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Abstract

In the face of varying environments, organisms exhibit a variety of reproductive modes, from asexuality to obligate
sexuality. Should reproduction be sexual, the morphology of the sex cells (gametes) produced by these organisms
has important evolutionary implications; these cells can be the same size (isogamy), one larger and one smaller
(anisogamy), and finally the larger cell can lose its capacity for motility (oogamy, the familiar sperm-egg system).
Understanding the origin of the sexes, which lies in the types of gametes they produce, thus amounts to explaining
these evolutionary transitions. Here we extend classic results in this area by exploring these transitions in a model
in which organisms can reproduce both sexually and asexually (a reproductive mode present in many algae). In
particular, we investigate the co-evolution of gamete cell size with fertilization rate, which is a proxy for motility and
pheromone production but usually held constant in such models. Using adaptive dynamics generalized to the case
of switching environments, we find that isogamy can evolve to anisogamy through evolutionary branching, and that
anisogamy can evolve to oogamy or suppressed pheromone production through a further branching driven by sexual
conflict. We also derive analytic conditions on the model parameters required to arrest evolution on this isogamy-
oogamy trajectory, with low fertilization rates and stochastically switching environments stabilizing isogamy under a
bet-hedging strategy, and low fertilization costs stabilizing anisogamy and pheromone production.
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1. Introduction1

The origin of the sexes lies in the types of sex2

cells they produce; males produce small microgametes3

while females produce larger macrogametes [1]. This4

gamete size dimorphism is referred to as a state of5

anisogamy [2]. Should the microgamete be motile6

(sperm) and the macrogamete sessile (egg), the popu-7

lation is said to be oogamous [3]. While anisogamy is8

the most commonly observed mode of sexual reproduc-9

tion in eukaryotic organisms [4], having evolved sev-10

eral times in evolutionary history [5], it is now widely11

accepted to be derived from isogamy (equal gamete12

sizes) [6]. While rarer, isogamous species include13

study organisms such as the yeast Saccharomyces cere-14

∗Corresponding author
Email address: xiaoyuan.liu@york.ac.uk (Xiaoyuan Liu)

visiae [7] and the green algae Chlamydomonas rein-15

hardtii [8], where self-incompatible mating types play16

the role of ancestral versions of the true sexes [9]. In-17

deed, the volvocine algae (of which C. reinhardtii is18

a member), provide neat empirical examples of these19

transitions, with phylogenetic analysis indicating that20

numerous independent lineages have undergone the21

transition from isogamy, to anisogamy, and finally to22

oogamy [3, 10]. Explaining the evolutionary mecha-23

nisms behind these transitions has been the focus of24

much work in evolutionary theory.25

While theoretical investigations of the evolution of26

anisogamy date back to the 1930’s [11] and were de-27

veloped into the 1960’s [12, 13], it was arguably the28

Parker-Baker-Smith (PBS) model [14] that synthesised29

these ideas into a complete evolutionary model that is30

now widely accepted as providing an explanation for the31

evolution of anisogamy [15, 16, 17]. They assumed that32
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a fixed mass or energy budget is allocated by individu-33

als to gamete production, such that microgametes can be34

produced in larger quantities than macrogametes. How-35

ever, while microgametes may be more numerous, they36

contribute a lower fitness than macrogametes to a fertil-37

ized zygote due to their low cytoplasmic volume [18].38

In this way the PBS model was able to show how39

anisogamy was the result of a quality-quantity trade-off,40

with disruptive selection acting on gamete size [15].41

The key elements of the PBS model have since42

been set in a game theoretic [19] and population ge-43

netic [20, 21] context, as well as extended to ac-44

count for more general reproductive modes such as45

hermaphrodism [22]. Models using adaptive dynam-46

ics [23] in particular have been useful. It has been47

shown analytically that even in the absence of mating48

types, anisogamy can evolve from isogamy through evo-49

lutionary branching in mass [24] and that this is a stable50

state. Meanwhile, accounting for self-incompatibility51

of mating types and investigating the effect of vary-52

ing fertilization rate, [25] showed that anisogamy can53

evolve from isogamy through both gamete competition54

and gamete limitation. Altogether, the results described55

above suggest that fertilization rate is a crucial factor56

that may impact gamete survival, and selection is likely57

to act on the fertilization rate between microgametes58

and macrogametes.59

As addressed, oogamy, the loss of motility in eggs60

and specialization for motility in sperm, is often seen61

as the ªlast step in the evolution of the egg±sperm di-62

chotomyº [26], a view supported by empirical analyses63

that suggest oogamy is derived from anisogamy [27].64

However the theory of this transition is comparatively65

less studied than the earlier transition from isogamy to66

anisogamy. Ghiselin [28] provided an argument based67

on the physiological division of labour between macro68

and microgametes, with females specialising in provi-69

sioning and males in motility. Most other work has70

considered the evolution of oogamy as a strategy to71

maximise gamete encounter rate. This can be achieved72

by having a population of pheromone emitters and re-73

ceivers [29, 30] and by having a large stationary tar-74

get egg and small motile sperm [31, 32]. Although75

the assumption of an inverse speed-size relationship in76

[32] has justification in some gametic systems, it is also77

worth noting that positive speed-size relationship have78

been observed in C. reinhardtii, due to larger cells hav-79

ing greater propulsive forces; at scales such as these80

the precise speed-size relationship is complicated by81

details of cell morphology [33]. Important theoreti-82

cal progress was therefore made in [34], which inves-83

tigated how investment in motility can differ between84

males and females under differing levels of gamete lim-85

itation and different speed-size relationships. Under86

both positive and negative speed-size relationships, the87

level of motility investment is biased towards one sex.88

Strikingly, increasing gamete limitation can trigger a89

switch from the classic male biased motility investment90

(oogamy) to female biased motility investment. Lastly,91

the prior evolution of internal fertilization has been pro-92

posed as a mechanism that could generate selection for93

oogamy [35], consistent with empirical evidence from94

volvox (external fertilization and anisogamous) and its95

sister lineage platydorina (internal fertilization and oog-96

amous) [36].97

The work described above all assumes obligate sex-98

ual reproduction (unfertilized gametes die at the end of99

each generation) and a static environment [19, 25, 26].100

Recently, however, inspired by the life-histories of101

green and brown algae such as Blidingia minima (isoga-102

mous [37]), Urospora neglecta (anisogamous [38]), and103

Saccharina japonica (oogamous [39]), whose gametes104

can develop asexually through parthenogenesis should105

they fail to find a mate (see [37, 38, 40], respectively),106

the first of these two assumptions was relaxed in two107

theoretical papers [41, 42]. In [41], extra survival costs108

were incurred by gametes developing parthenogeneti-109

cally, while in [42] extra survival costs on either the110

parthenogenetic or the sexual reproductive route were111

considered. They found that in the presence of two self-112

incompatible mating types, isogamy can be stabilized113

under low costs to parthenogenesis, while anisogamy114

is the evolutionarily stable state when fertilization is115

favoured.116

The studies described above on parthenogenesis and117

the evolution of anisogamy lead to a natural question;118

if the sexual route (via fertilization) and asexual route119

(via parthenogenesis) carry different survival costs, how120

should the fertilization rate evolve to account for this?121

Should this rate increase (to minimise the number of122

unfertilized gametes taking a potentially perilous route123

to survival) or should it decrease (to avoid potential124

costs incurred during cell fusion)? The modelling of125

fertilization kinetics is an interesting topic in its own126

right [43, 44], and plays a role in models for the evolu-127

tion of anisogamy from isogamy [25]. However fertil-128

ization kinetics are also clearly a key element of the evo-129

lution of oogamy, with selection on sperm to increase130

their encounter rate with eggs and selection on eggs to131

remain sessile.132

In this paper, we modify the adaptive dynamics mod-133

els of [24, 41, 42] to study the co-evolution of ga-134

mete size and fertilization rate in species capable of135

parthenogenesis under external fertilization. For sim-136
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plicity, we assume an absence of self-incompatible mat-137

ing types [6, 24]. We show that under such assumptions,138

anisogamy can evolve from an initial state of isogamy,139

followed by the subsequent evolution to oogamy un-140

der sexual conflict between microgametes and macroga-141

metes. In Section 2, we introduce the model, describing142

its key behaviour in Section 3. These behaviours in-143

clude the evolution of oogamy (Section 3.2), conditions144

that stabilize isogamy (Section 3.3), conditions that sta-145

bilize anisogamy (Section 3.4), and the emergence of146

isogamy as a bet-hedging strategy in switching environ-147

ments (Section 3.5). Finally in Section 4 we conclude148

by discussing the results and how they may relate to em-149

pirical examples of geographic parthenogenesis [45, 46]150

in aquatic external fertilizers.151

2. Model152

In this section we describe the specifics of the mod-153

els we use, paying careful attention to the various time154

scales involved. We begin by considering the evolution-155

ary model in a fixed environment (Section 2.1), before156

generalizing to the case of a under which bet-hedging157

strategies can evolve (Section 2.2).158

2.1. Model dynamics in a fixed environment159

The evolutionary dynamics of the model are built160

from a hierarchy of timescales, which are particu-161

larly important to keep in mind once environmental162

switching is introduced in later sections. The shortest163

timescale is the generational timescale. The intermedi-164

ate timescale is that over which the invasion of a rare165

mutant (taking place over many generations) can oc-166

cur. The longest timescale is the evolutionary timescale,167

representing the cumulative effect of multiple mutations168

and invasions.169

Dynamics within each generation170

At the start of each discrete generation, a number of171

adults with haploid mass (or energy budget) M produce172

gametes (mass m), such that mass/energy budget is con-173

served (i.e. each adult produces M/m gametes). Note174

that this implicitly assumes, for simplicity, that a con-175

tinuous (rather than discrete) number of gametes is pos-176

sible. Gametes then enter a pool and the fertilization177

process takes place. After a finite time window, the re-178

sultant cells face a round of survival dependent on their179

mass. The surviving cells form the basis of the next gen-180

eration, completing the generational cycle, as illustrated181

in Figure 1.182

Fertilization Kinetics For simplicity, we assume183

that all gametes may fertilize each other (i.e. there184

Adults Gametes Pool of Fertilised 

Zygotes

Pool of Unfertilized 

Gametes

Maturation with mass 

dependent survival 

probability S(β,m)

Fertilization 

Period T
Gamete 

Production

Adults

Figure 1: Schematic of dynamics within each generation. Mature cells
(adults) produce gametes at the start of a generation. All the gametes
are given a fixed time period T in which to complete the fertilization
process. At the end of the fertilization period, there will be a pool of
fertilized zygotes and unfertilized gametes, both of which are capable
of maturation. Each cell survives according to its independent survival
functions ((1−Cz)S (β,m1 +m2) and (1−Cp)S (β,mi) respectively) to
produce a number of mature cells in the subsequent generation. The
pool of gametes consist of resident (blue) and mutant gametes (green),
where the mutation occurs in either the mass m or fertilization rate α.

are no self-incompatible mating types). Given a to-185

tal of A adults, the population is initially comprised186

of N = (AM)/m single gametes produced by adults187

through meiosis. We assume fertilization is external,188

with cells fertilizing according to mass action dynamics189

at rate α, such that the number of single (unfertilized)190

cells, N, is given by the solution to191

dN

dt
= −αN2 , N(0) =

AM

m
(1)

with α ≥ 0 (see also [43]). At the end of the fertilization192

window, which is assumed to have a duration T , there193

are therefore N(T ) single cells remaining, and (N(0) −194

N(T ))/2 fertilized cells.195

The parameter α is variously referred to as the fer-196

tilization rate, the collision rate [43], the ª‘aptitude’ for197

unionº [13], or the ªbimolecular reaction constantº [47].198

We will refer to α as the fertilization rate, and treat it199

as a trait subject to evolution. Overall, α captures the200

compound effect of the propensity for fertilization be-201

tween cells encountering each other, as well as addi-202

tional mechanisms to enhance cell encounter rate and203

fertilization affinity such as increased emission or re-204

sponse to chemoattractants [30], pheromones [48] and205

gamete recognition proteins [49], or cell motility [50].206

In practice there is a likely upper-bound on α, brought207

about by energy trade-offs, diffusion in aquatic environ-208

ments, or dispersal in terrestrial environments. To ac-209

count for this we introduce a ceiling on α, and restrict210

its evolutionary dynamics to the range αmax ≥ α ≥ 0.211

Survival Probability At the end of a finite fertiliza-212

tion window at time T , the population will consist of213

both fertilized and unfertilized gametes. Fertilized ga-214
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Figure 2: Diagram illustrating some of the potential costs of fertilization, with details inspired by the life-cycle of Ectocarpus [51]. Haploid
gametes can become fertilized to form diploid sporophytes. Following genetic recombination, sporophytes produce Gz haploid meio-spores.
Assuming Mendelian inheritance, this results in Gz/2 meio-spores associated with the genetic traits of each of the gametes contributing to the
sporophyte. Conversely haploid gametes can remain unfertilized to become haploid parthenosporophytes. These parthenosporophytes produce Gp

haploid spores that inherit the genetic identity of their gametic ancestor. Therefore if Gz = Gp, gametes entering the sexual cycle produce half as
many meio-spores as gametes entering the parthenogenetic cycle produce spores. This scenario is comparable to the classic twofold cost of sex first
described by Williams and Maynard Smith [52, 53] (see also [54, 55]). Should Gz < 2Gp (i.e. sporophytes produce meiospores at anything less
than twice the number parthenosporophytes produce spores), a lower, but still present, cost to fertilization persists. Further mathematical details,
including the relationship between Gz and Gp and the costs Cz and Cp used in our model, are provided in Appendix A. The figure is adapted
from [51] to account for the fact that in our model, both male and female gameteophytes can in principle develop parthenogenetically.

metes produce diploid zygotes, while unfertilized ga-215

metes can develop as haploids parthenogenetically (e.g.216

parthenosporophytes [51]). We assume that the proba-217

bility that either of these cell types survives is given by218

the Vance survival function [18], which is a common219

assumption in the literature [19, 25, 56]. Given a cell220

size mc (for either fertilized or unfertilized cells), the221

survival probability is given by222

S (β,mc) = exp
(

− β
mc

)

. (2)

Note that this is an increasing function of cell size, and223

we do not account for gamete mortality during the fertil-224

ization period. Thus, although both fertilized and unfer-225

tilized gametes are exposed to the same survival func-226

tion, fertilized cells (with a mass around twice the size227

of unfertilized cells in a monomorphic isogamous pop-228

ulation) will have a greater survival probability than un-229

fertilized cells. Meanwhile for a given mass mc, increas-230

ing β will decrease the survival probability. We there-231

fore refer to β as the resistance to survival, with high β232

corresponding to harsh environments in which survival233

is difficult, and low β corresponding to more benign en-234

vironments in which even cells of modest mass have a235

high probability of surviving.236

In addition to the benefits explained in the introduc-237

tion, fertilization may also carry risks: generally these238

include cell-fusion failure [57], selfish extra-genomic239

elements in the cytoplasm [58] and cytoplasmic con-240

flict [59, 60, 61]. However costs may also arise in mul-241

ticellular organisms if the reproductive output of fer-242

tilized diploids (e.g. sporophytes) is less than twice243

that of unfertilized haploids (e.g. parthenosporophytes).244

In fact, if the reproductive output of fertilized diploids245

is equal to that of unfertilized haploids, one obtains a246

version of the classic twofold cost of sex [52, 53] for247

species capable of haploid development, as illustrated248

in Figure 2. In addition, sexual reproduction is time249

and energy intensive, and requires investing in finding250

a mate [62]. In light of these varied costs, we introduce251

an additional, simplified, fixed cost 1 ≥ Cz ≥ 0, applied252

to fertilized zygotes independent of their mass and fer-253

tilization rate.254

Similarly, there can be costs associated to partheno-255

genetic development such as reduced fitness due to lack256

of genetic diversity [63] and the possibility of failure of257

parthenogenetic development [41]. That parthenogen-258

esis is absent in many algae, while in the green alga259

green Monostroma angicava gametes only reproduce260

parthenogenetically should they fail to find a mate [64],261

has motivated the modelling of costs associated with262

this reproductive pathway [41]. We therefore intro-263

duce an additional, again simplified and fixed, cost264

1 ≥ Cp ≥ 0, applied to unfertilized gametes indepen-265

dent of their mass and fertilization rate.266

The final probability of survival for a zygote formed267

from the fertilization of two gametes of sizes m1 and m2268

is then given by (1 − Cz) exp
[

−β/(m1 + m2)
]

, while the269
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probability of survival for an unfertilized cell of size m270

is (1 −Cp) exp
[

−β/m
]

