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1 Introduction

Symmetries are fundamentally important in formulating physical theories of any system. In
the strong sector, it so happens that the two lightest quarks are close enough to being massless
(compared with the energy scale of the strong interactions) that SU(2) flavour symmetry
is a good approximate symmetry. In fact, it is a good approximate symmetry for quarks
both with left-handed chirality and right-handed chirality, separately. This fact is called
chiral symmetry and the group is SU(2)L × SU(2)R. More precisely, the flavour symmetry
is classically U(2)L × U(2)R but due to the ABJ anomaly U(1)L−R is anomalous, so the
anomaly free symmetry is SU(2)L × SU(2)R × U(1)V , where the Abelian vector symmetry
V = L + R corresponds to the baryon current. Chiral symmetry is broken at, perhaps, the
same scale that physics of the strong interactions confines the quarks and all other colour
degrees of freedom (the charge or free indices of quarks and gluons). Pions composed by
the two lightest quarks, up and down, would be exactly massless if chiral symmetry were an
exact symmetry of Nature. Chiral symmetry breaking, nevertheless, is a small effect, leaving
the pions as the lightest particles of the strong sector.

The pions can be neatly arranged in a matrix form

U = eiπaτaF−1
π , U → VLUV †

R, VL ∈ SU(2)L, VR ∈ SU(2)R, (1.1)

with Fπ called the pion decay constant, πa the three pions, τa the three Pauli matrices, VL the
left flavour transformation matrices and VR the right flavour transformation matrices. The
left- and right-invariant chiral currents, Lµ = U †∂µU and Rµ = ∂µUU † are the building blocks
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of the mesonic sector of chiral perturbation theory (ChPT) [1]. The pure pion operators in
ChPT up to p4 (i.e. a common notation for operators including no more than 4 derivatives)
consist of 3 terms, with the lowest-order term being simply the kinetic term for the pions. A
particular combination of the two fourth-order derivative terms, that has no more than 2 time
derivatives, is called the Skyrme term and is the foundation of the Skyrme model [2, 3]. The
Skyrme term is crucial for the simplest model, as it allows for simple Hamiltonian quantization
of zero modes and it prevents the soliton of the theory — the Skyrmion — from collapsing.

It is important to notice that the flavour symmetries until now are global symmetries.
That is, they are not gauged. What are gauged symmetries then? They are related to
and responsible for all known fundamental forces (with the exception of gravity, where it is
not known how or if a quantum mechanical fundamental theory lies behind the “classical”
gravitational attractive force).1 The three well-tested fundamental forces in the standard
model correspond to U(1), SU(2) and SU(3) gauge groups, which represent electromagnetism,
the weak nuclear force and strong nuclear force, respectively.

One could naively think that gauging the U(1)V part of the chiral symmetry would
correspond to including electromagnetism in the model. If the generator is simply the unit
matrix, this gives all the components and hence all the “quarks” the same charge, which
is known from phenomenology to be wrong. Indeed gauging U(1)V would correspond to
gauging the baryon symmetry, which has been considered in some Beyond-Standard-Model
(BSM) physics [5]. The fact that the quarks have different electric charges can easily be
accommodated by changing the generator of the U(1) symmetry such that U → U +ieα[Q, U ]
and Aµ → Aµ+∂µα with Q = diag(2

3 ,−1
3). The standard Skyrme model with the replacement

of ∂µ by Dµ = ∂µ− ieAµ[Q, ·] remains gauge invariant, although the topological charge density
does not and furthermore, it was pointed out by Callan and Witten that this naive gauging
of the Skyrme model is not consistent with the anomalies of QCD [6]. The topological charge
is not simply fixed by replacing partial derivatives with covariant derivatives, but instead a
certain total derivative term must be added, making the entire expression gauge invariant and
topological [6]. The Lagrangian, on the other hand, must be amended with some anomalous
terms akin to (gauged) Wess-Zumino-Witten terms that are differential 4-forms [6].

