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Abstract. It has become clear in recent years that the configuration space of the nuclear
Skyrme model has, in each topological class, many almost degenerate local energy min-
ima and that the number of such minima grows with the degree (or baryon number) B.
Rigid body quantization, in which one quantizes motion on the spin-isospin orbit of just
one minimum, is thus an ill-justified approximation. Instead, one should identify a (finite-
dimensional) moduli space of configurations containing all local minima (for a given B) as
well as fields interpolating smoothly between them. This paper proposes a systematic com-
putational scheme for generating such a moduli space: one constructs an energy minimizing
path between each pair of local minima, then defines the moduli space to be the union of
spin-isospin orbits of points on the union of these curves, a principal bundle over a graph.
The energy minimizing curves may be constructed in practice using the nudged elastic band
method, a standard tool in mathematical chemistry for analyzing reaction paths and com-
puting activation energies. To illustrate, we apply this scheme to the lightly bound Skyrme
model in the point particle approximation, constructing the graphs for 5 ≤ B ≤ 10. We go
on to complete the quantization for B = 7, in which the graph has two vertices and a single
edge. The low-lying quantum states with isospin 1/2 do not strongly localize around ei-
ther of the local energy minima (the vertices). Their energies rise monotonically with spin,
conflicting with experimental data for Lithium-7.

Key words: nuclear Skyrme model; energy minimizing paths; saddle points; semi-classical
quantization
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1 Introduction

The Skyrme model is a theory of nuclear physics in which nuclei are treated as topological
solitons called Skyrmions [13]. Originally proposed in 1962, it was eclipsed as a model of strong
interactions by QCD. Interest in the model revived, however, after Witten argued that it emerges
as a low-energy effective theory of QCD in the large Nc (number of colours) limit [16]. In its
simplest form, the model has only one dynamical field, a map U : R3 → SU(2) from physical
space to the Lie group SU(2) ≡ S3. After imposition of a suitable boundary condition, this field
is classified topologically by an integer-valued invariant B, its degree or winding number, which
is interpreted physically as the baryon number of the field configuration. Stable static solutions
of degree B are used to model nuclei of atomic weight B, that is, containing B nucleons.
Small amplitude travelling waves perturbing the vacuum, U(x) = I2, are interpreted, after
quantization, as π mesons.

This paper is a contribution to the Special Issue on Topological Solitons as Particles. The full collection is
available at https://www.emis.de/journals/SIGMA/topological-solitons.html

ar
X

iv
:2

30
5.

18
12

6v
2 

 [
he

p-
th

] 
 1

1 
O

ct
 2

02
3

mailto:j.m.speight@leeds.ac.uk
https://cp1lump.github.io
mailto:twinyard@ed.ac.uk
https://doi.org/10.3842/SIGMA.2023.073
https://www.emis.de/journals/SIGMA/topological-solitons.html


2 J.M. Speight and T. Winyard

The Skyrme model provides a coherent description of isolated nucleons (protons and neutrons)
but as a model of larger nuclei it faces two (probably linked) challenges. First, it greatly over-
estimates the binding energies of nuclei (typically by a factor of 10 or more). Second, in order to
make contact with real physics, one must somehow quantize Skyrmion dynamics, and since the
model is not renormalizable, there is inherent ambiguity in this step. The simplest quantization
scheme is rigid body quantization: one quantizes motion on the spin-isospin orbit of a single
static solution. This scheme is simple and systematic, and works well for B fairly small and
even (it correctly predicts the spin and isospin of the nuclear ground state for B = 1, 2, 3, 4, 6, 8
and 12 for example [10]), but misses important effects in general, particularly for nuclei with
small binding energies. This seems to be related to an interesting property of the space of
Skyrme fields which has only recently emerged: for a given degree B there are typically very
many inequivalent stable static solutions which may be very close in energy and fairly close in
field space. This fact was first noticed for a variant of the model due to Harland, engineered
to have low binding energy, called the lightly bound model [5], but has recently been shown
to be generic even in more usual versions of the model [6]. Rigid body quantization restricts
dynamics to the symmetry orbit of just one of these static solutions for each B, a radical and
ill-justified simplification. What is needed is a quantization scheme in which the field moves
on a manifold containing all the low-lying local energy minima as well as fields interpolating
between these. Several ingenious schemes of this kind have been proposed [7, 8, 11], but each
is a bespoke construction designed to deal with one particular value of B, and their details are
often, in part, reverse engineered from the phenomenology one hopes to reproduce, rather than
being derived ab initio from the Skyrme model.

The current paper presents a first step towards a systematic method for generating an appro-
priate space of Skyrme configurations, including all known local energy minimizers, and fields
smoothly interpolating between them. The idea is that, given a pair of local energy minimizers,
one constructs an energy minimizing path in field space between them. That is, to any path
joining the two local minima one assigns the maximum energy of all fields along the path; an
energy minimizing path is then a path which, among all paths, has the least maximal energy.
By construction, the field on this path with maximal energy is a saddle point of energy (of index
one). The numerical scheme we will use to construct such a path has the useful and natural
property that the two path segments joining the saddle point to each of the local minima are
gradient descent curves. By constructing such a path between every pair of distinct local energy
minimizers, we generate a graph in field space. Following Rawlinson [12], we propose to quantize
motion on the union of symmetry orbits of points on this graph.

The numerical scheme we will use to construct the energy minimizing paths between static
solutions is called the nudged elastic band (NEB) method. It has been quite widely used in
mathematical chemistry, but, as far as we are aware, has not previously been applied in the
field of topological solitons. Bessarab et al. have used it to construct annihilation paths from
magnetic skyrmions to the vacuum in spin lattice systems, as a means to estimate the stability
of magnetic skyrmions to thermal fluctuations [2]. This is conceptually rather different from the
problem we address here (since it relies crucially on the spatial discreteness of the system), but
the underlying mathematical ideas are identical.

To apply the NEB method to a field theory in d dimensions, one starts with a chain of field
configurations roughly equally spaced (in field space) between the two local energy minimizers,
then couples neighbouring configurations on the chain with harmonic springs and allows the
configurations to move until the energy gradient and spring forces are in equilibrium. Having
discretized physical space, this, then, turns into a lattice field theory problem in (d+ 1) dimen-
sions: the d dimensions of space plus the one dimension along the chain. So, for the Skyrme
model, we are faced with a 4-dimensional field theoretic optimization problem, a rather ambi-
tious undertaking for a first foray of the method into soliton dynamics. One could, of course,
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treat a two-dimensional analogue of the Skyrme model as a warm-up exercise. We have cho-
sen, instead, to apply the method to the lightly bound Skyrme model, where a very effective
point particle approximation to Skyrmion dynamics is available [4]. Unlike in the usual Skyrme
model, it is strongly energetically disfavoured for individual Skyrmions to approach one another
closely: at modest energies they remain distinct and behave like individual point particles, each
carrying an internal orientation which may be parametrized by a point in SU(2). The local
energy minimizers of degree B are extremely well approximated by superpositions of B unit
Skyrmions positioned on the vertices of a face centred cubic lattice, their internal orientations
governed by a colouring rule. So, in this model, there is an obvious point particle approximation

to the configuration space, MB =
(
R3 × SU(2)

)B
, and dynamics in this space should closely

approximate the real field dynamics at low energy.
We will use the NEB method to construct energy minimizing paths between pairs of local

energy minimizers inMB for B ≤ 10. From this we can determine the energy barriers separating
the different static solutions: these are just the energies of the intervening saddle points. We
can also construct, for each B, the graph motion on which will, after quantization, approximate
atomic weight B nuclei. This quantization problem is still highly nontrivial, and the details of
its implementation depend significantly on the topology of the graph and the symmetries of the
static solutions represented by its vertices. We illustrate the method by quantizing the B = 7
sector. In this case, the graph is rather simple: two vertices joined by a single edge, but this
suffices to exhibit the main features of the method. In the end, our model predicts a quantum
ground state of isospin 1/2

(
representing Li7 or Be7

)
and spin 1/2 whose shape is a roughly

equal superposition of the two static solutions (an octohedron plus one extra particle, and a line
of 3 particles above a square). This conflicts with nature

(
the ground state of Li7 has spin 3/2

)
and is less successful than Halcrow’s vibrational quantization of the B = 7 Skyrmion in the
conventional Skyrme model (which also gets the ground state spin wrong, but gets closer to the
low-lying spectrum of excited states) [7]. We interpret this as evidence against the lightly bound
model rather than the underlying programme of graph quantization being proposed.

