the deadly crush happened during a Halloween event in Seoul’s Itaewon district on 29
Oct 2022. !

© CAMERA PRESS/James Veysey.

Figure 2 Crowd gatherings at an entrance to Oxford Circus metro station in London 2

! Retrieved from https://www.theguardian.com/world/2022/oct/31/how-did-the-seoul-itaewon-halloween-crowd-crush-happen-
unfolded-a-visual-guide

2 Retrieved from https://www.dailymail.co.uk/news/article-3186134/Tube-strike-begins-London-commuters-pack-Underground-
trains.html




2 Methods

This research develops an agent-based model (ABM) that introduces Bayesian game theory to simulate
pedestrian evacuation behaviors during emergent situations in varying urban spaces. Bayesian Nash
Equilibrium (BNE) has therefore been incorporated to describe the interactive decision-making process among
intelligent, game-playing agents. This BNE-informed ABM builds on a previous study conducted in 2023 [28],
and three types of individual behavioral models (i.e. Shortest Route (SR), Random Follow (RF), and BNE
models) have been implemented to better model people’s emergent evacuating behaviors in different spaces
from an individual level. The SR behavioral model employs Dijkstra’s searching algorithm to reproduce the
shortest pathfinding strategy. All SR agents know their final goal from the beginning of each simulation and
strive to evacuate through the shortest route to the exit while avoiding the barriers on the way. RF behavioral
model was implemented to simulate the leader behavior often occurring in emergent situations. Among them,
20% of the total are set as the leaders who intend to follow the shortest route to evacuate, and the remaining
agents (i.e. followers) randomly select a leader in view to follow, inclined to gather around the nearest one to
them. The BNE agents have clarity on their final destination from the beginning and intend to find an
evacuation route with shorter exit time and higher comfort level. The following section mainly focuses on the
improvement details of the BNE behavioral model. The implementation details of SR and RF models are
described in Appendix B, Section B.3.4.

2.1 Software and Data Availability.

The model was developed in NetLogo. The source code to reproduce the outputs of this paper is available at
CoMSES platform: https://doi.org/10.25937/8bf3-h968. Related experimental dataset is available at
https://doi.org/10.17632/9v4byyvgxh.1. The complete description of this BNE-informed ABM following
ODD+D protocol [32] is provided in Appendix B.

2.2 Improved BNE Behavioral Model.
2.2.1 Theoretical Background.

This research adopts Bayesian Nash Equilibrium (BNE) to simulate the decision-making process among
rational and game-playing agents (evacuees). BNE is a widely adopted concept in game theory, which extends
the standard framework of Nash equilibrium by accounting for the uncertainty brought by incomplete (private)
information [33]. It describes a correlated equilibrium with diverse payoff gradients that adapt to different
game conditions, encompassing the Nash Equilibrium as a specific instance, in contrast to the monotonic
payoff gradient in the traditional Nash Equilibrium. Therefore, BNE is considered to be more realistic in an
evacuation context when complete real-time information is generally missing for the individuals. In some real-
world scenarios, participants may have no access to complete information for the strategies and payoffs of
other players in the same game. They need to make their decisions only relying on their beliefs about others’
strategies based on their experience and knowledge of the game [28]. BNE provides a more comprehensive
framework to analyze the interactions of strategies taken by different participants in such scenarios, and an
approach to updating the probabilities of others’ decisions based on instant information obtained. It assumes
that intelligent agents in this model make their decisions based on incomplete information, coinciding with
individual information gaps occurring in reality [28]. That is, agents here participate in games with incomplete
information, also called Bayesian games, and strive to maximize their expected utility to achieve a Bayesian
Nash Equilibrium (BNE), defined as a Nash Equilibrium in a Bayesian game, where the strategies taken should
be the optimal decisions to each other [29, 33].



Therefore, the primary element of individual decision-making is the probability distributions of the next
strategies played by nearby participants, especially the possibilities of other players choosing the same strategy
as the player in the same game. In this model, the rules of BNE are reflected as the probability distribution of
nearby evacuees’ next actions as well as a series of utility-related functions, quantifying interactive decision-
making process of individuals in scenarios in varying spatial environments. BNE agents determine their next

moves according to the Total Utility (Uporq;) of each navigable patch in their Moore neighborhood®.
2.2.2 Utility Functions.

Each agent’s final utility payoff is associated with the possible strategies taken by other agents, probable
changes of their perceived surroundings and the physical distance from current location to the exit point. This
research defines all BNE related utilities as patch attributes to reduce computational complexity of simulation
process. It assumes that each BNE agent will consider the potential congestion levels of all passable patches
in its Moore neighborhood and then choose one that could maximize its final utility payoff to move. A set of
BNE utility functions have been proposed to quantify each patch’s attraction (Ug¢q;) for evacuees.

This model defines that individual decision-makings depend on the total utility (U;¢q;) of surrounding patches,
which is relevant to three main parameters: Distance Utility (Uy), Comfort Utility (U.) and Expected Comfort
Utility (Uy.), and represented as the sum of U; and U,., as shown in Eq. 1. That is, BNE evacuees take their
next actions after accounting for the distance from their current positions to the exit, the number of evacuees
who may move to the same patch as themselves in the next time step, and the possible moves of evacuees on
their Moore neighborhood [28]. The adoption of BNE theory enables agents to avoid barriers and clogged
areas appearing on their pathways by predicting the possible actions taken by other nearby agents, so as to
select an alternative evacuation route with higher comfort level and shorter exit time. Each BNE agent will
evaluate the total utilities of all the passable patches in their Moore neighborhood (see Fig. B.2) to decide
where to move in the next time step. Relevant utility functions are shown as follows.

Utotal = Ud + Uec (1)
A. Distance Utility

The term Uy is related to the distance from current position to the exit point and defined as an increasing
attribute value with getting closer to the exit, as shown in Eq. 2.

_D-d

Ug = 3 (2)

Where, d represents the distance from the current patch to the exit; D refers to the diagonal distance of the
simulation space containing Horizontal/Random Squares, and for Vertical Corridors mode, the value is set to
be the route with the longest distance from one corner to the exit passing through two cramped bottlenecks.

B. Comfort Utility

The term U, is defined as a series of coefficients essential to Expected Comfort Utility (U,.), reflecting the
individual comfort level in every navigable patch. According to the speed-density relation associated with the
Spatial-Grid Evacuation Model (SGEM) [34] (see Eq. 5), the value was assigned as one when no more than
two agents occupied this patch. The value of U, was defined as a proportion of the free-moving speed (i.e. 1.4
m/s) related to the number of evacuees on the patch. That is, there is an inverse proportion of comfort utility

3 Moore Neighborhood refers to a square-shaped neighborhood with radius of one cell.



to the number of agents on the patch. Considering the limited space capacity in the real-world scenario, U,
was set to zero when over four agents occupied the same patch, as shown in Eq. 3.