The seminal paper [7] by Piette and Tchrakian studies the minimal U(1)-gauged Skyrme
model, which is essentially the Skyrme model with partial derivatives replaced by covariant
derivatives and the addition of the Maxwell term in the Lagrangian. The model is self-
consistent and gauge invariant, but does not reproduce the anomalies of QCD as pointed
out by Callan and Witten [6].2 The gauge prescription of coupling electromagnetism (EM)
to the Skyrme model also does more than including just the Coulomb energy in the model.
In particular, it turns on a magnetic field that cannot be turned off — even in the neutral
solution (corresponding to the neutron). The magnetic field explains also a physical effect,
namely the anomalous magnetic moment of the nucleon.3 On the other hand, the inclusion of

1Some ideas in the literature propose that gravity is the gauge theory of diffeomorphisms [4].
2B = 1 gauged Skyrmions with the Callan-Witten anomaly terms taken into account were studied recently

in ref. [8].
3The inclusion of the nucleon’s spin in this model was done in ref. [9] and the inclusion of the pion mass

was done in ref. [10] also for the nucleon (B = 1). Skyrmions of higher baryon numbers, i.e. B = 1 through 5
were studied in ref. [11]. Gravitating B = 1 U(1)-gauged Skyrmions were studied in ref. [12].
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the gauge field — i.e. turning on the magnetic field — reduces the energy of the 1-Skyrmion
and it turns out to exacerbate the binding energy problem of the Skyrmions. The worsened
binding energy problem for the gauged Skyrmions — a problem that is already severe in
the standard Skyrme model — has been considered recently in ref. [13]. In ref. [13] the
energy functional is derived from Yang-Mills (YM) calorons, which are YM instantons on
S1 × R3, giving rise to two extra terms that are essentially the inner product between the
YM field strength as well as its Skyrme field conjugated counterpart and the curvature term
LµLνdxµ ∧ dxν . It is not clear to us, that this is not related to the Wess-Zumino-Witten
term of ref. [6] by a total derivative term. Nevertheless, in ref. [13] the couplings and fields
are numerically optimized to obtain a much lower energy compared to its lower bound, than
was found in the model of ref. [7]. A detailed analysis is needed to conclude whether the
model of ref. [13] reproduces the QCD anomalies or not, which could be the case only if
there exists a boundary term making this model equal to that of Callan and Witten. A
geometric formulation of gauged Skyrmion was later put forward in ref. [14], giving rise to
BPS equations whose solutions have vanishing classical binding energies. The incorporation
of the pion mass as well as solving the quantum binding energy problem [15] are still issues
that need to be tackled in this model of gauged Skyrmions.

U(1) gauged Skyrmions have been studied further in the literature.4 Refs. [16, 17]
like ref. [7] computed the anomalous magnetic moment of the nucleon, but including the
Wess-Zumino term that contains the baryon current, hence providing a more physical source
for EM. The computation is done for a single B = 1 Skyrmion with spherical symmetry,
under the assumption that the deformation of the nucleon will be negligible — an assumption
not supported by the recent results of ref. [13]. Refs. [16, 17] use the WZ term in the
5-dimensional formulation and it is hence not straightforward to compare with the proposed
terms of Callan and Witten [6], although we expect them to be similar, if not identical. The
same model has been utilized in ref. [18] to compute the masses and magnetic moments
of the neutron and proton under the influence of a strong external magnetic field. The
computation is performed with a “spherically symmetric” Ansatz F (r), but in a coordinate
system of an ellipsoid, which according to ref. [13] will not suffice for finding true minimizers.
Analytic solutions to the massless U(1)-gauged Skyrme equations on a flat box are given
in refs. [19–21], although whether such integrable solutions can be made to satisfy physical
boundary conditions of a box or whether the solutions represent the absolute minimum of
the energy functional are issues that should be considered with care.

The Skyrme model also comes out as the low-energy effective theory of the holographic
Sakai-Sugimoto model [22] (for a review, see ref. [23]), more specifically if all massive vector
bosons are decoupled and the effective action is integrated over the holographic direction. This
corresponds to taking the holonomy of the instanton as envisioned by Atiyah and Manton [24]
and the instanton in the 5-dimensional low-energy effective action is also known as the
Sakai-Sugimoto soliton [25]. So one may ask the question: how to take electromagnetism
into account in the Sakai-Sugimoto model? To answer this, we need a few more details on
the construction. The model is invented to describe the strong interactions, where chiral