2 The lightly bound Skyrme model

Assign to any map U : R3 → SU(2), satisfying the boundary condition U(∞) = I2, the energy

E =

∫
R3

[
(1− α)

(
−1

2
Tr(RiRi) +m2Tr(1− U)

)

− 1

16
Tr([Ri, Rj ][Ri, Rj ]) + α

(
1

2
Tr(1− U)

)4
]
d3x, (2.1)

where Ri = (∂iU)U−1 is the associated right current and α ∈ [0, 1] and m > 0 are dimensionless
constants. This defines a one-parameter family of (static) Skyrme models, parametrized by α,
interpolating between the standard Skyrme model with massive pions, at α = 0, and Harland’s
unbound model, at α = 1. The latter has a topological lower energy bound E ≥ 8πB, attained
only for B = 1 [9]. As usual, the degree of U is

B = − 1

24π2

∫
R3

ϵijk Tr(RiRjRk) d
3x.

Hence, Skyrmions in this model are marginally unbound: they can approach the energy 8πB
arbitrarily closely, by diverging to spatial infinity, but they can never attain this energy. So,
at α = 1, the model has zero binding energy (binding energy being, by definition, B times the
energy of a unit Skyrmion minus the infimum of E over the charge B sector) while at α = 0
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it has unphysically large binding energy. Harland’s idea was that, somewhere in between there
should be a model in which binding energies are comparable to those of real nuclei. Setting the
pion mass parameter m = 1, as is usual, one finds that this does indeed happen, for α ≈ 0.95 [5].
We set m = 1 and α = 0.95 for the remainder of this paper, and refer to this variant of the
Skyrme model as the lightly bound model.

Although this is, in its mathematical formulation, the least radical of all the so-called near
BPS models [1, 14], it turns out that its Skyrmions, that is, local minimizers of E, are markedly
different from those of the usual (α = 0) model. They consist of B quite distinct almost
spherically symmetric charge 1 subunits, arranged on compact subsets of the vertices of a face
centred cubic lattice, internally oriented so as to be in an attractive channel with each of their
nearest neighbours [4, 5]. The internal orientations can be understood as follows. Decompose
the FCC lattice{

(x1, x2, x3) ∈ Z3 : x1 + x2 + x3 ∼= 0 mod 2
}

into 4 simple cubic sublattices labelled by ([x1], [x2]) ∈ Z2 × Z2 and think of these 4 values as
colours. Assign to these 4 colours c the SU(2) matrices Lc

([0], [0]) 7→ I2, ([0], [1]) 7→ −iτ1, ([1], [0]) 7→ −iτ2, ([1], [1]) 7→ −iτ3,

where τi are the usual Pauli matrices. Then a unit Skyrmion placed at a vertex v with colour c
is the image of the standardly oriented unit Skyrmion UH (the H stands for “hedgehog”) under
isorotation by Lc, that is,

U(x) = LcUH(x− v)L−1
c .

By construction, this places all nearest neighbours in the lattice in the attractive channel.
All local minima found by lattice field simulations1 are approximately of this form and,

furthermore, given any reasonably compact order B subset of the FCC lattice, one finds a local
energy minimizer close to this, with internal orientations (approximately) given by the colouring
rule. Hence, as B grows, the number of local energy minimizers grows very rapidly [4].

It is natural, therefore, to develop a point-particle approximation to the model. By careful
study of two Skyrmion scattering processes, it was determined that the interaction energy of two
unit Skyrmions placed at positions x1 and x2, with internal orientations q1, q2 ∈ SU(2) (relative
to UH) is well approximated by

Vint(x1, q1,x2, q2) = V0(|X|) + V1(|X|) Tr(R(Q)) + V2(|X|)X ·R(Q)X

|X|2
,

where X = x1 − x2, Q = q−1
1 q2 and V0, V1, V2 are certain explicit functions of |X|, all exponen-

tially small at large |X| whose precise form is given in [4]. Here, and henceforth, we use R(q) to
denote the SO(3) matrix whose action on R3 coincides with the adjoint action of q ∈ SU(2) on
the Lie algebra su(2) under the standard identification

R3 → su(2), x 7→ − i

2
x · τ .

That is,

q

(
− i

2
x · τ

)
q−1 =: − i

2
(R(q)x) · τ .

1With one exception: at B = 8 the 5th lowest energy minimizer, while still exhibiting 8 distinct unit Skyrmions,
is a bound state of two tetrahedra whose constituents lie on two different FCC lattices.
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We may now approximate charge B static Skyrmions by finding local minima of the total point-
particle energy Vpp :

(
R3 × SU(2)

)B → R,

Vpp((x1, q1), . . . , (xB, qB)) = BM +
B−1∑
i=1

B∑
j=i+1

Vint(xi, qi,xj , qj), (2.2)

the sum of the rest energy of B unit Skyrmions and their pairwise interaction energies. The
results are in excellent agreement with lattice field simulations for the range of B in which
the latter have been comprehensively prosecuted (1 ≤ B ≤ 8). This gives us confidence to
discard the original field theoretic model (2) and replace it by the much simpler point particle
system (2.2). We make the model dynamical by ascribing a rest massM and moment of inertia L
to each point Skyrmion, obtaining the Lagrangian

L =
1

2

B∑
a=1

(
M |ẋa|2 + L|q̇a|2

)
− Vpp, (2.3)

where, in computing the length of q̇a, we have given SU(2) the unit sphere metric (with respect
to which, it is crucial to note, −iτi are orthonormal, rather than −iτi/2). The constants M
and L are obtained by fitting to lattice field theory simulations, and are found to be M = 93.09,
L = 217.20.2

In summary, the numerical problem we are faced with is, for a given value B, first, to find all

local minima of Vpp : MB → R, where MB =
(
R3 × SU(2)

)B
, and second, for each distinct pair

of local minima, to construct an energy minimizing path between them. Here we must face an
important subtlety: points in MB which differ by a permutation of the particle labels, and/or
sign-flips of (some of) the internal orientations actually represent precisely the same field con-
figuration in the original Skyrme model, and should not be considered distinct. This is because
the field obtained by superposing B oriented hedgehog configurations is clearly invariant under
changes in how we label the hedgehog centres, and R(−q) = R(q), so the internal orientation of
each charge one subunit is invariant under q 7→ −q. To formulate this precisely, let SB denote
the permutation group on B objects and Z2 = {1,−1} with multiplication. On the cartesian
product PB := SB × ZB

2 define the group multiplication law

(σ, s) · (σ′, s′) =
(
σ ◦ σ′,

(
s1, s

′
σ−1(1), . . . , sBs

′
σ−1(B)

))
.

We call PB the group of perm-flips: it has a natural right action on MB by permuting the
particle labels and flipping the orientations:

(σ, s) : ((x1, q1), . . . , (xB, qB)) 7→
((
xσ(1), sσ(1)qσ(1)

)
, . . . ,

(
xσ(B), sσ(B)qσ(B)

))
.

Then points inMB lying in the same PB orbit represent identical fields, and should be identified.
Local minimizers of (2.2) were studied in [4], which proposed that they closely resemble

size B subsets of a face centred cubic lattice. This paper used a zero-temperature annealing
algorithm to locate the minima, which is not accurate or efficient enough for our purposes (see
the next section). Hence we have recomputed all local minima using a gradient flow algorithm
using the results of [4] as initial data. The results are qualitatively unchanged, but the minimal
energies are reduced, typically in the 3rd (or 2nd, for large B) decimal place. A comparison of
these results with those of [4] for B = 3, 4, . . . , 10 can be found in Appendix A. We continue
the convention of labelling local minima with their particle number B and a lower-case Latin

2There is an error in the computation of L in [4], resulting in a value which is 4 times too small. This is due to
an inconsistency in identifications of su(2) with R3. Luckily, the inconsistency cancels itself out, and the results
on rigid body quantization presented in [4] are correct.
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label a, b, c, . . ., so that alphabetical order reproduces their energetic order (so the lowest charge 7
solution is labelled 7a, the next lowest 7b etc.). A comparison between the energy minimizers
found in the point particle model and those obtained by full numerics on the field theory was
also made in [4] for 1 ≤ B ≤ 8, with good qualitative and quantitative agreement found.

