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Refractory High-Entropy Alloys (RHEAs), such as NbMoTaW, MoNbTaVW, HfNbTaZr, 
Re0.1Hf0.25NbTaW0.4, Nb40Ti25Al15V10Ta5Hf3W2, TixNbMoTaW (x = 0, 0.25, 0.5, 0.75 and 1), and 3d 
transition metal HEAs such as Al10.3Co17Cr7.5Fe9Ni48.6Ti5.8Ta0.6Mo0.8W0.4 have demonstrated superior 
performance compared to traditional superalloys, particularly in high-temperature applications 
for engine components. However, the development of these alloys often depends on critical raw 
materials (CRMs) such as Ta, W, Nb, Hf, and others. The reliance on critical raw materials (CRMs) not 
only generates substantial emissions during recycling processes but also imposes considerable risks 
across global supply chains, hindering the pursuit of Net-zero ambitions. In this pioneering work, 
we unveil an inventive approach to inversely predict novel multicomponent alloy compositions, 
meticulously crafted to eliminate CRMs while achieving hardness levels comparable to those of 
CRM-containing multi-principal element alloys (MPEAs). A robust machine learning (ML) model was 
developed using a computational database of 3,608 entries, covering unary and binary materials from 
the Thermo-Calc 2024a software. Among various ML models, the Extra Trees Regressor (ETR) exhibited 
superior performance and was integrated with metaheuristic optimization techniques to identify 
novel MPEA compositions. The Cuckoo Search Optimization (CSO) method produced reduced-CRM 
MPEAs that closely matched Thermo-Calc predictions, with an error margin below ± 20%. To assess 
the efficacy of these reduced-CRM MPEAs, we compared the hardness of newly synthesized MPEA 
with CRM-containing counterparts reported in the literature, particularly those with high-risk critical 
raw materials like Niobium (Nb) and Tantalum (Ta). For example, the CoCrFeNb0.309Ni alloy, which 
includes CRMs Nb and Co exhibits a Vickers hardness of 480 HV. In contrast, our proposed composition, 
Ti0.01111NiFe0.4Cu0.4 achieves a comparable hardness of 488 HV without using a CRM. Our objective was 
not to develop high hardness alloy but to facilitate the development of reduced-CRM multi-principal 
element alloys (R-CRM-MPEAs). We validated our computational approach through the experimental 
synthesis of an FCC-phase alloy, Al6.25Cu18.75Fe25Co25Ni25. Thermo-Calc evaluation and ML model 
predictions of the Vickers hardness showed excellent agreement with the experimental hardness 
values, which lends credence to our approach. In conclusion, this study provides a robust framework 
for accelerating the discovery of novel R-CRM-MPEAs, effectively addressing challenges related to 
supply chain vulnerabilities, import dependence, and related environmental concerns.
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GA	� Genetic algorithm
GBR	� Gradient Boost Regressor
HEAs	� High entropy alloys
MPEAs	� Multi-principal element alloys
ML	� Machine learning
PSO	� Particle swarm optimisation
R-CRM-MPEAs	� Reduced-CRM multi-principal element alloys
RFR	� Random Forest Regressor
TC	� Thermo-Calc
WOA	� Whale optimization algorithm
XGBR	� XGBoost Regressor

High entropy alloys (HEAs), also known as multi-principal element alloys (MPEAs) or complex concentrated 
alloys (CCAs), are solid solution alloys containing five or more elements in equiatomic or near equiatomic 
proportions (between 5% and 35% atomic concentration). The increase in configurational entropy of mixing 
elements overcomes the enthalpies of compound formation, inhibiting intermetallic formation, which stabilises 
the solid solution in a single phase with high configurational entropy1,2.

Cantor alloy (CrMnFeCoNi) was among the first reported MPEA in 2004 that showed exceptional properties 
in the race of CCAs3. However, Alx(CrFeCoNiCu) with varying Al concentration (x = 0 to 3) was also developed 
at the same time by Yeh4 and it was after this effort that the name high-entropy alloy (HEA) was coined. 
Since then, various CCAs/MPEAs/HEAs have emerged due to their exceptional mechanical properties over 
conventional alloys.

Various refractory HEAs (RHEAs) such as NbMoTaW5, TixNbMoTaW (x = 0, 0.25, 0.5, 0.75, 1)5 
VxNbMoTa (x = 0.25, 0.5, 0.75, 1.0)6, Nb40Ti25Al15V10Ta5Hf3W2

7, NbMoTaW(HfN)x (x = 0, 0.3, 0.7, 
1.0)8, MoNbTaVW9, HfNbTaZr9, Re0.1Hf0.25NbTaW0.4

10 and some 3d transition metal HEAs such as 
Al10.3Co17Cr7.5Fe9Ni48.6Ti5.8Ta0.6Mo0.8W0.4

11, Al10.2Co16.9Cr7.4Fe8.9Ni47.9Ti5.8Mo0.9Nb1.2W0.4C0.4
12 have been 

developed for high-temperature applications in aerospace, gas turbine, and nuclear power plants. Other MPEAs 
such as CoCrFeNiTax (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.75)13, CoCrFeNiNbx (x = 0, 0.103, 0.155, 0.206, 0.309 
and 0.412)14 and CoCrFeNiNbx (x = 0.1, 0.25, 0.5 and 0.8)15 have also shown a remarkable combination of high 
strength and ductility for their eutectic counterparts such as CoCrFeNiTa0.4 and CrFeCoNiNb0.5 respectively. 
However, it is noticeable that these alloys are reliant on the use of critical raw materials (CRMs) such as Ta, W, 
Nb and Hf16. The availability of Hf powder is extremely limited17. Rizzo et al.16 have alluded to the importance 
of having a flawless supply chain of raw materials to maintain a sustainable circular economy. Thus, the exigency 
of minimizing the use of CRMs to mitigate the excess of imports and reducing the need for excessive mining to 
accelerate the transition to net zero became the prime focus of this study.