4There is a volume of literature on SO(3)-gauged Skyrmions and U(1)-gauged baby-Skyrmions (in 2 + 1
dimensions), which we will not discuss here.
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symmetry and its breaking is geometrically encoded in string theory. That is, the left-handed
and right-handed flavours of quarks each have their own D8-brane (i.e. 8 spatial dimensions
in its world volume) and these two branes intersect with a D4-brane describing colour degrees
of freedom, that is, a string from the D4-brane to the left D8-brane represents a left-handed
quark and so on. One dimension of the D4-brane is compactified in order to break the would-
be supersymmetry of the superstring theory and the 5 extra dimensions of the D8-branes are
assumed to have an SO(5) symmetry. Considering the large-Nc limit, the D8-branes can be
viewed as probe branes in the background of the heavy stack of D4-branes, described by the
Witten background [26]. The resulting low-energy effective theory is now a 5-dimensional
Yang-Mills action for the flavour gauge fields coupled to a 5-dimensional Chern-Simons term,
which has the prefactor of the flux of the 5-sphere — the number of colours, Nc. External
electromagnetic fields have been considered in such a framework and they are gauge fields
living on the D8 flavour branes [27, 28]. It would be very interesting to include dynamics
of the electromagnetic fields and reduce the model to the low-energy effective action of the
Skyrme model and see whether it would coincide with the gauged Skyrme model of Callan
and Witten, especially including the specific gauged Wess-Zumino-Witten-like term.

As evident from the above discussion, the gauging approach of including electromagnetism
into the Skyrme model, requires not only a consistent minimal gauging of the Lagrangian,
but also the inclusion of a Wess-Zumino-Witten term, that will reproduce the Gell-Mann-
Nishijima (GMN) formula for charge, baryon number and isospin. The gauging procedure
further turns on a mandatory magnetic flux [7] and strongly deforms the known Skyrmion
solutions [13], not to mention the large number of extra couplings between the gauge field
and the Skyrme fields. For this reason, we consider here the absolute minimal coupling of the
Skyrme model with the Maxwell gauge field with a source dictated by the phenomenological
GMN formula. The backreaction to the Skyrme field in this formulation thus happens through
the currents of the Skyrme field interacting with the U(1) gauge field. Studying Skyrmions
of relatively large baryon number and their deformations due to the backreaction of the
Maxwell gauge field is the main purpose of this paper. It is worth noting that this minimal
model can be obtained from the Callan-Witten model simply by truncating the Lagrangian
to order O(e1) (linear order in the electromagnetic coupling). This implies that we neglect
the O(e∂A) terms in the source for the gauge fields (i.e. O(e2) in the Lagrangian) as well
as their self interactions, which due to the smallness of the electromagnetic gauge coupling
is physically a quite good approximation.

Studies more similar to our simplistic approach to the problem of Coulomb energy are
given in refs. [29–32]. In these cases, the Coulomb energy is computed from the Skyrmion via
its baryon charge density and its isospin current. Then the classical technique of expanding
the computed charge density in spherical harmonics and then calculating the Coulomb energy
as a sum of multipole moments [33], is carried out. In all these papers, no backreaction from
the gauge field onto the Skyrme field is taken into account. For small baryon numbers (B

of order one), this makes physical sense as the Coulomb energy is small compared to the
total mass and hence the backreaction is expected to be small too. This may not be the
case when the U(1)-gauged approach is considered though [13].

As evident from the GMN formula, the situation simplifies for two reasons in the isospin-0
cases: the isospin current is not needed and the baryon current becomes simply the baryon
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density (topological density) of the Skyrmions with all the spatial components vanishing.
Two complications arise once a nonvanishing isospin is turned on. The isospin current needs
to be normalized, turning the PDEs (partial differential equations) into integro-differential
PDEs. Secondly, time-dependence of the Skyrmion turns on nonvanishing spatial components
in the baryon current (Bi), which in turn require quantization to be implemented in the
equations that need be solved. This thus also turns on a magnetic flux, just as was found in
the gauged Skyrme models. We will thus limit ourselves to the isospin-0 case in this paper,
but we will take the full backreaction of the Coulomb force into account. We will calibrate
the model to physically reasonably chosen observables: the fine-structure constant, the pion
mass, the mass and radius of the 12C nucleus, treating Fπ and the Skyrme term coupling as
free parameters. Finally, since we have fitted the model to physical observables, we expect
the backreaction of the Coulomb force to become important near the largest baryon numbers
that are stable. Due to our simplification of the problem of treating only the isospin-0 cases,
we study Skyrmions with baryon numbers up to B = 40, as Calcium-40 is the largest stable
B = 4n (n ∈ N) nucleus. A large number of Skyrmion solutions have been found in ref. [34],
so we will use the B = 4, 8, 12, 16 solutions as initial conditions for the computations of
this paper. For the B = 40 Skyrmions, we adopt the same strategy as in ref. [34] i.e. we
generate a “large” number of initial conditions that are made of random constellations of
B = 1 Skyrmions with random orientations in a product Ansatz.