3 Nudged elastic band method

Given two local minimizers of Vpp with the same particle number B, labelled Bα and Bβ say,
we seek an energy minimizing path (EMP) between them. To find said EMP, we employ the
nudged elastic band (NEB) method [2]. This entails constructing a curve Γ: [0, 1] → MB with
Γ(0) = Bα and Γ(1) = Bβ such that

max
s∈[0,1]

Vpp(Γ(s))

is as small as possible. To describe the method, it is helpful to assume at first that the con-
figuration space in which the curve lives, MB, is a finite-dimensional vector space. We will
then describe the modifications required to accommodate the nonlinear nature of MB in our
application.

So, consider first the analogous problem for some potential function V : M → R and a pair
of local minima α, β ∈ M = Rk. To find an EMP connecting α to β, we first discretize the
curve Γ, replacing it by an ordered set of points α = v1, v2, . . . , vn = β. We then treat each
configuration vi as a notional particle in M , coupled to its neighbours with notional springs,
of some uniform spring constant κ, subject to a force due to the potential V and forces due to
the coupling springs. Crucially, we project the force due to the potential V orthogonal to the
path, and the force due to the springs parallel to the path. The second projection ensures that
an EMP is a gradient descent curve, while the first projection evenly distributes the points vi
along the EMP. This is most easily seen after taking the continuum limit, to which we will turn
shortly. So, having chosen a unit vector τ̂i approximating the unit tangent to the curve at the
point vi, the total force experienced by the i-th particle is

F tot
i = − gradV (vi)|⊥ + F spring

i

∣∣
∥,

where

u|∥ = ⟨u, τ̂i⟩τ̂i, u|⊥ = u− u|∥, F spring
i = −κ(vi+1 − 2vi + vi−1),

and ⟨·, ·⟩ denotes the Euclidean inner product on M . The start and end points of our chain are
fixed, v1 = α, vn = β, but we allow all the intermediate points vi(t), i = 2, 3, . . . , n− 1, to move
under arrested Newton flow. That is, we solve the coupled system of ODEs

v̈i = F tot
i

starting from some initial configuration with v̇(0) = 0, but subject to the arresting criterion that
if, at any time,

〈
v̇, F tot

〉
=

n−1∑
i=2

〈
v̇i, F

tot
i

〉
< 0,

we set v̇ = 0 and restart the flow. This flow efficiently relaxes the chain to an equilibrium point,
at which F tot

i = 0. In practice, we solve the flow using a 4th order Runge–Kutta scheme with
fixed time step, and declare the chain to be at equilibrium when the sup norm of F tot falls below
some prescribed tolerance.
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An appealing feature of this algorithm is that the chains it produces are discrete approximants
of unions of gradient descent curves for the potential V , parametrized with constant speed, from
some saddle point v∗ between v1 and vn. To see this, imagine taking the continuum limit of the
equilibrium chain, that is, taking both the spring constant κ and the number of particles in the
chain n to infinity such that κ/n = 1, and taking vi = v(i/n) for some continuous curve v(s).
Then F spring

i approaches the limit

F spring(s) = −d2v

ds2

and τ̂i the limit

τ̂(s) =
dv

ds

/∣∣∣∣dvds
∣∣∣∣ .

Since the chain is at equilibrium, F tot = 0, and, resolving this condition into its perpendicular
and parallel components, one concludes that

− gradV (v(s))|⊥ = 0, (3.1)

d2v

ds2

∣∣∣∣
∥
= 0. (3.2)

Condition (3.1) implies that gradV (v(s)) is parallel to the curve at v(s), and hence that v is
a gradient descent curve (or ascent curve, depending on how one orients it). Note that this
condition actually results from the projection of F spring parallel to τ̂ . Condition (3.2) implies
that v(s) has constant speed and results from the projection of gradV perpendicular to τ̂ . The
point on the curve v∗ of maximal energy is a critical point of V (gradV |⊥ = 0 as for any point
on the curve, and gradV |∥ = 0 since V is maximal along the curve) with exactly one unstable
direction, parallel to the curve, and hence an index 1 saddle point of V .

The configuration space for the application we have in mind, MB =
(
R3 × S3

)B
is not

a vector space. However, it has a canonical isometric embedding into M = R7B, obtained via
the standard embedding of S3 into R4. So we construct a chain of points inM between α and β,
each of which lies on the submanifold MB, and then apply the algorithm described above to
this chain, but with all forces and velocities projected tangent to MB (orthogonally, using the
ambient metric on M), and, after each time step, each point in the chain projected onto MB by
radial projection R4 → S3 in each factor.

A key computational choice in the NEB method is the construction of the unit vector τ̂i
approximating the tangent vector to the curve at vi [2]. The simplest is using the normalized
displacement between neighbouring configurations,

τ̂i =
vi+1 − vi−1

|vi+1 − vi−1|
.

This approximation can cause issues when the curvature is large as the lattice sites will not be
evenly spaced along the curve Γ. A better choice is to average between the line segments of both
neighbouring configurations,

τi =
vi − vi−1

|vi − vi−1|
+

vi+1 − vi
|vi+1 − vi|

,

which is then normalised to give τ̂i. This is better at maintaining uniform spacing between
neighbours on the chain.
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Finally, both the previous approaches have issues if the energy changes too rapidly along the
path. This can be ameliorated by using a piecewise definition for τ̂i chosen so that, for a given
point vi we take the normalised displacement between vi and the neighbour with higher energy,

τ =

{
τ+ if Ei+1 > Ei > Ei−1,

τ− if Ei+1 < Ei < Ei−1,

where τ+ = vi+1 − vi, τ
− = vi − vi−1. Note that if the chosen configuration corresponds to a

local minimum or maximum on Γαβ, then the tangent becomes

τi =

{
τ+i ∆Emax

i + τ−i ∆Emin
i if Ei+1 > Ei−1,

τ+i ∆Emin
i + τ−i ∆Emax

i if Ei+1 < Ei−1,

where

∆Emax
i = max(|Ei+1 − Ei|, |Ei−1 − Ei|), ∆Emin

i = min(|Ei+1 − Ei|, |Ei−1 − Ei|).

Finally, the tangent vector is normalized.
For our simulations, we tried all three methods of choosing the tangent vector and for most

paths the choice made little difference in the outcome. This is in part due to the large number of
lattice sites used to discretize the paths. We did find that the final method proved more robust
in the few cases where the EMP transitioned via many other local minima. Note that if this
approach is expanded to the full Skyrme model, then the computational cost would necessitate
a far coarser discretization of the path and the final method presented here may compensate for
this loss of accuracy.

It is also worth noting that the magnitude of κ will affect the convergence speed for the
algorithm. If κ is too large then the optimal time step dt (while ensuring stability) is dominated
by the spring force along the path, while the gradient orthogonal to the path relaxes slowly.
Alternatively, if κ is too small, then the spring force relaxes slowly. When running the algorithm,
we used trial and error to determine a workable value, finding that κ = 10 works acceptably
across the range of results presented.

To construct a sensible initial condition we now need to carefully reconsider the isometries of
the model. As each local minimizer is only unique up to these isometries, we must choose the
optimal position, spatial orientation, isospace orientation, labelling and sign flips for the two
fixed boundary configurations. This is not an issue for the continuous symmetries, as there are
zero potential paths that the NEB method can use to compensate for a poor choice. However,
changing one of the two discrete symmetries, produces a curve with a non-zero energy barrier.

First, without loss of generality, we fix the labelling and choice of sign for the configuration
on the left boundary (s = 0). For the right boundary (s = 1), we assume that the “optimal”
choice of isometries is the one that minimises the distance |v1 − vn| between the boundary
configurations. Hence, we loop through the possible labellings and spin flips, and for each choice
minimize over the other isometries. We then select the choice of isometries that provides the
shortest configuration distance.