The classification of CRM is an important distinction in the realization of this research. Accordingly, various 
CRMs identified in the past and present were tabulated and classified under three categories (see Fig. 1). 

CRMs that appeared three or more times and remained a current concern were classed as 1st Tier. This 
includes elements such as Be, Bi, Co, Ga, Ge, Hf, Mg, Nb, Sb, Sc, Si Metal, Ta, V and W which are considered 
most critical in their usage. The 2nd Tier CRMs include elements such as Al, Cu, He, Li, Mn, Ni, P, Sr, and Ti, 
which have appeared recently as CRMs for more than once. Materials such as Cr and In are not considered 
CRMs as they were excluded from the 2023 list of CRMs and therefore are not considered as CRM in this study. 
An exception was made in the algorithm to include Co and V which are although classed as 1st Tier CRMs were 
not treated as critical. This is due to the ongoing advances made in the recovery and recycling methods and it is 
expected that the Co and V will become non-critical over time23–26.

A description of strategies adopted in recovering and recycling Co and V has been discussed in Section “Data 
collection using Thermo-Calc 2024a”. Henceforth, we considered Co and V as non-CRM for the current 
investigation and included them in the database for our current investigation. Accordingly, we report:

•	 Preparation of a fresh database reporting Vickers hardness of unary (pure) and binary-based compositions 
for non-CRM (Al, Cr, Cu, Fe, Ni, Ti, Mo, Mn, Sn, Zn, Zr) and CRM elements (Co and V- treated as non-criti-

Fig. 1.  The severity scale of materials listed in the category of CRMs by the EU18–22.
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cal in this study) using Thermo-Calc 2024a property model calculator based on CALPHAD approach. A total 
of 3,608 instances were recorded and no experimental data was incorporated to keep the database free from 
experimental uncertainty arising from the manufacturing process.

•	 Training and testing of various tree-based regression models: Decision Tree Regressor (DTR), Random Forest 
Regressor (RFR), AdaBoost Regressor (ABR), Gradient Boost Regressor (GBR), XGBoost Regressor (XGBR) 
and Extra Tree Regressor (ETR) based on the developed database and their performance evaluation based 
on various regression metrics such as coefficient of determination (R2_score), mean absolute error (MAE), 
mean squared error (MSE), root mean squared error (RMSE), and mean absolute percentage error (MAPE) 
for finding the robust regression model (best predictor) to correctly predict hardness of an unseen instance.

•	 Optimisation of the best regression model using metaheuristic optimisation techniques such as Particle 
Swarm Optimisation (PSO), Genetic Algorithm (GA), Ant Colony Optimisation (ACO), Cuckoo Search 
Optimisation (CSO) and Whale Optimisation Algorithm (WOA) in search of new multicomponent compo-
sitions to generate Reduced-CRM multi-principal element alloys (R-CRM-MPEAs) with target Vickers hard-
ness values. Other optimization algorithms such as Artificial Bees Colony (ABC) and Simulated Annealing 
(SA) were also optimised for the same objective, but they both failed to generate the desired compositions.

•	 The ML-predicted hardness values were benchmarked to the corresponding predictions obtained from the 
Thermo-Calc calculator to test the robustness of the optimization models and compare the percentage error 
between ML and Thermo-Calc prediction of hardness value for the same compositions.

•	 A thorough evaluation was performed on experimentally synthesized CRM-laden MPEAs from the literature 
to benchmark the predicted R-CRM-MPEAs compositions generated in this study. This comparison aimed 
to demonstrate the feasibility of partially or fully replacing CRMs while preserving the hardness of the alloy.

•	 As a test case, Vickers hardness of a newly predicted composition (Al6.25Cu18.75Fe25Co25Ni25) developed by 
our group27–29 was measured experimentally and compared with the corresponding Thermo-Calc and ML 
predicted values successfully which lends credence to the computational prediction.

Methodology
Most recent HEAs developed have been obtained by adjusting the composition percentages or substituting one 
element from an already established HEA. For example, various research articles built the new composition 
based on cantor alloy (CoCrFeMnNi) either by replacement of (CrFeCoNiCu30 and TiCrFeCoNi31), variation 
(CrMnFeCoxNi and CrMnFeCoNix with x = 0–232), or by addition (CrMnFeCoNiCu3, CrMnFeCoNiAlx

33) of an 
element2. Additionally, reduction-based alloys have spawned lower-order systems such as binaries, ternaries and 
quaternary alloys- termed low and medium-entropy alloys2. Ten binaries, ten ternaries and five quaternaries’ 
compositions can be made from a cantor alloy. Among two of the ten possible binaries (FeNi and CoNi), five 
of the ten possible ternaries (CoFeNi, CrFeNi, FeMnNi, CoCrNi and CoMnNi), and three of the five possible 
quaternary (CoCrFeNi, CoFeMnNi and CoCrMnNi) are single phase FCC solid solution34,35. Interestingly, 
equiatomic CoCrNi medium entropy alloy shows better mechanical properties than the CoCrFeMnNi HEA, 
which demonstrates that configurational entropy (increasing the number of elements in an alloy) does not 
necessarily improve the mechanical property of an alloy36. Moreover, numerous research articles employed 
various state-of-the-art ML strategies in designing and developing novel MPEAs37–40.

Apart from these compositions, various MPEAs have been developed by utilising elements such as Al, Cu, 
Cr, Ti, V, W, Ta, Hf, Nb, Mo, Zn, Zr, Si extensively, while certain precious metal HEAs incorporate elements such 
as Ag, Pt, Au, Ru, Rh, Pd. However, many of these elements (Hf, Nb, Ta, Pt, Pd, Ru, Rh, W) have been marked as 
critical and have reached an alarming stage41. Consequently, when considering MPEAs comprised solely of non-
CRMs elements, the available experimental data in the literature is scarce which limits the training and testing 
of the machine learning models. Therefore, we extracted a fresh database using Thermo-Calc 2024a software, 
which is based on a CALculation of PHAse Diagram (CALPHAD) approach. This database contains Vickers 
hardness values for unary (pure) and binary compositions of materials extracted from Thermo-Calc software 
using the TCHEA7 database. The work aimed to discover R-CRM-MPEAs compositions (from unary and binary 
composition databases) with mechanical properties comparable to CRM-laden MPEA compositions.

