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Abstract

The crystalline structure of nuclear matter is investigated in the standard Skyrme
model with massive pions. A semi-analytic method is developed to determine local
minima of the static energy functional with respect to variations of both the field and
the period lattice of the crystal. Four distinct Skyrme crystals are found. Two of these
were already known – the cubic lattice of half-skyrmions and the α-particle crystal –
but two are new. These new solutions have lower energy per baryon number and less
symmetry, being periodic with respect to trigonal but not cubic period lattices. Minimal
energy crystals are also constructed under the constraint of constant baryon density, and
its shown that the two new non-cubic crystals tend to chain and multi-wall solutions at
low densities.

1 Introduction

The Skyrme model [1] is a nonlinear field theory of π mesons that accommodates nucleons
as topological solitons. It emerges as a low energy effective theory of QCD in the regime
where the number of colours (or equivalently, the rank of the gauge group) grows large [2, 3].
The model has only one field, taking values in the Lie group SU(2). Field configurations
are classified topologically by an integer-valued homotopy invariant B which is interpreted
physically as the baryon number of the configuration. There is a topological lower bound on
static energy of the form E ≥ EtopB, where Etop is some positive constant, originally due
to Faddeev [4] and subsequently improved by one of us [5]. (Improved in this context means
that the constant Etop is increased.) Let E(B) denote the minimum static energy among all
fields of baryon number B. The energy bound E(B) = EtopB is never attained, but numerical
studies suggest that the ratio E(B)/B decreases monotonically, and hence converges to some
limit E∗ as B → ∞. This suggests that, as B grows large, minimal energy Skyrme fields
may tend to some regular, spatially periodic crystalline structure, with baryon number B and
energy E∗B per unit cell.
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Such a crystal structure was first proposed by Klebanov [6]. He found a crystal of B = 1
skyrmions arranged in a simple cubic (SC) lattice so that every unit skyrmion is internally
oriented to be in the attractive channel with respect to its nearest neighbours. Manton snd
Goldhaber [7] later found that at high densities this crystal undergoes a phase transition to
a body centred cubic (BCC) lattice of half-skyrmions with a lower energy per baryon (E/B)
than Klebanov’s SC crystal. Then, independently, Kugler and Shtrikman [8] and Castillejo et
al. [9] determined a new solution with lower E/B, wherein skyrmions are initially arranged in
a face centred cubic (FCC) lattice and relax to a SC lattice of half-skyrmions. In all of these
studies, the model has massless pions, mπ = 0, the unit cell has baryon number B = 4, and
the energy functional has been varied only over cubic period lattices, that is, only the side
length of the cube is varied.

The phase structure of the massless pion Skyrme model has been studied by Jackson and
Verbaarschot [10]. Perapechka and Shnir [11] investigated phase transitions in the Skyrme
model with mπ > 0. (They also considered the effect of incorporating a non-standard sextic
term in the energy functional. Such terms are of current interest because they arise in so-
called “near BPS” variants of the model [12], but will not be of central relevance to our
considerations.) Two candidates have been previously proposed as the minimal E/B crystal
with massive pions: the cubic lattice of half-skyrmions [8, 9] and the α-particle lattice [13].
Once again, these studies impose periodicity with respect to a cubic period lattice, and vary
only the side length of the cube.

In this paper, we study Skyrme crystals in the model with mπ > 0, minimizing the energy
with respect to variations of both the Skyrme field φ : R3/Λ → SU(2) and its period lattice Λ.
To achieve this, we identify every 3-torus R3/Λ with the fixed 3-torus T3 = S1×S1×S1 = R3/Z3

by means of the obvious diffeomorphism f : T3 → R3/Λ, and equip T3 with the pullback of the
Euclidean metric on R3/Λ, g = f ∗gEuc. Varying over all period lattices Λ is then equivalent
to varying over all flat metrics g on the fixed torus T3. This approach was introduced in
[14], in which the interpretation of the gradient of the energy with respect to the metric g
as the stress tensor of the field was repeatedly exploited. In the current paper, we will find
it convenient to think of the metric variational problem more concretely, by identifying g
with the constant symmetric positive definite matrix (gij) representing it with respect to the
canonical coordinate system on T3.

So, the numerical task we set ourselves is, for fixed topological degree B, to minimize
E(φ, g) among all degree B maps φ : T3 → SU(2) and flat metrics g on T3. It is known
that, for fixed g, the function φ 7→ E(φ, g) attains a minimum (in a function space of rather
low regularity) [15]. The complementary problem of minimising in g for fixed φ was first
studied in [14] and numerically implemented in [16, 17]. In [14] it was shown that in a two-
dimensional toy model (the baby Skyrme model), any critical metric g is automatically a local
minimimum of E. The problem of extending this result to the Skyrme model was discussed,
but unfortunately the proof used in two dimensions did not generalise. Existence of critical
metrics was not addressed in [14].

In the present paper we obtain a much stronger result. We show in Corollary 4 that, for
fixed φ satisfying very mild assumptions, there is a unique flat metric with respect to which
E(φ, g) is minimal, and hence a unique period lattice Λ (up to automorphism) with respect
to which φ has minimal energy per unit cell. In the special case mπ = 0, we can even write
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down this metric explicitly. In the (more interesting) massive case, we can resort to a gradient
based numerical minimization scheme to find g. Applying a similar scheme to minimize over
φ : T3 → SU(2) in tandem, we can find the energetically optimal field and period lattice for a
given B, without ever imposing any symmetry assumptions on the lattice.

The results reveal that, for mπ > 0, the energetically optimal lattice (with B = 4 per
unit cell) does not have cubic symmetry. In fact there are two crystal solutions with trigonal
period lattices (orthorhombic with side lengths L1 = L2 ̸= L3) which have lower energy than
the lowest strictly cubic lattice. This fact persists if, instead of minimizing over all flat g,
we minimize only over the subset of metrics with fixed total volume. This is equivalent to
minimizing under the constraint of fixed average baryon density, a problem of phenomeno-
logical interest [18]. As might be expected, the energy difference between the trigonal and
cubic lattices becomes negligible as baryon density grows very large, but is significant at lower
densities.

The rest of the paper is structured as follows. In section 2, we formulate the model
mathematically, considering in detail how its energy functional depends on the metric on
physical space. In section 3, we prove existence and uniqueness of an energy minimizing
metric g for any given fixed field. In section 4 we describe our numerical scheme in detail, while
section 5 presents the results of this scheme. In section 6 we determine minimal energy crystals
under the constraint of fixed baryon density. Finally, section 7 presents some concluding
remarks.