1.00, n<2
051, n=3

Ue=1007, n=4 )
0.00, n>5

Where, n represents the number of evacuees on the patch.
C. Expected Comfort Utility

One of the main factors determining where an evacuee moves towards is the possible movements of his/her
neighbors at next time step. In this model, Expected Comfort Utility (U,.) is set as a dynamic patch attribute
and defined as the multiplication of Comfort Utility (U, ) and the probability p(n) that a certain number (n) of
evacuees will move to this patch at the next time step. This calculation accounts for the possible responses of
both the evacuee and the other agents on its Moore neighborhood, as illustrated in Eq. 4.

Ure = ) pDU(0)

= 24 CI(Ilen(l - Pm)N_nUc(n) (4)
n=0

Where, n represents the number of agents on this patch; U.(n) refers to the individual comfort utility that a
specific number (n) of agents occupying this patch at the next time step; N refers to the total number of
evacuees on this patch and its Moore neighbourhood; P,, represents the probability of agents moving to this
patch, defaulting to a random value in a range between 40% and 60%. The median, with a default setting of
50%, can be regulated through the slider Probability-competing.

D. Speed Calibration

This model assumes that individual moving speed should be dynamic instead of a static attribute. In real-world
scenarios, the variation of moving speed is closely associated with the crowd density in the surroundings and
the speed attribute in this model should be calibrated accordingly. On this basis, several of the main pedestrian
speed-crowd density models that were widely adopted in recent years [35-37] have been compared and the
Spatial-Grid Evacuation Model (SGEM) [34] was considered as an appropriate speed-density relation model
for this research, as it accounts for both social interactions and the potential influences of local communications

among pedestrians on individual moving speed [28].

In this model, the moving speed of each agent is tailored based on crowd density in surrounding area (i.e. the
patch occupied and patches in its Moore neighborhood) and keeps updating every time step throughout each
simulation run. The speed-density relation in this study is in accordance with the Spatial-Grid Evacuation
Model (SGEM) [34], and individual speed regulations depend on the reference speed assigned through the
slider Moving-speed at model initialization with a default value of one patch per time step. The individual
moving speed is inversely proportional to the number of neighboring evacuees. Specifically, the general trend
among these speed-density relation models remains consistent when the crowd density is lower than 4
person/m? , with pedestrians in a free-moving status at the speed of around 1.4 m/s. Pedestrians are considered
to be in a state of constrained motion and move at approximately 0.1 m/s when the crowd density is greater
than 8 person/m? . And when the crowd density ranges between 4 and 8 person/m?, pedestrian movements
start being restricted and their moving speed reduces with the increasing number of persons [28]. Since the
average step length of adults is around 0.7 meter with an average response time of about 0.5 second [38],
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several related parameters were adjusted in the SGEM model to match the settings of simulation space. In this
model, the reference speed can be adjusted through the slider Moving-speed rather than imposing a fixed value
(e.g. 1.4 m/s), and individual moving speed is set to be in an inverse proportion to the number of evacuees (i.e.
crowd density) on its Moore neighborhood. As high crowd density has a decay influence on individual moving
speed, evacuees encircled by a crowd of agents are incapable of hopping large distances to a free patch near
the exit. On this basis, the suitable speed-density relationship for this model is demonstrated in Eq. 5.

14, 0<p<4
V=4003p2—0.64p+336, 4<p<8 (5)
01, p=8

where, p is density of agents on the patch and its Moore neighborhood.

The relationship and derivation process of relevant BNE utilities is briefly illustrated in Fig. 3. The full details
of the crucial components forming total utility (U;¢4;) can be found in Appendix B, Section 3.4.3.

Total Utility Distance Utility Expected Comfort Utility
n
Uit = Ua=@=d/D + Upe= ) CRB"(1= P} "Uc(n)
0
1.00,n <2
14,0<p<4 0517 =3
vV =10.03p% — 0.64p +3.36,4 < p < 8 Ue(M) =9 0071 = 4
0.1(= 0),p=>8 on=5
Speed-Density Relationship Comfort Utility
(SGEM)

Figure 3 The schematic diagram of Total Utility (U;y:q;) and related utilities. The equation of Comfort Utility (U,) is
derived from the SGEM speed-density relationship. Where, p represents the density of agents on the patch and its Moore
neighborhood.

2.2.3 Improved Details.

The initial version of the BNE behavioral model [39] implemented agent movement by a utility maximization
approach in which 100% of agents choose the patch with the highest total utility to move. However, the
experimental results revealed that this decision-making criterion might induce all agents on the same patch to
take coincident actions especially in the latter stages of simulations, leading to local congestion and low
evacuation speed [28]. In this case, the patch with the highest total utility definitely cannot be their best choice
to move at next time step. This is an important issue caused by the excessive pursuit of simplifying
computational complexity and neglecting the heterogeneity in agents. Some errors occurred in the conversion
process from individual utility payoffs to patch attractions as well as the BNE related calculations. This
research addressed above challenges by including some noise to the individual probability of taking each
strategy (Py,). The term P,has been changed from a fixed value of 50% to a random value selected within a
predefined range from 40% to 60%. In this model, each evacuee has been assigned a specific value of B, to
mitigate potential biases introduced by a fixed parameter setting, thereby contributing to the overall robustness
of this model. The range of P, can be configured via the corresponding slider in the model to improve the
model’s adaptability to diverse scenarios.

Furthermore, this research has also introduced variability into the initial decision-making criterion of BNE
agents and proposed a multi-strategy combination: with around 80% of agents selecting the patch with the
highest Usptq1, 15% choosing the patch with second-highest U;¢q1, and 5% selecting the patch with third-
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highest U;¢q1, to assist intelligent BNE agents in dispersing and taking the best responses to each other. In
this model, all BNE related utilities are computed at the beginning of each simulation and updated every time
step. The patches representing impassable blockages have been excluded from BNE-related calculations. The
patch visited by a BNE agent in the last time step will be removed from the candidate patch-set that this agent
intends to move at the next time step to avoid being trapped where it was.

2.3 Experimental Design.

The hypothetical evacuation space (Fig.4) was made up of 1360 (68*20) patches where multiple occupations
for each of them are allowed in this model, making it possible to explore whether and how this model can
simulate emergent patterns of pedestrian behaviors in evacuation scenarios with different environmental
contexts.