.271

Invasion Dynamics272

We assume that haploid gametes are characterised273

by two genetically determined non-recombining traits;274

their mass, m, and their fertilization rate, α. We next275

consider a monomorphic resident population to which a276

mutant individual is introduced at rate µ. As we will be277

interested in the effect of changing environments (which278

may switch multiple times over the course of a mutant279

invasion) it is necessary for us to construct the inva-280

sion dynamics for the mutant. Analytically, construct-281

ing these invasion dynamics is only possible when mu-282

tations in m and α occur independently (see Appendix283

B and Appendix C), and so we consider these cases in284

the remainder of this section. However in Appendix D285

we show that the evolutionary dynamics that we obtain286

are identical to those if we allow mutations both in m287

and α.288

Suppose the mutant produces gametes of a different289

mass to its ancestor, m ± δm, where δm represents the290

size of a mutational step. Under this scenario the mutant291

may produce more or fewer gametes than its ancestor292

(see Appendix B.1), but the survival probability of its293

unfertilized cells (mass m ± δm), mutant-resident fertil-294

ized cells (mass 2m± δm), and mutant-mutant fertilized295

cells (mass 2(m ± δm)), will also be simultaneously de-296

creased or increased (see Eq. (2) and Appendix B.3).297

The cumulative effect of this quality-quantity trade-off298

will either lead to selection for or against the mutant299

over subsequent generations.300

Alternatively, the mutant may engage in an increased301

or decreased fertilization rate relative to its ancestor, at302

a rate α ± δα (see Appendix B.2). Under this scenario303

the mutant fertilizes with residents at their average fer-304

tilization rate (2α ± δα)/2 and other mutants at a rate305

α ± δα. Mutants will either contribute to more or fewer306

fertilized cells and depending on the resistance to sur-307

vival, β, the costs to fertilization, Cz, and the costs to308

parthenogenesis, Cp, may experience a selective advan-309

tage over the resident by devoting more of its gametes310

to one of the reproductive routes (see Appendix B.4).311

In order to mathematically characterise the invasion312

dynamics (which occur over discrete generations), we313

adopt the classical assumptions of adaptive dynamics314

(see [65] and Appendix E.1). In particular, we assume315

that δm and δα are small, so that we can approximate316

the dynamics continuously, and successive mutations317

occur sufficiently rarely that each mutation can equili-318

brate before a new mutation occurs. Denoting by f̂m the319

frequency of mutants of size m ± δm in the population,320

and tg the number of generations, we find (see Appendix321

C.1)322

d f̂m

dtg
= hm(m, α, β,Cz,Cp) f̂m(1 − f̂m) , (3)

where hm(m, α, β,Cz,Cp) is a constant selective pres-323

sure that depends on the parameters m, α, β,Cz,Cp (see324

Eq. (C.1)). Similarly, denoting by f̂α the frequency of325

mutants with fertilization rate α ± δα in the population326

(see Appendix C.2), we find327

d f̂α

dtg
= hα(m, α, β,Cz,Cp) f̂α(1 − f̂α) (4)

where hα(m, α, β,Cz,Cp) is a constant that depends on328

the parameters m, α, β,Cz,Cp (see Eq. (C.2)).329

We note that although the analysis above shows330

frequency-independent selection (see Eqs. (3) and (4)),331

this is only the result of our assumptions that each mu-332

tant can equilibriate before any subsequent mutation333

events [65] and that mutations in m and α occur in-334

dependently, which is clearly violated in realistic pop-335

ulations. In particular, the small mutational effects336

and random occurrence of successive mutational events337

means that a degree of polymorphism is expected in our338

model, which can lead to frequency-dependent selec-339

tion whereby evolutionary branching is a possibility. In-340

deed frequency-dependent selection does emerge when341

applying the standard analytical tools of adaptive dy-342

namics [24, 66] that do not require a full calculation of343

the invasion trajectory (see Appendix D) as well as in344

our numerical simulations that allow for polymorphic345

populations (see Appendix E.3).346

Evolutionary Dynamics347

Following standard approaches in adaptive dynam-348

ics [67] (see also Appendix E), we construct the evolu-349

tionary equations for the gamete mass, m, and the fertil-350

ization rate, α. Denoting by τ the evolutionary timescale351

over which mutations appear and trait substitutions oc-352

cur, we find that for α ≥ 0,353

dm

dτ
= Hm(m, α; β,Cz,Cp)

= −
4(1 −Cp)m(m − β) + AMαT (1 −Cz)e

β

2m (4m − β)

4m2((1 −Cp)m + AMαT (1 −Cz)e
β

2m )
dα
dτ
= Hα(m, α; β,Cz,Cp)

= −m
((1 −Cp) − (1 −Cz)e

β

2m ) ln(1 + AMαT
m

)

2α((1 −Cp)m + AMαT (1 −Cz)e
β

2m )
.

(5)
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Due to the model setup, α can mathematically evolve354

to be negative from the α = 0 state (this would result355

in an increase in gamete numbers during the fertiliza-356

tion period, see Eq. (1)). While mathematically pos-357

sible, this is clearly not biologically reasonable. We358

therefore impose α = 0 as a biologically realistic (but359

mathematically discontinuous) boundary. For α = 0 and360

Hα(m, 0; β,Cz,Cp) < 0, we then have361

dm

dτ
= Hm(m, 0; β,Cz,Cp) =

β − m

m2

dα
dτ
= 0 .

(6)

We note that such features are common in simplified362

models of anisogamy evolution [42], where some evi-363

dent non-physical behaviour can arise near the bound-364

aries (e.g. when cell masses are zero).365

2.2. Evolutionary dynamics in switching environments366

We now wish to consider the case of a population367

characterised by gamete mass (m) and fertilization rate368

(α) traits, evolving subject to changing environmen-369

tal conditions. We may again employ techniques from370

adaptive dynamics, but now generalized to dynamic en-371

vironments [68]. Explicitly, we allow the resistance to372

survival to alternate between two values β1 and β2; re-373

call from Eq. (2) that if β1 > β2 then β1 represents a374

comparatively ªharsh environmentº, where cells have a375

lower survival probability than in environment β2.376

Switching between these two environments is mod-377

elled as a discrete stochastic telegraph process [69, 70];378

the time spent in each environment is distributed geo-379

metrically (a discrete analogue of the exponential dis-380

tribution), spending an average period τ1 ≈ 1/λ1→2381

in environment 1 and τ2 ≈ 1/λ2→1 in environment 2,382

where λi→ j is the transition rate from environment i to383

j. We must carefully consider the magnitude of these384

timescales in comparison with the other timescales at385

work in the model (see Section 2.1).386

First consider the case where the environmental387

switching timescales, τ1 and τ2, are larger than the gen-388

erational timescale (tg), but much smaller than the in-389

vasion timescale (characterised by the inverse of the390

strength of selection, proportional to 1/δm and 1/δα)391

and the mutational timescale (1/µ). We call this the392

’fast relative to invasion’ switching regime (FRTI). In393

this scenario, the population does not switch environ-394

ments during a single round of fertilization kinetics, but395

typically switches between the two environmental states396

many times before an invasion has time to complete.397

When switching occurs this frequently, we can approx-398

imate the invasion dynamics mathematically by observ-399

ing that the population experiences the weighted aver-400

age of the dynamics in the two environments [68] over401

a large number of generations. Denoting by P1 and P2402

the probability of finding the population in either of the403

respective environments, we have404

P1 =
τ1

τ1 + τ2
, P2 =

τ2

τ1 + τ2
= (1 − P1) . (7)

The effective dynamics for the frequency of mutants405

with mass m + δm in a resident population of mass m406

during an invasion is then given by407

[

P1hm(m, α, β1,Cz,Cp) + P2hm(m, α, β2,Cz,Cp)
]

(8)

which can be contrasted against the term408

hm(m, α, β,Cz,Cp) in Eq. (3). An analogous ap-409

proach allows us to approximate the invasion dynamics410

for mutants with a different fertilization rate to their411

ancestors in this FRTI regime (see Appendix F.1). We412

note that although these results suggest an algebraic413

(rather than geometric [71]) averaging of the dynamics414

across the two environments, the algebraic mean fitness415

can be obtained as a leading-order approximation of416

the geometric mean fitness (or long-run growth rate)417

when variance in the growth rate due to environmental418

switching is small [72, 73]. We expect this to be the419

case when switching between environments is fast420

(λ1→2 and λ2→1 large), as described in Appendix F.6.421

With equations for d f̂m/dtg and d f̂α/dtg in hand, we422

can proceed to apply the same standard techniques from423

adaptive dynamics as were used to derive Eq. (5) from424

Eqs. (3-4) (see Appendix F). We obtain the effective425

evolutionary dynamics [68]426

dm

dτ
= P1Hm(m, α; β1,Cz,Cp) + P2Hm(m, α; β2,Cz,Cp)

dα
dτ
= P1Hα(m, α; β1,Cz,Cp) + P2Hα(m, α; β2,Cz,Cp)

(9)
where Hm(m, α; β1,Cz,Cp) and Hα(m, α; β1,Cz,Cp) re-427

tain the functional forms given in Eq. (5), and P1 and428

P2 are taken from Eq. (7).429

In contrast to the FRTI regime discussed above, we430

can also investigate the regime in which environmental431

switching occurs on a comparable or slower timescale432

than invasion, but still occurs fast relative to the evolu-433

tionary timescale. In this scenario, which we call the434

ªfast relative to evolutionº switching regime (FRTE),435

environmental switching occurs on a similar rate to that436

at which new mutations are introduced, but much faster437

than the combined effect of mutation and selection (e.g.438
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Figure 3: Phase portraits for the co-evolutionary dy-
namics in a fixed environment (see Eq. (5)). High fertil-
ization rates are the only evolutionary outcome in panel
(a), while high and zero fertilization rate are both evo-
lutionary outcomes in panel (b) (see Eq. (10)). The
red region shows trajectories leading to points on the
α = 0 boundary for which evolution selects for decreas-
ing fertilization rate (dα/dτ < 0) (the point at which
dα/dτ = 0 is marked by a red arrow). Red filled (sta-
ble) and unfilled (unstable) circles mark a fixed point in
the evolutionary dynamics of m (m∗ = β, see Eq. (E.2)).
Blue arrows illustrate the high fertilization rate fixed
point ((m∗, α∗) → (β/4,∞), see Eq. (E.6)). Average
population trait trajectories, (⟨m⟩(t), ⟨α⟩(t)), from sim-
ulation of the stochastic model (see Appendix E.3) are
plotted in light gray, and their mean over multiple real-
isations are given dark gray. The cost to fertilization is
Cz = 0.3 (panel (a)) and Cz = 0.6 (panel (b)). In both
panels β = 1 and Cp = 0. Remaining model parameters
are given in Appendix J.

λi→ j ≪ µ × δm), such that only a small number of mu-439

tations can fixate in either environment before the pop-440

ulation switches to the alternate environment. Although441

we shall show via simulations in Section 3.5 that this442

FRTE regime leads to quantitatively different evolution-443

ary trajectories compared to the FRTI regime, we show444

mathematically in Appendix F.2 that the evolutionary445

dynamics can be approximated by the same equations446

(see Eq. (9)).447

3. Results448

In this section we proceed to analyse the evolution-449

ary dynamics derived in Sections 2.1-2.2 and compare450

our results to numerical simulations of the full stochas-451

tic simulations.452

3.1. Initial evolution of fertilization rate453

In Figure 3, we see two potential evolutionary out-454

comes for the co-evolutionary dynamics of m and α in a455

single fixed environment that are dependent on the ini-456

tial conditions and parameters; the population can either457

evolve to large fertilization rates (limited only by αmax)458

or to zero fertilization rates.459

When the cost to fertilization, Cz, is low (Figure 3,460

panel (a)), there exists a smaller region of initial con-461

ditions that drive α towards zero (red shaded region).462

When α = 0 within this region, selection on gamete463

mass, m, drives the population towards the point m = β464

(red dot, see also Appendix E.2). As this point exists465

outside the region in which dα/dτ < 0, selection for466

increased α can again manifest along the evolutionary467

trajectory. Thus when costs are sufficiently low, high468

fertilization rates are the only evolutionary outcome.469

Conversely when costs to fertilization, Cz, are inter-470

mediate (Figure 3, panel (b)), there exists a larger re-471

gion of initial conditions that drive α towards zero (red472

shaded region). The point m = β (red dot), towards473

which the population evolves when α = 0, is now con-474

tained within this region in which dα/dτ < 0, and so is a475

stable fixed point. Thus when costs are sufficiently high,476

there are two evolutionary outcomes, depending on the477

initial conditions; either high fertilization rates or zero478

fertilization rates.479

In Appendix E.2 we conduct a mathematical and480

numerical analysis to formalise the arguments above.481

In summary, the possible early evolutionary attractors,482

(m∗, α∗), are given by:483

If 1 −
1 −Cp√

e
> Cz ≥ 0 , (m∗, α∗)→ (β/4, αmax)

If 1 ⪆ Cz > 1 −
1 −Cp√

e
, (m∗, α∗)→ (β/4, αmax)

or (m∗, α∗)→ (β, 0)

If Cz ≈ 1 , (m∗, α∗)→ (β, 0)
(10)

where we note that in the absence of parthenogene-484

sis costs i.e Cp = 0, the condition in which a high485

fertilization rate is the only evolutionary outcome is486

0 ≤ Cz < 1 − 1/
√

e ≈ 0.39 (see Figure 3). Since situa-487

tions in which the fertilization rate initially tends to zero488

are not of interest in the current analysis, we work in the489

remainder of this paper in the regime in which increas-490

ing fertilization rate is selected for; that is, 1 ⪆ Cz and491

with initial conditions that do not lead to a stable α = 0492

fixed point (see Figure 3, unshaded regions).493
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Figure 4: Numerical illustration of evolutionary
branching in Figure 3(b). Panel (a): Analytic pre-
dictions for the early evolutionary dynamics (as
Figure 3(b)) overlaid with trajectories (mi(t), αi(t)))
for each ith trait. Evolutionary branching is ob-
served along the m ≈ β/4 manifold, indicated by
the blue star. Green arrows show the temporal pro-
gression of the branching. Panels (b) and (c): The
temporal trajectories of the traits αi(t) and mi(t) re-
spectively, showing that the evolutionary trajectory
passes from isogamy to oogamy. The starting point
of the trajectory is (m(0), α(0)) = (1.5, 0.6). Param-
eters used are A = 100, M = 1, T = 1, Cz = 0.6,
Cp = 0, β = 1, δ = 0.01, µ = 10−3, f0 = 2 × 10−3

and simulation run for 3.5 × 106 generations.