2 The Skyrme model

We wish to study the Skyrme model under the assumption that the Skyrme field φ : R3 →
SU(2) is periodic with respect to some 3-dimensional lattice

Λ = {n1X1 + n2X2 + n3X3 : n ∈ Z3}, (1)

that is, φ(x +X) = φ(x) for all x ∈ R3 and X ∈ Λ, where X1,X2,X3 is an oriented basis
for R3,. In this case, we may equally well interpret the field as a map φ : R3/Λ → SU(2),
where the torus R3/Λ inherits a metric gΛ from the Euclidean metric on R3. It is convenient
to identify R3/Λ with the standard torus T3 = R3/Z3 via the diffeomorphism

fΛ : T3 → R3/Λ, (x1, x2, x3) 7→ x1X1 + x2X2 + x3X3, (2)

and denote by g the pullback of the metric gΛ by fΛ. Explicitly,

g = gijdxidxj, gij = X i ·Xj. (3)

Note that the matrix (gij) is a symmetric, positive definite real 3×3 matrix. We denote the set
of such matrices SPD3 and note that every such matrix arises as the metric on T3 corresponding
to some lattice Λ and lattices producing the same matrix are related by an oriented isometry of
R3. Hence, instead of considering the Skyrme model on R3/Λ for all lattices Λ, we may restrict
to the standard torus T3 but consider all flat metrics on T3, g = gijdxidxj, (gij) ∈ SPD3. It is
convenient to abuse notation slightly and denote the matrix (gij) by g.
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The energy of a Skyrme field φ : (T3, g) → SU(2) is defined in stages as follows. Denote
by µ the left Maurer-Cartan form on SU(2), that is, the su(2)-valued one-form that maps a
tangent vectorX ∈ TUSU(2) to the vector µ(X) ∈ TI2SU(2) whose image under left translation
by U is X. The pullback of µ by φ,

φ∗µ = φ−1dφ =: Lidxi, (4)

is usually called the left current. We equip su(2) with the usual Ad invariant inner product
(X, Y )su(2) = −1

2
Tr(XY ) and define the Dirichlet energy of φ to be

E2(φ, g) =

∫
T3

|φ∗µ|2gvolg = −1

2

∫
T3

gij Tr(LiLj)
√

|g|vol0 (5)

where gij are the components of the inverse matrix g−1, |g| = det g and vol0 = dx1∧dx2∧dx3

is the canonical volume form on T3. We are following the standard convention that a numerical
subscript on an energy functional denotes the degree of its integrand considered as a polynomial
in spatial derivatives. It is important to note that we regard E2 as a function of both φ and
g.

To define the Skyrme term E4(φ, g), we introduce the su(2)-valued two-form Ω on SU(2)
by Ω(X, Y ) = [µ(X), µ(Y )]. Then

E4(φ, g) =
1

4

∫
T3

|φ∗Ω|2gvolg = − 1

16

∫
T3

gikgjl Tr([Li, Lj][Lk, Ll])
√

|g|vol0. (6)

We will also include a potential term

E0(φ, g) =

∫
T3

V (φ)volg =

∫
T3

V (φ)
√
|g|vol0 (7)

where V : SU(2) → [0,∞) is some smooth function. The usual choice is

V (U) = m2
π Tr(I2 − U), (8)

which has the effect of giving the pions of the theory (small amplitude waves about the vacuum
φ = I2) mass mπ.

In summary, the Skyrme energy of a field φ : T3 → SU(2) and metric g ∈ SPD3 is

E(φ, g) = E2(φ, g) + E4(φ, g) + E0(φ, g). (9)

Since SU(2) is diffeomorphic to S3 the homotopy class of the field φ is, by the Hopf degree
theorem, labelled by its topological degree B ∈ Z,

B =
1

2π2

∫
T3

φ∗volSU(2), (10)

where volSU(2) is the volume form on SU(2) defined by the bi-invariant metric h which, at U = I2
coincides with (·, ·)su(2) (equivalently, the round metric of radius 1 on S3). The mathematical
problem that this paper addresses is to minimize E(φ, g), with respect to both φ and g, among
all fields of fixed degree B and all metrics g ∈ SPD3.
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3 Existence and uniqueness of minimizing metrics

For fixed g ∈ SPD3, (T3, g) is a fixed, compact oriented Riemannian 3-manifold, and it follows
from a direct application of the calculus of variations that the functional φ 7→ E(φ, g) attains
a minimum in each degree class in the space of finite energy maps in the Sobolev space
W 1,2(T3, SU(2)) [15]. In this section we address the complementary variational problem: we
fix a map φ : T3 → SU(2) and establish existence, and uniqueness, of a minimizer of the
function SPD3 → R, g 7→ E(φ, g) which, for brevity, we will denote E(g).

It is convenient (and makes the result more comprehensive) to include the possibility of a
sextic term in the Skyrme energy,

E6(φ, g) =

∫
T3

|φ∗Ξ|2volg (11)

where Ξ is some 3-form on SU(2), for example, a constant multiple of volSU(2). Terms of this
kind are of phenomenological interest since they arise in so-called near BPS variants of the
Skyrme model [12]. To specialize to the model of primary interest, we simply choose Ξ = 0.

We begin by analyzing in more detail the g dependence of the terms in E. We first note
that

E2(φ, g) = gij
√

det g

∫
T3

(Li, Lj)su(2)vol0 =
√

det gTr(Hg−1) (12)

where

Hij(φ) =

∫
T3

(Li, Lj)su(2)vol0 (13)

is a symmetric positive semi-definite matrix depending on φ but independent of g. Let us
assume that φ is C1 (so that this matrix is well-defined) and is immersive somewhere, meaning
that there is some point p ∈ T3 at which dφp is invertible. Note that this follows immediately
for all maps with B ̸= 0. By continuous differentiability, it follows that φ is immersive on
some neighbourhood of p. Then the matrix H is actually positive definite, for if not, there
exists v ∈ R3 with v ·Hv = 0, whence∫

T3

|v ·L|2su(2)vol0 = 0 (14)

and hence dφ(vi∂/∂xi) = 0 almost everywhere. This contradicts immersivity of φ on a neigh-
bourhood of p. We conclude that H ∈ SPD3.

To understand E4(g) we appeal to an isomorphism peculiar to 3 dimensions. Having chosen
a 3-form vol0 = dx1∧dx2∧dx3 on T3, there is an isomorphism (TpT3)⊗su(2) → (Λ2T ∗

p T3)⊗su(2)
defined by X 7→ ιXvol0. Denote by Xφ the section of TT3 ⊗ su(2) whose image under this
isomorphism is φ∗Ω,

φ∗Ω = ιXφvol0, (15)

and note that Xφ depends on φ, but is independent of g. We may similarly define a g-
dependent section Xg

φ of TT3 ⊗ su(2) by using the isomorphism between 2-forms and tangent
vectors defined by volg instead of vol0:

φ∗Ω = ιXg
φ
volg = ι√|g|Xg

φ
vol0. (16)
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Clearly Xg
φ = Xφ/

√
|g|. An alternative interpretation of Xg

φ is that it is the vector field
metrically dual to the Hodge dual of φ∗Ω with respect to the metric g, that is,