Even if we assume that a given EMP exists, this approach will not always work. If we
choose a poor labelling or sign choice, then the resulting path will feature multiple saddlepoints
and more than 2 minima, where the additional minima will correspond to applying a discrete
symmetry to one of the boundary configurations, effectively changing the poor boundary con-
dition. Hence, our algorithm upon completion checks all local minima not on the boundaries.
Each configuration is used as an initial condition and a gradient flow algorithm was applied to
minimise Vpp. If the resulting local minimum of this gradient flow simulation matches either
boundary configuration up to symmetries, we can simply use this as an improved boundary
condition for a new simulation.
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The method presented above still has one significant issue: the number of equivalent discrete
configurations scales factorially with B and quickly becomes impractical for large B. Hence,
it is more practical to guess at a reasonable labelling and allow the algorithm to correct the
additional minima that occur until a good boundary condition is found. Of course there is no
guarantee that another labelling would not provide an alternative, longer, but lower energy path
to the one found, but checking all labellings is computationally impossible.

It is interesting to note that the problem of permutation equivalence is absent if we apply
the NEB method to the full field theory: both the start and end configurations are simply
(lattice approximants to) maps R3 → SU(2), with no labelling assumed. While the full field
theory is, in this sense, simpler, extending the NEB method to it will be a numerically intensive
task. Each field configuration can be approximated on a regular N3 grid, with spacing h > 0.
Hence, the discretized configuration space would be the manifoldMSkyrme = (SU(2))N

3 ⊂ R4N3
.

The algorithm then follows similarly to above, where each EMP is approximated by a chain
of configurations vi ∈ R4N3

. To resolve the structure of a skyrmion of modest charge, say
B = 7, usually requires N ∼ 200, so the NEB method must construct a path in a space of
dimension 4N3 ∼ 3.2× 107, which compares with 7B = 49 for the point particle model. Clearly
this is immensely more computationally costly, and it will be necessary to use a much coarser
discretization of the path itself (i.e., use fewer notional particles vi in our chain). If we are to
apply the NEB method to more conventional versions of the Skyrme model, which do not have
a good point particle approximation, there is no obvious alternative to paying this cost.

3.1 Results

We used the above method for B ≤ 10, with a typical number of configurations in a path
n = 500, obtaining the results displayed in Table 1. Here Γαβ is the EMP from α to β and
we recall that the labelling convention is that alphabetical order reproduces ascending energy
order. The final column displays the reduced configuration spaces in the form of a graph for
each degree B. If a vertex connecting two nodes of the graph is not included, it means a minimal
energy path between the minimizers was found, but it had additional local minima on the path
that correspond to other local minimizers. These were identified using a similar algorithm as
explained for identifying improved boundary conditions above, checking each local minimum
and comparing with the list of possible local minima. This is best seen in the B = 6 graph,
where to transition from a to b, we must surprisingly go via the highest energy local minimum c
(and two intervening saddle points). This results in the energy path seen in Figure 2, where we
can see the first plot contains multiple minima and saddle points. The path goes from a via
a saddle point to c, then it performs a relabelling of the configuration, then transitions to b.
A sequence of snapshots along the path 6ab can be seen in Figure 1. Since the EMP from 6a
to 6b travels via 6c, the graph for B = 6 is a line, this constitutes the entire graph. Plots of
the energy along the direct paths 6ac and 6bc are also shown in Figure 2 for comparison. By
contrast, for B = 8 we also have a graph of 3 vertices, but there is a direct path between each
pair, so the graph forms a loop rather than a line.

It is worth noting that when a path Γαβ contains multiple local minima, if they do not
correspond to the list of known minima we have discovered a new local minimiser. For example,
this is the case for the configurations 10g and 10h. In addition, as the degree increases the
number of local minima increases significantly (note many of these minima will not be included
in Appendix A as an exhaustive search has not been made for large B). This means the graph
becomes increasingly complicated and the paths become increasingly difficult to find numerically.
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a → saddle point → c → saddle point → b

Figure 1. A plot of the B = 6 transition Γab from configuration 6a to 6b via the local minimizer 6c. Note that as the graph for B = 6 in Table 1 is the

line a− c− b this transition describes the entire graph. Each point particle is represented by a sphere centred on its position xi and oriented according to qi.

Each sphere has been coloured by patches of colour, with white/black on the top/bottom and blue,green,red and yellow going clockwise around the equator

(the so-called juggler’s ball colouring, see [5] for a more detailed discussion). Both the top and bottom row show the same configurations but from different

angles (the perspective is constant along each row). We have plotted the highest energy configuration between each local minimizer, which corresponds to

a saddle point of the energy.
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B Path Initial energyFinal energy Saddle energy Graph

5 Γab −2.338 −2.184 −1.874 a b
0.464

6
Γac −3.229 −3.047 −2.490

a bc
0.739 0.6

Γbc −3.117 −3.047 −2.517

7 Γab −4.057 −3.895 −3.342 a b
0.715

8

Γab −4.889 −4.869 −4.600
a b

c

0.289

0.758 0.
29
3

Γac −4.889 −4.781 −4.131
Γbc −4.869 −4.781 −4.576

9

Γab −5.664 −5.598 −5.385

a

b

cd

0.
28

0.3080.898

0.3170.9
28Γac −5.664 −5.483 −5.357

Γad −5.664 −5.460 −4.766
Γbc −5.598 −5.483 −5.281
Γbd −5.598 −5.460 −4.670

10

Γag −6.443 −6.133 −5.358

a b

cd ef

g

h

0.754 0.897

0.292 0.9
97

0.7740.2360.290

1.1
67

0.927

Γbd −6.442 −6.284 −6.071
Γbe −6.442 −6.277 −5.445
Γbg −6.442 −6.133 −5.546
Γcd −6.307 −6.284 −6.071
Γce −6.307 −6.277 −5.534
Γdf −6.284 −6.194 −5.994
Γdh −6.284 −6.121 −5.118
Γeh −6.277 −6.121 −5.350

Table 1. Table containing each unique energy minimizing path (EMP) between local energy minimizers

found for B ≤ 10. The paths are oriented so that they start at the lower minimizer. Column 4 records

the maximum energy along the curve which is, by construction, the energy of an index 1 saddle point.

The rightmost column is the resulting graph representing the reduced configuration space. Each edge

represents and EMP and is labelled with the energy barrier that must be surmounted to move from the

lower energy vertex to the higher (that is, the energy of the intervening saddle point minus the energy

of the lower vertex). Note that all energies quoted are interaction energies: they do not include the total

Skyrmion rest mass BM .

If we consider this as a test case for the full Skyrme model, it has been shown that the number
of local minima does increase as the degree increases [6], similar to the point particle model.
However, the number of minima that will occur in the EMPs will be far less, as the discrete
re-labelling symmetry is absent.

4 Quantization

To quantize the dynamics of B lightly bound Skyrmions, we introduce a wavefunction

ψ : MB → C.

Note that this does not descend to a function MB/PB → C since nucleons are fermions. Rather,
we demand that, for all x ∈MB and permflips (σ, s) ∈ PB,

ψ((σ, s) · x) = (−1)sgn(σ,s)ψ(x), (4.1)
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Figure 2. Plots of the potential energies Vpp of the energy minimizing paths for B = 6 found using

NEB, with saddle points and minima labelled. Note that the first path transitions from configuration 6a

to 6b via the local minimum 6c, while the other paths are direct. 6ab is the union of 6ac, 6bc reversed

and an additional 6cc curve that constitutes a relabelling and is artificial. This can be seen in the graph

for B = 6 in Table 1, while the configurations at each critical point are plotted in Figure 1.

where the sign of a permflip is sgn(σ, s) := sgn(σ)s1s2 · · · sB. This antisymmetry property of ψ
can be derived from the Finkelstein–Rubinstein constraints applied to the original field the-
ory [4].

In principle, the dynamics of the system is determined by the natural Hamiltonian operator
on L2(MB) associated with the particle Lagrangian (2.3). This system is too complicated as
it stands however, so we make a further approximation. Having identified a graph of energy-
minimizing curves Γ inside MB, we assume that ψ vanishes outside GΓ, the union of G-orbits
of points on Γ, where G = SU(2)× SU(2) is the isospin-spin group. This acts on MB on the left
by

(g, h) : (xa, qa) 7→
(
R(h)xa, hqag

−1
)
.