In recent years, CALPHAD has played a crucial role in designing transition alloys from a completely 
serendipitous process to a well-established method seeking a thermodynamic rationale36. CALPHAD has been 
extensively utilised in literature for phase prediction and rapid screening of potential alloys by estimating their 
compositional and microstructural properties which are validated experimentally36,42. However, no study can be 
seen in the literature with a focus on mechanical property prediction solely from the CALPHAD method. This 
is because predicting mechanical properties is not as straightforward as phase prediction. Phase prediction relies 
solely on the Gibbs free energy for lower-order compositions. For more complex or higher-order compositions, 
phases are predicted by extrapolating Gibbs free energy from the lower-order systems43. Unlike phase prediction, 
mechanical property prediction requires rigorous research into the manufacturing (processing) routes, 
processing parameters, post-processing treatments, testing parameters and extensive knowledge or expertise in 
the field. Thermo-Calc 2024a offers a property model calculator, which allows the prediction of yield strength 
and hardness of a composition based on the phases present at a particular temperature44.

Currently, Thermo-Calc does not account for factors such as processing history, parameters, time and 
other crucial variables for accurately predicting mechanical properties under specific experimental conditions. 
However, its hardness prediction tool still provides a solid foundation for making informed estimations. To 
assess the discrepancy between experimentally obtained mechanical properties and Thermo-Calc predictions, 
we extracted the Vickers hardness values of various alloys, including medium- and high-entropy alloys, 
from experimental literature across different processing methods (casting, additive manufacturing, powder 
metallurgy, rolling, and severe plastic deformation techniques such as High-Pressure Torsion (HPT) and Equal 
Channel Angular Pressing (ECAP)). These were then compared to Thermo-Calc predictions, as shown in Fig. 2. 
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A detailed comparison is provided in tabular form in supplementary Table 1s. Thermo-Calc predictions were 
seen to be insensitive to the strain rate applied during the manufacturing process which can lead to different 
hardness values based on the manufacturing process. For a few compositions, the CALPHAD hardness value 
matched the experimental values, however, it is difficult to generalize which experiments led to the values that 
are closest to the CALPHAD predictions. For instance, the hardness values obtained from CALPHAD for 
CoCrNi match with the ECAP processed (for 3 passes) and post-deformation annealed (at 700 °C) samples. As 
for the FeMnNi medium entropy alloy, its CALPHAD value was closest to the alloy processed via rolling (90% 
rolled) and then annealed at 1073 K for 1 h (see Fig. 2). Thus, generalizing which experimental processing route 
leads to hardness values that closely match those predicted by CALPHAD is arduous. 

Data collection using Thermo-Calc 2024a
Despite cobalt’s inclusion in the 1st tier CRM category, its production is not a concern. The Democratic Republic 
of Congo (DRC) is the world’s largest producer of Co, with its production projected to increase from 11,000 MT 
in the year 2000 to 98,000 MT by 202045. However, the market of Co presents a considerable risk due to supply-
chain complexities. China, which has limited domestic cobalt production has significantly increased its imports 
from the Democratic Republic of the Congo (DRC) and controls cobalt processing in the region through various 
Chinese firms. This initiative by China was aimed at securing a competitive advantage in regulating the electric 
vehicle market.

A potential remedy here would be to recover Co from waste batteries. Suriyanarayanan et al.24 recently introduced 
an innovative and efficient approach for Co extraction with an extraction efficiency > 97%, using a nonionic deep 
eutectic solvent (ni-DES) comprised of N-methylurea and acetamide. Zhang et al.25 developed a supercritical fluid 
extraction process using supercritical CO2 solvent with tributyl phosphate–nitric acid and hydrogen peroxide adduct 
to recover Li, Co, Mn and Ni with a 90% extraction efficiency. Moreover, Yang et al.26 in 2024 estimated the sales volume 
of new energy passenger vehicles (NEPV) from 2023 to 2035 based on the historical NEPV sales data from 2013 to 
2022. Utilizing Weibull distribution to analyze different sales scenarios, they estimated the potential of recycling Co 
for maintaining a balance between supply and demand. Their analysis predicted the peak potential of recycling of Co 
to be about 0.167 MT with an economic value ranging from 49.01 billion to 94.60 billion RMB in 2035. Consequently, 
they concluded that recycling Co is necessary to alleviate the supply risk pressure and take Co off of the CRM list.

Similarly, Petranikova et al.23 summarized the efforts in the recovery of Vanadium by selecting more 
sustainable technologies with lower generation of harmful by-products. They highlighted the importance of 
combining hydrometallurgical and pyrometallurgical approaches to increase the material recovery rates. With 
ongoing strategic advancements in recovery and recycling, Cobalt (Co) and Vanadium (V) are expected to 
transition from their current status as CRMs to non-CRMs. As these management methods evolve, the associated 
risks related to these materials are anticipated to gradually decrease.

In this context, a large dataset of Vickers hardness values for unary and binary element-based compositions 
using the property model calculator in Thermo-Calc 2024a (Version 2024.1.132110-55) was compiled by 
focusing on elements Al, Cr, Cu, Co, Fe, Ni, Ti, V, Mo, Mn, Sn, Zn and Zr.

Fig. 2.  Vickers hardness comparison for selective MPEAs based on the experimental results obtained from 
various manufacturing methods (black dots) vs. CALPHAD predicted values (in red dots).
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While extracting the data, it was observed that the property predictor module relies on certain assumptions. 
Those assumptions are: (i) the material is homogeneous i.e., with no imperfections or defects (ii) it considers only 
local equilibrium and neglects long-range diffusion. Therefore, to calculate the mechanical properties, it uses 
simplified theoretical models and databases (containing thermodynamic and kinetic data), which do not capture 
the complexities related to processing (as-cast, heat-treated, homogenized, or severely deformed samples) and 
testing conditions (the amount of load and time required in hardness testing). Thermo-Calc predictions can 
therefore be expected to carry a certain percentage of error when compared to the experimentally synthesized 
specimen based on its processing history.