Three sets of experiments — each containing 12750 simulations i.e. 382500 runs in total - were conducted in
NetLogo BehaviorSpace under different environmental and behavioral contexts, by varying several model
parameters:

1) Barriers-mode. Three types of barriers were explored, which are Horizontal Corridors, Vertical Corridors,
and Random Squares, standing for corridors (alleys), bottlenecks and intersections as noted above. These were
designed to assess model performance in simulating unexpected patterns of human evacuating behaviors in

varied constricted spaces. The layouts of simulation space are shown in Fig. 4.

2) Moving-pattern. As previously stated, three types of behavioral models were explored, which are Shortest
Route (SR) model, Random Follow (RF) model, and BNE model. These were developed to reproduce various
pedestrian behaviors (e.g. shortest pathfinding and leader behavior, etc.) in emergency situations. Each agent
(i.e. evacuee) was assigned one of the above behavioral models and adhered to this decision-making logic
throughout each simulation. The detailed description of simulation experimental design is provided in Section
B.3.2 in Appendix B.

The model also mixed intelligent BNE agents with relatively naive ones (i.e. evacuees following the SR/RF
model) in proportions from 0% to 100% at intervals of 2% in order to further explore the impact of intelligent
and game-playing agents in the crowd. Two agent combinations (i.e. BNE-SR and BNE-RF) have been
investigated in this research. Table 1 provides a brief overview of the key parameters in each set of
experiments. The full details of experimental parameter settings are outlined in Table B.4.
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Figure 4 The interfaces of the simulation space with different barrier modes: (a) Horizontal Corridors (narrow alleys),
(b) Vertical Corridors (bottlenecks), and (c) Random Squares (intersections). The exit is represented by the red patches
and the blue ones represent the barriers in the simulation space. The corridor width and sizes of blockages in all modes
can be adjusted through the corresponding sliders in the ABM.

Table 1 The list of key parameter settings in the experiments.

Parameters Values (Exp.1) Values (Exp.2) Values (Exp.3) State
Number-of-
Hmber-o 2000 2000 2000 Static
Evacuees
Moving-pattern BNE mixed with SR/RF | BNE mixed with SR/RF | BNE mixed with SR/RF | Dynamic
Barriers-mode Horizontal Corridors Vertical Corridors Random Squares Static
Corridor-width 1,2,3,4,5. 1,3,5,7,09. N/A Dynamic
Barriers-side-
arriers=sice N/A N/A 11,10,9,8, 7. Dynamic
length
Percent-of-BNE- .
0%~100% (+2%) 0%~100% (+2%) 0%~100% (+2%) Dynamic
evacuees
50 simulations were | 50 simulations were | 50 simulations were
conducted at each BNE | conducted at each BNE | conducted at each BNE
Repetitions percentage fraction | percentage fraction | percentage fraction | N/A
(12750 simulations in | (12750 simulations in | (12750 simulations in
this set of experiment) this set of experiment) this set of experiment)




Exit time; Average | Exit time; Average | Exit time; Average
Values collected o o o N/A
expected comfort utility | expected comfort utility | expected comfort utility

3 Results

3.1 Horizontal Corridors.

The model was first evaluated in an evacuation space involving three horizontal corridors with adjustable
widths, to explore the relationship between evacuation efficiency and individual intelligence in complicated
spaces with varied levels of constriction. The agents with high intelligence (i.e. BNE evacuees) were mixed
with the naive agents (i.e. SR/RF evacuees) at varying proportions to simulate evacuations under different
levels of individual intelligence. Fig. 5 shows the variation in evacuation time with an increasing proportion
of intelligent BNE agents for varied constricted spatial environments. A local line of fit is shown in each plot
with 95% confidence interval. Fig. 5 indicates that an increasing ratio of intelligent agents provides little
advantage for evacuation efficiency in highly constricted spaces (i.e. scenarios with the width of the middle
corridor setting to 1 and 2 patches respectively). This is because highly confined spaces result in limited or no
alternative strategies for agents to take, and thus the extra intelligence of BNE has minimal effects on reducing
exit time. A clear reduction in evacuation time is found with increasing BNE proportion with wider corridors.
The same correlation among individual intelligence, evacuation efficiency and spatial constricted level was
found in both BNE combinations (BNE-SR and BNE-RF).

The screenshots in Fig. 6 illustrate what happens during evacuations. All of the naive SR agents (shown in
green) follow the shortest route (i.e. the middle corridor) to the exit point (i.e. red patches). The intelligent
BNE agents (shown in orange) have the capability to disperse (Fig. 6A) or turn around (Fig. 6B) and choose a
different route in anticipation of the crowded path ahead, despite it potentially being longer. The multiple path
selections of intelligent agents in this model could be better represent individual evacuating behaviors in real-
world scenarios, compared to the single evacuation route taken by naive agents. The incorporation of Bayesian
game theory brings the extra intelligence into agent navigation in high-density and life-threatening situations,
as BNE agents adopt strategies to avoid barriers and crowds in advance, by considering the potential moves of
other agents.
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Figure 5 Plots of evacuation time (y-axis) against the percentage of BNE-SR and BNE-RF combinations (x-axis) in
complicated space with varied horizontal corridor widths from 1 to 5 patches at a 1-patch interval, for 2000 evacuees,
with 50 simulations conducted for each BNE percentage fraction in Horizontal Corridors. (12750 runs in total)
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Figure 6 An illustration of evacuees in the BNE-SR combination, with intelligent agents (BNE) shown in orange and
naive agents (SR) shown in green in a Horizontal Corridor with a 3-patch width. Intelligent agents in the red circle display
turning behaviors in anticipation of a crowded path ahead.

3.2 Vertical Corridors.

A second set of model assessments was undertaken using a heavily confined space with narrow bottlenecks in
order to explore the emergent behaviors of BNE agents in varying constricted spatial environments. Fig. 7
shows how evacuation times change with increasing proportion of BNE agents, in a space with different levels
of constriction. Similar to the results displayed in Fig. 5, the increasing BNE ratio may negatively affect
evacuation efficiency in highly confined spaces (i.e. scenarios with the bottleneck set to 1 or 3 patches).
However, little advantage was brought by BNE in reducing evacuation time even with wider bottlenecks. One
of the main causes is that only one exit route option - evacuating through two bottlenecks - is available in these
scenarios and extra BNE intelligence has done little to shorten evacuation time in these cases. Thus, this
research identifies a situation where there is a case for little or no alternative intelligent strategy (i.e. evacuation
route) in scenarios with highly cramped bottlenecks. In such cases, where space and thus route choices are
extremely limited, additional intelligence and game-playing of BNE agents negatively affects evacuation
efficiency — they effectively outsmart themselves.