So we assume the wavefunction is localized only on configurations which, up to isospin-spin
symmetry, lie on Γ. Let us denote the edges of Γ,Γ1,Γ2, . . . ,Γn, each parametrized by a co-
ordinate s ∈ [0, 1], and denote by GΓj the union of G-orbits of points on the edge Γj . For
B > 2, the isotropy group of every point on Γ is trivial, so we may identify GΓj ≡ [0, 1] × G.
The wavefunction reduces, therefore, to a collection of n functions ψj : [0, 1] × G → C, one for
each edge, satisfying boundary conditions determined by the graph Γ, and the symmetries of
the vertex configurations, descending from the Finkelstein–Rubinstein constraint (4.1). We will
return to the issue of boundary conditions shortly.
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a → saddle point → b

Figure 3. A plot of the B = 7 transition Γab from configuration 7a to 7b, with conventions as in Figure 1,

seen from two different viewpoints (top row versus bottom row). Note that as the graph for B = 7 in

Table 1 is the line a− b this transition describes the entire graph.

4.1 The metric on GΓj

The kinetic energy defined by the particle Lagrangian (2.3) equipsMB with a Riemannian metric

gMB
=

B∑
a=1

(
M |dxa|2 + L|dqa|2

)
,

which induces a metric gGΓj on GΓj
∼= [0, 1]×G. The kinetic term in the Hamiltonian operator

acting on ψj is the Laplace–Beltrami operator on [0, 1]×G defined by this metric. So our first
task is to compute this metric.

By definition, gGΓj is invariant under the natural left action of G on [0, 1]×G, so is uniquely
determined by the one-parameter family of inner products it defines on T(s,(I3,I3))[0, 1]×G. This
vector space is spanned by ∂/∂s, θ1, θ2, . . . , θ6 where

θi = − i

2
τi ⊕ 0, θi+3 = 0⊕− i

2
τi,

so θ1,2,3 generate isorotations while θ4,5,6 generate rotations. If Γj is the curve {(xa(s), qa(s)) : 0 ≤
s ≤ 1}, then the G part of the metric may be interpreted as the isospin-spin inertia tensor of
the configuration Γj(s). This was computed in [4]. Relative to the basis {θ1, . . . , θ6} it takes the
form

(
gGΓj (θi, θk)

)
= Λ(s) =M

B∑
a=1

(
0 0
0 |xa|2I3 − xax

T
a

)
+
L

4

B∑
a=1

(
I3 −R(qa)

−R(qa)T I3

)
. (4.2)
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The basis vector ∂/∂s has squared length

gGΓj (∂/∂s, ∂/∂s) = gC ({ẋa, q̇a}, {ẋa, q̇a}) =M

B∑
a=1

|ẋa(s)|2 + L

B∑
a=1

|q̇a(s)|2,

which must be constructed numerically from the curve.
It remains to compute gGΓj (∂/∂s, θj). For i = 1, 2, 3, θi generates the tangent vector{(

0, qa
i

2
τi

)}
,

whose inner product with ∂/∂s is

gGΓj (∂/∂s, θi) = gC

(
{ẋa, q̇a},

{(
0, qa

i

2
τi

)})
= L

B∑
a=1

〈
q−1
a q̇a,

i

2
τi

〉
su(2)

=
L

2

B∑
a=1

(qa,0q̇a,i − q̇a,0qa,i − ϵijkqa,j q̇a,k) ,

where we have identified qa = qa,0I2 − iqa,jτj . For i = 1, 2, 3, θi+3 generates the tangent vector{(
ei × xa,−

i

2
τiqa

)}
,

whose inner product with ∂/∂s is

gGΓj (∂/∂s, θi+3) = gC

(
{ẋa, q̇a},

{(
ei × xa,−

i

2
τiqa

)})
=M

B∑
a=1

ei · (xa × ẋa) + L
B∑

a=1

〈
q̇aq

−1
a ,− i

2
τi

〉
su(2)

=M
B∑

a=1

ei · (xa × ẋa) +
L

2

B∑
a=1

(−qa,0q̇a,i + q̇a,0qa,i − ϵijkqa,j q̇a,k) .

In summary, the metric (with respect to the basis ∂s, θ1, . . . , θ6) takes the form

gGΓj =

 f(s) AI(s) AJ(s)
AI(s)
AJ(s)

Λ(s)

 ,

where

f(s) =M

B∑
a=1

|ẋa(s)|2 + L

B∑
a=1

|q̇a(s)|2,

AI(s) =
L

2

B∑
a=1

(qa,0(s)q̇a(s)− q̇a,0(s)qa(s)− qa(s)× q̇a(s)) ,

AJ(s) =M
B∑

a=1

xa(s)× ẋa(s)−

(
AI(s) + L

B∑
a=1

qa(s)× q̇a(s)

)
,

and Λ(s) is defined in (4.2).
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4.2 Computing the Laplacian

To compute the Laplacian, it is convenient to follow Rawlinson [12] and reexpress the metric in
the form

gGΓj =

(
q(s) +BT(s)Λ(s)B(s) BT(s)Λ(s)

Λ(s)B(s) Λ(s)

)
,

where

A(s) =

(
AI

AJ

)
, B(s) = Λ−1(s)A(s), q(s) = f(s)−AT(s)

(
Λ−1(s)

)T
A(s).

Then

gGΓj =

(
1 BT

0 I6

)(
q 0
0 Λ

)(
1 0
B I6

)
,

from which we deduce that

g−1 =


1

q
−B

T

q

−B
q

Λ−1 +
BBT

q


and

|g| =
√
|Λ|q.

Let us define σ1, . . . , σ6 to be the left invariant one forms on G dual to the vector fields θi.
Note that

dσ1 = −σ2 ∧ σ3, dσ4 = −σ5 ∧ σ6 (4.3)

and cyclic perms of these (perms of {1, 2, 3} and {4, 5, 6}). This follows from the Maurer–Cartan
equation for G.

Consider a general smooth function ψ : [0, 1]×G→ R. Then

dψ =
∑
i

θi(ψ)σi + ψsds,

so

|dψ|2 =
∑
i,j

(
Λ−1
ij +

BiBj

q

)
θi(ψ)θj(ψ)− 2

∑
i

Bi

q
θi(ψ)ψs +

1

q
ψ2
s .

The volume form on [0, 1]×G is

vol =
√

|Λ(s)|q(s) ds ∧ σ1 ∧ · · · ∧ σ6.

Hence

∥dψ∥2L2 =

∫
[0,1]×G

ds ∧ σ1...6
√
|Λ|q

×
{∑

i,j

(
Λ−1
ij +

BiBj

q

)
θi(ψ)θj(ψ)− 2

∑
i

Bi

q
θi(ψ)ψs +

1

q
ψ2
s

}
=: T0 + T1 + T2,
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where Tα denotes the collection of terms containing α s-derivatives. Now

T0 =

∫
ds ∧ σ1 ∧ · · · ∧ σ6

{∑
i

θi(λi)−
√
|Λ|qψ

∑
i,j

(
Λ−1
ij +

BiBj

q

)
θiθj(ψ)

}
,

where

λi :=
∑
j

√
|Λ|q

(
Λ−1
ij +

BiBj

q

)
ψθj(ψ)

is a collection of 6 smooth functions on [0, 1]×G. We claim that for any such function, and any
i ∈ {1, 2, . . . , 6},∫

[0,1]×G
ds ∧ σ1 ∧ · · · ∧ σ6θi(λ) = 0. (4.4)

To see this, let us define Σi = σ1 ∧ · · · ∧ σ̂i ∧ · · · ∧ σ6, where the hat denotes an omitted form.
So Σ1 = σ2 ∧ σ3 ∧ · · · ∧ σ6 etc. Note that every one of these 5 forms is closed (in fact, exact)
by (4.3). Then

ds ∧ σ1 ∧ · · · ∧ σ6θi(λ) = (−1)i+1ds ∧ θi(λ)σi ∧ Σi

= (−1)i+1dλi ∧ Σi ∧ ds = d
(
(−1)i+1λiΣi ∧ ds

)
since Σi ∧ ds is closed. Hence, by Stokes’s theorem∫

[0,1]×G
ds ∧ σ1 ∧ · · · ∧ σ6θi(λ) =

∫
{1}×G

(−1)i+1λ ds ∧ Σi −
∫
{0}×G

(−1)i+1λ ds ∧ Σi.