For determining the hardness value of a particular composition using Thermo-Calc, the phases present in 
the system were first identified using their corresponding phase diagram observed at a range of temperatures, 
computed using an equilibrium calculator. Based on the available features within the software, by considering 
the system size of 1 mol at a temperature of 300 K and 1 bar pressure, the hardness value was estimated. In some 
cases, the identified phases in the phase diagram could not be marked while calculating Vickers hardness due to 
their unavailability in the property model calculator, highlighting one of the several limitations of Thermo-Calc 
2024a that needs to be improved.

Consequently, a total of 3,608 instances of different compositions were extracted. This database contains only 
compositional information and the hardness value of each instance. The highest hardness value obtained was 
in the range of 400–405 HV. Some of the interesting compositions with higher Vickers hardness values in the 
database were Cr42Ti58, Ti74Zn26, Ni24Ti76, Cu16Ti84 with a hardness value of 405HV, 404 HV, 403 HV and 402 
HV respectively. The complete dataset is provided as supplementary data. It’s worth noting that no experimental 
data was considered in this database to avoid mixing synthetic data into the prediction model.

Data sorting
The database was first checked to avoid repetition. The screened dataset was divided into 80:20 (2,886 and 722 
instances) ratio for training, evaluation and verification.

Tree-based ML model evaluation
Various tree-based regression algorithms such as Decision Tree Regressor (DTR), Random Forest Regressor 
(RFR), AdaBoost Regressor (ABR), Gradient Boost Regressor (GBR), XGBoost Regressor (XGBR) and Extra 
Tree Regressor (ETR) were employed. A detailed description of each algorithm with its flowchart is provided in 
Section “Methodology” as Supplementary information.

The performance of a machine learning (ML) model is influenced by hyperparameters, which are adjustable 
settings that govern various aspects of the model’s learning process, such as complexity, regularisation, and 
convergence. Examples of hyperparameters include the maximum depth of trees in decision tree models, 
the number of trees in ensemble models like Random Forest and Gradient Boost, as well as the number of 
hidden layers in neural networks and the penalty term used in support vector machines. Proper tuning of these 
hyperparameters is essential for achieving an optimal balance between model accuracy and generalisation.

To optimize the hyperparameters of the selected algorithms, Random Search CV was employed. Unlike 
Grid Search, which systematically evaluates all possible combinations of hyperparameter values, Random 
Search, samples a fixed number of hyperparameter combinations from a defined distribution. This approach 
significantly reduces computational costs while still allowing the exploration of a diverse range of values, making 
it particularly advantageous for complex models with many hyperparameters.

Each hyperparameter configuration was evaluated using a 5-fold cross-validation approach, where the 
dataset was divided into five subsets. Each subset was used once as a validation set while the others served 
as the training set, ensuring a thorough and unbiased assessment of the model’s generalization capabilities. 
The coefficient of determination (R² score), mean absolute error (MAE), root mean squared error (RMSE), 
and mean absolute percentage error (MAPE), as detailed in Eq. 1 to 4, were used as performance indicators 
to quantify the difference between predicted values and observed outcomes. The optimized hyperparameters 
for each regressor model are listed in Table  1. This methodology helped in identifying the best-performing 
hyperparameter settings, ensuring that the model would perform consistently across different data splits. The 
working principle of this investigation is illustrated in Fig. 3.
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The results obtained from various algorithms are presented in Fig.  4a. The Extra Trees Regressor (ETR) 
demonstrated a superior performance and achieved an R² score of 0.82 and Mean Absolute Percentage Error 
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(MAPE) of 0.17, utilizing optimized hyperparameters determined through Random Search Cross-Validation 
(see the scatter plot in Fig. 4b). It is important to note that while several studies report even higher R² scores, 
those models typically incorporate numerous descriptors, such as atomic size difference (δ), electronegativity 
difference (∆χ), valence electron concentration (VEC), mixing enthalpy (∆Hmix), mixing entropy (∆Smix), 
melting temperature (∆Tm), Young’s modulus (E), shear modulus (G), differences in shear modulus (δG), 
lattice distortion energy (µ), the Peierls-Nabarro factor (F), and other parameters (Ω-parameter, ϕ-parameter, 
and γ-parameter), which together enhance performance metrics. In contrast, our approach relies solely on 
compositional information and hardness values, achieving an R² score of 0.82. This underscores the model’s 
robustness to predict hardness values without requiring any additional descriptors.

To explore novel multi-component compositions, we employed a metaheuristic optimization strategy aimed 
at generating alloys with superior hardness compared to those in the training and testing datasets, which consisted 
exclusively of unary and binary compositions. The optimization techniques that facilitate the exploration of 
more complex and high-performance MPEAs are detailed in the subsequent sections. The hardness values of 
the newly optimized MPEAs were then compared against CALPHAD-based predictions, and these findings are 
discussed comprehensively in Section “Results and discussions”.