To unpick this finding, the evacuation process was examined in more detail in spaces containing varying
cramped bottlenecks. Fig. 8A shows how none-BNE agents (shown in green) follow the shortest exit route and
form a long queue during evacuations. Some of the BNE agents (shown in orange) were trapped in the corner
and cannot navigate to the relatively uncrowded area. This illustrates how that in highly constricted spatial
environments, more BNE agents attempt to employ strategies instead of exiting directly and how this is
detrimental to their evacuation efficiency. In some instances, clogging was found at bottlenecks where a large
group of agents competed to evacuate through the narrow space (Fig. 8B). In such circumstances, with a highly
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confined space offering few route options, a large proportion of intelligent BNE agents may have a negative

impact on evacuation efficiency.
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Figure 7 Plots of evacuation time (y-axis) against the percentage of BNE-SR and BNE-RF combinations (x-axis) in a

complicated space with varied vertical corridor widths from 1 to 9 patches at a 2-patch interval, for 2000 evacuees, with

50 simulations conducted for each BNE percentage fraction for Vertical Corridors. (12750 runs in total)

()

(b)

Figure 8 An illustration of evacuees in the BNE-SR combination, with intelligent agents (BNE) shown in orange and

naive agents (SR) shown in green for a Vertical Corridor with a width of 3 patches. Intelligent agents in the red circle (a)

were blocked in the corner and would navigate to the relatively uncrowded area when they have more route options, as
marked in Fig.8(b).
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3.3 Random Squares.

It is difficult to capture salient herding behavior in a highly crowded space with few choices of strategies
available to be played, as people generally consider that the optimal survival strategy is to avoid the majority
and find an alternative evacuation route [40]. The above results (see Fig. 6 & 8) illustrate that intelligent BNE
agents may choose an alternative path rather than following the shortest exit route in highly constricted spatial
environments. However, it is hard to distinguish herding with more intelligent behaviors in such cases, because
the spaces are so confined that intelligent agents have little room to navigate the space better than others.
Consequently, this research relaxed the level of spatial constriction in a simulation environment containing
multiple square barriers, in order to provide intelligent agents with more route choices and to better observe
collective behaviors during evacuations. Fig.9 shows a consistent reduction in evacuation time in all scenarios
with the increasing proportion of BNE evacuees, suggesting that agents with BNE were able to employ their
intelligence when they have more routes to choose from in extremely constricted spaces. A gradually
significant benefit from BNE intelligence in improving evacuation efficiency was also found with relaxing
levels of spatial constriction.

Fig. 10 illustrates evacuations in which herding behaviors were captured in both agents with high and low
intelligence during evacuations. Naive (none-BNE) agents (shown in green and magenta) follow the decisions
taken by the majority, resulting in collective behaviors being observed across various evacuation contexts. For
intelligent (BNE) agents (shown in orange), noticeable herding behaviors were also captured in the situations
when they need shift their original escape direction to one of the nearby corridors (see Fig. 10A). It was also
found that intelligent agents displayed evident herding behavior in cramped bottlenecks when their proportion
was over 50%. Fig. 10B & 10C indicate that intelligent evacuees also tend to cluster similar to naive agents in
the latter half of simulations due to the lack of route choices. This finding has important implications in urban
space design suggesting that evacuation routes need to be devised to take advantage of the intelligence and
BNE behaviors.

Large crowd gatherings can lead to very dense public space, resulting in discomfort, injuries, and even deaths
during serious trampling incidents. In this research, an Expected Comfort Utility parameter, U,., was used to
represent individual agent comfort levels and recorded at every time step over each simulation run. An average
value of agent comfort levels was then calculated at the end of each run. As shown in Fig. A.1-A.3, this average
Uec shows a significant uptrend with increasing ratio of BNE agents in all scenarios, indicating that although
intelligent BNE agents perform better with more personal space, herding behaviors are still observed in both
naive and intelligent agents (Fig. 10). The variations in average U, also indicate that the intelligence from
BNE can still make a difference in high-density and life-threatening situations by improving individual comfort
levels and reducing the chances of injuries or deaths among evacuees, even if it does not necessarily improve
evacuation efficiency in these cases.
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Figure 10 An illustration of evacuees in the BNE-RF combination, with intelligent agents (BNE) shown in orange and
naive agents (SR agents shown in green; RF agents shown in magenta), with Narrow Corridors and Random Squares.
Both intelligent and naive agents highlighted in red circles display salient herding behaviors during evacuations.

4 Discussion

The performance of the BNE-informed model, as shown through the evacuation times and illustrations,
suggests how simulation models incorporating such agent intelligence can reproduce individual behaviors in
real-world scenarios. This model implements an evacuee response to their perceived surroundings in an
integrated approach that considers both physical constraints and real-time information (e.g. potential actions
of other nearby agents). This in turn makes it possible to model emergent patterns of evacuation behaviors in
varying constricted spatial environments. This research overcomes individual information gaps through
Bayesian Nash Equilibrium (BNE) in which players could adapt their next strategies by predicting the actions
of others, closely matching the real-world context of incomplete real-time information when evacuating from
a complicated space. In this way, this BNE-informed ABM is able to accurately simulate individual behaviors
in life-threatening situations where spaces contain blockages and congestion-inducing barriers and objects. It
provides an agile way to explore crowd management, evacuation planning, as well as the design of public
spaces (e.g. train stations, theatres, schools, and universities, etc.) [3]. It considers intelligent and game-playing
behaviors of individual agents in order to understand the impact of their behaviors on evacuation efficiency,
comfort level and the probability of accidents. Additionally, the results also indicated that more than one
solution should exist for an evacuation scenario so as to assist BNE agents in finding other solutions besides
shortest path or randomly following another agent. The findings suggest that evacuation plans with multiple
viable alternatives could accommodate varying human emergent behaviors and better reduce the risk of
stampedes to protect public safety.

This examination of BNE-informed ABMs explored the characteristics of intelligent agent behaviors. The
model is capable of simulating various established crowd behaviors (e.g. herding behavior, self-organized
queuing behavior, leader behavior, etc.) depending on various spatial contexts. Intelligent agents in this model
perform a series of BNE-related calculations based on anticipated future movements of other agents nearby. It
is one of the first crowd-simulation models to incorporate intelligent and game-theoretical pedestrians
especially in highly crowded spaces [40]. The results demonstrate that BNE-intelligent agents can exhibit
established pedestrian patterns (e.g. herding and self-organized queuing, etc.) in different evacuation scenarios.
The evacuation illustrations indicate that agents tend to follow neighbors with shared preferences, i.e. similar
decision logic, demonstrating strong social interactions among rational agents [41]. It was also shown that this
model captures the adverse impacts of outsmarting behaviors on individual decisions in situations with limited
strategies, in which people may get little benefit from having higher intelligence, sometimes this outsmarting
can even negatively affect their efficiency.