But both these integrals vanish since the restriction of the integrand to any submanifold {s}×G
is identically zero.

Hence

T0 =

∫
[0,1]×G

vol ψ

(
−
∑
i,j

(
Λ−1
ij +

BiBj

f

)
θiθj

)
ψ.

Similarly,

T1 = −2

∫
[0,1]×G

ds ∧ σ1 ∧ · · · ∧ σ6
∑
i

θi(λi) + 2

∫
[0,1]×G

vol ψ
∑
i

Bi

q
θi(ψs)

=

∫
[0,1]×G

vol ψ

(
2
∑
i

Bi

f
θi
∂

∂s

)
ψ,

where

λi :=

√
|Λ|
q
Biψsψ

and we have again used (4.4).
Finally,

T2 =

∫
[0,1]×G

ds ∧ σ1···6

{
∂

∂s

(√
|Λ|
q
ψψs

)
− ψ

∂

∂s

(√
|Λ|
q
ψs

)}
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=

∫
[0,1]×G

d

(√
|Λ|
q
ψψsσ1···6

)
−
∫
[0,1]×G

vol ψ

(
1√
|Λ|q

∂

∂s

(√
|Λ|
q

∂

∂s

))
ψ

=

√
|Λ(1)|
q(1)

∫
G
ψ(1)ψs(1)−

√
|Λ(0)|
q(0)

∫
G
ψ(0)ψs(0)

+

∫
[0,1]×G

vol ψ

(
− 1√

|Λ|q
∂

∂s

(√
|Λ|
q

∂

∂s

))
ψ.

By identifying

∥dψ∥2L2 = ⟨ψ,∆ψ⟩L2 ,

we deduce that

∆ = −
∑
i,j

(
Λ−1
ij +

BiBj

q

)
θiθj + 2

∑
i

Bi

q
θi
∂

∂s
− 1√

|Λ|q
∂

∂s

(√
|Λ|
q

∂

∂s

)
. (4.5)

Further, to ensure that ∆ is self-adjoint, we should restrict it to functions for which∫
G×{s}

ψ(s)ψs(s) = 0

at s = 0 and s = 1.
The complete Hamiltonian, as it acts on the component of the wavefunction on GΓj , is

H =
ℏ2

2
∆ + V (s), (4.6)

where V (s) is the restriction to Γj of the point-particle potential Vpp defined in (2.2).
We have gone through the derivation of ∆ in some detail, rather than simply transcribing

the formula for the Hamiltonian quoted in [12], since the latter formula appears to be mistaken.
In particular, the Hamiltonian in [12] does not appear to be self adjoint (with respect to the
natural L2 inner product defined by g) unless Λ is constant.

4.3 Isospin, spin and the FR constraints

Recall that the wavefunction must satisfy the identity (4.1). On GΓj , this identity produces
a constraint if and only if the G-orbit of x(s) contains images of x(s) under permflips. Since G
is the symmetry group, this happens precisely when x(s) has nontrivial symmetries.

Note that every configuration is symmetric under both (g0, h0) = (−I2, I2) and (g0, h0) =
(I2,−I2), the compensating permflip being (in both cases)

(σ, s) = (Id,−1,−1,−1, . . . ,−1),

whose sign is (−1)B. So ψ on GΓj must be even (odd) under both antipodal maps

(s, g, h) 7→ (s,−g, h), (s, g, h) 7→ (s, g,−h)

if B is even (odd).
To proceed further we use the Peter–Weyl theorem: the collection of matrix elements of

irreducible unitary representations of G forms an orthonormal basis for L2(G). The irreducible
representations of G are labelled by a pair of half integers (I, J), interpreted as isospin and
spin. Integer representations are even under the antipodal map, half-integer representations are
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odd. Hence, if B is even (odd) then the wavefunction lies in the subspace spanned by I, J both
integer (non-integer). The (I, J) subspace has dimension (2I + 1)2(2J + 1)2 and is spanned by
the functions

ρI(g)ijρJ(h)kl, 1 ≤ i, j ≤ 2I + 1, 1 ≤ k, l ≤ 2J + 1,

where ρL : SU(2) → GL(2L+1,C) is the spin L representation of SU(2). We can decompose this
space further into subspaces with (i, k) fixed. The Hamiltonian preserves each such subspace,
and acts isomorphically on each (by left G-invariance of the metric and potential). Hence, we
can, without loss of generality, fix (I, J), set i = k = 1, and consider the space spanned by

ρI(g)1iρJ(h)1j , 1 ≤ i ≤ 2I + 1, 1 ≤ j ≤ 2J + 1.

Let us denote these functions

|i, j⟩(g, h) = ρI(g)1iρJ(h)1j .

Then our wavefunction (on GΓj) takes the form

ψ(s, g, h) =
2I+1∑
i=1

2J+1∑
j=1

aij(s)|i, j⟩(g, h), (4.7)

and represents a quantum state of isospin I and spin J .
We may arrange the coefficients aij(s) into a column vector indexed 11, 12, . . . , 1(2J + 1),

21, 22, . . . , (2J + 1), . . . , (2I + 1)1, (2I + 1)2, . . . , (2I + 1)(2J + 1), call it v(s) say. Then, having
fixed (I, J), the differential operators θi act on v(s) by matrix multiplication according to the
corresponding representations of su(2),

θi ≡ θIi ⊗ I2J+1, θi+3 ≡ I2I+1 ⊗ θJi . (4.8)

For I = J = 1/2, one has θ
1/2
i = − i

2τi, for example. In this way, the Hamiltonian on GΓj

is reduced to a matrix-valued ordinary differential operator acting on v : [0, 1] → C(2I+1)(2J+1),
obtained explicitly by substituting (4.8) into (4.5) and (4.6).

Suppose now that (g0, h0) is a symmetry of x(s) with compensating permflip (σ, s), that is,

(g0, h0) · x(s) = (σ, s) · x(s). (4.9)

Then, for all (g, h) ∈ G,

(g, h) · ((g0, h0) · x(s)) = (g, h) · ((σ, s) · x(s)) = (σ, s) · ((g, h) · x(s)) (4.10)

(just act on equality (4.9) with the G action and note that permflips commute with this action).
Note that the leftmost configuration in (4.10) is (gg0, hh0) · x(s). Hence, the FR constraint
demands that

ψ(s, gg0, hh0) = (−1)sgn(σ,s)ψ(s, g, h).

Substituting our expansion for ψ, (4.7)∑
aij(s)ρI(gg0)1iρJ(hh0)1j =

∑
aij(s)ρI(g)1kρI(g0)kiρJ(h)1lρJ(h0)lj

=
∑

ρI(g0)kiρJ(h0)ljaij(s)|k, l⟩(g, h)

= (−1)sgn(σ,s)
∑

akl(s)|k, l⟩(g, h).
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Hence, our column vector v(s) satisfies

[ρI(g0)⊗ ρJ(h0)] v(s) = (−1)sgn(σ,s)v(s), (4.11)

where ρI(g0)⊗ ρJ(h0) is the tensor product of the matrices ρI(g0) and ρJ(g0).
In practice, we find that x(s), 0 < s < 1, the interpolating points on the energy minimizing

curves Γj have no nontrivial symmetries. The endpoints, that is, the local energy minimizers x(0)
and x(1) frequently do have nontrivial symmetries, however. The FR constraints (4.11) must
then be incorporated into the boundary conditions imposed on v(s). These boundary conditions
must also be chosen to render H self-adjoint. In the case where an endpoint is a polyvalent
vertex of Γ, one must also impose that ψ is continuous at the vertex, and that probability flux
is conserved [3]. In the sequel, we shall restrict attention to the simplest nontrivial scenario,
where Γ is a single edge connecting two distinct vertices, so that this latter requirement is
not a consideration. Even here, the FR constraints and self-adjointness make the boundary
conditions quite subtle.