Optimisation techniques
The classification of various optimisation models followed in this work is shown in Fig.  3c with red fonts 
highlighting the algorithms used in this investigation. Traditional optimisation techniques, which include 
general methods and non-general or specified methods tailored for specific types of problems, have certain 
limitations such as the requirement of the objective function to be differentiable and lack of ability to obtain a 
globally optimum solution. Some of the popular traditional optimisation techniques such as Newton Raphson, 
Successive Quadratic Programming algorithm, Steepest Descent Algorithm, Stochastic Newton optimisation 
method and Sequential Unconstrained Minimization technique46,47 are well known. Recently, some non-
traditional methods of optimisation popularly known as meta-heuristic optimisation techniques have gained 
increasing popularity in solving complex problems. The term metaheuristic combines meta and heuristic, both 
originated from Greek. Meta symbolizes higher or beyond, and heuristic signifies intelligent guesswork based 
on past experience or intuitive solution of a problem. Therefore, metaheuristic optimisation can be considered 
as something beyond intuitive, combined with certain mathematical rules or higher-level frameworks. It can 
broadly be classified into two categories: single trajectory-based and population-based optimisation. Single-
trajectory based optimisation (such as Hill Climbing, Gradient Descent, Tabu Search, Random Search etc.) starts 
with a single solution at each iteration, and the current solution is replaced by another best solution found 
in the neighbourhood for that iteration. Contrarily, population-based optimisation techniques are inspired by 
natural-selection and biological evolution, where a set of solutions are randomly initialized and updated through 
an iterative process. Genetic algorithm, Differential evolution and others belong to evolutionary optimisation 
techniques, while Particle swarm optimisation, Ant colony optimisation, Cuckoo search and others are examples 

Regression algorithm Hyperparameters

Decision Tree Regressor (DTR)
min_samples_split: 4;
min_sample_leaf: 3;
max_features: None

Random Forest regressor (RFR)

n_estimators: 651;
min_samples_split: 2;
min_sample_leaf: 1;
max_depth: 70;
bootstrap: True
max_features: ‘sqrt’

Gradient Boost Regressor (GBR)

Subsample: 0.97;
n_estimators: 609;
min_samples_split: 9;
min_sample_leaf: 3;
max_depth: 8;
learning_rate: 0.042
max_features: ‘log2’

AdaBoost Regressor (ABR)
learning_rate: 0.78;
loss: linear;
n_estimators: 280

XGBoost (XGB)

colsample_bytree: 0.87;
gamma: 4.7;
learning_rate: 0.22;
max_depth: 7;
min_child_weight: 5;
n_estimators: 1738;
subsample: 0.94

Extra Trees Regressor (ETR)

n_estimators: 1301;
min_samples_split: 4;
min_sample_leaf: 1;
max_depth: None;
bootstrap: False
max_features: ‘log2’

Table 1.  Summary of the optimized hyperparameters for the chosen ML algorithms.
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of swarm-intelligence-based optimisation techniques47,48. These techniques are exploration-and-exploitation 
oriented, which introduces diversification in the search space, resulting in the attainment of global optimum 
solutions by avoiding local optimum solutions for complex real-world problem49.

Among all available various nature-inspired metaheuristic optimisation techniques, genetic algorithms, 
particle swarm optimisation, Cuckoo search and a few others have been proven to successfully solve a wide 
range of complex real-world problems. However, some of the recently introduced metaheuristic optimisation 
techniques such as Ant colony optimisation, Artificial Bee Colony optimisation, Spotted Hyena optimisation, 
whale optimisation need substantiation for their convergence. Rao50 in his book chapter has highlighted that 
the fundamental idea of these methods is the same while naming them differently. In this work, we compared 
which optimisation technique works best for our ETR model to discover new multicomponent compositions 

Fig. 3.  Workflow of the current study: (a). data collection and processing; (b). training, testing and 
evaluation of tree-based models; (c). classification of optimization models (full-length image is provided in 
Section “Optimisation techniques”) and selection of best optimization model (models in red font were selected 
for this study) for obtaining our objective; (d). generated novel compositions; (e). comparison of the predicted 
hardness with Thermo-Calc ones for validation; hardness of novel HEA (Al6.25Cu18.75Co25Fe25Ni25) prepared in 
the earlier study was measured and compared with Thermo-Calc one for reinforcing the present study.
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from the unexplored compositional space of nearly 8,008 types (see Fig. 5) as per combination theory while only 
ternary to decenary-based compositions were considered for 13 elements. Figure 6 describes five metaheuristic 
optimization techniques used in this study. A detailed description of each optimization technique with its 
working principle is elaborated in section 3s of the supplementary information.  

Results and discussions
Evaluation of several reduced-CRM-MPEAs
Optimisation function was set up to obtain novel multi-principal element alloys with Vickers hardness > 400 HV, 
by enforcing composition constraint such that the sum of 3, 4, 5, 6, 7, 8, 9, or 10 elements become 100, while 
keeping the proportion of each element equal or near equal to generate multicomponent compositions.

Among all the optimisation models, cuckoo search optimisation (CSO) provided predictions near the 
Thermo-Calc predictions. Recent literature suggests that the cuckoo search optimisation (CSO) performs better 
than PSO, GA, ACO, ABC and WOA51–54. Gandomi et al.51 provided an extensive comparison and concluded 
that CSO performs better than GA and PSO, as GA requires a higher number of iterations and its implementation 
is computationally expensive53. On the other hand, PSO requires less computational effort but considerable 
execution time to find a solution from a large space for a complex optimisation problem. Civicioglu and Desdo8 

Fig. 5.  Total possible compositions from selected 13 elements.

 

Fig. 4.  (a) Performance of various tree-based ML models: R2_score (in light orange), MAPE (in green), (b) 
actual vs. predicted hardness of test data for the ETR model.
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suggested that CSO provides more robust results than PSO and ABC. Bhargava et al.55 showed that CSO offers a 
reliable method for solving thermodynamic calculations for complex phase equilibrium applications.

The ternary to decenary multicomponent compositions generated by the various algorithms, including GA, 
PSO, WOA, ACO and CSO, are presented in Tables  2, 3, 4, 5 and 6, respectively. These compositions were 
subsequently validated using the property model calculator in Thermo-Calc (TC) software. By comparing 
the hardness values of the newly generated compositions to those predicted by TC, it is evident that the CSO 
algorithm produced the most reliable multicomponent compositions, with a prediction error of less than ± 20%. 
Furthermore, compositions generated by CSO exhibited superior hardness compared to those derived from 
other optimization methods.