3.2. Evolutionary branching can lead to anisogamy,494

followed by ªoogamyº (or suppression of495

pheromone production)496

In Figure 3 we see that the approximation obtained497

for the co-evolutionary dynamics of m and α in a single498

fixed environment, Eq. (5), accurately captures the dy-499

namics of the full model realised via numerical simula-500

tion at early times. One point of departure is that at long501

times as α increases along the m ≈ β/4 manifold, we502

see the mean mass trait value from simulations increas-503

ing to higher values than those predicted analytically.504

In Figure 4, we show that this is a result of evolutionary505

branching in the simulations.506

Should the evolutionary trajectories reach a suffi-507

ciently large fertilization rate, α, along the m ≈ β/4508

manifold, anisogamy can evolve through evolutionary509

branching in mass (see Figure 4), which gives rise to510

a dimorphic gamete population that contains one large511

gamete (macrogamete) and one small gamete (microga-512

mete) with masses513

mmacro = β − mmicro

mmicro = δm .
(11)

Here the microgamete evolves to the smallest possible514

nonzero trait value in our simulation model (δm) while515

the macrogamete evolves to produce macrogamete-516

microgamete zygotes of mass β (see Appendix G for517

simulation). Analytically, this branching is shown to518

be due to disruptive selection in mass in the vicinity519

of the m ≈ β/4 manifold at high values of α. In Ap-520

pendix H, we show that this region is an approximate521

evolutionary singularity. This initial branching has been522

noted in other models that also do not account for self-523

incompatible mating types but that consider the case of524

fixed α and obligate sexual reproduction [24].525

As the mass of the macrogamete becomes larger (and526

that of the microgamete smaller), a branching in fertil-527

ization rates can also occur (see Figure 4 (b)). Near this528

mass β − mmicro, the macrogamete has a high survival529

rate under parthenogenesis, and the benefits of fertil-530

ization (in particular with microgametes of very small531

mass) can be outweighed by the costs of fertilization.532

Selection can thus act to lower the fertilization rate of533

macrogametes, αmacro, towards zero. This in turn leads534

to an increased selection pressure for the microgametes535

to increase their fertilization rate, with αmicro → αmax,536

to increase the probability of microgametes fertilizing537

macrogametes (averting the low survival probabilities538

of microgametes under parthenogenesis).539

The situation described above is one in which540

macrogametes are still fertilized by microgametes (at a541

rate αmicro/2) but do not fertilize themselves. Biolog-542

ically, one interpretation of this situation is the evolu-543

tion of oogamy, with αmicro → αmax and obligate sexual544

reproduction in the limit αmax → ∞. However, since545

α is a compound parameter the captures both motil-546

ity and other mechanisms to enhance cell encounter547

rate, this situation can also be viewed as one in which548

macrogametes have reduced pheromone production, ga-549

mete recognition protein affinities, or any other mecha-550

nism to limit fertilization by microgametes. For con-551

cision however, we will refer to this state simply as552

oogamy for the remainder of the results section.553

Above we have shown that when costs to fertiliza-554

tion are accounted for, a continuous evolutionary tra-555

jectory can exist that takes the population from a state556

of isogamy to oogamy. In the following sections we557

demonstrate how each of these transitions can be ar-558

rested under various parameter regimes.559

3.3. A low ceiling on the fertilization rate can stabilize560

isogamy561

If the maximum possible fertilization rate αmax is lim-562

ited to a low value, for instance due to energetic con-563

straints on motility or environmental constraints such as564

turbulence, then it is possible to prevent the transition565

8



Figure 5: Analytical prediction (blue) and numerical illustration of
the range of αmax in which branching to anisogamy is possible. Black
markers represent the mass of each gamete genotype within the pop-
ulation after 2.5 × 106 generations. Once branching to anisogamy
has occurred, a dimorphic gamete population, characterised by the
presence of two genotypes would be present. One genotype where
m ≈ β − δm and one where m = δm. Vertical line represents the
analytically predicted αmax above which branching can occur in m

Eq. (12). The blue curve left of this line is the numerical solution to
dm/dτ|α=αmax = 0 in Eq. (E.1) and the blue lines towards the right
contains the theoretical masses of the macrogamete (m = β − δm) and
microgametes (m = δm). Parameters are A = 100, M = 1, T = 0.1,
Cz = 0.3, Cp = 0, β = 1, δ = 0.01, µ = 10−3 and f0 = 2 × 10−3.

from isogamy to anisogamy. In Appendix H, we de-566

rive the minimum value of αmax at which evolutionary567

branching in mass can occur, and find that if568

48(1 −Cp)β

35AMT (1 −Cz)e
7
6

> αmax (12)

evolutionary branching in mass cannot occur. These re-569

sults are illustrated in Figure 5. Should αmax lie below570

this threshold (equivalent in approximately 70% of cells571

gametes fertilized in Figure 5, see Figure B.10) the pop-572

ulation is held in a state of isogamy.573

3.4. High costs of parthenogenesis relative to zygote574

formation can stabilize anisogamy (or promote575

macrogamete pheromone production)576

Analytically, we show in Appendix I that when577

costs for zygote formation are relatively low and costs578

for parthenogenesis relatively high, a fully ºoogamousº579

state (in which the macrogamete’s fertilization rate580

evolves towards zero, αmacro → 0) does not evolve fol-581

lowing the transition to anisogamy. The costs to fertil-582

ization must instead be sufficiently high, such that583

Cz > 1 − (1 −Cp) exp
(

− δm

β − δm

)

(13)

for true oogamy to evolve. This is illustrated in Fig-584

ure 6. Essentially if the costs to the macrogamete of585

fertilization are not sufficiently high, then there is no586

longer a selective pressure (as described in Section 3.2)587

α m
a
c
ro

α m
ic
ro

Anisogamy

Oogamy

Figure 6: Numerical illustration of the ratio of macrogamete to mi-
crogamete fertilization rate, αmacro/αmicro. Oogamy is favoured over
anisogamy above a sufficiently high fertilization cost Cz, predicted
analytically by the vertical line (see Eq. (13)). Here Cp = 0.5,
(m(0), α(0)) = (0.25, 0.02) and αmax = 1.3. All other parameters
are as in Figure 3 except f0 = 0.02 and the simulation is run for
6×106 generations. Back arrows point in the direction towards which
αmacro/αmicro evolves in infinite time.

for the macrogamete to avoid fertilizations by decreas-588

ing its fertilization rate. While the population does not589

evolve towards oogamy, its ultimate state is dependent590

on the maximum fertilization rate, αmax.591

Suppose we initially place no limit on the maximum592

fertilization rate, αmax → ∞, and that the costs Cp and593

Cz are such that there is no longer selection for the594

fertilization rate of the macrogamete to decrease (i.e.595

the inequality in Eq. (13) does not hold). While there596

may be a selective pressure for the fertilization rate of597

the macrogamete to increase, this selection pressure is598

weaker for the parthenogenetic macrogamete than the599

microgamete, as the microgamete relies more heavily600

on the fertilization pathway for its survival. Thus al-601

though the fertilization rates of both macrogametes and602

microgametes, αmacro and αmicro, evolve to increase α603

indefinitely, the macrogamete does so at a consider-604

ably slower rate. Under this scenario, we therefore ob-605

serve pseudooogamy [27], where the macrogamete fer-606

tilization rate does not evolve toward zero but is still607

lower than the microgamete fertilization rate. Equiva-608

lently, we expect to see parthenogenetic macrogametes609

invest less in mechanisms such as pheromone produc-610

tion that increase fertilization rate than parthenogenetic611

microgametes. While this situation is only observed612

when αmax → ∞, in the case of large but finite αmax,613

pseudooogamy is a prolonged transient state (see Fig-614

ures 6 and I.19). Lastly, should αmax be smaller, such615

that the increasing fertilization rate of macrogametes616

can ªcatch upº with that of microgametes, the popula-617

tion can return to anisogamy following a transient pe-618

riod of oogamy.619
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Figure 7: Phase portraits for the co-evolutionary dynamics in a switching environment (see Eq. (9)). In addition to qualitatively similar dynamics
as in the fixed environment (see Figure 3), two new evolutionary scenarios are now possible, including populations in which stable intermediate
fertilization rates (filled blue circle) are the only evolutionarily stable state (see panel (a)) and populations in which there is an additional zero
fertilization stable state (filled red circle, see panel (b)). Open orange circles represent the (now unstable) states to which the population can be
attracted in either environment 1 or 2 (where β = β1 or β = β2). Average population trait trajectories, (⟨m⟩(t), ⟨α⟩(t)), from simulation of the full
stochastic model in the FRTI regime are overlaid in gray. In panel (c) we plot the time-series in the FRTI regime (gray, as in panel (a)) alongside
those in the FRTE regime (purple) and our analytic predictions (black-dashed). In all panels, A = 100, M = 10, T = 0.1 and f0 = 2 × 10−3. Under
the FRTI regime (overlaid in gray in panels (a), (b) and (c)), µ = 3.5 × 10−4, δ = 7 × 10−3 and the simulation is run for 107 generations. Under
the FRTE regime (overlaid in purple in panel (c)), µ = 5 × 10−3, δ = 5 × 10−3 and the simulation is run for 7 × 106 generations. In panel (a)
(and panel (c) gray), Cz = 0.35, β1 = 3, P1 = 0.335, (m(0), α(0)) = (2, 0.4), λ1→2 = 0.250 and λ2→1 = 0.126. In panel (b), Cz = 0.7, β1 = 4,
P1 = 0.74, (m(0), α(0)) = (2, 0.6), λ1→2 = 5.86 × 0.01 and λ2→1 = 0.167. In panels (c) and (d), the switching rates for the FRTE regime (purple)
are λ1→2 = 2.93 × 10−5 and λ2→1 = 8.34 × 10−5. Switching rates and mutation rates µ are all measured in units of (number of generations)−1 and
Cp = 0 in all panels.

3.5. In a switching environment, the population can620

evolve a bet-hedging strategy that stabilizes621

isogamy622

In Figure 7, we see that the analysis for the evolu-623

tionary dynamics in the case of a switching environment624

(see Eq. (9)), provides a good approximation to the dy-625

namics of the full model (which accounts for multi-626

ple traits coexisting under a mutation-selection balance)627

realised via numerical simulation. We now see three628

broad evolutionary outcomes.629

We begin by considering the intuitive limit of τ1 ≫630

τ2. In this scenario the population spends almost all of631

the time in environment 1, and a comparatively insignif-632

icant amount of time in environment 2 (i.e. P1 ≈ 1633

and P2 ≈ 0). Consequently, the population evolves ap-634

proximately as if it were simply in a fixed environment635

with β = β1, and the conditions given for the fixed en-636

vironment, Eq. (10), can be used to infer the evolution-637

ary outcome. An analogous argument holds for the dy-638

namics when τ2 ≫ τ1, but with β = β2 in Eq. (10).639

Once on the m = βi/4 manifold towards the high-640

fertilization rate fixed point, evolutionary branching to-641

wards anisogamy and oogamy can occur as described in642

Section 3.2. When the time spent in each environment643

is of the a comparable order however (e.g when τ1, and644

τ2 have not entirely dissimilar magnitudes), we find the645

emergence of conservative bet-hedging strategies (see646

Figures 7, 8 and Eq. (16)) where the population evolves647

to produce a single genotype adapted moderately to both648

environments [72, 74].649

Under a range of parameter conditions, we find anal-650

ogous evolutionary attractors for the fertilization rate651

as in the fixed-environment case (see Eq. (10) and Fig-652

ure 7), but with bet-hedging strategies [68] for the ga-653

mete mass;654

(m∗, α∗)→ (m∗α=0, 0)

(m∗, α∗)→ (m∗α→∞, αmax)
(14)

with655

m∗α=0 = P1β1 + (1 − P1)β2

m∗α→∞ =
1
4

(P1β1 + (1 − P1)β2) .
(15)

The population thus initially evolves either to high fer-656

tilization rates or zero fertilization rates, but with a mass657

which is the weighted average of the optimal strategy in658

either environment.659

Under a more restricted set of parameter conditions660

however we find that a bet-hedging strategy for the fer-661
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Figure 8: Analytic theory for the fertilization rate at the switching-
induced isogamous fixed point (blue line, see Eq. (16)) against sim-
ulations (dots). The black vertical line is the analytic prediction for
when this fixed point vanishes, with parameters left of the line cor-
responding to destabilized isogamy. Simulations are obtained by
averaging over 25 realisations of ⟨α(t)⟩ corresponding to stochastic
evolutionary trajectories. Parameters are δ = 0.01, µ = 5 × 10−4,
f0 = 2 × 10−3, τ1 = 0.25 and simulation run for 1.2 × 107 gener-
ations. All other parameters are the same as in the FRTI regime of
Figure 7 (a). Red markers are for (m(0), α(0)) = (0.29, 0.075), green
for (m(0), α(0)) = (0.29, 0.15) and blue for (m(0), α(0)) = (0.29, 0.3).

tilization rate can also evolve; essentially a switching-662

induced fixed point can manifest, as illustrated in Fig-663

ures 7 and 8. Here the tension between the evolution-664

ary dynamics in the two environments (which can se-665

lect for high fertilization rate and large gametes in one666

environment, and zero fertilization rate and small ga-667

metes in the other) can lead to the population being held668

in a state at which intermediate finite fertilization rate669

and isogamy form the evolutionarily stable bet-hedging670

strategy. In Appendix F.3, we show that the switching-671

induced fixed point is given by672

m∗ =
1
4

[

P1β1 + (1 − P1)β2
]

α∗ =
(1 −Cp)m∗

AMT (1 −Cz)

×

























(1 −Cz)
(

P1e
β1

2m∗ + (1 − P1)e
β2

2m∗

)

− (1 −Cp)

(1 −Cp)(P1e
β2

2m∗ + (1 − P1)e
β1

2m∗ ) − (1 −Cz)e
β1+β2

2m∗

























(16)
In Figure 7(c-d) we see that this switching induced673

fixed point is observed in the evolutionary simulations674

in which multiple traits can be held in the population675

under a mutation-selection balance. In the FRTI regime676

(gray lines), in which the environment changes more677

quickly, the population is held at the predicted mass678

m, while more variability between simulations is seen679

around the predicted fertilization rate α as a result of the680

weaker selection on this trait. In the slower-switching681

FRTE regime (purple lines), a greater quantitative dif-682

ference between the results of simulations and the ana-683

lytic predictions is observed. However in both regimes,684

the key prediction of finite fertilization rate (Figures 7685

and 8) and isogamy is indeed captured (see Figures F.15686

and F.16).687

4. Discussion688

In this paper we have extended classic results on689

the evolution of anisogamy [14, 25] to account for690

parthenogenetic development [41, 42], the co-evolution691

of fertilization rate and gamete cell mass, and stochas-692

tically varying environments. In doing so we have693

demonstrated the possibility of a continuous evolu-694

tionary trajectory from an initial state of isogamy to695

anisogamy followed by oogamy, an evolutionary trajec-696

tory observed throughout the eukaryotes [3, 10].697

Consistent with earlier theoretical results on the evo-698

lution of anisogamy that neglected the pre-existence of699

self-incompatible mating types [24], we have shown700

that anisogamy can evolve from isogamy through evo-701

lutionary branching. However our model also shows702

that when the possibility of parthenogenetic develop-703

ment is accounted for, a subsequent branching is pos-704

sible, comparable to oogamy. Importantly, this tran-705

sition is possible even without explicitly accounting706

for pheromone-receptor systems [29, 30], speed-size707

relationships [32, 34], mechanistic gamete encounter708

rates [31] or costly motility [75], as in previous work.709

Amongst these, the model we present here most closely710

resembles that of [34], which explored the coevolution711

of mass and investment in motility to study how invest-712

ment in mating differed between the two sexes. Our fer-713

tilization rate parameter α can be thought of as a crude714

compound parameter that captures the effect of motility,715

surface area for collision and the collision probability716

as entailed in [34]. However unlike previous work that717

does not consider the possibility of parthenogenesis, the718

fertilization rate parameter α also captures the effect of719

gamete recognition protein affinity.720

Importantly, while selection for oogamy or pseu-721

dooogamy in earlier work is driven by selection to in-722

crease fertilization rates in species with obligate sexual723

reproduction [29, 30, 32, 34, 31], in our model selec-724

tion for oogamy is driven by sexual conflict [76] and725

a selection pressure for parthenogenetic macrogametes726

to reduce their fertilization rate. In particular, microga-727

metes receive a survival advantage by increasing their728

fertilization rate with macrogametes, while macroga-729

metes evolve to zero fertilization rate to overcome fer-730

tilization costs. This requirement of fertilization costs731

for oogamy to evolve under parthenogenesis provides a732
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complementary result to [27], where instead high motil-733

ity costs were required for oogamy.734

Given the selection pressure for macrogametes to735

avoid fertilisation in these costly scenarios, it is natural736

to ask why macrogametes should not evolve defensive737

traits to prevent fertilisation by microgametes. Such738

traits are possible; selection on eggs to reduce the affin-739

ity of their gamete recognition proteins is understood740

to operate under high sperm competition (high sperm741

density) in order to reduce the probability of detrimen-742

tal polyspermy [49] or to select for fit sperm/paternal743

genotypes, or to limit polyspermy [77]. A simple an-744

swer is that we have not accounted for the genetic bene-745

fits provided by sex [78], which would drive additional746

selection for fertilisation. However deeper insights can747

be developed by considering the empirical literature.748

The eggs of parthenogenetic brown algal species are749

known to produce pheromones in general [79]. This750

is also true of the brown alga Scytosiphon lomentaria751

in the southern seas around Japan, where female ga-752

metes release pheromones to attract male gametes [80].753

However, in the northern seas around Japan, female S.754

lomentaria gametes can exhibit completely suppressed755

pheromone production and populations consist entirely756

of females reproducing parthenogenetically [80]. These757

empirical results build on earlier work showing that fe-758

males from the parthenogenetic populations release ga-759

metes that are larger and produce lower levels of sex760

pheromones [81]. Interestingly, these qualitative be-761

haviours are broadly captured by our model if one as-762

sumes that colder sea temperatures can be interpreted763

as an increase in the environmental harshness parame-764

ter, β, as illustrated in Figure 9. Essentially, increas-765

ing β (as might be expected in colder waters) can lead766

to Eq. (13) being satisfied such that αmacro → 0 (e.g.767

pheromone production is switched off) while simultane-768

ously leading to increased macrogamete size according769

to Eq. (11).770

We have shown analytically that various conditions771

exist that can arrest the population at different stages772

of the isogamy-anisogamy-oogamy evolutionary trajec-773

tory. In particular our model suggests that isogamy can774

be stabilized under greater energetic constraints or in775

highly turbulent environments. We have also shown776

that isogamy can be stabilized as a bet-hedging strat-777

egy under switching environmental conditions [68, 72].778

Here, in organisms that reproduce parthenogenetically,779

microgametes that fail to find a partner face low sur-780

vival prospects under harsh environmental conditions,781

and thus the transition to anisogamy is frustrated. Such782

dynamics may be at play in isogamous species that re-783

produce parthenogenetically, such as those among the784
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Figure 9: Plot illustrating the suppression of macrogamete fertiliza-
tion when β becomes large. Black line shows the right hand side of
the inequality in Eq. (13). When this calls below Cz (black dashed
line) selection acts to drive the macrogamete fertilization rate αmax to
zero. Thus the model predicts that as the harshness of the environ-
ment β increases, macrogametes should evolve to resist fertilization
and grow larger (see Eq. (11)). Parameters used are Cz = 0.2, Cp = 0
and δm = 0.075.