∗gφ∗Ω =
1√
|g|

♭g Xφ, (17)

where ∗g : Λ2T ∗T3 → T ∗T3 denotes the Hodge isomorphism and ♭g : TT3 → T ∗T3 the metric
isomorphism defined by g. Hence

E4(φ, g) =
1

4

∫
T3

|Xφ/
√
|g||2gvolg =

1

4
√
|g|

∫
T3

g(Xφ, Xφ)vol0 =
1√
det g

Tr(Fg) (18)

where

Fij(φ) =
1

4

∫
T3

(Xφ,i, Xφ,j)su(2)vol0 (19)

is another symmetric positive semi-definite matrix depending on φ but independent of g, and
Xφ =: Xφ,i∂/∂xi. In terms of the left currents

Xφ,i =
1

2
ϵikl[Lk, Ll], (20)

and so the matrix F takes the explicit form

Fij(φ) = − 1

32
ϵiklϵjmn

∫
T3

Tr([Lk, Ll][Lm, Ln])vol0. (21)

Once again, our non-degeneracy assumption on φ (that it is C1 and somewhere immersive)
implies that F is positive definite. For if not, there exists v ∈ R3 such that v · Fv = 0,
whence v ·Xφ = 0 and so ∗gφ∗Ω(vi∂/∂xi) = 0. But then φ∗Ω vanishes on every plane in TT3

g-orthogonal to v, which contradicts nondegeneracy of Ω and immersivity of φ.
The remaining terms of E are more straightforward.

E0(φ, g) =

∫
T3

V (φ)volg = C0

√
det g, (22)

where

C0(φ) =

∫
T3

V (φ)vol0 ≥ 0 (23)

is a constant. Finally, we note that φ∗Ξ = fΞvol0 for some real function fΞ : T3 → R
independent of g. Then

fΞvol0 = (∗gφ∗Ξ)volg = (∗gφ∗Ξ)
√

det gvol0, (24)

so ∗gφ∗Ξ = fΞ/
√
det g. Hence

E6(φ, g) =

∫
T3

φ∗Ξ ∧ ∗gφ∗Ξ =
C6√
det g

(25)
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where

C6(φ) =

∫
T3

f 2
Ξvol0 ≥ 0 (26)

is a constant. Note that we allow the possibility that C0 or C6 is 0, to accommodate versions
of the model with no potential or sextic term.

In summary, for a fixed C1 map φ : T3 → SU(2) which is immersive somewhere, the total
Skyrme energy as a function of the metric g on T3 is

E(g) := E(φ|fixed , g) =
√
det gTr(Hg−1) +

1√
det g

Tr(Fg) + C0

√
det g +

C6√
det g

, (27)

where H,F ∈ SPD3 and C0, C6 ∈ [0,∞) are constants. We wish to prove that the function
E : SPD3 → R attains a unique global minimum, and has no other critical points. Before
doing so, we note that E = Ẽ ◦ σ where

Ẽ : SPD3 → R, Ẽ(Σ) = Tr(HΣ−1) + Tr(FΣ) +
C0

detΣ
+ C6detΣ (28)

and σ is the map

σ : SPD3 → SPD3, g 7→ Σ =
g√
det g

. (29)

Since σ is a diffeomorphism, we may equivalently prove that Ẽ : SPD3 → R attains a unique
global minimum and has no other critical points. We do this in two stages.

Proposition 1 The function Ẽ : SPD3 → R of equation (28) attains a global minimum.

Proof: Clearly Ẽ is bounded below (by 0). Let E∗ = inf Ẽ. We must show that there exists

Σ∗ ∈ SPD3 with Ẽ(Σ∗) = E∗.
Consider the map

f : (0,∞)3 ×O(3) → SPD3, f(λ,O) = ODλOT , Dλ := diag(λ1, λ2, λ3). (30)

This map is surjective: given any Σ ∈ SPD3 we may take λi to be its eigenvalues and O to be
an orthogonal matrix whose columns are its corresponding eigenvectors. Hence, it suffices to
prove that

(Ẽ ◦ f)(λ,O) = Tr(OTHOD−1

λ
) + Tr(OTFODλ) +

C0

λ1λ2λ3

+ C6λ1λ2λ3 (31)

attains the value E∗.
Let (λn,On) be a sequence in (0,∞)3 ×O(3) such that

(Ẽ ◦ f)(λn,On) → E∗. (32)

Such a sequence exists since f is surjective. Consider the six functions

(OTHO)ii, (O
TFO)ii : O(3) → (0,∞), i = 1, 2, 3, (33)

7



mapping O to the diagonal entries of OTHO,OTFO ∈ SPD3, and note that these functions
are strictly positive since H,F are positive definite. Since these functions are smooth and
O(3) is compact, there exists α > 0 such that, for all O ∈ O(3), (OTHO)ii, (OTFO)ii ≥ α.
Hence, for all (λ,O) ∈ (0,∞)3 ×O(3),

(Ẽ ◦ f)(λ,O) ≥ α

(
1

λ1

+
1

λ2

+
1

λ3

+ λ1 + λ2 + λ3

)
. (34)

We may assume that (Ẽ◦f)(λn,On) ≤ E∗+1 for all n, so λn ∈ [K−1, K]3 for all n, where K =
E∗/α. Hence, the sequence (λn,On) takes values in a compact subset of (0,∞)3 × O(3), and
so has a convergent subsequence, converging to (λ∗,O∗) say, which, without loss of generality,

we may assume is (λn,On) itself. So (Ẽ ◦ f)(λn,On) → E∗ and (λn,On) → (λ∗,O∗). But

(Ẽ ◦ f) is continuous, so (Ẽ ◦ f)(λ∗,O∗) = E∗.

It follows that Ẽ(Σ∗) = E∗ where

Σ∗ = O∗Dλ∗
OT

∗ , (35)

which completes the proof. 2

We note in passing that the minimizing metric whose existence follows from Proposition 1
is

g∗ = σ−1(Σ∗) =
Σ∗

detΣ∗
. (36)

It remains to prove that Ẽ has no other critical points. We achieve this by proving that
Ẽ is strictly convex, in the following sense:

Definition 2 A function f : M → R on a Riemannian manifold M is convex if, for all non-
constant geodesics γ(t) in M , (f ◦ γ)′′(t) ≥ 0, and strictly convex if, for all such geodesics,
(f ◦ γ)′′(t) > 0.

To apply this definition to Ẽ, we must equip SPD3 with a Riemannian metric, G. The
correct choice for our purposes is

GΣ : TΣSPD3 × TΣSPD3 → R, GΣ(ξ1, ξ2) = Tr(Σ−1ξ1Σ
−1ξ2), (37)

where we have identified TΣSPD3 with Sym3, the vector space of symmetric 3×3 real matrices.
We will exploit several useful properties of the metric G, established in [19]. It is invariant
under the GL(3,R) action

GL(3,R)× SPD3 → SPD3, (A,Σ) 7→ AΣAT (38)

on SPD3. It is also inversion invariant, that is,

ι : SPD3 → SPD3, ι(Σ) = Σ−1 (39)

is an isometry. The general geodesic through I3 takes the form

γ(t) = exp(tξ), ξ ∈ Sym3, (40)

8



and hence a general nonconstant geodesic through Σ is

γ(t) = A exp(tξ)AT , (41)

where A ∈ GL(3,R) satisfies AAT = Σ, and ξ ̸= 0. Finally, it is complete and between any
pair of distinct points Σ1, Σ2, there is a geodesic, unique up to parametrization.