For instance, CSO successfully generated compositions such as Cu4Fe4Ni4Zn4Zr4Co10Cr10V20Ti20Mo20 (10 
elements), Zn5Cr10Zr10Mo25Ti25V25 (6 elements), Zr6.25Zn18.75Ti25V25Mo25 (5 elements), Ti0.01111NiFe0.4Cu0.4 (4 
elements), which achieved hardness values of 477 HV, 443 HV, 434 HV and 488 HV respectively. In contrast, 
while GA, PSO, and WOA demonstrated consistency in their predictions for several compositions, they often 
failed to accurately predict compositions with higher hardness values. Notably, these algorithms became 
increasingly erroneous with the inclusion of more elements in the alloy design.

Fig. 6.  Various metaheuristic optimisation models applied in this work: (1). Genetic Algorithm (GA), (2). 
Particle Swarm Optimisation (PSO), (3). Cuckoo Search Optimisation (CSO), (4). Whale Optimisation 
Algorithm (WOA) (5). Ant Colony Optimisation (ACO).
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ACO method proved to be reliable for ternary and quaternary compositions, yielding relatively low prediction 
errors. However, as the complexity escalated from quinary to decenary compositions, the percentage error 
substantially increased, and ACO was unable to generate viable compositions with more than seven elements.

As a result, CSO emerged as the most reliable algorithm among those tested, capable of generating 
multicomponent compositions with reduced CRM content and enhanced hardness values. Figure 7 illustrates 
the hardness values generated by each algorithm in comparison to those evaluated by Thermo-Calc for ternary 
to decenary compositions, providing a comprehensive overview of algorithm performance across varying levels 
of compositional complexity.      

We further compared the hardness values of the newly generated R-CRM-MPEAs with those of CRM-
containing MPEAs reported in the literature to assess the feasibility of partially substituting CRMs. Figure 8 
provides a comparison of the mechanical properties between experimentally synthesised CRM-laden alloys 
reported in the literature and the newly predicted R-CRM-MPEAs in this work. 

The results indicate that the proposed approach can yield comparable hardness. For example, 
CoCrFeNb0.309Ni containing two 1st-Tier CRMs exhibits a hardness of 480 HV, whereas the newly predicted 
composition, Ti0.0111NiFe0.4Cu0.4, achieves a superior hardness of 488 HV without including any 1st-Tier CRMs. 
The computational approach employed using ML in this work has great potential to design R-CRM-MPEA 
compositions. This approach can be leveraged to eliminate the use of CRMs in diverse applications such as 
catalysis, semiconductors, transportation and other carbon-intensive sectors.

No. of elements Composition suggested from PSO HV predicted by PSO Thermo-calc HV
Percentage 
error (%)

4 Mo5.55556Zn5.55556Mn44.44444V44.44444 306 339 10

4 Fe6.25Ni6.25Cr43.75 Zn43.75 303 397 24

5 Ni5.88235Zr5.88235Mn5.88235Cr41.17647Ti41.17647 330 394 16

5 Cr4.76190Ni4.76190Co4.76190Mn42.85714Ti42.85714 335 372 10

6 Cu4.54545455Mn4.54545455Sn4.54545455Fe4.54545455 Cr40.90909091Ti40.90909091 349 308 13

6 V4.16667Ni4.16667Fe4.16667Mo4.16667Cr41.66667 Ti41.66667 326 395 17

7 Cu8Zr8Co12Cr12Ti20Mo20V20 304 394 23

7 Co4Cu4Fe4Mn4Ni4Cr40Ti40 340 310 10

7 Co5V5Zn5Zr5Cr10Mo20Ti50 311 364 14

8 Ni6.66667Zn6.66667Zr6.66667Cr10Co10Mo20 Ti20V20 305 415 26

8 Cu5Zn5Zr5Co12Cr12Mo13V13Ti35 298 378 21

9 Cu5Ni5Co5Zn5Ti10V10Cr10Mo10Sn40 316 325 3

9 Cu5Ni5Zn5Zr5Co10Cr10Mo15V15Ti30 290 411 29

10 Al4.16666667Cu4.16666667Cr4.16666667Fe4.16666667 
Mn4.16666667Ti4.16666667Zn4.16666667Zr4.16666667 Mo33.33333333V33.33333333

315 424 26

10 Co10Cr10Cu10Fe10Ni10Mo10Ti10V10Zr10Zn10 343 296 16

Table 3.  Compositions generated using PSO optimisation.

 

No. of elements Composition suggested from GA Corresponding HV Thermo-calc HV Percentage error (%)

3 Mn23.41682Sn23.41682Ti53.16636 387 421 8%

3 Cu9.10794325Mo9.10794325Ti81.7841135 392 364 8%

4 Cu6.11253929Ni6.11253929Cr32.1722748Ti55.60264661 399 425 6%

4 Cr11.11111Co22.22222Ti22.22222Mo22.22222V22.22222 377 423 11%

5 Ni5.79651873Zn5.79651873Mo5.79651873Mn30.09710402Ti53.2668911 388 391 0.8%

5 Mo20Mn20Ti20Sn20V20 399 350 14%

6 Ti6.66667Cr16.66667Co16.66667Mo20V20Zr20 381 414 8%

6 Cr10Zr10Mo20Ti20Sn20V20 368 397 7%

7 Cu5Zr5Co15Cr15Ti20Mo20V20 382 393 3%

7 Zn5Zr5Co10Ti20Cr20Mo20V20 324 414 22%

8 Ni5Zr5Cr10Co10Zn10Ti20V20Mo20 310 413 25%

8 Co10Sn10V10Zn10Zr10Cr12.5Ti17.5Mo20 398 370 8%

9 Cu5Ni5Zn5Zr5Co12Cr12Mo13V13Ti30 367 398 8%

9 Cu5Co5Ni5Zr5Cr8Mo10Ti10V10Sn42 391 308 27%

10 Mn2Sn2Zr4Cu6Zn6Cr10Co10Ti20V20Mo20 319 409 22%

10 Cu3Ni3Fe3Zn3Zr3Co5Cr5Mo25Ti25V25 350 444 21%

Table 2.  Compositions generated using GA optimisation.
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No. of elements Composition suggested from CSO HV predicted by CSO Thermo-calc HV Percentage Error (%)