ectocarpus [82] and Blidingia minima [37].785

The results described above are dependent on the786

capacity for parthenogenetic development amongst ga-787

metes that fail to find a partner to fertilize with. Such788

a capacity is widespread in the brown algae [51] and789

can also be found in the green algae [41]. We have790

also shown that for the evolution of oogamy in our791

model, we require costs of fertilization to exceed those792

of parthenogenetic development. While empirically793

parthenosporophytes have lower survival probabilities794

than zygotes [41], disentangling the costs of develop-795

ment pathways (parthenogenesis or fertilization) from796

those of increased mass is challenging [83, 42]. By in-797

voking costs to zygote formation arising from cytoplas-798

mic conflict [58], our work is reminiscent of alternative799

hypotheses for the evolution of anisogamy [59, 60], that800

suggest that anisogamy reduces the potential for such801

conflict by limiting cytoplasmic contributions from the802

microgamete. However many other costs to fertilization803

could be present, including the possibility of failure dur-804

ing cell fusion [57], and the energetic and time costs of805

sexual reproduction [62]. Unpacking and quantifying806

these costs remains an interesting area of empirical re-807

search [79].808

Our primary reason for neglecting the existence of809

mating types in our model was for mathematical sim-810

plicity [24]. Including such types in a model would811

be a natural next step, and based on the biological rea-812

soning above, such a model should demonstrate similar813

qualitative behaviours. However it is worthwhile noting814

that many models of the evolution of sexual reproduc-815

tion in early eukaryotes suppose the existence of a ªuni-816
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sexualº early ancestor that mated indiscriminately [84].817

Thus our model, which has neglected the existence of818

mating types, could be seen as reflecting such a sys-819

tem. In this context, the evolution of incompatibility be-820

tween macrogametes in our model (that fuse with each821

other at rate zero in the oogamous scenario) is inter-822

esting, as the origins of self-incompatible mating types823

are still debated [85, 86]. This mechanism would repre-824

sent an ªanisogamy consequenceº model for the evolu-825

tion of mating types that manages to identify the condi-826

tions under which fusion between large macrogametes827

is disadvantageous [87]. However as such ªanisogamy828

consequenceº models are not consistent with most em-829

pirical observations (that suggest mating types preceded830

anisogamy), this interpretation should be treated with831

caution.832

As with any model, there are omissions from our833

formulation. These include the mortality of gametes834

(known to stabilize isogamy [25]) the discrete nature835

of cell divisions leading to gametes [41], and non-local836

trait mutations. While these would be interesting ad-837

ditions to our model, the key insights derived from the838

PBS model have remained remarkably robust to such839

generalizations, and so the inclusion of these additional840

considerations to our model may lead primarily to quan-841

titative, rather than qualitative, changes in results. More842

notably, as motility and area of collision can be influ-843

enced by mass, it will be important to account for mass844

dependencies in future. As shown in [34], under a pos-845

itive speed-size relation, mass and fertilisation rate are846

likely to both evolve to increase, while under a negative847

speed-size relation, gametes that evolve a high motil-848

ity would be expected to evolve small masses. Simi-849

larly, costs to sexual reproduction include pheromone850

production. Such costs may therefore be a function of851

the fertilization rate, which we have not accounted for852

here. More generally, extending our mathematical ap-853

proach leveraging adaptive dynamics to switching envi-854

ronments [68] in other facultatively sexual populations855

might prove particularly fruitful [88, 89].856

In this paper, we have extended the models of [14, 24]857

in several ways; by allowing the fertilization rate to858

evolve, accounting for the possibility for unfertilized ga-859

metes to develop parthenogenetically should they fail to860

locate a partner, and subjecting the system to switching861

environments. In doing so, we have shown its capac-862

ity to parsimoniously capture continuous evolutionary863

trajectories from isogamy to oogamy in parthenogens,864

as well as the suppression of pheromone production865

in parthenogenetic external fertilizers. Moreover, our866

models emphasise the importance of investigating the867

co-evolutionary dynamics for a range of evolutionary868

parameters and their implications for the evolution of869

fertilization rates in parthenogens.870
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Appendix A. Individual sporophytes must pro-871

duce twice as many spores as872

Parthenosporophytes to maintain the873

same reproductive output874

Here, we show that diploid sporophytes must produce875

twice as many meio-spores as are produced by haploid876

parthenosoprophytes in order to maintain a parity in re-877

productive output (see Figure 2). Further, we show that878

meio-spore production in sporophytes below this level879

constitutes an implicit cost of fertilization.880

Recall that, in the main text, Cz is the survival cost881

incurred by taking the sexual reproductive route while882

Cp is the survival cost incurred by taking the partheno-883

genetic reproductive route. We denote F(T ) as the num-884

ber of fertilized zygotes, 2F(T ) as the number of hap-885

loid gametes that have formed zygotes at the end of a886

generation, and N(T ) as the number of unfertilized ga-887

metes at the end of a generation. The functional form888

for the absolute fitness of a single genotype is889

w = 2F(T )S (β,mz)(1 −Cz) + N(T )S (β,mp)(1 −Cp)

= (1 −Cp)
[

2F(T )S (β,mz)
(

1 −Cz

1 −Cp

)

+ N(T )S (β,mp)
]

(A.1)

where mz is the mass of fertilized zygotes, mp is the890

mass of unfertilized gametes and S (β,m) is the survival891

function (see Eq. (2)).892

Alternatively, we can express the model in terms of893

the number of sporophytes and parthenosporophytes,894

and their individual rates of meio-spore/spore produc-895

tion, Gz and Gp respectively. We again denote the num-896

ber of zygotes (destined to become diploid sporophytes)897

as F(T ) and the number of unfertilized gametes (des-898

tined to become haploid parthenosporophytes) as N(T ).899

The absolute fitness of a single genotype can now be900

written901

w = F(T )S (β,mz)Gz + N(T )S (β,mp)Gp

= Gp

(

F(T )S (β,mz)
Gz

Gp

+ N(T )S (β,mp)
)

. (A.2)

We now note that in terms of relative fitness, the con-902

stant factors (1 − Cp) and Gp preceding Eqs. (A.1-A.2)903

are inconsequential.904

Now equating the pre-factors of F(T )S (β,mz) in905

Eqs. (A.1-A.2) allows us to evaluate the mass-906

independent costs to zygote formation in the model. We907

see that908

2
(

1 −Cz

1 −Cp

)

=
Gz

Gp

(A.3)

which we can rearrange in terms of Cz to get909

Cz = 1 − Gz

2Gp

(1 −Cp) . (A.4)

For zero costs to parthenogenesis, Cp = 0, produc-910

tion of meio-spores by sporophytes (Gz) must be twice911

that of spores by parthenosporophytes (Gp) in order to912

achieve zero cost to zygote formation. This result has913

a straightforward biological interpretation. Since under914

Mendelian inheritance the reproductive fitness of sporo-915

phytes is shared between the gametes that contribute to-916

wards its production, the fitness of sporophytes must be917

at least twice that of parthenosporophytes to avoid an918

implicit cost to zygote formation.919

Appendix B. Within generation dynamics920

At the start of each generation, we assume a total of921

A organisms of mature cell size (or energy budget) M922

divide to form gametes. We further assume that the fre-923

quency of mutants in this adult population is given by924

1 ≥ f̂i ≥ 0, with i = m for mutants that change the925

mass of gametes and i = α for mutants that change the926

fertilization rate of gametes.927

Appendix B.1. Fertilization kinetics: mutant with dif-928

ferent mass929

If a mutation occurs changing the size of gametes930

produced by the mutant (m̂ = m + δm for resident ga-931

mete mass m), the fertilization kinetics themselves (see932

Eq. (1)) are unaffected by the change in mass. How-933

ever the number of gametes produced by the mutant will934

change. Denoting by N the number of resident gametes935

and N̂ the number of mutant gametes, we have936

dN

dt
= −α(N2 + NN̂) ; N(0) =

AM(1 − f̂m)
m

dN̂

dt
= −α(N̂2 + NN̂) ; N̂(0) =

AM f̂m

m̂
,

(B.1)

which has a solution937

N(t) =
N(0)

1 +
(

N(0) + N̂(0)
)

αt

N̂(t) =
N̂(0)

1 +
(

N(0) + N̂(0)
)

αt
.

(B.2)

This allows us to determine the number of unfertilized938

cells of each type at the end of the fertilization window939

at U = N(T ) and Û = N̂(T ), where we recall that T is940

the length of the fertilization window.941

We also need to determine the number of fertilized942

cells formed from the fertilization of two residents, FN
N

,943

two mutants, F N̂

N̂
, and a mutant and a resident, F N̂

N
. For944

this we need to solve945
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dFN
N

dt
=

1
2
αN2; FN

N (0) = 0

dF N̂
N

dt
= αNN̂; F N̂

N (0) = 0

dF N̂

N̂

dt
=

1
2
αN̂2; F N̂

N̂
(0) = 0 ,

(B.3)

which can be solved by substituting for N and N̂ from946

Eq. (B.2) to yield947

FN
N (t) =

1
2

N(0)2αt

1 +
(

N(0) + N̂(0)
)

αt

F N̂
N (t) =

N(0)N̂(0)αt

1 +
(

N(0) + N̂(0)
)

αt

F N̂

N̂
(t) =

1
2

N̂(0)2αt

1 +
(

N(0) + N̂(0)
)

αt
.

(B.4)

Appendix B.2. Fertilization kinetics: mutant with dif-948

ferent fertilization rate949

If a mutation occurs changing the fertilization rate of950

gametes produced by the mutant (α̂ = α + δα for resi-951

dents with fertilization rate α), the fertilization kinetics952

themselves are altered relative to Eq. (1). We assume for953

simplicity that the fertilization rate between resident-954

pairs is the mean of the fertilization rate between the955

two types in isolation, such that956

dN

dt
= −αN2 −

(

α + α̂

2

)

NN̂ ; N(0) =
AM(1 − f̂α)

m

dN̂

dt
= −α̂N̂2 −

(

α + α̂

2

)

NN̂ ; N̂(0) =
AM f̂α

m
.

(B.5)
Solving this equation is slightly less straightforward957

than solving Eq. (B.1). However we can make analytic958

progress by making a change of variables and applying959

an approximation based on small mutational step size960

δα.961

We introduce the transformed variables Ntot = N + N̂962

and r̂ = N̂

N+N̂
, representing the total number of unfertil-963

ized cells and the frequency of unfertilized mutant cells964

respectively. Eq. (B.5) then becomes965

dNtot

dt
= −N2

tot(α + δα r̂)

dr̂

dt
= −1

2
δαNtotr̂(1 − r̂) .

(B.6)

We now see that although this equation is also in-966

tractable, the leading order dynamics of Ntot are gov-967

erned by α. Therefore when α ≫ δα, we make the968

approximation (dNtot/dt) ≈ −αN2
tot. We then obtain969

Ntot(t) ≈
Ntot(0)

1 + Ntot(0)αt
, (B.7)

and substituting this into our equation for r̂ in Eq. (B.6),970

we can solve to obtain971

r̂(t) =
r̂(0)

r̂(0) + (1 − r̂(0))(1 + Ntot(0)αt)
δα
2α

(B.8)

Inverting the transformation, we then arrive at972

N(t) = Ntot(t)(1 − r̂(t))

N̂(t) = Ntot(t)r̂(t) ,
(B.9)

with Ntot and r̂(t) taken from Eqs. (B.7-B.8). We shall973

see in Appendix B.4 that calculating FN
N

, F N̂

N̂
, and F N̂

N
974

explicitly is in fact unnecessary, and these expressions975

for N(t) and N̂(t) are sufficient for analytical progress.976

Appendix B.3. Change in mutant frequency over a gen-977

eration: mutant with different mass978

We begin by calculating the fitness of the resident and979

a mutant that changes the mass of gametes, wm and ŵm980

respectively, which are simply given by the total number981

of cells of each type at the end of a generation. Recall-982

ing that fertilized and unfertilized gametes both survive983

with a probability governed by the parameter β and the984

mass of the cell mc (see Eq. (2)), and that fertilized cells985

survive with an additional probability (1 −Cz), we have986

wm = (1 −Cz)
(

2FN
N (T )S (β, 2m)

+F N̂
N (T )S (β,m + m̂)

)

+ N(T )S (β,m)(1 −Cp)

ŵm = (1 −Cz)
(

2F N̂

N̂
(T )S (β, 2m̂)

+F N̂
N (T )S (β,m + m̂)

)

+ N̂(T )S (β, m̂)(1 −Cp)
(B.10)

where FN
N

(T ), F N̂

N̂
(T ), and F N̂

N
(T ) are taken from987

Eq. (B.4), and N(t) and N̂(t) are taken from Eq. (B.2).988

These expressions can be used to calculate the fre-989

quency at the end of the generation, f̂ ′m, of a mutant that990

changes the mass of gametes as991

f̂
′

m =
ŵm

wm + ŵm

. (B.11)

The change is the frequency of the mutant over the992

course of a generation is then f̂ ′m − f̂m.993
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Figure B.10: Illustration of the total proportion of cells that are fertil-
ized at the end of a fertilization period (length T = 1) in a monomor-
phic isogamous population (without branching) as a function of trait
variables m and α. Parameters used are the same as those in Fig-
ure 3. The vertical black dashed line gives the location of the manifold
(β/4, α), along which the population is attracted to when approaching
the high α fixed point.