Proposition 3 The function Ẽ : SPD3 → R of equation (28) is strictly convex with respect
to the metric G.

Proof: Given a constant M ∈ SPD3, consider the function

fM : SPD3 → R, fM(Σ) = Tr(MΣ). (42)

Let γ be an arbitrary non-constant geodesic, as in (41). Then

(fM ◦ γ)′′(0) =
d2

dt2

∣∣∣∣
t=0

Tr(MA exp(tξ)AT ) = Tr(MAξ2AT )

= Tr((Aξ)TM(Aξ)) =
3∑

i=1

vi ·Mvi (43)

where vi are the columns of Aξ. Since M is positive definite, it follows that (fM ◦ γ)′′(0) ≥ 0,
and equals 0 only if v1 = v2 = v3 = 0. But ξ ̸= 0 (the geodesic is nonconstant) so at
least one vi ̸= 0. Hence (fM ◦ γ)′′(0) > 0 for all nonconstant geodesics γ. It follows that
(fM ◦ γ)′′(T ) > 0 for all nonconstant geodesics and all T ∈ R, since for all geodesics γ and
constants T , γ̃(t) = γ(t+ T ) is a geodesic.

Similarly, det : SPD3 → R is convex since, for all nonconstant geodesics

(det ◦γ)′′(0) =
d2

dt2

∣∣∣∣
t=0

(detA)2 det exp(tξ) = (detA)2
d2

dt2

∣∣∣∣
t=0

exp(tTr ξ)

= (detA)2(Tr ξ)2 ≥ 0 (44)

It follows that
Ẽ = fH ◦ ι+ fF + C0 det ◦ι+ C6 det (45)

is strictly convex, since H,F ∈ SPD3, ι is an isometry, and C0, C6 ≥ 0. 2

Propositions 1 and 3 quickly yield the desired result.

Corollary 4 Let φ : T3 → SU(2) be a fixed C1 map that is immersive somewhere. Then the
function SPD3 → R mapping a flat metric g on T3 to the Skyrme energy E(φ, g) attains a
unique global minimum, and has no other critical points.

Proof: As previously established E(φ, g) = Ẽ(σ(g)) where Ẽ is the function defined in

(28) and σ is a diffeomorphism of SPD3. By Proposition 1, Ẽ attains a minimum at some
Σ∗ ∈ SPD3, whence E attains a global minimum at g∗ = σ−1(Σ∗). Assume, towards a

contradiction, that E has a second critical point g∗∗ ̸= g∗. Then Ẽ has a second critical point
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at Σ∗∗ = σ(g∗∗) ̸= Σ∗. Let γ : [0, 1] → SPD3 be a geodesic (with respect to G) with γ(0) = Σ∗

and γ(1) = Σ∗∗. Then, by Rolle’s Theorem applied to (Ẽ ◦ γ)′ : [0, 1] → R, there exists

t ∈ (0, 1) at which (Ẽ ◦ γ)′′(t) = 0. But this contradicts Proposition 3. 2

In the case of the standard Skyrme model without a potential (V = 0 and Ξ = 0), we can
find the minimizing metric g∗ explicitly. We note that, in this case

Ẽ(Σ) = Tr(HΣ−1 + FΣ), (46)

whence
dẼΣ(ξ) = Tr(−HΣ−1ξΣ−1 + Fξ) = Tr((F − Σ−1HΣ−1)ξ). (47)

Hence, the unique critical point Σ∗ of Ẽ satisfies

F = Σ−1
∗ HΣ−1

∗

⇒ (FΣ∗)
2 = FH

⇒ Σ∗ = (F 1/2)−1H1/2 (48)

where the matrix square root function SPD3 → SPD3, M 7→ M1/2, is defined spectrally. Then

g∗ =
Σ∗

detΣ∗
=

(
detF

detH

)1/2

F−1/2H1/2. (49)

We henceforth set Ξ = 0. In the case V ̸= 0, of primary interest, we have not been able to
solve for the minimum of E(g) explicitly. Instead, we resort to a numerical method described
in the next section.

4 The numerical method

We now return to the problem of primary interest: to minimize E(φ, g) among all smooth
maps T3 → SU(2) of fixed degree B, and all flat metrics g ∈ SPD3. Our numerical scheme
is similar to ones introduced in [16, 17] and based on the idea of arrested Newton flow. For
fixed φ, we interpret E as a potential energy on the manifold SPD3 and solve Newton’s law
of motion

g̈ = − gradg E(φ, g) (50)

with initial data g(0) = g0. This solution begins to run “downhill” in SPD3. We monitor
E(φ, g(t)) and, at any time t∗ where d

dt
E(φ, g(t)) > 0 we arrest the flow, that is, stop and

restart it at the current position but with velocity 0. The flow converges to the unique
minimising metric gφ. We minimise over φ by a similar technique, solving

φ̈ = − gradφE(φ, gφ) (51)

with initial data φ(0) = φ0 (here gradφE is the derivative in the first argument, φ, with g
treated as constant). Again, we arrest the flow if E starts to increase.
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In practice, we discretize space, placing φ on a cubic grid of N3 points with lattice spacing
h = 1/N and periodic boundary conditions. We replace the spatial derivatives of φ occurring
in E by finite difference approximations. This reduces the (51) to a system of ODEs in R4N3

,
which we then solve using a 4th order Runge-Kutta scheme with fixed time step δt. The
arresting criterion is that E(t+ δt) > E(t). After each iteration of the Runge-Kutta scheme,
the metric gφ is recalculated in a similar way by solving the ODE (50), using the metric gφ
from the previous iteration as initial datum. Once the flow for g has converged, the next
iteration of φ is calculated, and so on. Each flow is deemed to have converged to a static
solution if the sup norm of gradE falls below some tolerance. The numerical results presented
hereafter were obtained with N = 201. The time steps δ used were 0.0017 for the flow in φ
and 0.1 for the flow in g. The tolerances were 10−5 for the flow in φ and 10−7 for the flow in
g.