4 Mo25Sn25Ti25V25 397 383 4

4 Cr25Mo25Ti25V25 401 424 5

4 Ti0.01111NiFe0.4Cu0.4 468 488 4

5 Co12.5Cr12.5Mo25Ti25V25 398 416 4

5 Mo10Zn10Al20Cr30Ti30 400 398 0.5

5 Co11.11111Cr11.11111 Mo22.22222V22.22222Ti33.33333 404 430 6

5 Zn6.25Cr18.75Mo25Ti25V25 (similar to novel one) 402 415 3

5 Zr6.25Zn18.75Ti25V25Mo25 (similar to novel one 404 434 7

6 Zn5Cr10Zr10Mo25Ti25V25 406 443 8

6 Co16.66667Cr16.66667Mo16.66667Ti16.66667V16.66667 Zr16.66667 395 427 7

7 CoCrMoVZnZrTi 356 422 16

7 Cu5Zr5Co12Cr12Mo13V13Ti40 382 411 7

8 Co10Mn10V10Zn10Zr10Cr12.5Ti17.5Mo20 396 416 5

8 Co12.5Cu12.5Cr12.5Mo12.5Ti12.5V12.5Zn12.5Zr12.5 385 427 10

8 Ni2Zn2Zr11Cr12.5Co12.5Mo20Ti20V20 398 429 7

9 Cu5Ni5Zn5 Zr5Co8Cr8Mo10V10Ti44 403 432 7

10
Co3.57143Cr3.57143Cu3.57143Fe3.57143Ni3.57143
Zn3.57143Zr3.57143Mo25Ti25V25
OR
(CoCrCuFeNiZnZr)0.1428572MoTiV

404 448 10

10 Cu4Fe4Ni4Zn4 Zr4Co10Cr10Ti20V20Mo20 405 477 15

Table 6.  Compositions generated using CSO optimisation. Significant values are in bold.

 

No. of elements Composition suggested from ACO HV predicted by ACO Thermo-calc HV Percentage error (%)

3 Co13Al20Cu67 168 196 14

4 Fe10Zn20Cr30Ti40 278 325 14

5 Fe4Co15V24Sn28Cr29 273 352 22

6 Sn4Mn7Ti13Ni21Al26Zr29 150 235 36

6 Cr8Cu8Mn9Sn16Al18Zn41 167 272 39

6 Cu6Mo6Ni6Zr20Sn30Cr32 258 332 22

7 Fe3Mo4Mn8Cu9Zn19Cr25Co32 269 348 23

7 Ti2V6Fe14Mn15Cr17Zr18Mo28 244 376 35

Table 5.  Compositions generated using ACO optimisation.

 

No. of elements Composition suggested from WOA HV predicted by WOA Thermo-Calc HV Percentage error (%)

3 Cu11.2Mn36.8Ti52 391 419 7

4 Mo5.92105Al13.81579Co17.10526Ti63.15789 363 192 89

4 Fe10Zn20Cr30Ti40 355 325 9

5 Ni3.41880Mn4.27350Zn10.25641V29.05983 Mo52.99145 346 375 8

5 Cr9.09091Mn9.09091Zr9.09091Mo36.36364V36.36364 324 400 19

6 Fe5.55556Mn5.55556V5.55556Zn5.55556 Ti38.88889Cr38.88889 333 382 13

6 Cr7.14286Mn7.14286Ti7.14286Zr7.14286Mo35.71429V35.71429 322 445 28

7 Co4.34783Cr4.34783Ni4.34783Ti4.34783Zn4.34783Mo39.13043 V39.13043 337 414 18

7 Co5Cr10V10Zn10Zr10Mo20Ti35 323 409 21

8 Al5Co5Cu5Fe5Mn5Ni5Mo35V35 319 390 18

8 Al12.5Co12.5Cr12.5Mo12.5Ti12.5V12.5Zn12.5Zr12.5 312 379 18

9 Fe4.34783Ni4.34783Mo4.34783Sn4.34783Ti4.34783Zn4.34783 Zr4.34783Cu34.78261V34.78261 281 296 5

9 Cu5Ni5Zn5Zr5Co6Cr6Mo9V9Ti50 326 413 21

10 Al3.57143Co3.57143Cr3.57143Cu3.57143Fe3.57143Ni3.57143 Ti3.57143Zr3.57143Mo35.71429V35.71429 314 420 25

10 Al5Co5Cr5Fe5Mn5Ti5Zr5Zn5Mo30V30 315 365 14

Table 4.  Compositions generated using WOA optimisation.
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Fig. 7.  Comparison of hardness value for newly generated MPEA compositions compared for ML and 
Thermo-Calc predictions using various techniques: (a) Genetic algorithm (GA), (b) Particle swarm 
optimisation (PSO), (c) Whale optimization (WOA), (d) Ant colony optimization (ACO), (e) Cuckoo search 
optimization (CSO).
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Benchmarking of the newly synthesised alloy Al6.25Cu18.75Fe25Co25Ni25
To test our predictions, a random and a new FCC phase alloy, Al6.25Cu18.75Fe25Co25Ni25

27–29 was selected for 
experimental validation. Vickers hardness testing was performed utilising a Wilson hardness testing apparatus, 
with a load of 0.1 kgf. The Vickers hardness value was determined by averaging the measurements from nine 
indents on a polished surface. The experimentally measured Vickers hardness of Al6.25Cu18.75Fe25Co25Ni25 was 
subsequently compared with the hardness values evaluated by Thermo-Calc (TC) and our ML model (refer to 
Table 7). It was observed that both the TC-evaluated and ML-predicted hardness values were in strong agreement 
with the experimentally measured hardness with an error of less than 20%. 