Appendix B.4. Change in mutant frequency over a gen-994

eration: mutant with different fertiliza-995

tion rate996

Taking an analogous approach to Appendix B.3, we997

begin by calculating the fitness of the resident and a mu-998

tant that changes the fertilization rate, wα and ŵα respec-999

tively. We obtain1000

wα = (1 −Cz)
(

2FN
N (T )S (β, 2m)

+F N̂
N (T )S (β, 2m)

)

+ (1 −Cp)N(T )S (β,m)

= (1 −Cz)S (β, 2m) (N(0) − N(T ))

+ (1 −Cp)N(T )S (β,m)

ŵα = (1 −Cz)
(

2F N̂

N̂
(T )S (β, 2m) (B.12)

+F N̂
N (T )S (β, 2m)

)

+ (1 −Cp)N̂(T )S (β,m)

= (1 −Cz)S (β, 2m)
(

N̂(0) − N̂(T )
)

+ (1 −Cp)N̂(T )S (β,m)

where N(t) and N̂(t) are now taken from Eq. (B.9). Here1001

we have used the fact that since the survival function for1002

fertilized cells, S (β, 2m), is independent of the compo-1003

sition of the fertilized cells (mutations here only affect1004

fertilization rate) the number of cell-types contributing1005

to the fertilized cells can be inferred under cell conser-1006

vation during the fertilization period (e.g. for resident1007

cell types d/dt
[

2FN
N

(t) + F N̂
N

(t) + N(t)
]

= 0, and simi-1008

larly for mutant cell types).1009

These expressions can be used to calculate the fre-1010

quency at the end of the generation, f̂ ′α, of a mutant that1011

changes the fertilization rate as1012

f̂
′

α =
ŵα

wα + ŵα
. (B.13)

The change is the frequency of the mutant over the1013

course of a generation is then f̂ ′α − f̂α.1014

Appendix C. Invasion dynamics1015

Our aim is to derive the dynamics of the frequency1016

of a mutant with a small mutation in either of the traits,1017

m or α, over multiple generations. We introduce tg as a1018

measure of the number of discrete generations.1019

Appendix C.1. Invasion ODE: mutant with different1020

mass1021

We begin by deriving the dynamics for the frequency1022

of a mutant that changes the mass of gametes. We be-1023

gin by assuming that the mutational step size, δm, is1024

small. Under these conditions, the frequency of mu-1025

tants changes only by a small amount over the course of1026

one generation, and we can approximate the frequency1027

of mutants at the end of the generation (see Appendix1028

B.3) by f̂ ′m = f̂m + δm (d f̂ ′m/d δm)|δm=0, where f̂m is the1029

frequency of the mutants at the beginning of the gener-1030

ation. The dynamics of the mutant frequency over an1031

invasion can then be approximated by1032

d f̂m

dtg
=

(

f̂ ′m − f̂m

tg

)
∣

∣

∣

∣

∣

∣

tg→1

= δm

[ d f̂ ′m
d δm

]

∣

∣

∣

∣

∣

δm=0

= δm



















AMαT (1 −Cz)e
β

2m (β − 4m) − 4m(m − β)(1 −Cp)

4m2
(

AMαT (1 −Cz)e
β

2m + m(1 −Cp)
)



















× f̂m(1 − f̂m)

≡ hm(m, α, β,Cz,Cp) f̂m(1 − f̂m) ,
(C.1)

(see also Eq. (3)), where d f̂ ′m/d δm is derived from1033

Eq. (B.11). We show in Figure C.11 that as expected,1034

this is a good approximation for the dynamics when δm1035

is small.1036

Appendix C.2. Invasion ODE: mutant with different1037

fertilization rate1038

We now derive the dynamics for the frequency of a1039

mutant that changes the fertilization rate of gametes.1040

Taking an analogous approach to Appendix C.1, we1041

assume the mutational step size for mutation, δα, is1042
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Figure C.11: Invasion dynamics for a mutant with mass m+ δm. Blue
- analytical prediction using Eq. (C.1), black - numerical simulation.
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small. We can then approximate the frequency of mu-1043

tants at the end of the generation (see Appendix B.4) by1044

f̂ ′α = f̂α + δα (d f̂ ′α/d δα)|δα=0, where f̂α is the frequency1045

of the mutants at the beginning of the generation. The1046

dynamics of the mutant frequency over an invasion can1047

then be approximated by1048

d f̂α

dtg
=













f̂ ′α − f̂α

tg













∣

∣

∣

∣

∣

∣

tg→1

= δα

[ d f̂ ′α
d δα

]

∣

∣

∣

∣

∣

δα=0

= δα



















m
(

(1 −Cz)e
β

2m − (1 −Cp)
)

ln
(

αAMT
m
+ 1

)

2α
(

αA(1 −Cz)MTe
β

2m + m(1 −Cp)
)



















× f̂α(1 − f̂α)

≡ hα(m, α, β,Cz,Cp) f̂α(1 − f̂α) ,
(C.2)

(see also Eq. (4)) where d f̂ ′α/d δα is derived from1049

Eq. (B.13). We show in Figure C.12 that as expected,1050

this is a good approximation for the dynamics when δα1051

is small.1052

1053

Appendix D. Deriving Evolutionary dynamics us-1054

ing a multidimensional approach1055

The evolutionary dynamics can be derived with-1056

out specifying the invasion dynamics using the stan-1057

dard multidimensional approach of evolutionary analy-1058

sis given in [90, 91, 92] (which does not require the full1059

g

<

Figure C.12: Invasion dynamics for a mutant with fertilization rate
α+ δα. Blue - analytical prediction using Eq. (C.2), black - numerical
simulation. The initial conditions and parameters are the same as in
Figure C.11 except δα = 1/200, δm = 0 and G = 1.5 × 104.

derivation of the invasion trajectories calculated in Ap-1060

pendix C). First, we consider the fertilisation kinetics,1061

which can be approximated by1062

dN

dt
= −αN2 (D.1)

dN̂

dt
= − (α + α′)

2
NN̂

with N(0) = (AM)/m and N̂(0) = (AM)/(m + δm) if1063

a mutation occurs in m. As mutants are assumed to be1064

rare, we have here neglected mutant-mutant interactions1065

which significantly simplifies the analysis [34, 93] (see1066

Eq. (B.5) for comparison). We now consider the fitness1067

of the mutant, where the mutant has mass m̂ = m + δm1068

and fertilisation rate α̂ = α + δα. The fitness of the1069

mutant relative to that of the resident is given by1070

Ŵ =
ŵ

ŵ + w
≈ ŵ

w
(D.2)

where w and ŵ are the absolute fitness of the mutant1071

and resident respectively and the approximation for the1072

relative fitness Ŵ holds to leading order when mutants1073

are rare. The absolute fitnesses can be derived from1074

Eq. (D.1) as1075

w = 2FN
N (T )S (β, 2m)(1 −Cz) + N(T )S (β,m)(1 −Cp)

(D.3)
and1076

ŵ = F N̂
N (T )S (β,m + m̂)(1 −Cz) + N̂(T )S (β, m̂)(1 −Cp) ,

(D.4)
with FN

N
= (N(0) − N(t))/2 and F N̂

N
= (N̂(0) − N̂(t)). To1077

derive the evolutionary ODEs, we calculate the fitness1078
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gradient given by1079

∇Ŵ =

(

dŴ

dδm
,

dŴ

dδα

)
∣

∣

∣

∣

∣

δm=δα=0
(D.5)

which gives exactly what is given in Eq. (5). Two spe-1080

cific scenarios of Eq. (D.2) can be simply obtained by1081

linearising Eq. (B.11) or Eq. (B.13) about their mutant1082

free steady states f̂m = 0 or f̂α = 0, i.e1083

d f̂ ′m

d f̂m

∣

∣

∣

∣

∣

∣

f̂m=0

or
d f̂ ′α

d f̂α

∣

∣

∣

∣

∣

∣

f̂α=0

(D.6)

Since Eq. (B.11) and Eq. (B.13) considers mutations in1084

one trait at a time, [d f̂ ′m/d f̂m]| f̂m=0 in Eq. (D.6) equals1085

Eq. (D.2) evaluated at δα = 0 and [d f̂ ′α/d f̂α]| f̂α=0 equals1086

Eq. (D.2) evaluated at δm = 0. We prove this as follows.1087

Denoting ŵ j as the absolute fitness where j ∈ {m, α},1088

Eq. (B.11) or Eq. (B.13) can be expressed as1089

f̂ ′j =
ŵ j

w j + ŵ j

(D.7)

and applying the quotient rule, we find1090

d f̂ ′
j

d f̂ j

∣

∣

∣

∣

∣

∣

f̂ j=0

=
dŵ j/d f̂ j

w j

∣

∣

∣

∣

∣

∣

f̂ j=0

(D.8)

since ŵ j| f̂ j=0 = 0. By noting that w j| f̂ j=0 is equal to1091

Eq. (D.3) and [dŵ j/d f̂ j]| f̂ j=0 is equal to Eq. (D.4) with1092

δm or δα equal to 0. This shows how this multidi-1093

mensional approach yields the exact same evolutionary1094

ODEs, Eq. (5), as is given in the main text.1095

The following appendix gives an analogous deriva-1096

tion using instead the invasion dynamics that assume1097

mutations in m and α occur independently, however this1098

does not change the final evolutionary dynamics ob-1099

tained.1100

Appendix E. Evolutionary dynamics: Fixed envi-1101

ronment1102

Appendix E.1. Derivation of evolutionary ODEs1103

We begin by noting that the functional form of1104

d f̂m/dtg (see Eq. (C.1)) and d f̂α/dtg (see Eq. (C.2)) is1105

f̂i(1 − f̂i), which implies a situation of trait substitu-1106

tion [67]; mutants are either driven to fixation or extinc-1107

tion, and polymorphic equilibria are not possible. This1108

simplifies the subsequent analysis considerably.1109

Taking a classic adaptive dynamics approach [67] and1110

define the invasion fitness of the mutants as their per-1111

capita rate of reproduction upon arising in the popula-1112

tion (i.e. when f̂m ≈ 0 and f̂α ≈ 0). Under the standard1113

assumptions of adaptive dynamics (i.e. that mutations1114

are of small effect, 1 ≫ δm, δα, and occur sufficiently1115

rarely that each mutation can fixate before a new muta-1116

tion occurs), the evolutionary dynamics are given by1117

dm

dτ
=

d

d f̂m

d f̂m

dtg

∣

∣

∣

∣

∣

f̂m=0
= hm(m, α, β,Cz,Cp)

= Hm(m, α, β,Cz,Cp)

dα
dτ
=

d

d f̂α

d f̂α

dtg

∣

∣

∣

∣

∣

f̂α=0
= hα(m, α, β,Cz,Cp)

= Hα(m, α, β,Cz,Cp) .

(E.1)

Substituting for d f̂m/dtg from Eq. (C.1), and d f̂α/dtg1118

from Eq. (C.2), we obtain Eq. (5) in the main text.1119

The evolutionary dynamics given in Eq. (E.1) can1120

also be derived using the multidimensional approach as1121

described in [91, 90] (see Appendix D).1122

Appendix E.2. Analysis of ODEs1123

In this section we aim to analytically characterise the1124

long term evolutionary behaviour of the population in a1125

fixed environment, with dynamics given by Eq. (5), as1126

illustrated in Figure 3.1127

We begin by calculating the evolutionary behaviour1128

of m when the fertilization rate is fixed to zero (α =1129

0). Solving Hm(m, 0, β,Cz,Cp) = 0, for m = m∗
α=0 we1130

obtain1131

δm
(β − m)

m2
= 0

=⇒ m∗α=0 = β .

(E.2)

We now turn to the evolutionary behaviour of m and α.1132

First, we substitute the point (m, α) = (β, 0) calculated1133

in Eq. (E.2) into Eq. (E.1), which gives1134

dm

dτ
= Hm(β, 0, β,Cz,CP) = 0 (E.3)

dα

dτ
= Hα(β, 0, β,Cz,CP)

For (m∗
α=0, 0) identified above to remain stable if evolu-1135

tion on α is allowed requires that [dα/dτ]|(m=β,α=0) < 01136

(i.e. that evolution selects against increases in α). Stat-1137

ing this condition in full, we have1138

0 > δα



















m
(

(1 −Cz)e
β

2m − (1 −Cp)
)

ln
(

αAMT
m
+ 1

)

2α
(

αA(1 −Cz)MTe
β

2m + m(1 −Cp)
)



















∣

∣

∣

∣

∣

∣

∣

∣

(m=β,α=0)

=⇒ 0 > (1 −Cz)e
1
2 − (1 −Cp)

=⇒ Cz > 1 − (1 −Cp)e−
1
2 .

(E.4)
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If fertilization costs exceed this value, evolutionary tra-1139

jectories starting at (m∗
α=0, 0) will remain there (see Fig-1140

ure 3, panel (b)). This can be shown analytically by1141

checking that it is an evolutionary stable state. First,1142

we prove that it is convergence stable by showing that1143

∂m[dm/dτ]|(m=β,α=0) < 0.1144

d

dm

dm

dτ

∣

∣

∣

∣

∣

(m=β,α=0)
= − 2
β2
< 0 (E.5)

which implies that (m, α) = (β, 0) is stable. The evolu-1145

tionary stability of this point will be proven in Appendix1146

H. Conversely if fertilization costs do not exceed this1147

value, evolutionary trajectories starting at (m∗
α=0, 0) will1148

initially experience a selective pressure for increasing α,1149

due to the fact [dα/dτ]|m=β > 0 under these conditions1150

(see Figure 3, panel (a)); the dynamics are then pulled to1151

another evolutionary singularity, which we characterise1152

below.1153

When Cz > 1 − (1 − Cp) exp (−1/2) (but less than1154

another critical value, yet to be determined), only a sub-1155

set of initial conditions fall within the basin of attrac-1156

tion of this fixed point described above (see Figure 3,1157

panel (b)), with remaining initial conditions leading to1158

an evolutionarily state at which α∗ → ∞. Conversely,1159

when Cz < 1− (1−Cp) exp (−1/2), all initial conditions1160

lead to this fixed point at which α∗ → ∞ (see Figure 3,1161

panel a). We now calculate the mass to which the pop-1162

ulation evolves at this second fixed point. Taking the1163

limit α → ∞ in the evolutionary dynamics for m (see1164

Eq. (5)) and solving for zero;1165

0 = Hm(m, α, β,Cz,Cp)|α→∞

= δm
(β − 4m)

4m2

=⇒ m∗ =
β

4
.

(E.6)

Therefore the second early fixed point is at (m, α) →1166

(β/4,∞).1167

Since there is likely an upper limit on the fertilisation1168

rate biologically αmax, an alternative approach is to con-1169

duct a stability analysis about (m, α) = (β/4, αmax). Fur-1170

thermore, due to the small selection strength to increase1171

α when α is sufficiently high, αmax can be thought of1172

as a quasi-equilibrium. For the parameters in Figure 3,1173

the selection strength to increase α |Hα(m, α, β,Cz,Cp)|1174

becomes 6.86 × 10−5 when α = 10. To determine1175

the stability of Eq. (5), we calculate the eigenvalues of1176

its Jacobian evaluated at (m, α) = (β/4, αmax). The1177

functional form of all entries of the Jacobian is too1178

lengthy to include in the manuscript, however it is in-1179

cluded in the Mathematica code provided in the Data1180

availability statement. For the parameter values in Fig-1181

ure 3, the eigenvalues of the Jacobian evaluated about1182

(m, α) = (β/4, 10) are −16.00 and −1.29 × 10−5, which1183

implies it is convergence stable.1184

For even greater costs of fertilization, Cz, our math-1185

ematical analysis (which assumes monomorphic resi-1186

dent populations and no evolutionary branching) sug-1187

gests that (m, α) → (m∗
α=0, 0) becomes the only at-1188

tractor, with (m, α) → (β/4,∞) ceasing to be a fixed1189

point. To determine the critical cost at which this oc-1190

curs, we take [dα/dτ]m=β/4 and calculate the conditions1191

under which this is negative when α is large (i.e. when1192

(m, α)→ (β/4,∞) is no longer attracting, but repelling).1193

Expanding [dα/dτ]m=β/4 in small 1/α, we find that to1194

leading order we must have;1195

0 > δα



















m
(

(1 −Cz)e2 − (1 −Cp)
)

ln
(

αAMT
β

)

8α2A(1 −Cz)MTe2



















=⇒ 0 > (1 −Cz)e2 − (1 −Cp)

=⇒ Cz > 1 − (1 −Cp)e−2

=⇒ Cz ⪆ 0.86 , for Cp = 0 .
(E.7)

However, while this accurately captures the short-term1196

evolutionary dynamics, we see evolutionary branching1197

(which our model Eq. (5) does not account for) should1198

trajectories approach the m ≈ β/4 manifold. Un-1199

less costs are exceedingly high (Cz ≈ 1), this eventu-1200

ally leads to anisogamy followed by oogamy (see Fig-1201

ure E.13). We discuss this more in Appendix H.1202

Appendix E.3. Implementation of simulations1203

Here we detail the process of numerical simula-1204

tion (see Code availability statement). We employ a1205

multigenotype model whereby a mutation occurs at rate1206

µ. This rate is the inverse of the expected number of1207

fertilization processes (i.e. generations) until the next1208

mutation event. Before each successive mutation event,1209

the number of fertilization processes until the next mu-1210

tation event is determined by generating a number from1211

a Geo(µ) distribution and taking the inverse of that num-1212

ber. In an S genotype model, if a given genotype i has1213

a trait value of (mi, αi) and has frequency fi, then the1214

mean population trait value is given by1215

⟨m⟩ =
S

∑

i=1

mi fi , ⟨α⟩ =
S

∑

i=1

αi fi (E.8)

The simulations in Figure 3 are repeated for 5500 mu-1216

tation events. Below, we detail how we simulate the1217

dynamics on each timescale.1218
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Fertilization Kinetics1219

We construct our model for fertilization kinetics1220

assuming that each genotype, characterised by their1221

unique (mi, αi), can fertilize with one another. The in-1222

put parameters of this function are the trait values of1223

each genotype m and α, their frequency in the preceding1224

adult generation f , and the parameters A, M and T . The1225

fertilization kinetics simulations are then run according1226

to1227

dNi

dt
= −1

2

S
∑

j=1

(αi + α j)NiN j (E.9)

dFi j

dt
=

1
2

(αi + α j)NiN j (E.10)

dFii

dt
=

1
2
αiN

2
i

where Fi j is the number of fertilized cells formed from1228

genotypes i and j, and Fii is the number of fertil-1229

ized cells formed from two cells of genotype i for any1230

i, j ∈ [1, S ]. The initial conditions are1231

Ni(0) =
AM fi

mi

(E.11)

Fi j(0) = 0 (E.12)