Implementing the method also entails choosing (formal) Riemannian metrics on SPD3 and
C∞(T3, SU(2)). These are required to make sense of both gradE and the connexions ∇
occurring implicitly in (50) and (51). On SPD3 we choose the Euclidean metric induced by
identifying SPD3 as a subset of R9 in the obvious way, that is

(ξ1, ξ2)SPD3 = Tr(ξT1 ξ2). (52)

Note that this differs from the metric G used in section 3; it is simpler for the current purpose.
On C∞(T3, SU(2)) we choose the L2 metric defined by the volume form vol0,

⟨η1, η2⟩L2 =

∫
T3

h(η1, η2)vol0, (53)

which is independent of g.
For the purposes of numerics, it is convenient to use the sigma model formulation of the

model, that is, exploit the isometry between (SU(2), h) and S3 with its round metric of unit
radius. So, we identify

SU(2) ∋
(

φ0 + iφ3 iφ1 + φ2

iφ1 − φ2 φ0 − iφ3

)
↔ (φ0, φ1, φ2, φ3) ∈ S3 (54)

and interpret the Skyrme field as a unit length vector in Euclidean R4. The terms occurring
in the Skyrme energy are easily converted to this formulation,

E2(φ) =

∫
T3

gij(∂iφ · ∂jφ)
√

|g|vol0 (55)

E4(φ) =
1

2

∫
T3

(gijgkl − gilgjk)(∂iφ · ∂jφ)(∂kφ · ∂lφ)
√

|g|vol0 (56)

E0(φ) = 2m2
π

∫
T3

(1− φ0)
√

|g|vol0, (57)

as are the matrices defined in section 3,

Hij =

∫
T3

(∂iφ · ∂jφ)vol0 (58)

Fij =
1

4
εiklεjmn

∫
T3

{(∂kφ · ∂mφ)(∂lφ · ∂nφ)− (∂kφ · ∂nφ)(∂lφ · ∂mφ)} vol0. (59)

11



Now, the gradient E = E2 + E4 + E0, regarded as a function on C∞(T3, S3), is

(gradφE)(φ, g)C∞ =
√

|g|Pφ

(
−2gij∂i∂jφ− 2(gligjk − gijgkl)∂i(∂jφ · ∂kφ∂lφ)− 2m2

πe0
)
(60)

where e0 = (1, 0, 0, 0) and Pφ : R4 → R4 is the projector orthogonal to φ, that is

Pφ(v) = v − (φ · v)φ. (61)

The gradient of E regarded as a function on SPD3 is easily deduced from (28) and the
diffeomorphism σ : SPD3 → SPD3. We note that

dẼΣ(ξ) = Tr((F − Σ−1HΣ−1 − C0Σ
−1

detΣ
)ξ), (62)

and so

(grad Ẽ)(Σ) = F − Σ−1HΣ−1 − C0Σ
−1

detΣ
. (63)

Furthermore

dσg(ξ) =
1√
det g

(
ξ − 1

2
Tr(g−1ξ)g

)
, (64)

whence

dEg(ξ) = dẼσ(g) ◦ dσg(ξ)

= Tr

{
grad Ẽ(|g|−1/2g)|g|−1/2(ξ − 1

2
Tr(g−1ξ)g)

}
= Tr

{
|g|−1/2

[
grad Ẽ(|g|−1/2g)− 1

2
Tr(g grad Ẽ(|g|−1/2g))g−1

]
ξ

}
, (65)

and so

(gradg E)(φ, g)SPD3 = |g|−1/2

[
grad Ẽ(|g|−1/2g)− 1

2
Tr(g grad Ẽ(|g|−1/2g))g−1

]
. (66)

5 Skyrme crystal solutions

This section presents the results of the numerical scheme just described in the charge B = 4
sector, concentrating on the model with pion mass mπ = 1. Our approach is to treat the pion
mass as a continuous variable parameter mπ = t ≥ 0: we minimize the energy

E(t)(φ, g) = E2(φ, g) + E4(φ, g) + t

∫
T3

(1− φ0)volg (67)

starting in the massless case t = 0, and then increasing t gradually to 1.
We begin by reviewing the lowest energy solution known in the massless case, t = 0, found

independently by Kugler and Shtrikman [8, 20] and Castillejo et al. [9]. This can be found by
starting with the initial field [9]

φ0 = −c1c2c3, φ1 = s1

√
1− s22

2
− s23

2
+

s22s
2
3

3
, (68)
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(a) (b)

Figure 1: The 1/2-crystal solution of the massless Skyrme model. The baryon density is
depicted in 1a and isosurface plots of the φ0 field, where φ0 = 0.9 and φ0 = −0.9, are shown
in 1b.

φ2, φ3 obtained by cyclic permutation, where si = sin 2πxi and ci = cos 2πxi, and initial metric
g = I3. This quickly converges under arrested Newton flow to a solution with φ close to (68)
and g = L2I3 with L = 4.61, corresponding to a cubic period lattice of side length L. This
solution is depicted in figure 1. It represents a simple cubic lattice of half-skyrmions. That is,
φ maps each of the eight subcubes of side length L/2 to either the upper (φ0 ≥ 0) or lower
(φ0 ≤ 0) hemisphere of S3, contributing charge B = 1/2 to the total topological charge of the
unit cell. For this reason, we refer to this solution as the 1/2-crystal and denote it (φ1/2, g1/2).

It is important to note that E(0) = E2+E4 is invariant under the natural action of SO(4) on
the target three-sphere, that is, for all (φ, g) ∈ M and all R ∈ SO(4), E(0)(Rφ, g) = E(0)(φ, g).
Hence the solution described above is just one critical point of E(0) lying in a 6-dimensional
family of critical points, its orbit under SO(4). If we now switch on the pion mass, that is,
consider E(t) for small t > 0, we may ask which (if any) of these critical points survive the
perturbation. It is useful to switch perspective slightly: rather than fixing the perturbation and
considering what happens to all points in the SO(4) orbit of the 1/2-crystal, it is convenient
to fix the field and metric to be the 1/2-crystal, and consider what happens to this fixed
configuration under the SO(4) orbit of the perturbation. That is, we ask for which p ∈ S3,
if any, does the 1/2-crystal (φ1/2, g1/2) lie in a curve (φ(t), g(t)) of critical points of the t-
parametrized family of functions

Ep
(t)(φ, g) = E2(φ, g) + E4(φ, g) + t

∫
T3

(1− p · φ)volg. (69)

(We recover the original function E(t) by choosing p = (1, 0, 0, 0).) To answer this question,
we will need to understand the symmetries of the 1/2-crystal in some detail.
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Denote by O the subgroup of SO(3) consisting of matrices that map the integer lattice
Z3 to itself. This is a finite group of order 24, the rotational symmetries of the cube. The
manifold T3 is itself an abelian Lie group whose group operation is translation modulo Z3.
The semidirect product Aut(T3) = O ⋉ T3

(A1,v1) • (A2,v2) = (A1A2, A1v2 + v1) (70)

acts on T3 by (A,v) : x 7→ Ax + v. This induces a right action of Aut(T3) on M =
C∞(T3, S3)× SPD3 by S : (φ, g) 7→ (φ ◦ S, S∗g) or, more explicitly,

(A,v) · (φ(x), g) = (φ(A(x+ v)), ATgA). (71)

Having completed these preliminaries, we observe that the energy of the massless Skyrme
model E(0) : M → R is invariant under the left action of G = SO(4)× Aut(T3) on M ,

(R, S) · (φ, g) = (R ◦ φ ◦ S−1, (S−1)∗g). (72)

The 1/2-crystal (φ1/2, g1/2) is a critical point (in fact a minimum) of E(0). Its stabilizer Γ (the
subgroup of SO(4)× Aut(T3) that leaves it fixed) is an order 192 group generated by

R(φ) = (φ0, φ2, φ3, φ1), S(x) = (x2, x3, x1),
R(φ) = (φ0, φ2,−φ1, φ3), S(x) = (x2,−x1, x3),
R(φ) = (−φ0,−φ1, φ2, φ3), S(x) = (x1 +

1
2
, x2, x3).