The study has demonstrated several basic principles of group forming and crowd avoidance that resonate with
the literature. However, there are several limitations in the current research: 1) Finding an appropriate reference
dataset for model validation is very challenging at the current stage. The authors have attempted to introduce
some realistic and spatially articulated datasets to validate the emergent behaviors of agents, yet most are
inapplicable to the current study. Specifically, evacuation video databases [42, 43] generally focus on people’s
first responses (e.g. filming, delayed actions, etc.) to emergency incidents [44]. It is a difficulty to capture the
nuances between individual emergent behaviors during evacuations in dense public spaces through some video
clips with limited sample size. Related questionnaire survey data [45, 46] describes people’s likely behaviors
under emergencies. The issue is that it is hard to understand and predict the actual responses of the participants
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in real emergency situations in hypothetical studies. Although we acknowledge the challenges in obtaining
suitable datasets for model validation, future research could focus on incorporating advanced data collection
methods to bridge this gap. One promising approach is the utilization of virtual reality (VR) environments
combined with human participants. VR simulations could replicate emergency scenarios with controlled
variables in order to capture detailed data on individual/group behaviors during extreme panic. Such data could
provide quantifiable metrics for validating the model’s predictions, such as evacuation time, decision-making
processes, crowd movement patterns, etc. Modeling pedestrian dynamics in public buildings involving varying
facilities and elevations is more complex than those in an abstracted 2D space, which is also a matter of concern
in the ongoing research. 2) The current model could be further improved to simulate the emergent behaviors
displayed by agents who get stuck in the crowd. This research assumes that intelligent agents are repelled by
large congestions and mainly focuses on modelling evacuating behaviors that avoid barriers and clogged areas.
Here the simulations were conducted in highly constricted spatial environments, with little opportunity to
clearly observe the interactions between agents blocked in the congestion. Therefore, a simulation space with
appropriate environmental context and additional cognitive approaches based on behavioral heuristics [24]
could be further incorporated within this ABM to provide a more comprehensive simulation of pedestrian
dynamics, and to reproduce emergent patterns of individual evacuating behaviors in crowded spaces.

5 Conclusions

In conclusion, crowd dynamics in complicated real-world environments (e.g. shopping centers and train
stations, etc.) can be highly complex due to a variety of factors including heterogeneous individual behaviors,
diverse spatial structures and public facilities that influence pedestrian motion. This model provides a platform
to unpick intelligent behaviors and underlying interactions among pedestrians in emergency situations,
explaining why crowd behaviors in life-threatening and high-density situations appear similar regardless of
intelligence. Intelligent game-playing agents can exhibit various unexpected behaviors in emergency
situations, matching crowd evacuations in real-world scenarios. They can evacuate effectively in uncrowded
spaces with low blockages but are puzzled in densely populated areas with high constriction level, limiting
their strategies and route choices. The model can be further applied to understand individual reactions and
crowd behaviors during life-threatening circumstances such as serious stampedes (e.g. Seoul Halloween crowd
crush in Fig. 1) and potential safety hazards in public spaces (e.g. large congestions at narrow entrances of
metro stations in Fig. 2). The model also explains why intelligent BNE agents seemingly display herding
behavior in confined spaces with fewer route choices. These findings have critical implications for urban space
design suggesting that evacuation routes, entry points and emergency facilities need to be designed to take
advantage of human intelligence. This BNE-informed model offers opportunities to simulate human behaviors
and individual responses during extreme social or natural events [2, 27, 47], such as in crowded social
gatherings, social unrest, and evacuations during a natural disaster, etc., to support the formulations of urban

emergency preplanning as well as policies for effective crowd management.
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Appendices
Appendix A. Facets: Variations in Expected Comfort Utility

Fig. A.1-A.3 illustrate how the average expected comfort utilities change with the increasing proportion of
BNE agents in varying constricted spaces. Related barrier settings were tailored to create simulation space
with varied levels of spatial constriction.

Corridor
Patch 2
Width
Interface
0.25
it f
",p" 0.20 !
lI“ l""
‘ﬂ}li- 0.15 35”
i i
BNE + SR ‘.l”;' 576 it
0.05 il 0.05 it 0.05 m""" 0.05 .n"'d 0.05 ulml“ﬂ"
i
mu.uuum‘ ,l',..nu"“"' ,,.m""‘"'"" 'm,,uuunul ,.m'“‘"“
0.00: ™ 0.00: ° 0.00 0.00 0.00
0 10 20 30 40 50 60 70 80 90100 0 10 20 30 40 50 60 70 80 90100 0 10 20 30 40 50 60 70 80 90100 0 10 20 30 40 50 60 70 80 50100 0 10 20 30 40 50 60 70 80 90100
025 0.25 0.25 S 0.25
i i i |
0.20 l,,,.m.nm 0.20 w“,uumu 020 l‘”,u"'" 0.20 lull'"”" 020 l.“;l,mﬂ"
e [} It I L
0.15 “.»l" 0.15 “‘,m 015 l”'k' 0.15 NN" 015 i
il ] i il Rh
BNE+RF | o4 dig‘ 0.10 it 0.10 it 0.10 i 0.10 o
Tl it il It il
0.05 T 005 T 005 T 0.05 it 005 i
e i L it i
et o o i o
0 10 20 30 40 50 60 70 80 90100 0 10 20 30 40 50 60 70 80 90100 0 10 20 30 40 50 60 70 80 90100 0 10 20 30 40 50 60 70 80 90100 0 10 20 30 40 50 60 70 80 90100

Figure A.1 Plots of average expected comfort utility (y-axis) against the percentage of BNE-SR and BNE-RF
combinations (x-axis) in a complicated space with varied horizontal corridor widths from 1 to 5 patches at a 1-patch
interval, for 2000 evacuees, with 50 simulations conducted for each percentage fraction in Horizontal Corridors (12750
runs in total).
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Figure A.2 Plots of average expected comfort utility (y-axis) against the percentage of BNE-SR and BNE-RF
combinations (x-axis) in a complicated space with varied vertical corridor widths from 1 to 9 patches at a 2-patch interval,
for 2000 evacuees, with 50 simulations conducted for each percentage fraction in Vertical Corridors (12750 runs in total).
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Figure A.3 Plots of average expected comfort utility (y-axis) against the percentage of BNE-SR and BNE-RF
combinations (x-axis) in a complicated space with varied barrier side lengths from 11 to 7 patches at a 2-patch interval,
for 2000 evacuees, with 50 simulations conducted for each percentage fraction in Random Squares (12750 runs in total).