The fertilization process is run for a fixed time period T .1232

At the end of this time period, the function outputs the1233

number of cells of each type. These include the num-1234

ber of unfertilized cells with each trait pair, Ni(T ), and1235

fertilized cells of each type Fi j(T ).1236

Single Generation Dynamics1237

We simulate the frequency of each genotype after the1238

end of each generation taking into account the survival1239

probability of each genotype. Upon maturation, only1240

a fraction of unfertilized and fertilized cells survive to1241

adulthood. We use the outputs of the fertilization kinetic1242

function along with the Vance survival functions Eq. (2)1243

to calculate the probability that each progeny survives1244

into adulthood. The single generation dynamics are run1245

according to1246

f ′i =
wi

∑S
j=1 w j

(E.13)

wi = (1 −Cp)Ni(T )S (β,mi) (E.14)

+ (1 −Cz)
( S

∑

j=1, j,i

Fi j(T )S (β,mi + m j)

+ 2Fii(T )S (β, 2mi)
)

where f ′
i

is the frequency of genotype i in the subse-1247

quent generation and wi is its absolute fitness. The input1248

parameters of this function are Ni(T ) and Fi j(T ), m ,α,1249

β, Cz and Cp whilst the output is f , the frequency of all1250

genotypes at the end of the generation.1251

Invasion Dynamics1252

The invasion dynamics are run for approximately one1253

unit of τ (i.e. until the next randomly chosen mutation1254

event after G generations). As outlined in the open-1255

ing paragraph of Appendix E.3, G is generated from a1256

Geo(µ) distribution following each mutation event. The1257

inputs of this function are f , m, α, A, M, T , Cz, Cp, G1258

and β and the output is the frequency of each genotype1259

f after one unit of τ (i.e after G fertilization processes).1260

Please note we have adopted one single notation for the1261

frequency of all genotypes.1262

Evolutionary Dynamics1263

The evolutionary dynamics have the input parameters1264

δ, µ, f , Nmut, f0, A, M, T , Cz and Cp where δ is the1265

mutational stepsize, the initial frequency of a newly in-1266

troduced mutant f0 is chosen to be small (equal to 0.0021267

in our model). We initialise the simulation with two1268

genotypes, where each genotype is characterised by a1269

unique pair of trait values e.g. (mi, αi) for genotype i. A1270

mutant is introduced into the population after a random1271

number of fertilization processes G (generated from a1272

Geo(µ) distribution) at frequency f0. The mutation is1273

chosen to occur in either α or m with equal probabil-1274

ity 1/2. The mutation also acts to increase/decrease the1275

trait value each with probability 1/2. Upon introduction1276

of this mutant, the invasion dynamics of the population1277

is run for G fertilization processes. In the meantime,1278

the mean mass and fertilization rate of the population is1279

recorded using Eq. (E.8). Next, we repeat the process of1280

introducing a new mutant into the population. Since the1281

population now has more than two genotypes, the geno-1282

type that mutates is chosen with probability weighted1283

by the frequency of each genotype. There is now the1284

possibility of back mutation to one of the existing geno-1285

types. In this case, if an existing genotype k with fre-1286

quency fk mutates to another existing genotype l that1287

has frequency fl, then following mutation, the frequency1288

of genotype k becomes fk − f0 and the frequency of1289

genotype l becomes fl + f0. Furthermore, a genotype1290

is thought to be extinct if its frequency falls below 10−3,1291

in which case we remove that genotype.1292

Appendix E.4. Evolutionary Branching in Gamete1293

Mass and fertilization rate1294

In this section we present additional numerical re-1295

sults investigating the evolutionary branching that oc-1296
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curs in simulations on the manifold m ≈ β/4 (along1297

which dα/dt ≈ 0).1298

In a fixed environment, when Cz is small relative to Cp,1299

branching in fertilization rate still occurs but no longer1300

gives rise to oogamy1301

When the cost to fertilization, Cz is small compared1302

to Cp, we find that although branching in both gamete1303

mass and fertilization rate still occurs, the branching1304

in α no longer acts to decrease the fertilization rate of1305

macrogametes. Therefore, we observe pseudooogamy1306

but not oogamy. This behaviour is illustrated in Figures1307

6 and I.19. We can estimate the critical value of Cz at1308

which this occurs by comparing the survival probability1309

of a macrogamete that does not fertilize with a microga-1310

mete, which has cost Cp with that of a macrogamete1311

that does fertilize with a microgamete at cost Cz; if this1312

first probability exceeds the second, there should be no1313

evolutionary pressure for oogamy to evolve. We find1314

(1−Cp) exp
(

− β

mmacro

)

> (1−Cz) exp
(

− β

mmacro + mmicro

)

(E.15)
or, noting that mmacro approaches β − δm and mmicro ap-1315

proaches δm1316

(1 −Cp) exp
(

− β

β − δm

)

> (1 −Cz) exp (−1) (E.16)

=⇒ 1 − (1 −Cp) exp
(

− δm
β − δm

)

> Cz ≥ 0 . (E.17)

In a fixed environment, when Cz is very large, branch-1317

ing in mass and fertilization rates can still occur, with1318

oogamy possible (dependent on initial conditions)1319

Our analysis of the dynamics of Eq. (5) in Appendix1320

E.2 suggested that zero fertilization rates is the only evo-1321

lutionary attractor when costs to fertilization are high1322

(see Eq. (E.7)). However, our analysis in Appendix H1323

along with our simulations reveal that although dα/dt <1324

0 along the m ≈ β/4 manifold, any trajectory that ap-1325

proaches this manifold can experience branching in ga-1326

mete mass, unless Cz = 1. Once branching in gamete1327

mass occurs, the smaller gametes (e.g. microgametes)1328

again experience a strong selective pressure to increase1329

their fertilization rate, despite the high costs imposed1330

by fertilization; sexual conflict drives the population1331

towards obligate oogamy imposed by motile microga-1332

metes. Thus as for Cz < 1, there is always a subset1333

of initial conditions that lead to trajectories along the1334

m ≈ β/4 manifold (most obviously initial conditions on1335

the manifold itself) and thus oogamy remains one of the1336

two evolutionary outcomes, albeit requiring an increas-1337

ingly small and biologically unrealistic set of initial con-1338

ditions (see Figure E.13 below).1339
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Figure E.13: Numerical illustration of evolutionary branching for the
case where Cz = 0.9 and Cp = 0. All other parameters the same as
Figure 3, except (m(0), α(0)) = (0.6, 0.5) and run for 3000/µ genera-
tions.

Appendix F. Evolutionary dynamics: switching en-1340

vironments with bet-hedging1341

We first tackle the derivation of the approximate dy-1342

namics in the FRTI (fast relative to invasion) switching1343

regime in Appendix F.1, before verifying the qualita-1344

tive robustness of these results in the FRTE switching1345

regime in Appendix F.1.1346

Appendix F.1. Derivation of evolutionary ODEs: FRTI1347

When the environment switches between the two en-1348

vironments many times before an invasion has time to1349

complete, the selection pressure would alternate be-1350

tween that of the two environments rapidly and the pop-1351

ulation effectively experiences the weighted average of1352

the two environments. The invasion dynamics can be1353

approximated by multiplying the frequency dynamics1354

by the weighted average of the selection gradients of1355

the two environments;1356

d f̂m

dtg
≈

[

P1hm(m, α, β1,Cz,Cp)

+P2hm(m, α, β2,Cz,Cp)
]

f̂m(1 − f̂m)

d f̂α

dtg
≈

[

P1hα(m, α, β1,Cz,Cp)

+P2hα(m, α, β2,Cz,Cp)
]

f̂α(1 − f̂α) ,

(F.1)

where hm(m, α, β,Cz,Cp) and hα(m, α, β,Cz,Cp) are1357

given in Eq. (C.1) and Eq. (C.2) respectively. In Fig-1358

ure F.14 we show that this indeed is a good approxi-1359

mation of the dynamics when δm and δα are small and1360

when the residency times in each environment are small1361

21



0 200 400 600

t
g

0

0.2

0.4

0.6

0.8

1

f m<

Figure F.14: Invasion dynamics for a population undergoing bet-
hedging when the environment switches FRTI. Blue curve is the ana-
lytical approximation using Eq. (F.1) and jagged curve is the numeri-
cal simulation. Mutation occurred in mass with δ = 0.005, f0 = 0.002,
(m(0), α(0)) = (0.3, 0.1), λ1→2 = 13/222, λ2→1 = 1/6. All other pa-
rameters the same as Figure 7.

relative to the invasion time. Note that as in the case of1362

the fixed environment, the functional form of fi in these1363

equations implies that trait substitution occurs for inde-1364

pendent mutations on the gamete mass and fertilization1365

rate.1366

We now apply the same approach as in Appendix E.11367

(see Eq. (E.1)) to obtain1368

dm

dτ
=

[

P1hm(m, α, β1,Cz,Cp)

+P2hm(m, α, β2,Cz,Cp)
] d

d f̂m

(

f̂m(1 − f̂m)
)

∣

∣

∣

∣

∣

f̂m=0
=

= P1Hm(m, α, β1,Cz,Cp) + P2Hm(m, α, β2,Cz,Cp)

dα
dτ
=

[

P1hα(m, α, β1,Cz,Cp)

+P2hα(m, α, β2,Cz,Cp)
] d

d f̂α

(

f̂α(1 − f̂α)
)

∣

∣

∣

∣

∣

f̂α=0
=

= P1Hα(m, α, β1,Cz,Cp) + P2Hα(m, α, β2,Cz,Cp) .
(F.2)

We see in Figure 7 that these also provide a good ap-1369

proximation of the evolutionary dynamics.1370

Appendix F.2. Derivation of evolutionary ODEs:1371

FRTE1372

In the FRTI scenario in the previous section, we sup-1373

posed that switching between the environments was1374

happening sufficiently regularly relative to the timescale1375

of invasion that the effective invasion dynamics could1376

be described by a weighted mean of the invasion dy-1377

namics in both environments (see Eq. (F.1)). Applying1378

an analogous logic, we now assume in the FRTE sce-1379

nario that switching between the environments occurs1380

regularly relative to the timescale of evolution (the ar-1381

rival rate of new mutations) that the effective evolution-1382

ary dynamics can be described by a weighted mean of1383

the evolutionary dynamics in both environments; that is1384

dm

dτ
= P1Hm(m, α, β1,Cz,Cp) + P2Hm(m, α, β2,Cz,Cp)

dα
dτ
= P1Hα(m, α, β1,Cz,Cp) + P2Hα(m, α, β2,Cz,Cp) .

(F.3)
We note that these are in fact exactly the same evolu-1385

tionary dynamics as derived in the FRTI scenario (see1386

Eq. (F.2)). In Figure 7 we show that these do indeed1387

remain a good approximation for the dynamics in the1388

FRTE scenario. The difference between the dynamics1389

in both regimes is quantitative, rather than qualitative.1390

In the very-fast switching FRTI regime, the populations1391

follow the effective dynamics very closely. In the com-1392

paratively slower FRTE regime, although the popula-1393

tions no longer follow the dynamics as well, the qualita-1394

tive picture of the dynamics is still captured by Eq. (F.3).1395

In particular, we still observe an evolutionarily stable1396

state of intermediate fertilization rate (see Figure 7).1397

Appendix F.3. Analysis of ODEs1398

We begin, as in Appendix E.2, by considering the1399

evolutionary behaviour of m when the fertilization rate1400

is fixed to zero (α = 0). We recall that if the population1401

was fixed in environment 1 or 2 with α = 0, the mass1402

of gametes would evolve to m = β1 and m = β2 respec-1403

tively. In the switching environment we instead find the1404

bet-hedging strategy1405

m∗α=0 = P1β1 + (1 − P1)β2 . (F.4)

Meanwhile the region of the boundary α = 0 over which1406

reduced fertilization rates are selected for is given by1407

[dα/dτ]|α=0 < 0, or1408

0 > (1 −Cz)
[

P1e
β1
2m + (1 − P1)e

β2
2m

]

− (1 −Cp)

=⇒ Cz > (1 −Cp) − 1

P1e
β1
2m + (1 − P1)e

β2
2m

.

(F.5)
If this condition holds for m = m∗

α=0, then the1409

switching-induced fixed point (m, α) = (m∗
α=0, 0) is sta-1410

ble. We next turn to the high fertilization rate fixed1411

point, for which α → ∞. In a similar manner to1412

Eq. (E.6) (albeit with Hm(m, α, β,Cz,Cp) replaced with1413

[P1Hm(m, α, β1,Cz,Cp) + P2Hm(m, α, β2,Cz,Cp)]), we1414
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Figure F.15: Numerical simulation showing an absence of branching
for a system undergoing bet-hedging in an environment that switches
FRTI. Parameters are same as Figure 7 (a) and system run for 4000/µ
generations.

find the bet-hedging strategy1415

m∗ =
1
4

[

P1β1 + (1 − P1)β2
]

. (F.6)

However, unlike in the fixed environment case, (m, α) =1416

(m∗,∞) is not always a fixed point.1417

In the switching environment, a third evolutionary1418

attractor can emerge, brought about by a balance be-1419

tween selection for high fertilization rates in one envi-1420

ronment and zero fertilization rates in the other. Solving1421

P1Hα(m, α, β1,Cz,Cp) + P2Hα(m, α, β2,Cz,Cp) = 0 for1422

α we obtain1423

α∗ =
m∗(1 −Cp)

AMT (1 −Cz)

×

























(1 −Cz)
(

P1e
β1

2m∗ + (1 − P1)e
β2

2m∗

)

− (1 −Cp)

(1 −Cp)(P1e
β2

2m∗ + (1 − P1)e
β1

2m∗ ) − (1 −Cz)e
β1+β2

2m∗

























.

(F.7)
A good approximation for m∗ in this equation can be1424

deduced by noting that the fixed point sits on a vertical1425

manifold of trajectories along which m is approximately1426

held constant as α → ∞; thus we substitute ≈ m∗ from1427

Eq. (F.6) to obtain the approximate expression for the1428

attractor (m∗, α∗) given in Eq. (16). In Appendix F.5,1429

we verify from simulations that evolutionary branching1430

does not occur at this switching-induced fixed point, and1431

that the population is instead held in a state of isogamy.1432

Appendix F.4. Implementation of simulations1433

In the bet-hedging scenario, we simulate the evo-1434

lutionary dynamics by implementing a Gillespie algo-1435

rithm. In particular, we introduce mutations and en-1436

vironmental switching events randomly with geometri-1437

cally distributed waiting times, where the waiting time1438

is measured in units of number of fertilization processes1439
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Figure F.16: Numerical illustration showing an absence of evolution-
ary branching for a system undergoing bet-hedging in an environment
that switches FRTE. Parameters the same as Figure 7 (c) and the sys-
tem is run for 4000/µ generations.

tg. To simulate the FRTI regime, we set the environmen-1440

tal switching rates to larger values than the mutation rate1441

i.e. λ2→1, λ1→2 >> µ. Likewise, in the FRTE regime,1442

we set λ2→1 and λ1→2 to smaller values than µ. The1443

mutation rate in the numerical simulation of the FRTI1444

regime overlaid in Figure 7 (a) is µ = 3.5 × 10−4 and1445

the switching rates are λ2→1 = 67/532 and λ1→2 = 1/4.1446

For Figure 7 (b) we have µ = 3.5× 10−4 and the switch-1447

ing rates are λ2→1 = 1/6 and λ1→2 = 13/222. For the1448

FRTE regime, µ = 5 × 10−4 and the switching rates are1449

λ2→1 = (67µ)/532 and λ1→2 = µ/4 in Figure 7 (a) and1450

λ2→1 = µ/6 and λ1→2 = (13µ)/222 in Figure 7 (b).1451

Appendix F.5. Absence of Evolutionary Branching at1452

Switching-Induced fixed point1453

In this section we present additional numerical results1454

that confirm that evolutionary branching does not oc-1455

cur at the switching-induced fixed point calculated in1456

Eq. (16). We see that under both FRTI and FRTE, the1457

population is held in a state of isogamy. This behaviour1458

is illustrated in Figures F.15 and F.16.1459

1460

Appendix F.6. Interpretation of Mutant Frequency1461

Growth Rate in Switching Environments1462

Eqs. (C.1) and (C.2) give the invasion dynamics in a1463

fixed environment. For simplicity, suppose we consider1464

the dynamics when the mutant frequencies, f̂i, are small,1465

as is the case at the beginning of an invasion. The mu-1466

tant frequencies then increase exponentially such that1467

f̂i(t) = f̂i(0) exp
[

hi(β)t)
]

for i = m, α , (F.8)

where we have suppressed the dependence of hi on other1468

parameters for clarity.1469

When environmental switching is taking place ac-1470

cording to a telegraph process, the time spent in each1471

environment becomes a random variable. Suppose1472
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we consider S switching events, beginning in environ-1473

ment 1. The times spent in environment 1 is T1, j ∼1474

exp(λ1→2) during the jth period in environment 1, and1475

similarly for environment 2 (T2, j ∼ exp(λ2→1)). The1476

increase in mutant frequency is then given by1477

f̂i(T ) = f̂i(0)
S/2
∏

j=1

exp
[

hi(β1)T1, j

]

exp
[

hi(β2)T2, j

]