(73)

The image of the natural projection π : Γ → SO(4) is naturally isomorphic to the octahedral
group Oh, and the kernel is isomorphic to Z2 × Z2.

Once we turn on the perturbation, the symmetry group of the energy function Ep
(t) is

broken to SO(3)p × Aut(T3) where

SO(3)p = {R ∈ SO(4) : Rp = p}. (74)

Let us define the reduced stabilizer of the 1/2-crystal to be

Γp = Γ ∩ (SO(3)p × Aut(T3)), (75)

and the set of fixed points of Γp in M to be

M Γp = {(φ, g) ∈ M : ∀q ∈ Γp, q · (φ, g) = (φ, g)}. (76)

Formally, this is a submanifold of M , and it contains (φ1/2, g1/2) for all p, by construction. By
the Principle of Symmetric criticality, a point (φ, g) ∈ M Γp is a critical point of Ep

(t) if (and

only if) it is a critical point of its restriction Ep
(t)| : M Γp → R. For generic choices of p ∈ S3

we expect Γp to be trivial, so that M Γp = M , and this observation confers no advantage. The
interesting case is when the intersection of M Γp with the G orbit of (φ1/2, g1/2) is (locally)
just (φ1/2, g1/2). Then (φ1/2, g1/2) is an isolated critical point of E(0)| : M Γp → R. If, as seems
likely, it is also a nondegenerate critical point of Ep

(0)| (meaning that the Hessian of Ep
(0)| at

(φ1/2, g1/2) is nondegenerate), then the persistence of a critical point for t > 0 sufficiently small
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follows from the Inverse Function Theorem applied to dEp
(t)|. That is, there exists ε > 0 and

a (unique) smooth curve γ : (−ε, ε) → M Γp such that γ(0) = (φ1/2, g1/2) and dEp
(t)|γ(t) = 0

for all t ∈ (−ε, ε).
To summarize, we expect (φ1/2, g1/2) to smoothly deform into a critical point of Ep

(t) (as t

increases from 0) if p is chosen so that a neighbourhood of (φ1/2, g1/2) in M Γp intersects the
G orbit of (φ1/2, g1/2) only at (φ1/2, g1/2). Let us call this condition the isolation condition.
The next task is to understand this condition on p at an algebraic level.

Assume that p fails the isolation condition. Then there exists a regular curve q : (−ε, ε) →
G with q(0) = e such that, for all t, q(t) · (φ1/2, g1/2) ∈ M Γp or, more explicitly, for all Q ∈ Γp,
and t ∈ (−ε, ε)

Q · q(t) · (φ1/2, g1/2) = q(t) · (φ1/2, g1/2)

⇒ [q(t)−1Qq(t)] · (φ1/2, g1/2) = (φ1/2, g1/2). (77)

Hence, for all Q ∈ Γp and t, q(t)−1Qq(t) ∈ Γ. But Γ is discrete (in fact, finite), so for all t and
Q,

q(t)−1Qq(t) = q(0)−1Qq(0) = Q (78)

⇒ Qq(t)Q−1 = q(t). (79)

The derivative of this equation at t = 0 implies that there exists some nonzero ξ ∈ g (the
Lie algebra of G), namely ξ = q̇(0), such that AdQξ = ξ. Conversely, given a nonzero ξ ∈ g
such that AdQξ = ξ for all Q ∈ Γp, we can construct a curve γ(t) = exp(tξ) such that
γ(t) · (φ1/2, g1/2) remains in M Γp . Hence, the isolation condition is that, for all ξ ∈ g\{0},
there exists some Q ∈ Γp such that AdQξ ̸= ξ. More succinctly: p satisfies the isolation
condition if and only if the adjoint representation of Γp on g contains no copies of the trivial
representation.

This reduces the problem to one in the representation theory of subgroups of Oh. Given
a subgroup H of Oh ⊂ SO(4), we determine whether its action on R4 contains copies of
the trivial representation. If not, it cannot arise as π(Γp) for any choice of p. If it does,
π−1(H) is a candidate for Γp for any p in a one-dimensional invariant subspace of the action.
This produces a short list of candidate subgroups. For each of these we count copies of the
trivial representation in the adjoint representation of π−1(H) on g. If there are none, this is a
candidate for Γp for p satisfying the isolation condition.

The results are summarized in table 1. We find 28 points p for which (φ1/2, g1/2) is
an isolated critical point of Ep

(0) in M Γp , falling into 4 distinct classes. One class is p ∈
{(1, 0, 0, 0), (−1, 0, 0, 0)}. The other three classes all have p0 = 0 and hence (p1, p2, p3) ∈
S2 ⊂ R3, pointing along some symmetry line of the unit cube: towards the centre of a
face (e.g. p = (0, 0, 0, 1)), the centre of an edge (e.g. p = (0, 1, 1, 0)/

√
2) or a vertex (e.g.

p = (0, 1, 1, 1)/
√
3).

To do numerics, we switch back to the viewpoint of internally rotating the field φ1/2,
rather than the energy functional, that is, we set p = (1, 0, 0, 0) in Ep

(t) and start with the
configuration

φ = Qφ1/2, g = g1/2, (80)
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p |Γp| π(Γp) Description as subgroup of Oh g label
(1, 0, 0, 0) 96 O Orientation preserving diag(a, a, a) 1/2-crystal
(0, 0, 0, 1) 32 C4v Maps a face to itself diag(a, a, b) sheet

(0, 0, 1, 1)/
√
2 16 C2v Maps an edge to itself diag(a, b, b) chain

(0, 1, 1, 1)/
√
3 24 C3v Maps a vertex to itself diag(a, a, a) α-crystal

Table 1: Points p ∈ S3 for which the 1/2-crystal is isolated in M Γp , and hence is expected
to continue to a critical point of the massive Skyrme model. The leftmost column gives one
representative point in each class. Subsequent columns record the order of the corresponding
stabilizer Γp ⊂ Γ, the image of Γp in π(Γ) = Oh, its description as a subgroup of the group
of symmetries of the cube, the most general metric consistent with the symmetry, and a
descriptive label of the corresponding crystal.

where Q is any SO(4) matrix whose top row is p (the inverse of an SO(4) matrix mapping
(1, 0, 0, 0) 7→ p). We then minimize E(t) using arrested Newton flow for a sequence of pion
masses mπ = t starting at t = 0 and ending at t = 1. As expected each of the 4 types of critical
point smoothly continues. Somewhat unexpectedly, they are all, as far as we can determine,
local minima of E(t); none are saddle points. We have checked this by perturbing the solutions
with random perturbations breaking all symmetries, finding that they always relax back to
the solutions presented.