While numerous studies in the literature on MPEAs have used machine learning, a majority of these remain 
concentrated on developing algorithms for phase classification56–58 or predicting mechanical properties, such as 
hardness, yield strength, or elastic modulus59–63. Relatively few investigations have aimed to generate or optimize 
novel MPEA compositions. Most of these efforts have concentrated on achieving high hardness values which 
differs from the focus of this investigation where the main objective was to develop substitute alloys to eliminate 
the use of CRMs and hardness was used as an indicator to demonstrate that comparable properties can still be 
obtained.

Ren et al.64 used a dataset of 205 HEA samples featuring 19 characteristics commonly employed in HEA 
property prediction. They implemented a tree-based machine learning model to predict hardness and integrated 
it with Particle Swarm Optimization (PSO) for component optimization. Due to the limited availability of real 
experimental data, they resorted to synthetic data through random oversampling to improve the performance 
of their Component Optimization Model (COM), which raises concerns about the reliability of their prediction. 
Their database primarily included Al, Co, Cr, Cu, Fe and Ni.

Alloy
Experimentally evaluated
[HV0.1] Predicted [TC and ML] Percentage error (%)

Al6.25Cu18.75Fe25Co25Ni25

Mean TC- predicted 177 HV 18

150 ± 10 HV ML-predicted 179 HV 19

Table 7.  Comparison of experimentally measured hardness with TC and ML predicted hardness.

 

Fig. 8.  Comparison of R-CRM-MPEA with CRM-laden MPEAs to demonstrate the feasibility of partially 
substituting CRMs with readily available elements while attaining comparable mechanical properties.
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Similarly, Wen et al.65 focussed on the same Al-Co-Cr-Cu-Fe-Ni HEA family and its subgroups but worked 
with a limited dataset of only 155 samples. They proposed a property-oriented materials design strategy that 
combined machine learning with the Design of Experiments (DOE) to discover alloys with high hardness within 
this HEA system. Their resulting alloy exhibited a hardness approximately 10% higher than the best value found 
in the original training set.

In contrast, Yang et al.66 used a dataset of 370 HEAs, including compositions such as Al-Co-Cr-Cu-Fe-Ni, Al-
Co-Cr-Fe-Mn-Ni, and their derivatives, along with vanadium-containing alloys, which are recognised for their 
high hardness. They applied techniques such as Inverse Projection (IP) and High-Throughput Screening (HTS) 
and encountered substantial prediction errors of up to 58% due to the risks associated with extrapolation beyond 
the boundaries of the training dataset and insufficient data diversity.

To effectively navigate the design space for alloys with high hardness, it is essential to enrich the training 
datasets with refractory alloys, given their inherent high-temperature stability and robust mechanical properties. 
However, a major impediment to the reliable application of ML in materials science continues to be the scarcity 
of relevant data, particularly for HEAs/MPEAs. Roy et al.67 addressed this issue by employing a generative 
adversarial network (GAN) to explore an 18-dimensional design space involving Co-Fe-Ni-Si-Al-Cr-Mo-Ti-
Nb-V-Zr-Mn-Cu-Sn-Ta-Hf-W-Zn MPEAs using a limited dataset of 241 alloys. They successfully designed two 
new MPEAs with hardness values exceeding 941 HV.

In contrast to these studies, our research emphasizes sustainable materials design by assessing whether 
compositions with reduced or no CRMs can achieve competitive hardness values. This objective addresses 
a critical gap in the current alloy design landscape—the need for environmentally sustainable materials that 
minimize reliance on CRMs while maintaining desirable mechanical properties. This approach not only 
advances sustainability goals but also enhances supply chain resilience, representing a significant step forward 
in alloy innovation.

Conclusion
This study represents a significant effort to support Net-Zero initiatives by developing new compositions with 
reduced critical raw materials (CRMs). The research relies on a computational framework that involves sourcing 
a dataset of Vickers hardness values for unary (pure) and binary material compositions from Thermo-Calc 
2024a and the TCHEA7 database. This dataset was used to build machine learning models to identify complex 
compositions of alloys with reduced-CRM without negating the mechanical properties.

Among all regression models, the Extra Trees Regressor (ETR) demonstrated superior performance, 
achieving an R² score of 0.82 and a MAPE of 0.17 for the test data. Various metaheuristic optimization 
techniques were subsequently employed to inversely predict novel multicomponent alloy compositions free of 
critical raw materials (CRMs) but with hardness comparable to CRM-containing multi-principal element alloys 
(MPEAs). Of all the optimization models, Cuckoo Search Optimization (CSO) demonstrated a high level of 
concordance with Thermo-Calc predictions, with an average deviation of ± 20%. A literature-sourced CRM-
laden composition, CoCrFeNb0.309Ni, containing two 1st -Tier CRMs (Co and Nb), showed a hardness value of 
480 HV and a new alloy was generated using a machine learning method namely, Ti0.01111NiFe0.4Cu0.4, with a 
hardness of 488 HV that showed great opportunity to eliminate CRMs in developing MPEAs.

The validity of this study was reinforced by comparing computational predictions—derived from our 
machine learning methodology and Thermo-Calc evaluations—with the experimentally measured Vickers 
hardness of a test alloy Al6.25Cu18.75Fe25Co25Ni25, which contains a single 1st-Tier CRM, cobalt (Co). Therefore, 
this investigation offers valuable insights into the potential for designing novel MPEAs with reduced or even no 
CRMs, significantly contributing to sustainable materials innovation to support Net Zero in the metal sector. 
Future research will focus on further experimental validation to corroborate the findings for the newly generated 
compositions.

Data availability
The database can be accessed at https:​​​//gitfro​nt​.​io/r​/user-6​296136/13cNm​H​ofQtp​3/Th​ermo-calc-database. ​A​d​
d​i​t​i​o​n​a​l details about the capabilities of Thermo-Calc software can be found in the following resources: (1) 
Thermo-Calc Product Overview - Property Model Calculator, (2) Brochure: Properties that Thermo-Calc can 
Calculate.
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