= f̂i(0) exp

















S/2
∑

j=1

hi(β1)T1, j + hi(β2)T2, j

















, (F.9)

where T =
∑S/2

j=1 T1, j + T2, j. The sums over T1, j and T2, j1478

in the above equations result in two Gamma-distributed1479

random variables in the exponent. Calculating the ex-1480

pected value of Eq. (F.9) is thus not trivial [72]. How-1481

ever, we can gain some intuition by expressing the ex-1482

ponent in Eq. (F.9) in terms of an expansion about the1483

mean:1484

f̂i(T ) = f̂i(0) exp

















〈 S/2
∑

j=1

hi(β1)T1, j + hi(β2)T2, j

〉

+ σ(S )

















(F.10)

= f̂i(0) exp
[

(hi(β1)P1 + hi(β2)P2)T

+σ(S )] . (F.11)

where σ(S ) is the standard deviation of the exponent in1485

Eq. (F.9) and (hi(β1)P1 + hi(β2)P2)T is the expectation1486

(see Eq. (7)). We expect the standard deviation σ(S )1487

to be a decreasing function of the number of switching1488

events S (or equivalently of the switching rates λ1→2)1489

and λ2→1) if one considers some fixed time T ) by the1490

law of large numbers. Therefore fast switching reduces1491

σ(S ), and thus the role variance in growth rates be-1492

tween environments [73, 72] is muted in this model set-1493

up. While this argument is borne out by the success1494

of the approximation in predicting the population dy-1495

namics (as illustrated in Figs F.14-F.16), it would be in-1496

teresting to explore this more formally mathematically1497

as the generalisation of geometric mean fitness is often1498

model-specific [94].1499

1500

Appendix G. Effect of minimum microgamete mass1501

on macrogamete mass1502

Here, we provide a simulation of what happens to the1503

macrogamete mass if we impose a minimum mass on1504

the microgamete.1505

In Figure G.17, we see that as the macrogamete mass1506

mmacro becomes sufficiently large, the macrogamete1507

Figure G.17: Evolutionary branching simulation when we impose a
minimum microgamete size mmin

micro
larger than δm (Top - evolution of

m, bottom - evolution of α). Parameters are as in Appendix J but
mmin

micro
= 0.1 and (m(0), α(0)) = (0.25, 0.7).

evolves to decrease α, avoiding fertilisation costs. As1508

α approaches near 0, mmacro begins to increase sharply,1509

tending towards mmacro ≈ β − mmicro. This suggests that1510

on the α = 0 boundary, the zygote is expected to evolve1511

a mass of β.1512

Appendix H. αmax below which branching to1513

anisogamy can be arrested1514

The two necessary conditions for evolutionary1515

branching to occur is for the fitness gradient of an invad-1516

ing mutant to be zero (i.e. dm/dτ in Eq. (E.1) to equal1517

zero if the mutation occurs in mass, this is also known as1518

an evolutionary singularity) and the second derivative of1519

Eq. (B.11) with respect to the mutational stepsize δm to1520

be positive [95, 96] when δm = 0. Using Eq. (E.1), we1521

see that the vertical manifold m ≈ β/4 is an approximate1522

evolutionary singularity since [dm/dτ]|m=β/4 ≈ 0. The1523

condition for selection in mass to be disruptive about an1524

evolutionary singularity is1525

d2

d δm2

[d f̂ ′

d f̂

]

f̂=0

∣

∣

∣

∣

∣

δm=0
> 0 , (H.1)

where f̂
′

is the frequency of the mutant in the subse-1526

quent generation, given by Eq. (B.11). The explicit ex-1527

pression for the left hand side of Eq. (H.1) is given by1528

d2

d δm2

[d f̂ ′

d f̂

]

f̂=0

∣

∣

∣

∣

∣

δm=0
= U/V , (H.2)
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where1529

U = A(−1 +Cz)e
β

2m MTα
(

32m2 − 12mβ + β2
)

+16(−1 +Cp)m
(

2m2 − 4mβ + β2
)

V = 16m4
(

(−1 +Cp)m + A(−1 +Cz)e
β

2m MTα

)

.

The first condition for branching to occur in mass i.e1530

dm/dτ = 0 can be calculated straightforwardly by set-1531

ting Eq. (E.1) to zero and solving for α, which gives1532

α = −
4m(Cp − 1)(m − β)e−

β

2m

AMT (Cz − 1)(4m − β)
. (H.3)

We then substitute Eq. (H.3) into Eq. (H.2) to obtain1533

d2

d δm2

[d f̂ ′

d f̂

]

f̂=0

∣

∣

∣

∣

∣

δm=0
= − (3β − 7m)(β − 4m)β

12βm4
, (H.4)

which needs to be positive for selection to be disruptive.1534

Eq. (H.4) equals 0 if m = 3β/7 or m = β/4 and is posi-1535

tive for β/4 < m < 3β/7. By substituting the boundaries1536

of this interval into Eq. (H.3), we find that it corresponds1537

to1538

48(1 −Cp)β

35AMT (1 −Cz)e
7
6

< αmax < ∞ , (H.5)

and thus the value of αmax above which branching will1539

occur in mass is the value given on the left hand side1540

of the inequality Eq. (H.5). In other words, Eq. (H.5)1541

is the interval in αmax in which branching is expected1542

to occur. The vertical line in Figure 5 corresponds to1543

the lower limit of this interval. In Figure H.18 below,1544

we provide a numerical example showing how isogamy1545

can be stabilized below a sufficiently low αmax.1546
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Figure H.18: Numerical illustration of the stabilization of isogamy
below a sufficiently low αmax. System parameters are A = 100, M =

1, T = 0.1, Cz = 0.6, Cp = 0, β = 1, αmax = 0.1 and simulation
parameters are δ = 5 × 10−3, f0 = 2 × 10−3 and run for 6 × 106

generations. Using Eq. (H.5) we can calculate that branching would
occur if αmax ⪆ 0.1068 for these parameter values.

Appendix I. The stabilization of Anisogamy under1547

high costs of parthenogenesis relative1548

to fertilization1549

In Figure I.19, we provide an example of a parameter1550

regime where pseudooogamy occurs. When the param-1551

eters are close to the boundary where we observe the1552

transition between oogamy and anisogamy (i.e close to1553

where the inequality in Eq. (E.17) becomes an equality),1554

we observe pseudooogamy, where there is a consider-1555

ably stronger selection pressure for microgametes to in-1556

crease their fertilization rate than macrogametes. Under1557

pseudooogamy, macrogametes are still motile but are1558

considerably less motile than microgametes.1559
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Figure I.19: Numerical illustration of the evolution of pseudo-oogamy
in fixed environment. Parameters are Cz = 0, Cp = 0, δm = 0.005,
(m(0), α(0)) = (0.25, 0) and simulation run for 1.6 × 107 generations.
Remaining parameters are as given in Appendix J.

Appendix J. Model parameters in figures1560

Appendix J.1. Figure 31561

The initial points of the trajectories are (m(0), α(0)) =1562

(1.5, 0.6) and (m(0), α(0)) = (2, 0.1). Remaining model1563

parameters are A = 100, M = 1, T = 1 and β = 1.1564

Simulation parameters: Initial frequency of novel mu-1565

tant genotype f0 = 2 × 10−3, mutation rate µ = 5 × 10−4
1566

(number of generations)−1, run for 1.1×107 generations1567

in panel (a) and 1.24×107 generations in panel (b). The1568

mutational stepsize is δ = 5 × 10−3. Throughout the pa-1569

per, we use δm and δα to denote mutational stepsize in1570

m and α respectively, however in simulations involving1571

co-evolution of m and α, the same stepsize is used for1572

both traits. For convenience, we thus denote mutational1573

stepsize as δ in these simulations.1574

CRediT authorship contribution statement1575

Xiaoyuan Liu: Methodology, Formal analysis, In-1576

vestigation, Software, Writing- original draft prepara-1577

tion. Jonathan W. Pitchford: Conceptualization, Su-1578

pervision, Writing- Reviewing and Editing. George W.1579

25



A. Constable: Conceptualization, Methodology, Su-1580

pervision, Formal analysis, Writing - review & editing.1581

Declaration of interest1582

Declaration of interest: none.1583

Acknowledgements1584

This work was supported in part by the Ph.D.1585

studentship funded to Xiaoyuan Liu by the Univer-1586

sity of York though the EPSRC DTP, Grant No.1587

EP/V52010X/1.1588

Data availability1589

This manuscript did not use any real data. All the1590

codes required for generating the simulation data in1591

the manuscript are provided at https://github.com/phil-1592

liu1020/ADSW origin sexes, and is described in Ap-1593

pendix E.3 and Appendix F.41594

References1595

[1] R. F. Hoekstra, The evolution of sexes, in: S. C. Stearns (Ed.),1596

The Evolution of Sex and Its Consequences, Birkhaeuser Verlag,1597

1987, pp. 59±91.1598

[2] J. Umen, S. Coelho, Algal sex determination and the evolution1599

of anisogamy, Annual review of microbiology 73 (2019) 267±1600

291.1601

[3] D. L. Kirk, Oogamy: inventing the sexes, Current Biology1602

16 (24) (2006) R1028±R1030.1603

[4] H. Matsuda, P. A. Abrams, Why are equally sized ga-1604

metes so rare? the instability of isogamy and the cost of1605

anisogamyunopened xml element’f’closed, Evolutionary Ecol-1606

ogy Research 1 (7) (1999) 769±784.1607

[5] E. R. Hanschen, M. D. Herron, J. J. Wiens, H. Nozaki, R. E.1608

Michod, Multicellularity drives the evolution of sexual traits,1609

The American Naturalist 192 (3) (2018) E93±E105.1610

[6] G. Bell, The evolution of anisogamy, Journal of Theoretical Bi-1611

ology 73 (2) (1978) 247±270.1612

[7] B. P. Nieuwenhuis, D. Aanen, Sexual selection in fungi, Journal1613

of evolutionary biology 25 (12) (2012) 2397±2411.1614

[8] R. Innami, S. Miyamura, M. Okoshi, T. Nagumo, K. Ichihara,1615

T. Yamazaki, S. Kawano, Gamete dimorphism of the isoga-1616

mous green alga (chlamydomonas reinhardtii), is regulated by1617

the mating type-determining gene, mid, Communications Biol-1618

ogy 5 (1) (2022) 1333.1619

[9] Y. Krumbeck, G. W. A. Constable, T. Rogers, Fitness differ-1620

ences suppress the number of mating types in evolving isoga-1621

mous species, Royal Society Open Science 7 (2020) 192126.1622

[10] T. Hamaji, Y. Mogi, P. J. Ferris, T. Mori, S. Miyagishima,1623

Y. Kabeya, Y. Nishimura, A. Toyoda, H. Noguchi, A. Fujiyama,1624

et al., Sequence of the gonium pectorale mating locus reveals1625

a complex and dynamic history of changes in volvocine algal1626

mating haplotypes, G3: Genes, Genomes, Genetics 6 (5) (2016)1627

1179±1189.1628

[11] H. Kalmus, ÈUber den erhaltungswert der phÈanotypischen1629

(morphologischen) anisogamie und die entstehung der ersten1630

geschlechtsunterschiede, Biol Zentralbl 52 (1932) 716±736.1631

[12] H. Kalmus, C. Smith, Evolutionary origin of sexual differentia-1632

tion and the sex-ratio, Nature 186 (1960) 1004±1006.1633

[13] F. M. Scudo, The adaptive value of sexual dimorphism: I,1634

anisogamy, Evolution (1967) 285±291.1635

[14] G. A. Parker, R. R. Baker, V. Smith, The origin and evolution of1636

gamete dimorphism and the male-female phenomenon, Journal1637

of Theoretical Biology 36 (3) (1972) 529±553.1638

[15] T. Togashi, J. Bartelt, J. Yoshimura, K. Tainaka, P. Cox, Evolu-1639

tionary trajectories explain the diversified evolution of isogamy1640

and anisogamy in marine green algae, Proc. Natl. Acad. Sci. 1091641

(2012) 13692±13697.1642

[16] J. Lehtonen, The legacy of parker, baker and smith 1972: Ga-1643

mete competition, the evolution of anisogamy and model robust-1644

ness, Cells 10 (3) (2021) 573.1645

[17] G. A. Parker, How soon hath time. . . a history of two ªseminalº1646

publications, Cells 10 (2) (2021) 287.1647

[18] R. R. Vance, On reproductive strategies in marine benthic inver-1648

tebrates, The American Naturalist 107 (955) (1973) 339±352.1649

[19] M. G. Bulmer, G. A. Parker, The evolution of anisogamy: a1650

game-theoretic approach, Proc. R. Soc. Lond. B. 269 (2002)1651

2381±2388.1652

[20] B. Charlesworth, The population genetics of anisogamy, Journal1653

of theoretical biology 73 (2) (1978) 347±357.1654

[21] P. Iyer, J. Roughgarden, Gametic conflict versus contact in the1655

evolution of anisogamy, Theoretical population biology 73 (4)1656

(2008) 461±472.1657

[22] J. M. Henshaw, M. Bittlingmaier, L. SchÈarer, Hermaphroditic1658

origins of anisogamy, Philosophical Transactions of the Royal1659

Society B 378 (1876) (2023) 20220283.1660

[23] ÂE. Kisdi, A. Stefan, H. Geritz, Adaptive dynamics: a framework1661

to model evolution in the ecological theatre, Journal of mathe-1662

matical biology 61 (1) (2010) 165.1663

[24] N. Maire, M. Ackermann1, M. Doebeli, Evolutionary branching1664

and the evolution of anisogamy, Selection 2 (1-2) (2002) 119±1665

131.1666

[25] J. Lehtonen, H. Kokko, Two roads to two sexes: unifying1667

gamete competition and gamete limitation in a single model1668

of anisogamy evolution, Behav. Ecol. Sociobiol. 65 (2011)1669

445±459. doi:10.1007/s00265-010-1116-8.1670

URL https://doi.org/10.1007/s00265-010-1116-81671

[26] C. M. Lessells, R. R. Snook, D. J. Hosken, The evolutionary1672

origin and maintenance of sperm: selection for a small, motile1673

gamete mating type, in: Sperm biology, Elsevier, 2009, pp. 43±1674

67.1675

[27] J. da Silva, The evolution of sexes: A specific test of the disrup-1676

tive selection theory, Ecology and evolution 8 (1) (2018) 207±1677

219.1678

[28] M. T. Ghiselin, The economy of nature and the evolution of sex,1679

Journal of the History of Biology 9 (2) (1976).1680

[29] R. F. Hoekstra, Evolution of gamete motility differences ii. in-1681

teraction with the evolution of anisogamy, Journal of theoretical1682

Biology 107 (1) (1984) 71±83.1683

[30] Z. Hadjivasiliou, Y. Iwasa, A. Pomiankowski, Cell±cell sig-1684

nalling in sexual chemotaxis: a basis for gametic differentiation,1685

mating types and sexes, Journal of the Royal Society Interface1686

12 (109) (2015) 20150342.1687

[31] D. B. Dusenbery, Selection for high gamete encounter rates ex-1688

plains the success of male and female mating types, Journal of1689

Theoretical Biology 202 (1) (2000) 1±10.1690

[32] P. A. Cox, J. A. Sethian, Gamete motion, search, and the evo-1691

lution of anisogamy, oogamy, and chemotaxis, The American1692

Naturalist 125 (1) (1985) 74±101.1693

26

https://github.com/phil-liu1020/ADSW_origin_sexes
https://github.com/phil-liu1020/ADSW_origin_sexes
https://github.com/phil-liu1020/ADSW_origin_sexes
https://doi.org/10.1007/s00265-010-1116-8
https://doi.org/10.1007/s00265-010-1116-8
https://doi.org/10.1007/s00265-010-1116-8
https://doi.org/10.1007/s00265-010-1116-8
https://doi.org/10.1007/s00265-010-1116-8
https://doi.org/10.1007/s00265-010-1116-8
https://doi.org/10.1007/s00265-010-1116-8