The solutions at pion massmπ = 1 are depicted in figure 2, labelled as in the final column of
table 1. Ordered by energy, we find sheet < chain < α-crystal < 1/2-crystal, though the chain
and α-crystals are so close in energy that their order is somewhat uncertain. The energies per
baryon per unit cell are

E1/2

B
= 1.2417× 12π2 = 147.058,

Eα

B
= 1.2368× 12π2 = 146.479

Echain

B
= 1.2368× 12π2 = 146.479

Esheet

B
= 1.2365× 12π2 = 146.451.

(81)

Neither the sheet-crystal nor the chain-crystal has an isotropic metric, meaning these crystals
do not have a cubic period lattice. The α-crystal and the 1/2-crystal do have cubic period
lattices, as is consistent with our symmetry analysis (see column 5 of table 1). The minimal
metrics are

g1/2 = L2I3, L = 3.202,

gα = L2I3, L = 3.278,

gchain = diag(L2
1, L

2
2, L

2
2), L1 = 3.221, L2 = 3.312,

gsheet = diag(L2
1, L

2
1, L

2
2), L1 = 3.222, L2 = 3.442

(82)

from which we deduce that the unit cells for the sheet and chain crystals are trigonal (cuboidal
with one pair of periods equal), but with opposite types of distortion: the sheet’s unit cell is
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(a) 1/2-crystal (b) α-crystal (c) sheet-crystal (d) chain-crystal

Figure 2: Skyrme crystals in the model with pion mass mπ = 1. The top row is the isosurface
plots of the baryon density. The bottom row is isosurface plots of the φ0 field, where φ0 = 0.9
and φ0 = −0.9.

a stretched cube, the chain’s a squashed cube. Interestingly, the ordering of the volumes of
the solutions’ unit cells is the reverse of the ordering of their energies, with the sheet-crystal
occupying the greatest volume and the 1/2-crystal the least.

Restricting the kinetic energy functional of the model to the isospin orbit of a given static
solution we obtain a left invariant metric on SO(3) called the isospin inertia tensor, which is
of some significance in the method of rigid body quantization [21, 22]. The kinetic energy
associated with the potential energy E2 + E4 + E0 given in (55)-(57) is

T (φ, φ̇) =

∫
T3

[
φ̇ · φ̇+ gij {(φ̇ · φ̇) (∂iφ · ∂jφ)− (φ̇ · ∂iφ) (φ̇ · ∂jφ)}

]√
|g|vol0. (83)

Writing φ̇ = X iJiφ, with Ji being the basis for so(3) given by

J1 =


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

 , J2 =


0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

 , J3 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 , (84)

we find that T (φ, φ̇) = 1
2
X iUijX

j, where U is the symmetric matrix given by

Uij = 2

∫
T3

[
δijφkφk − φiφj + gkl(δij − φiφj)∂kφ0∂lφ0

+ gkl(φmφm∂kφi∂lφj + φ0φj∂kφ0∂lφi + φ0φi∂lφ0∂kφj)
]√

|g|vol0 (85)
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and repeated indices are summed from 1 to 3. We find that, except for the 1/2-crystal, this
matrix is not isotropic:

U1/2 =

165.2 0 0
0 165.2 0
0 0 165.2

 ,

Uα =

135.5 0 0
0 135.5 0
0 0 167.3


U chain =

135.6 0 0
0 135.7 0
0 0 167.2

 ,

U sheet =

135.8 0 0
0 135.8 0
0 0 166.8

 .

(86)

As far as we are aware, in addition to the 1/2-crystal, only the α-crystal has been previously
determined in the massive Skyrme model [13]. Neither of these is the minimal energy crystal.

It is interesting to track the energy as a function of pion mass, see figure 3. Asmπ increases,
all of the crystals’ energies increase relative to that of the one-skyrmion. This is an indication
that classical binding energies will be small (and hence close to experimental values) when mπ

is large. Amongst the various crystal solutions, we find that the sheet, chain and α-crystals
remain close in energy, with stable order, but the gap to the 1/2-crystal (which always has
highest energy) grows with mπ.

6 Skyrme crystals at prescribed average baryon density

If we are to use Skyrme crystals as a model of dense nuclear matter (for example, in astrophys-
ical contexts) it is important to understand the properties of the lowest energy configuration
among all those with a fixed average baryon density, treating this density as a parameter of
our system. This problem was first approached by Hen and Karliner [23] in the context of
the baby Skyrme model. Therein they extremized the baby Skyrme energy functional with
respect to variations of the period lattice at a constant skyrmion density. This method was
carried out at various densities, producing an energy-density curve. However, they did not
address the nature of the critical points they obtained, stating that they could in fact turn
out to be maxima or saddle points. Our method is similar but it is more general and robust.

Let us fix B, the baryon number per unit cell. Then the average baryon density of a
configuration (φ, g) is

ρB =
B∫

T3 volg
=

B√
det g

. (87)

Hence, finding the minimal crystal with fixed baryon density (and baryon number B per unit
cell) amounts to minimizing E : M → R over a level set of det g. Once again, we can address
the partial minimization problem where we fix the field φ : T3 → SU(2) (assumed to be C1 and
somewhere immersive) and a density ρB = B/ν then seek a minimum of E(φ, ·) : det−1(ν2) →
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Figure 3: Comparison of the normalized energies per baryon per unit cell of the four Skyrme
crystals for increasing pion mass mπ. Energies are presented in units of the energy of the
B = 1 skyrmion at the relevant pion mass (which grows monotonically with mπ).

R. It turns out that, like the unconstrained minimization problem studied in section 3, this
problem has a unique global minimum and no other critical points.

Proposition 5 Let φ : T3 → SU(2) be a fixed C1 map that is immersive somewhere and ν > 0
be a constant. Then the function SPD3 ⊃ det−1(ν2) → R mapping each flat metric g on T3

of volume ν to the Skyrme energy E(φ, g) attains a unique global minimum, and has no other
critical points.

Proof: As before, it is equivalent to prove that the associated function

Ẽ : det−1(ν−1) → R, Ẽ = E ◦ σ−1 (88)

attains a unique global minimum and has no other critical points, where σ : SPD3 → SPD3 is
the diffeomorphism σ(g) = g/

√
det g. Now

Ẽ(Σ) = Tr(HΣ−1) + Tr(FΣ) + C0ν + C6ν
−1 (89)

where H,F ∈ SPD3 and C0, C6 ∈ [0,∞) are the φ-dependent constants previously defined.