Appendix B. Model Description (ODD+D protocol)

Our research proposes an agent-based model (ABM) incorporating Bayesian game theory into pedestrian
simulation to simulate the emergent patterns of individual behaviors with strong applicability. Bayesian Nash
Equilibrium (BNE) was adopted to simulate the interactive decision-making process among rational and game-
playing agents. A complete description of this BNE-informed ABM following ODD+D protocol [32] is
provided.

1 Overview
1.1 Purpose

This ABM ultimately aims to provide a realistic description of complicated pedestrian behaviors especially in
high-density or life-threatening situations. To achieve it, Bayesian Nash Equilibrium (BNE) was introduced to
bring extra intelligence into agent navigations and to simulate social interactions among individuals. The
implementations of three behavioral models, which are Shortest Route (SR) model, Random Follow (RF)
model, and BNE model, make it possible to reproduce emergent behaviors of pedestrians (e.g. shortest
pathfinding and leader behaviors, etc.) in emergency situations.
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1.2 Entities, state variables and scales

The model contains three main types of entities: Patches (i.e. simulation space), Evacuees (i.e. agents) and
Nodes applied to reproducing shortest pathfinding. The names of state variables here are same as those
implemented in NetLogo.

The Global Environment is defined as model parameters at the system level, which involves all the global
variables relating to simulation environmental settings. See Table B.1 for an outline of global environment
state variables.

Table B.1 Global Environment state variables

Variable Name Variable Type | Brief Description
and Units
Number-of-Evacuees numeric Total number of evacuees participating in simulations.
Percentage-of-BNE _evacuees % The proportion of evacuees following BNE behavioural model.
Probability-competing % The probability that an agent moves to this patch at next time
step.
Exit-width patches The width of the exit.
Moving-speed patch per tick The reference speed (i.e. free-moving speed).
Radius patches The vision distance of evacuees deferring to Random Follow

(RF) model; Assigning evacuees a “cone of vision” with a
viewing angle of 60 degrees in front of themselves.

Corridor-width patches The width of narrow corridors.

Percent-of-RFleaders % The proportion of leaders against the total number of evacuees
using RF model.

Barriers-side-length patches The side length of square barriers; It is used in Random

Squares barrier mode.

Initial-position % The proportion of the area that evacuees occupied in model

initialisation against the initial simulation space.

Moving-pattern chooser 4 patterns are available: Shortest Route (SR), Random Follow
(RF), BNE mixed with SR, and BNE mixed with RF.

Barriers-mode chooser 3 types of barriers are available: Horizontal Corridors, Vertical
Corridors, and Random Squares.

weight-Ud numeric A coefficient to balance the influence of distance utility and
expected comfort utility on the decision-making process of
BNE evacuees.

weight-Uec numeric A coefficient to balance the influence of expected comfort
utility and distance utility on the decision-making process of
BNE evacuees.

Patches compose the simulation environment. In this model, evacuation space consists of 1360 (68*20)
patches with a set of patch state variables. These utility-related attributes provide support for modelling
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interactive decision-making process of rational and game-playing agents. Details of patch state variables are

shown in Table B.2.

Table B.2 Patch state variables

Variable Name Variable Type | Brief Description
and Units

Uec numeric Expected Comfort Utility

Ud numeric; static | Distance Utility, related to the distance from current location
to the exit.

U-total numeric Total Utility, refers to the sum of Distance Utility and Expected
Comfort Utility.

barrier? True/False Whether or not the patch is set as a barrier.

exit? True/False Whether or not the patch is set as the exit.

N-total numeric The total number of evacuees who have a certain probability to

move to the patch at next time step.

Evacuees represent the agents participating into evacuation simulations. Each evacuee (i.e. agent) has been

assigned one of three behavioral models (i.e. SR, RF, and BNE models) and remained following the decision-

making logic allocated over each simulation. The related state variables are shown in Table B.3.

Table B.3 Evacuee state variables

Variable Name Variable Type | Brief Description
and Units

target patch The patch that this evacuee currently tends to move to.

speed m/s The moving speed of each evacuee during simulations, which
is inversely proportional to the increasing crowd density in the
evacuee’s Moore neighborhood.

leader? True/False Whether or not this evacuee is a leader, used in Random Follow
moving pattern.

follow? True/False Whether or not this evacuee is following others, used in
Random Follow moving pattern.

nearby-leaders agentset The leaders in views who can be selected to follow during
evacuations, used in Random Follow moving pattern.

my-leader agent The leader that this evacuee is currently following.

last-patch patch The patch that this evacuee stayed at the last time step.

BNE? True/False Whether or not this evacuee follows BNE behavioural model.

U _ec numeric The expected comfort utility of each evacuee.

exits nodes The nodes located on the exit patches, only used in Shortest

Route moving pattern.
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Nodes refer to the markers placed over the simulation space to support for reproducing shortest wayfinding

strategy of SR evacuees.

Scales. The spatial extent of this model is an enclosure rectangular area of 68 * 20 square patches (see Fig.

B.1), in which evacuees can only evacuate through the exit on the right side. The model keeps running until

all the evacuees leave the simulation space. That is, no absolute temporal scale exist in this model and the

value of time step depends on the initial environmental and individual settings.

Figure B.1 The interface of the simulation model, with barriers in blue and exit in red for Vertical Corridors.

1.3 Progress Overview and Scheduling

This ABM simulates complete pedestrian evacuation processes in varied constricted spatial environments and

reproduces interactive decision-making process of agents (i.e. evacuees) following different behavioural model

(i.e. SR, RF, and BNE models). The pathfinding-related variables of both patches and evacuees keep being

updated every time step throughout each simulation run.

The basic schedule of the model is shown as follows:

L

II.

III.

Iv.

The simulation begins with an initial simulation space where sets up by the observers, involving as series
of pre-set environmental variables, such as the percentage of BNE agents, the number of evacuees, the
width of exit, and other state variables. The type of moving combinations being observed as well as which
kind of barriers placed are also selected at this step. It should be noted that all the environmental attributes

remain constant throughout the entire simulation process.

The decision-making processes of evacuees deferring to different behavioural models (i.e. SR, RF and
BNE) are conduced respectively during evacuation simulations. SR agents tend to follow the route with
the shortest distance to the exit point. RF agents randomly choose a leader to follow, seeking to gather
around the closest leader who knows the shortest exit route. BNE evacuees make inference about others’
next actions and take the strategy considered to be the best responses to each other.