5 Quantizing the B = 7 Skyrmion

For B = 7, the graph Γ has a single edge x(s) connecting two energy minimizers denoted 7a
and 7b, as seen in Table 1. The start, intermediate saddle point and end configurations are
depicted in Figure 3. The 7a minimizer x(0) has the symmetries of the following configuration:

label position orientation

1 (0, 0,−1) 1
2 (0, 0, 1) 1
3 (0,−1, 0) i
4 (0, 1, 0) i
5 (−1, 0, 0) j
6 (1, 0, 0) j
7 (−1,−1,−1) k

To visualize this, think of particles 1 to 6 as being on the vertices of the octohedron where the
coordinate axes intersect the unit sphere, and particle 7 as the extra particle hovering below one
of the triangular faces. Following [4], we are specifying orientation by a unit quaternion using
the identification

q = q0 + q1i + q2j + q3k ↔ U = q0I2 − i(q1τ1 + q2τ2 + q3τ3).

The 7a minimizer is symmetric under the action of (g0, h0), where

g0 =
1

2
(1− i− j + k) ≡ 1

2
(I2 + i(τ1 + τ2 − τ3)),

h0 =
1

2
(1 + i + j + k) ≡ 1

2
(I2 − i(τ1 + τ2 + τ3)).

To see this, note that

R(h0) =

0 0 1
1 0 0
0 1 0


which rotates by 120◦ about the line containing the origin and (−1,−1,−1). This induces the
permutation of positions

1 7→ 3 7→ 5 7→ 1, 2 7→ 4 7→ 6 7→ 2, 7 7→ 7.
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Further, q 7→ h0qg
−1
0 , acts on the unit quaternions as

1 7→ j, i 7→ −1, j 7→ −i, k 7→ k.

So (g0, h0)x(0) coincides with the image of x(0) under the perm-flip

((1, 3, 5)(2, 4, 6),+1,+1,−1,−1,−1,−1, 1) ∈ P7.

This has sign +1 (the permutation is even, being a product of disjoint even cycles, i.e., cycles
of odd length, and there are an even number of orientation sign flips).

It follows that the left endpoint value v(0) of the wavefunction must lie in the +1 eigenspace
of the matrix ρI(g0) ⊗ ρJ(h0). We will always choose I = 1/2

(
corresponding to Li7 or Be7

)
,

but will consider the spin values J = 1/2, 3/2, 5/2 and 7/2. For I = J = 1/2, ρI = ρJ = Id, so

ρ1/2(g0)⊗ ρ1/2(h0) = g0 ⊗ h0 =
1

2


−i −1 1 −i
−i 1 1 i
i 1 1 −i

−i −1 1 i

 ,

whose +1 eigenspace F
1/2
0 is spanned by

2
−(1 + i)
1 + i
2i

 ,


0
1
1
0

 .

For higher spin, we must construct the spin J representation of h0, a routine calculation that
we relegate to Appendix B, then compute the +1 eigenspace F J

0 of ρ1/2(g0)⊗ ρJ(h0). To ensure
self-adjointness of H, we demand that

v(0) ∈ F J
0 , and v′(0) ∈

(
F J
0

)⊥
. (5.1)

The 7b minimizer x(1) has the symmetries of the following configuration:

label position orientation

1 (1, 0, 0) −j
2 (0, 0,−1) 1
3 (−1, 0, 0) −j
4 (0, 0, 1) 1
5 (1, 1, 1) −k
6 (−1, 1,−1) k
7 (0, 1, 0) i

To visualize this, think of particles 1 to 4 as on the vertices of the unit square in the plane y = 0
(where the unit circle intersects the x and z axes) and particles 5 to 7 as lying on the diagonal
line x = z in the plane y = 1.

This is symmetric under the action of (g1, h1), where

g1 = j ≡ −iτ2, h1 = −j ≡ iτ2.

To see this, note that

R(h1) =

−1 0 0
0 1 0
0 0 −1

 ,
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spin J dimF J
0

(
dimF J

0

)⊥
dimF J

1

(
dimF J

1

)⊥
1/2 2 2 2 2
3/2 2 6 4 4
5/2 4 8 6 6
7/2 6 10 8 8

Table 2. The dimensions of the symmetry compatible state spaces at the endpoints of the energy

minimizing path between the 7a and 7b minimizers, for isospin 1/2.

which rotates by 180◦ about the y axis. This induces the permutation of positions

1 7→ 3 7→ 1, 2 7→ 4 7→ 2, 5 7→ 6 7→ 5, 7 7→ 7.

Further, q 7→ h1qg
−1
1 , acts on the unit quaternions as

1 7→ −1, i 7→ i, j 7→ −j, k 7→ k.

So (g1, h1)x(1) coincides with the image of x(1) under the perm-flip

((1, 3)(2, 4)(5, 6),−1,−1,−1,−1,−1,−1, 1) ∈ P7.

This has sign −1 since the permutation is odd (being a product of 3 transpositions) and the
there are an even number of orientation flips. It follows that the right endpoint value v(1) of
the wavefunction must lie in the −1 eigenspace of the matrix ρI(g1)⊗ρJ(h1) which, for I = 1/2,
we denote F J

1 . For J = 1/2, we have

ρ1/2(g1)⊗ ρ1/2(h1) = g1 ⊗ h1 =


0 0 0 −1
0 0 1 0
0 1 0 0

−1 0 0 0

 ,

whose −1 eigenspace F
1/2
1 is spanned by

1
0
0
1

 ,


0
1

−1
0

 .

To ensure self-adjointness of H, we demand that

v(1) ∈ F J
1 , and v′(1) ∈

(
F J
1

)⊥
. (5.2)

The dimensions of the allowed spaces F J
0,1 and their orthogonal complements for J = 1/2, 3/2,

5/2 and 7/2 are summarized in Table 2.
Having fixed I = 1/2 and J , our wave function is a map v : [0, 1] → C4J+2 satisfying the

boundary conditions (5.1) and (5.2). To find the ground state in the spin J sector, we solve the
minimization problem for the energy functional

E(v) = ⟨v,Hv⟩L2

over all v satisfying the boundary conditions with ∥v∥L2 = 1 (where, in computing the L2 inner
product and norm, we equip [0, 1] with the measure

√
|Λ(s)|q(s)). In practice, we achieve this

by constrained gradient flow (gradient flow for E tangent to the constraints ∥v∥L2 = 1 and the
boundary conditions).
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spin J E E/B E/E7a

1/2 6948.63 992.661 1.00096
3/2 6950.02 992.860 1.00116
5/2 6951.73 993.105 1.00141
7/2 6953.88 993.411 1.00171

Table 3. The energies of the wavefunctions presented in Figure 4 for the energy minimizing path between

the 7a and 7b minimizers, for spins 1/2 to 7/2 in MeV and normalised by the energy of the 7a minimizer.

Figure 4. Plots of the normalized probability densities |ψ(S)|2 for the B = 7 graph, as a function of

the fractional volume coordinate S defined in equation (5.3), for spins J = 1/2 to J = 7/2 and isospin

I = 1/2. The global energy minimising configuration (a) is at S = 0 and a local energy minimizer (b)

at S = 1. The saddle point on the curve joining them occurs at S = 0.485. The graph and energies are

given in Table 1.

To proceed further we must calibrate the model, that is, choose energy and length scales by
fitting to experimental data. We present here results for the calibration proposed in [5], chosen
so that the quantized I = J = 1/2, B = 1 soliton has the energy and charge radius of the
nucleon. This has energy and length units

E∗ = 10.72 MeV, l∗ = 0.6505 fm,

and implies that ℏ = 28.2752 in these units [4]. One expects the kinetic term in H to dominate
in this regime (recall that V (s) varies very little over the graph Γ, see Table 1) and, indeed, we
find the results do not change significantly if the potential is omitted entirely.

The resulting wavefunctions for J = 1/2 to 7/2 are plotted in Figure 4. It is useful to change
coordinate from s ∈ [0, 1] to S ∈ [0, 1] defined as follows. Let

Vol(s0, s1) =

∫
[s0,s1]×G

vol,
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the volume of the slice of GΓ between s = s0 and s = s1, and

S(s) =
Vol(0, s)

Vol(0, 1)
, (5.3)

the fraction of the total volume of GΓ to the “left” of s. Note that the 7a and 7b minima are
still at S = 0 and S = 1. The advantage of this coordinate is that the induced measure on the
interval [0, 1] is simply dS, so equal S intervals represent chunks of GΓ of equal volume, making
it easier to visualize the quantum states’ localization properties. In this coordinate, the saddle
point occurs at S = 0.485.