Existence of a global minimum of Ẽ follows mutatis mutandis from Proposition 1, since the
bound (34) still holds irrespective of the extra constraint λ1λ2λ3 = ν−1 (equivalent to detΣ =
ν−1). This confines the minimizing sequence to a compact subset of the hypersurface λ1λ2λ3 =
ν−1 in (0,∞)3×O(3), whence a convergent subsequence can be extracted, whose limit attains

the infimum of Ẽ by continuity.
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It remains to prove uniqueness. Assume towards a contradiction that Ẽ : det−1(ν−1) → R
has two distinct critical points Σ∗, Σ∗∗. Then there exists a geodesic

γ(t) = A exp(ξt)AT (90)

in (SPD3, G) with γ(0) = Σ∗ and γ(1) = Σ∗∗. Now

det(γ(t)) = (detA)2etTr ξ (91)

and det(γ(0)) = det(γ(1)), so Tr ξ = 0 and we conclude that det(γ(t)) is constant. Hence

the geodesic γ remains on the level set det−1(ν−1). Since Σ∗, Σ∗∗ are critical points of Ẽ :

det−1(ν−1) → R, and γ is tangent to the level set for all t, (Ẽ ◦ γ)′(0) = 0 = (Ẽ ◦ γ)′(1), so
by Rolle’s Theorem (Ẽ ◦ γ)′′ vanishes somewhere on (0, 1), contradicting the convexity of Ẽ
(Proposition 3). Hence no second critical point may exist. 2

In the course of the proof above we established that all level sets of det are connected totally
geodesic submanifolds of (SPD3, G), and hence the restriction of Ẽ to any such level set is
strictly convex. Note that, in general, the restriction of a convex function to a submanifold
may fail to be convex, so total geodesicity of the level sets is crucial here.

We can again solve the minimization problem for E : det−1(ν2) → R numerically by
arrested Newton flow, but now we must take care to project the gradient of E tangent to the
level set. Given a curve g(t) in det−1(ν2),

d

dt

∣∣∣∣
t=0

det g(t) = ν2Tr(g(0)−1ġ(0)) = 0 (92)

so ġ(0) is orthogonal to g(0)−1 with respect to the Euclidean metric ⟨X, Y ⟩ = Tr(XTY ). Hence
Tg det

−1(ν2) = ⟨g−1⟩⊥. Now

E(g(t)) = ν Tr(Hg−1) +
Tr(Fg)

ν
+ C0ν +

C6

ν
, (93)

and hence

dEg(v) =
1

ν
⟨F − ν2g−1Hg−1, v⟩. (94)

It follows that, with respect to the metric on det−1(ν2) induced by the Euclidean metric,

(gradE)(g) =
1

ν

{
F − ν2g−1Hg−1 − Tr((F − ν2g−1Hg−1)g−1)

Tr(g−1g−1)
g−1

}
. (95)

We solve the Newton flow g̈ = −(gradE)(g) numerically, projecting g back onto det−1(ν2) after
each time step by radial dilation (g 7→ (ν2/ det g)1/3g), arresting if E(g(t + δt)) > E(g(t)),
and terminating if the sup norm of gradE falls below a prescribed tolerance. As for the
unconstrained problem, we apply this algorithm after each iteration of the arrested Newton
flow for the field φ : T3 → S3.

Applying this approach at various densities to the four crystals found in section 5 at pion
mass mπ = 1, we observe that the three lower energy crystals tend to finite-energy solutions
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Figure 4: The energy per baryon per unit cell of the Skyrme crystals in the model with pion
mass mπ = 1 as a function of cell volume.

at low densities. The α-crystal tends to the B = 4 α-particle skyrmion on R3 [24], see figure
4. This phase transition has already been observed by Silva Lobo [25] in the massless model
and by Adam et al. [18] in the massive model with sextic term. The sheet-crystal tends to a
double-layered square sheet on T2 × R, similar to the 2-wall massless solution found by Silva
Lobo and Ward [26]. Finally, the chain-crystal becomes a linear chain on R2 × S1, which
appears to be a previously unknown solution.

At low densities the sheet solution is clearly energetically preferred over other solutions.
This qualitative result was predicted earlier in [27]. However, there are some important dif-
ferences between between our result and [27]. Our result comes from a minimisation over all
Skyrme fields and lattice geometries, whereas [27] used the more restrictive Atiyah-Manton
approximation for the Skyrme field and assumed symmetric lattice geometries. Second, our
minimal-energy Skyrme sheet has a square geometry, whereas those constructed in [27] had
a hexagonal geometry. Finally, our results are for the model with mπ = 1, whereas [27]
considered mπ = 0.

As one might expect, the four crystals become energetically indistinguishable in the large
density limit. As far as we can determine, the curves in figure 4 never cross, so the crystals
maintain their energy ordering at all densities.
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7 Conclusion

In this paper, we developed methods to obtain Skyrme crystals in a general class of Skyrme
models, and presented a detailed numerical study of crystals in the standard Skyrme model
with massive pions. To achieve this, we minimized the model’s energy with respect to vari-
ations of both the field and its period lattice in R3. A key idea is to reformulate the latter
variation as a variation over all flat metrics on the fixed unit torus T3. We obtained strong
results on the partial minimization problem in which the field is fixed and only the metric
varied: under a mild nondegeneracy assumption on the field, there exists a unique flat metric
that globally minimizes the Skyrme energy, and no other critical metrics. This result holds
also if we constrain the problem to vary only over metrics of fixed volume, a variant relevant
to constructing Skyrme crystals of prescribed average baryon density. Our methods impose no
symmetry on the period lattice a priori, and hence go beyond previous studies which imposed
a cubic unit cell.

We find that the minimal energy crystal (with baryon number 4 per unit cell) has trigonal
but not cubic periodicity. At low densities it tends to a double sheet solution. The next lowest
energy crystal is also trigonal and not cubic, tending to a chain solution at low densities.
Both these crystals are new. Above them in energy are two already known solutions, the α-
crystal and the 1/2-crystal. All these crystals, except the most energetic, the 1/2-crystal, have
anisotropic isospin inertia tensors. The existence of four distinct crystals can be understood
semi-analytically by means of the Principle of Symmetric Criticality and the Inverse Function
Theorem.

The methods detailed in this paper could be applied to the study of isospin asymmetric
nuclear matter within the Skyrme model. The next step would be to investigate neutron
crystals by considering the quantum corrections to the energy due to the quantization of
the isospin degrees of freedom, and improve on the work done on the massless model by
Baskerville [21]. In particular, one could determine “nuclear pasta” phases in neutron stars
[28] by considering the quantization of generalized Skyrme crystals in the low density regime.
The chain-crystal we have found could correspond to the so-called “spaghetti” phase, and the
sheet-crystal the “nuclear lasagne”.
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