Agents adjust their moving directions (i.e. repeat patch-selection process) based on their own behavioural
model every time step in response to the updated environmental conditions.

Relevant state variables, plots, model views and interfaces are updated during the whole process of

simulations.
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2 Design Concepts

2.1 Theoretical Background
2.1.1 Bayesian Nash Equilibrium

Bayesian Nash Equilibrium (BNE) was introduced into this model as the underlying theory to better describe
interactive decision-making process of rational and game-playing agents (evacuees). BNE provides a more
comprehensive framework to analyze the interactions of strategies taken by different participants in such
scenarios, and an approach to updating the probabilities of others’ decisions based on real-time information
obtained. Specifically, players in a game with incomplete information (e.g. Bayesian game) strive to maximize
their own expected utility to achieve a Nash equilibrium, also called Bayesian Nash Equilibrium (BNE), where
the strategies taken by players must be the optimal responses to each other [29, 33].

In this model, the rules of BNE are reflected as the probability distribution of nearby evacuees’ next actions as
well as a series of utility-related calculations, quantifying the interactive decision-making process of rational

individuals in scenarios with varied environmental contexts.
2.2.2 Dijkstra’s Algorithm

Dijkstra’s algorithm is defined as a widely adopted graph searching algorithm for shortest wayfinding between
the source node and all the others, with a shortest-path tree produced [48]. It was employed in this model as
the fundamental theory to implement the individual decision-making process of agents using Shortest Route
(SR) behavioral model.

2.2 Individual Decision-Making

In this model, decision-making process is simulated at an individual level and depends on the behavioral model
(i.e. SR, RF and BNE) assigned to each evacuee.

SR evacuees. The decision-making logic of the evacuees using SR model is to find the evacuation routes with
the shortest distance from their current locations to the exit points in the meantime with avoiding the barriers
placed on their pathways.

RF evacuees. A certain number of RF evacuees are set as leaders, defaulting to 20% of the total, at the initial
stage of simulations. The remaining evacuees randomly follow a leader in views, tending to gather around the
closest leader who defers to SR model. Followers will find a new leader once the previous one is out of their
sights, and this leader-finding process repeats until the end of the simulation.

BNE evacuees. An evacuee following BNE model determines his/her response to perceived surroundings in
an integrated way considering both physical constrains (e.g. cognition map of evacuation space) and instant
information (e.g. neighbors’ movements). A set of utility-related calculations was conducted every time step
to assist in path selection. Instead of a utility maximization approach in the initial implementation [28], some
noise was introduced in this model to improve the decision-making logic of BNE agents to a multi-strategy
combination: with 80% of agents choosing the path with highest Uy ytq;, 15% selecting the patch with second-
highest U;y¢q1, and 5% choosing the third-highest Uy, to assist smart agents in taking the best responses to
each other.

2.3 Individual Sensing
In this model, RF evacuees are able to sense the area in front of themselves within a cone of vision with a 60-

degree viewing angle and an assigned vision distance. The value of this radius remains constant over each
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simulation run and could be adjusted by the corresponding slider Radius. BNE evacuees have capability to
perceive ambient conditions in their Moore neighborhood and predict others’ next moves.

2.4 Individual Prediction

BNE evacuees are capable to make inference about the congestion level of their surrounding areas at next time
step by analyzing instant environmental information and the probabilities of their neighbors’ next actions. That
is, the expected comfort utility (U,.) of each patch is estimated based on the explicit prediction of the
movements of evacuees located on its Moore Neighbourhood as well as its comfort coefficient over a time
step.

2.5 Interaction

Interactions among BNE evacuees are mediated by the variations of expected comfort utilities (U,.) of the
patches in their Moore neighbourhoods. In this model, the value of U, is associated with the expected number
of evacuees who may move to this patch at the next time step, which in turn impacts the actual number of
neighbouring agents. Evacuees following BNE model can adjust their directions after comparing the patch
values of total utility (U;y¢q;) in their Moore neighbourhoods. That is, the current positions and expected next
moves of evacuees influence the U, of patches, which in turn affects the next decisions of neighbouring

cevacucees.
2.6 Heterogeneity

In this model, the decision-making process of evacuees are heterogencous depending on their allocated
behavioral models. SR evacuees sought to select the shortest exit path in the meantime with avoiding the
blockades placed on their pathways, with Dijkstra’s searching algorithm underlying the design. The evacuees
using RF model are divided into two groups: leaders and followers. The evacuation movements of RF leaders
comply with the laws of SR model, and the remaining evacuees (i.e. followers) randomly choose a leader in
views to follow, tending to gather around the closest leader who knows the shortest evacuation route. Followers
will search another leader once the previous one is out of sight, and this leader-finding process repeats until
the end of simulations. The evacuees following BNE model keep updating the probabilities of others’ next
moves in light of instant environmental information, and then adjust their moving directions based on the
values of U;yeq; in their neighbouring patches. The decision-making procedures mentioned above will take
place in every time step until the agents evacuate successfully.

2.7 Stochasticity

Stochasticity has been introduced in three main mays in this model. Firstly, the model is initialized based on
the environmental and agent settings assigned by the observer. Specifically, (a) initial locations of evacuees,
(b) random allocations of evacuees’ behavioral models, especially in BNE-SR/RF combinations, and (c) initial
headings of evacuees are set to be randomly initialized in the model. Secondly, the decision making of an
evacuee deferring to RF model is considered to be partly stochastic, as it is able to randomly choose a leader
to follow when multiple leaders are in view, but the selection range is limited by its vision distance.
Randomized decision-makings also exist in BNE evacuees: when facing over one neighboring patches with
highest U;¢q1, this BNE agent will randomly choose one to move.

2.8 Observation

The simulating performance of this BNE-informed ABM is indicated through two main measurements:
evacuation time and pedestrian comfort level. Evacuation time has been recorded at the end of each simulation
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and the average U,., which is a mean value of all patches’ U,., has been collected every time step over each
simulation run, in order to better represent the average comfort level of individuals during evacuations in

evacuation scenarios with varied environmental contexts.
3 Details

3.1 Implementation Details

The model was developed in NetLogo. The source code and experimental data are available at
https://doi.org/10.25937/8bf3-h968.