[33] C. D. Soulsbury, S. Humphries, Biophysical determinants and1694

constraints on sperm swimming velocity, Cells 11 (21) (2022)1695

3360.1696

[34] M. Siljestam, I. Martinossi-Allibert, Anisogamy does not al-1697

ways promote the evolution of mating competition traits in1698

males, The American Naturalist 203 (2) (2024) 230±253.1699

[35] J. Lehtonen, G. A. Parker, Evolution of the two sexes under in-1700

ternal fertilization and alternative evolutionary pathways, The1701

American Naturalist 193 (5) (2019) 702±716.1702

[36] H. Nozaki, T. K. Yamada, F. Takahashi, R. Matsuzaki,1703

T. Nakada, New ªmissing linkº genus of the colonial volvocine1704

green algae gives insights into the evolution of oogamy, BMC1705

Evolutionary Biology 14 (1) (2014) 1±11.1706

[37] M. Tatewaki, M. Lima, Life histories of blidingia minima1707

(chlorophyceae), especially sexual reproduction 1, Journal of1708

phycology 20 (3) (1984) 368±376.1709

[38] G. Lokhorst, B. Trask, Taxonomic studies on urospora (acrosi-1710

phoniales, chlorophyceae) in western europe, Acta botanica1711

neerlandica 30 (5/6) (1981) 353±431.1712

[39] N. Kinoshita, C. Nagasato, T. Motomura, Chemotactic move-1713

ment in sperm of the oogamous brown algae, saccharina japon-1714

ica and fucus distichus, Protoplasma 254 (1) (2017) 547±555.1715

[40] J. Li, S. Pang, F. Liu, T. Shan, S. Gao, Spermatozoid life-span of1716

two brown seaweeds, saccharina japonica and undaria pinnati-1717

fida, as measured by fertilization efficiency, Chinese journal of1718

oceanology and limnology 31 (4) (2013) 774±781.1719

[41] J. Lehtonen, Y. Horinouchi, T. Togashi, G. A. Parker, Evolution1720

of anisogamy in organisms with parthenogenetic gametes, The1721

American Naturalist 198 (3) (2021) 360±378.1722

[42] G. W. Constable, H. Kokko, Parthenogenesis and the evolution1723

of anisogamy, Cells 10 (9) (2021) 2467.1724

[43] J. Lehtonen, Models of fertilization kinetics, Royal Society1725

Open Science 2 (9) (2015) 150175.1726

[44] J. Lehtonen, L. Dardare, Mathematical models of fertiliza-1727

tionÐan eco-evolutionary perspective, The Quarterly Review of1728

Biology 94 (2) (2019) 177±208.1729

[45] P. Bierzychudek, Patterns in plant parthenogenesis, Experientia1730

41 (1985) 1255±1264.1731

[46] A. Tilquin, H. Kokko, What does the geography of parthenogen-1732

esis teach us about sex?, Philosophical Transactions of the Royal1733

Society B: Biological Sciences 371 (1706) (2016) 20150538.1734

[47] H. Vogel, G. Czihak, P. Chang, W. Wolf, Fertilization kinetics of1735

sea urchin eggs, Mathematical Biosciences 58 (2) (1982) 189±1736

216.1737

[48] J. Frenkel, W. Vyverman, G. Pohnert, Pheromone signaling dur-1738

ing sexual reproduction in algae, The plant journal 79 (4) (2014)1739

632±644.1740

[49] D. R. Levitan, Do sperm really compete and do eggs ever have1741

a choice? adult distribution and gamete mixing influence sexual1742

selection, sexual conflict, and the evolution of gamete recogni-1743

tion proteins in the sea, The American Naturalist 191 (1) (2018)1744

88±105.1745

[50] H. Van den Ende, F. Klis, A. Musgrave, The role of flagella in1746

sexual reproduction of chlamydomonas eugametos, Acta botan-1747

ica neerlandica 37 (3) (1988) 327±350.1748

[51] L. Mignerot, K. Avia, R. Luthringer, A. P. Lipinska, A. F. Peters,1749

J. M. Cock, S. M. Coelho, A key role for sex chromosomes in1750

the regulation of parthenogenesis in the brown alga ectocarpus,1751

PLoS genetics 15 (6) (2019) e1008211.1752

[52] G. C. Williams, Sex and evolution, no. 8, Princeton University1753

Press, 1975.1754

[53] J. Maynard Smith, The Evolution of Sex, Cambridge University1755

Press, Cambridge UK, 1978.1756

[54] D. Marshall, A. Brown, The evolution of apomixis, Heredity1757

47 (1) (1981) 1±15.1758

[55] M. K. Uyenoyama, On the evolution of parthenogenesis: A ge-1759

netic representation of theº cost of meiosisº, Evolution (1984)1760

87±102.1761

[56] D. R. Levitan, Optimal egg size in marine invertebrates: theory1762

and phylogenetic analysis of the critical relationship between1763

egg size and development time in echinoids, The American Nat-1764

uralist 156 (2) (2000) 175±192.1765

[57] A. E. Hall, M. D. Rose, Cell fusion in yeast is negatively regu-1766

lated by components of the cell wall integrity pathway, Molecu-1767

lar biology of the cell 30 (4) (2019) 441±452.1768

[58] E. Harrison, R. MacLean, V. Koufopanou, A. Burt, Sex drives1769

intracellular conflict in yeast, Journal of Evolutionary Biology1770

27 (8) (2014) 1757±1763.1771

[59] L. D. Hurst, W. D. Hamilton, Cytoplasmic fusion and the nature1772

of sexes, Proceedings of the Royal Society of London. Series B:1773

Biological Sciences 247 (1320) (1992) 189±194.1774

[60] V. Hutson, R. Law, Four steps to two sexes, Proceedings of1775

the Royal Society of London. Series B: Biological Sciences1776

253 (1336) (1993) 43±51.1777

[61] V. S. Bogdanova, O. O. Zaytseva, A. V. Mglinets, N. V.1778

Shatskaya, O. E. Kosterin, G. V. Vasiliev, Nuclear-cytoplasmic1779

conflict in pea (pisum sativum l.) is associated with nuclear and1780

plastidic candidate genes encoding acetyl-coa carboxylase sub-1781

units, PloS one 10 (3) (2015) e0119835.1782

[62] J. Lehtonen, M. D. Jennions, H. Kokko, The many costs of sex,1783

Trends in ecology & evolution 27 (3) (2012) 172±178.1784

[63] L. Adams, K. Lyons, J. Monday, E. Larkin, J. Wyffels, Costs of1785

parthenogenesis on growth and longevity in ex situ zebra sharks1786

stegostoma tigrinum, Endangered Species Research 50 (2023)1787

81±91.1788

[64] T. Togashi, T. Motomura, T. Ichimura, P. A. Cox, Gametic be-1789

havior in a marine green alga, monostroma angicava: an effect1790

of phototaxis on mating efficiency, Sexual Plant Reproduction1791

12 (1999) 158±163.1792

[65] Å. BrÈannstrÈom, J. Johansson, N. Von Festenberg, The hitch-1793

hiker’s guide to adaptive dynamics, Games 4 (3) (2013) 304±1794

328.1795

[66] ÂE. Kisdi, S. A. Geritz, Adaptive dynamics in allele space: evo-1796

lution of genetic polymorphism by small mutations in a hetero-1797

geneous environment, Evolution 53 (4) (1999) 993±1008.1798

[67] J. A. Metz, S. A. Geritz, G. MeszÂena, F. J. Jacobs, J. S.1799

Van Heerwaarden, Adaptive dynamics: a geometrical study of1800

the consequences of nearly faithful reproduction, International1801

Institute for Applied Systems Analysis (1995).1802

[68] J. MÈuller, B. A. Hense, T. M. Fuchs, M. Utz, C. PÈotzsche, Bet-1803

hedging in stochastically switching environments, Journal of1804

theoretical biology 336 (2013) 144±157.1805

[69] P. G. Hufton, Y. T. Lin, T. Galla, A. J. McKane, Intrinsic noise in1806

systems with switching environments, Physical Review E 93 (5)1807

(2016) 052119.1808

[70] E. BerrÂıos-Caro, T. Galla, G. W. A. Constable, Switching envi-1809

ronments, synchronous sex, and the evolution of mating types,1810

Theoretical population biology 138 (2021) 28±42.1811

[71] R. Levins, Evolution in changing environments: some theoreti-1812

cal explorations, no. 2, Princeton University Press, 1968.1813

[72] J. Starrfelt, H. Kokko, Bet-hedgingÐa triple trade-off between1814

means, variances and correlations, Biological Reviews 87 (3)1815

(2012) 742±755.1816

[73] R. Lande, Expected relative fitness and the adaptive topography1817

of fluctuating selection, Evolution 61 (8) (2007) 1835±1846.1818

[74] Y. Yasui, Evolutionary bet-hedging reconsidered: What is the1819

mean±variance trade-off of fitness?, Ecological Research 37 (3)1820

(2022) 406±420.1821

[75] J. da Silva, V. L. Drysdale, Isogamy in large and complex1822

volvocine algae is consistent with the gamete competition theory1823

27



of the evolution of anisogamy, Proceedings of the Royal Society1824

B 285 (1890) (2018) 20181954.1825

[76] N. W. Burke, R. Bonduriansky, Sexual conflict, facultative asex-1826

uality, and the true paradox of sex, Trends in Ecology & Evolu-1827

tion 32 (9) (2017) 646±652.1828

[77] T. Birkhead, A. Mùller, W. Sutherland, Why do females make it1829

so difficult for males to fertilize their eggs?, Journal of Theoret-1830

ical Biology 161 (1) (1993) 51±60.1831

[78] M. Hartfield, P. D. Keightley, Current hypotheses for the evolu-1832

tion of sex and recombination, Integr. Zool. 7 (2) (2012) 192±1833

209.1834

[79] R. Luthringer, A. Cormier, S. Ahmed, A. Peters, J. Cock,1835

S. Coelho, Sexual dimorphism in the brown algae, Perspect.1836

Phycol 1 (1) (2014) 11±25.1837

[80] M. Hoshino, S. F. Hiruta, M. E. Croce, M. Kamiya, T. Jomori,1838

T. Wakimoto, K. Kogame, Geographical parthenogenesis in the1839

brown alga scytosiphon lomentaria (scytosiphonaceae): Sexu-1840

als in warm waters and parthenogens in cold waters, Molecular1841

ecology 30 (22) (2021) 5814±5830.1842

[81] M. Hoshino, T. Okino, K. Kogame, Parthenogenetic female1843

populations in the brown alga scytosiphon lomentaria (scy-1844

tosiphonaceae, ectocarpales): decay of a sexual trait and ac-1845

quisition of asexual traits, Journal of phycology 55 (1) (2019)1846

204±213.1847

[82] J. Lehtonen, H. Kokko, G. A. Parker, What do isogamous organ-1848

isms teach us about sex and the two sexes?, Phil. Trans. R. Soc.1849

B 371 (2016) 20150532.1850

[83] P. Vernet, J. Harper, The costs of sex in seaweeds, Biological1851

Journal of the Linnean Society 13 (2) (1980) 129±138.1852

[84] J. Heitman, Evolution of sexual reproduction: A view from the1853

fungal kingdom supports an evolutionary epoch with sex before1854

sexes, Fungal Biology Reviews 29 (3) (2015) 108 ± 117, special1855

Issue: Fungal sex and mushrooms ± A credit to Lorna Casselton.1856

doi:https://doi.org/10.1016/j.fbr.2015.08.002.1857

URL http://www.sciencedirect.com/science/1858

article/pii/S17494613150003911859

[85] Z. Hadjivasiliou, N. Lane, R. Seymour, A. Pomiankowski, Dy-1860

namics of mitochondrial inheritance in the evolution of binary1861

mating types and two sexes, Proc. Biol. Sci. 280 (1769) (2013)1862

20131920.1863

[86] S. Billiard, M. LÂopez-Villavicencio, M. Hood, T. Giraud, Sex,1864

outcrossing and mating types: unsolved questions in fungi and1865

beyond, Journal of evolutionary biology 25 (6) (2012) 1020±1866

1038.1867

[87] S. Billiard, M. LÂopez-Villavicencio, B. Devier, M. E. Hood,1868

C. Fairhead, T. Giraud, Having sex, yes, but with whom? in-1869

ferences from fungi on the evolution of anisogamy and mating1870

types, Biological reviews 86 (2) (2011) 421±442.1871

[88] G. Constable, H. Kokko, The rate of facultative sex governs the1872

number of expected mating types in isogamous species, Nat.1873

Ecol. Evol. 2 (7) (2018) 1168±1175.1874

[89] P. Czuppon, G. W. A. Constable, Invasion and extinction dy-1875

namics of mating types under facultative sexual reproduction,1876

Genetics 213 (2) (2019) 567±580.1877

[90] F. DÂebarre, S. Nuismer, M. Doebeli, Multidimensional (co) evo-1878

lutionary stability, The American Naturalist 184 (2) (2014) 158±1879

171.1880

[91] O. Leimar, Multidimensional convergence stability, Evolution-1881

ary Ecology Research 11 (2) (2009) 191±208.1882

[92] S. A. Geritz, J. A. Metz, C. Rueffler, Mutual invadability near1883

evolutionarily singular strategies for multivariate traits, with1884

special reference to the strongly convergence stable case, Jour-1885

nal of mathematical biology 72 (4) (2016) 1081±1099.1886

[93] J. Lehtonen, G. A. Parker, L. SchÈarer, Why anisogamy drives1887

ancestral sex roles, Evolution 70 (5) (2016) 1129±1135.1888

[94] R. Lande, S. Engen, B.-E. Sñther, An evolutionary maximum1889

principle for density-dependent population dynamics in a fluctu-1890

ating environment, Philosophical Transactions of the Royal So-1891

ciety B: Biological Sciences 364 (1523) (2009) 1511±1518.1892

[95] F. Dercole, F. Della Rossa, P. Landi, The transition from evolu-1893

tionary stability to branching: A catastrophic evolutionary shift,1894

Scientific reports 6 (1) (2016) 1±8.1895

[96] S. A. Geritz, E. Kisdi, G. MeszÂena, J. A. Metz, Evolutionary1896

singular strategies and the adaptive growth and branching of the1897

evolutionary tree, Evolutionary Ecology (1996).1898

28

http://www.sciencedirect.com/science/article/pii/S1749461315000391
http://www.sciencedirect.com/science/article/pii/S1749461315000391
http://www.sciencedirect.com/science/article/pii/S1749461315000391
http://www.sciencedirect.com/science/article/pii/S1749461315000391
http://www.sciencedirect.com/science/article/pii/S1749461315000391
https://doi.org/https://doi.org/10.1016/j.fbr.2015.08.002
http://www.sciencedirect.com/science/article/pii/S1749461315000391
http://www.sciencedirect.com/science/article/pii/S1749461315000391
http://www.sciencedirect.com/science/article/pii/S1749461315000391

	Introduction
	Model
	Model dynamics in a fixed environment
	Evolutionary dynamics in switching environments

	Results
	Initial evolution of fertilization rate
	Evolutionary branching can lead to anisogamy, followed by ``oogamy'' (or suppression of pheromone production)
	A low ceiling on the fertilization rate can stabilize isogamy
	High costs of parthenogenesis relative to zygote formation can stabilize anisogamy (or promote macrogamete pheromone production)
	In a switching environment, the population can evolve a bet-hedging strategy that stabilizes isogamy

	Discussion
	Individual sporophytes must produce twice as many spores as Parthenosporophytes to maintain the same reproductive output
	Within generation dynamics
	Fertilization kinetics: mutant with different mass
	Fertilization kinetics: mutant with different fertilization rate
	Change in mutant frequency over a generation: mutant with different mass
	Change in mutant frequency over a generation: mutant with different fertilization rate

	Invasion dynamics
	Invasion ODE: mutant with different mass
	Invasion ODE: mutant with different fertilization rate

	Deriving Evolutionary dynamics using a multidimensional approach
	Evolutionary dynamics: Fixed environment
	Derivation of evolutionary ODEs
	Analysis of ODEs
	Implementation of simulations
	Evolutionary Branching in Gamete Mass and fertilization rate

	Evolutionary dynamics: switching environments with bet-hedging
	Derivation of evolutionary ODEs: FRTI
	Derivation of evolutionary ODEs: FRTE
	Analysis of ODEs
	Implementation of simulations
	Absence of Evolutionary Branching at Switching-Induced fixed point
	Interpretation of Mutant Frequency Growth Rate in Switching Environments

	Effect of minimum microgamete mass on macrogamete mass
	max below which branching to anisogamy can be arrested
	The stabilization of Anisogamy under high costs of parthenogenesis relative to fertilization
	Model parameters in figures
	Figure 3