We note that the wavefunction is far from localized around the lower energy minimizer. In
fact as J increases the wavefunction becomes more localized around the higher energy minimizer.
Table 2 suggests a possible qualitative explanation for this: for higher spin, the FR constraints
are less restrictive at the b end than at the a end and so, since quantum mechanics exacts an
energetic cost for confinement, the state tends to avoid the more tightly constrained endpoint.
In all cases, the state spreads significantly over the whole moduli space. This suggests that rigid
body quantization is a poor approximation to quantizing over the complete configuration space.
The numerical energies are given in Table 3, and should be compared with the experimental
mass of Li7, which is 6535 MeV. Note that energy increases monotonically with spin J , in conflict
with experimental data which order the states 3/2, 1/2, 7/2, 5/2. This suggests that the lightly
bound model is unlikely to give a good account of atomic nuclei.

A Appendix: numerical minimizers

The table below records the interaction energies (Vpp−BM) of the approximate local minimizers
of Vpp constructed in [4] by simulated annealing (Eann), compared with their interaction energies
after relaxation by gradient flow (Egrad). The final column is a measure of the distance between
the initial Xann and final Xgrad configurations, each of which we may think of as a point in(
R3 × S3

)B ⊂
(
R7
)B

. We measure distance in this space using the norm

∥X∥ = max{|Xi|R7 : i = 1, 2, . . . , B},

where | · |R7 is the Euclidean norm on R7. Hence
∥∥Xann −Xgrad

∣∣ is the maximum distance (in
position-orientation space) moved by any of the B particles after relaxation.

The relaxed minimizers were used as endpoint data for the NEB method. The solutions are
labelled in energy order and those that have changed label due to the more accurate results
have been marked with a †. Additional local minimizers found while using the NEB method
are marked with a *. Note that one claimed minimizer for degree 9 (labelled b in [4]) was not
a true minimizer and reduced to the configuration c in that paper and has been removed.

B Appendix: higher spin representations of SU(2)

We record here an elegant construction of the higher spin representations of SU(2) which, while
certainly not new, does not have (as far as we are aware) a simple description in the literature.
The account below is based partially on unpublished notes of Urbanik [15].

Let n = 2J and Vn be the set of homogeneous polynomials in two complex variables (z1, z2)
of degree n, with complex coefficients. This is an (n + 1)-dimensional complex vector space
spanned by

zn1 , z
n−1
1 z2, z

n−2
1 z22 , . . . , z

n
2 . (B.1)
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B label Eann Egrad Eann − Egrad ∥Xann −Xgrad∥
3 a −0.929766 −0.930915 0.0011488 0.0166381

4 a −1.8618 −1.86183 3.4363 ×10−5 0.00526994

5
a −2.32215 −2.33824 0.0160941 0.0407176
b −2.18172 −2.18481 0.00308473 0.0180328

6
a −3.22892 −3.22909 0.000168902 0.00836376
b −3.10659 −3.11693 0.0103361 0.0235825
c −3.03345 −3.04656 0.0131102 0.0421782

7
a −4.05417 −4.05734 0.00316932 0.0140242
b −3.84305 −3.8953 0.0522464 0.0717353

8
a −4.88421 −4.88901 0.00479826 0.0182521
b −4.86001 −4.86923 0.00922791 0.0237361
c −4.74428 −4.78119 0.0369082 0.0502746

9

a −5.66335 −5.66437 0.00102358 0.0148732
b† −5.57431 −5.59792 0.0236121 0.0447026
c† −5.42859 −5.48298 0.0543869 0.0762035
d† −5.42974 −5.4595 0.0297558 0.0497296

10

a† −6.44096 −6.44306 0.00209978 0.0155593
b† −6.44139 −6.44207 0.000672919 0.0154335
c† −6.22549 −6.30734 0.0818569 0.0729622
d† −6.22416 −6.28447 0.060308 0.0773449
e† −6.24819 −6.27703 0.028844 0.0493404
f −6.06189 −6.19396 0.132066 0.07183
g* – −6.13281 – –
h* – −6.1205 – –

Table 4. The numerical minimizers found by simulated annealing in [4] before and after relaxation by

energy gradient flow.

Define a left action of SU(2) on Vn by A : f 7→ f ◦A†. That is, associate to the SU(2) matrix

A =

(
α β

−β̄ ᾱ

)
, |α|2 + |β|2 = 1,

the map Vn → Vn which takes a homogeneous polynomial f(z1, z2) to the homogeneous polyno-
mial

fA(z1, z2) = f
(
ᾱz1 − βz2, β̄z1 + αz2

)
. (B.2)

Note that (fA)A′ = fAA′ , so this is indeed a representation of SU(2) on Vn, which can be shown
to be irreducible [15].

To make the representation unitary, as we require, we must equip Vn with an SU(2) invari-
ant hermitian inner product. The naive choice, wherein the monomials in (B.1) are declared
orthonormal does not work. Instead, we identify Vn with H0(O(n)), the space of holomorphic
sections of the degree n holomorphic line bundle O(n) over CP 1, as follows. Think of (z1, z2)
as a point in the fibre Lp of the tautological bundle O(−1) over the point p = [z1, z2] ∈ CP 1.
Then the map (z1, z2) 7→ zn−k

1 zk2 is an n-fold multilinear map Lp × Lp × · · · × Lp → C, that is,
an element of L∗

p⊗L∗
p⊗· · ·⊗L∗

p, the fibre of O(n) over p. So we can get an inner product on Vn
by identifying it with H0(O(n)) and putting an inner product on that.

There is a natural SU(2) invariant fibre metric on O(n), which equips H0(O(n)) with an L2

inner product. If we trivialize O(n) over the open set z2 = 0, we can specify the value of the
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section at [z, 1] by saying what it does to (z, 1). This amounts to identifying the homogeneous
polynomial f(z1, z2) with

f(z) = f(z, 1) = a0z
n + a1z

n−1 + · · ·+ an.

Then the L2 inner product of two sections is

⟨f, g⟩L2 = 4

∫
C

f(z)g(z)

(1 + |z|2)n+2
dxdy.

It is easy to see that the monomials zj , zk are orthogonal with respect to this inner product if
j ̸= k, but they do not all have the same length. To get a unitary representation of SU(2) on Vn,
we should compute its matrix with respect to the orthonormal basis

zn−k

∥zn−k∥L2

, k = 0, 1, . . . , n.

To illustrate, let us compute the spin J = 3/2 representation of the rotational symmetry of
the 7b solution,

h1 =

(
0 1

−1 0

)
.

We must compute the action of h1 on V3 ≡ H0(O(3)), which is spanned by the monomials
z3, z2, z and 1. It is easy to check that∥∥z3∥∥2

L2 = π,
∥∥z2∥∥2

L2 =
π

3
,

∥∥z1∥∥2
L2 =

π

3
,

∥∥1∥∥2
L2 = π.

Hence, an orthonormal basis for V3 is provided by the homogeneous polynomials

z31√
π
,

√
3

π
z21z2,

√
3

π
z1z

2
2 ,

z32√
π
,

whose images under h1, using the action (B.2), are

z31√
π
7→ − z32√

π
,

√
3

π
z21z2 7→

√
3

π
z1z

2
2 ,

√
3

π
z1z

2
2 7→ −

√
3

π
z21z2,

z32√
π
7→ z31√

π
.

Hence the spin 3/2 representation of h1 is

ρ3/2(h1) =


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 .

To compute the spin J representation of θi, the generators of su(2), we apply the above
procedure to generating curves

Ai(t) = cos
t

2
I2 − i sin

t

2
τi

for θi and differentiate at t = 0. For J = 3/2, one finds, for example,

θ
3/2
1 = dρ3/2(θ1) =


0

√
3
2 i 0 0√

3
2 i 0 i 0

0 i 0
√
3
2 i

0 0
√
3
2 i 0

 ,
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θ
3/2
2 = dρ3/2(θ2) =


0 −

√
3
2 0 0√

3
2 0 −1 0

0 1 0 −
√
3
2

0 0
√
3
2 0

 ,

θ
3/2
3 = dρ3/2(θ3) =


3
2 i 0 0 0
0 1

2 i 0 0
0 0 −1

2 i 0
0 0 0 −3

2 i

 .

These calculations are easily automated.
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