3.2 Initialization

By default, the model was initialized with 2000 evacuees randomly scattering over the designated area on the
one side of simulation space and presumed that all the agents (i.e. evacuees) can evacuate through the exit
point with a width of 4 patches located on the right side. Agents were coded to navigate in varied constricted
spatial environments in according to their assigned behavioral model (i.e. Shortest Route (SR) model, Random
Follow (RF) model, or BNE model). Observers can regulate the initial settings of agents and evacuation space
by assigning the total number of evacuees, the proportion of BNE evacuees, moving patterns, and so on through
corresponding sliders. The movement combinations can be selected by the chooser Moving-pattern in which
four patterns are available to choose from: Shortest Route (SR), Random Follow (RF), BNE mixed with SR,
and BNE mixed with RF. In the first two patterns, all the evacuees are assigned the same behavioral model
corresponding to which moving pattern was chosen. In RF pattern, the percentage of leaders who follows SR
model defaults to 20% of the total and can be adjusted by the slider Percent-of-RFleaders. In the last two BNE
combinations, the default percentage of BNE evacuees was set to 100% and the mixing proportions can be
tuned as needed. In addition, to better observe the evacuation processes of evacuees following different
behavioral models, each type of evacuees was assigned a specific color for distinguishing: SR evacuees are in
green, RF evacuees are displayed in magenta while the leaders who follow SR model are still shown in green,
and BNE evacuees are in orange.

The hypothetical evacuation space was made up of 1360 (68*20) patches where multi-occupations for each of
them are allowed in this model, making it possible to explore whether and how this model can simulate
emergent patterns of pedestrian behaviors in evacuation scenarios with different environmental contexts. The
moving speed of each agent is tailored based on crowd density in surrounding area (i.e. the patch stayed and
patches in its Moore neighborhood) and keeps updating every time step throughout each simulation run. The
speed-density relation in this study is accordance with the Spatial-Grid Evacuation Model (SGEM) [44], and
individual speed regulations depend on the reference speed assigned through the slider Moving-speed at model
initialization with a default value of 1 patch per time step. The individual moving speed is inversely
proportional to the number of neighboring evacuees, with full details in Section 2.2.2 Speed Calibration.

To further observe human emergent behaviors in high-density or life-threatening situations, this model
implemented three types of barriers, which are Horizontal Corridor, Vertical Corridors, and Random Squares,
standing for corridors, bottlenecks, and intersections respectively (see Fig. 3 in main text). The first one allows
the placements of two oblong blockades with assigned size to form three narrow corridors so as to observe
pedestrian dynamics in evacuation space with varied spatial constricted level. The second barrier mode consists
of two vertical walls with an adjustable-wide gate separately. These two gates were placed at different
locations, one is lower, and the other is upper, making it possible to capture individual behaviors when passing
through cramped bottlenecks and narrow corridors. In the last type of barrier, several square blockades with
adjustable size were placed randomly over the simulation space to explore the simulating performance of this
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model on pedestrian behaviors in evacuation scenarios containing intersections. Observers can select which

type of barriers to set up by the chooser Barriers-mode.

3.3 Input data

So far, no input is read in this model.

3.4 Behavioral models for pedestrian decision-making

In this model, agent movements are determined by their allocated behavioral models. Three behavioral models
have been implemented and described as follows.

3.4.1 Shortest Route (SR) model

Dijkstra’s searching algorithm was adopted in this model to replace the weak SR strategy (i.e. choosing the
path with shortest Euclidean distance between current location and exit point) in the initial implementation
[49] to take into account congestion costs during evacuations. Nw Extension®, a pre-bundled NetLogo tool
adopted Dijkstra’s algorithm as the underlying theory, was employed to describe individual decision process
of SR agents through generating a network composed by mass nodes for path calculations. Agents (i.e.
evacuees) following SR model strive to find the route with shortest distance to the exit in the meantime with
avoiding the barriers on the way.

3.4.2 Random Follow (RF) model

The RF model designated a set number of agents, defaulting to 20% of the total, as the leaders at the beginning
of simulations. Evacuation movements of RF leaders were in accord with the rules of SR model. The remaining
agents (i.e. followers) randomly selected a leader in views (radius of view can be regulated through the slider
Radius) to follow, inclined to gather around the nearest one to them. Followers will look for a new leader once
the previous one was out of sight and this leader-finding process repeats till the end of simulation.

3.4.3 BNE behavioral model

Bayesian game theory was adopted in this study to describe the interactive decision-making process among
rational and game-playing individuals. A set of mathematic expressions for utility calculations were introduced
in this model to convert BNE theory into concrete decision-making rules. Since players in a Bayesian game
make their decisions out-of-sequence, BNE evacuees in this model determine their next actions hinging on the
values of Total Utility (Uiyrq;) for the patches in their Moore neighbourhood. The full details of the BNE
model have been described in Section 2.2.2.

* The complete documentation of NetLogo NW extension is available at https://github.com/NetLogo/NW-Extension.
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Figure B.2 The schema of decision-making process of the agents following BNE behavioral model

4 Simulation Experiments
4.1 Experimental Settings

A series of simulation experiments were conducted in three main scenarios: corridors, bottlenecks and
intersections respectively using NetLogo BehaviorSpace. The experimental results were evaluated in terms of
evacuation time and average U, to explore simulating performances of this BNE-informed ABM on emergent

patterns of pedestrian evacuating behaviours. See Table S4 for an outline of all model inputs in each set of
experiments.

Table B.4 The list of parameter settings in each set of experiments.

Parameters Values (Exp.1) Values (Exp.2) Values (Exp.3) State
Number-of-

umber-o 2000 2000 2000 Static
Evacuees

BNE mixed  with | BNE mixed  with

Moving-patt BNE mixed with SR/RF D i

oving-pattern mixed wi SR/RF SR/RF ynamic
Barriers-mode Horizontal Corridors Vertical Corridors Random Squares Static
Corridor-width 1,2,3,4,5. 1,3,5,7,09. N/A Dynamic
Barriers-side-

arriers=sice N/A N/A 11,10,9,8, 7. Dynamic
length
Percent-of-BNE-

0%~100% (+2%) 0%~100% (+2%) 0%~100% (+2%) Dynamic

evacuees
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Probability-
ity 50% 50% 50% Static
competing
Percent-of-
20% 20% 20% Static
RFleaders
Exit-width 4 4 4 Static
Radius 2 2 2 Static
Moving-speed 1.0 1.0 1.0 Static
Initial-position 15% 15% 15% Static
weight-Ud 2.00 2.00 2.00 Static
weight-Uec 2.00 2.00 2.00 Static
50 simulations were | 50 simulations were | 50 simulations were
conducted at each BNE | conducted at each BNE | conducted at each BNE
Repetitions percentage fraction | percentage fraction | percentage fraction | N/A
(12750 runs in this set of | (12750 runs in this set | (12750 runs in this set
experiments) of experiments) of experiments)
Exit time; Average | Exit time; Average | Exit time; Average
Values collected o o o N/A
expected comfort utility | expected comfort utility | expected comfort utility
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