2 The Skyrme model with Coulomb energy

2.1 The field theory

The Lagrangian on base manifold M = R3 equipped with Minkowski metric η, consisting of
the Maxwell term, the Dirichlet (kinetic) term, the Skyrme term, the pion mass term and
the minimal coupling of the gauge field to the electric charge density, reads

L = −1
4FµνF µν + F 2

π

16 tr(RµRµ) + 1
32g2 tr ([Rµ, Rν ][Rµ, Rν ]) + F 2

π m2
π

8 tr(U − 12)

− eAµJµ, (2.1)

with the electric, baryon, isospin and vectorial currents (all divergenceless)

Jµ = 1
2Bµ + Iµ (2.2)

Bµ = − 1
24π2 ϵµνρσ tr(RνRρRσ), (2.3)

Iµ = (Z − N)Jµ3
V

2
∫

M J03
V d3x

, (2.4)

Jµa
V = iF 2

π

16 tr [(Rµ − Lµ)τa] + i
16g2 tr [([Rν , [Rµ, Rν ]]− [Lν , [Lµ, Lν ]]) τa] , (2.5)

the Maxwell field strength Fµν = ∂µAν − ∂νAµ, the right-invariant and left-invariant chi-
ral currents

Rµ = ∂µUU †, Lµ = U †∂µU, (2.6)
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Fπ is the pion decay constant, g is the Skyrme coupling constant, mπ is the pion mass, e

is the electric charge related to the fine structure constant by α = e2

4π in Heaviside-Lorentz
conventions, Z is the number of protons and N is the number of neutrons, and the chiral
Lagrangian or Skyrme field U is related to the pions via

U = 12σ + iτaπa, a = 1, 2, 3, (2.7)

where τa are the standard Pauli spin matrices. The total (integral) electric charge is given
by the Gell-Mann-Nishijima formula

Q = 1
2

∫
M
(B0 + 2I0) d3x, (2.8)

which is the time component of the electric charge current that is coupled to the electromag-
netic potential Aµ. Finally, we set the speed of light c = 1 and the reduced Planck constant
ℏ = 1, and use the mostly-positive metric signature.

Although the minimal coupling of the gauge field Aµ to the electric charge current looks
gauge variant, it is indeed gauge invariant due to current conservation of the baryon charge
current and the isospin charge current

AµJµ → (Aµ − ∂µλ)Jµ = AµJµ − ∂µ(λJµ), (2.9)

up to a total derivative, because

∂µJµ = 0, Jµ := 1
2Bµ + Iµ, (2.10)

is conserved.
The baryon number is the spatial integral of the baryon charge density, which is also

the topological degree of the Skyrme field U :

B =
∫

M
B0 d3x. (2.11)

The number of protons Z and neutrons N in a baryon are related by

B = Z + N. (2.12)

On the other hand, the isospin I of a nucleus is given by

2I = Z − N, (2.13)

with the isospin charge

I =
∫

M
I0 d3x. (2.14)

The Maxwell equations read

∂µF µν − e

2 (Bν + 2Iν) = 0, (2.15)
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and it is well known that for static electric charges, the magnetic gauge potential decouples,
or in other words: for Bi = Ii = 0 we can set Ai := 0. For a static Skyrme field (∂0U = 0)
we have that Bi = 0, but J i3

V ̸= 0. Therefore, the situation drastically simplifies if Z = N

yielding Ii = 0: that is, the isospin zero case. This case is furthermore simplified, because
we do not have to deal with the quantization of the isospin zeromode.

We will focus on the isospin-zero case in the remainder of this paper. Since we have
decoupled the magnetic gauge potential (Ai) and work with static Skyrme fields (∂0U = 0),
we can now simplify the field theory model to

L = 1
2(∂iA0)2 + F 2

π

16 tr(R2
i ) +

1
32g2 tr

(
[Ri, Rj ]2

)
+ F 2

π m2
π

8 tr(U − 12)−
e

2A0B0. (2.16)

Since the model is static,5 the Hamiltonian (energy) is simply minus the Lagrangian

E =
∫

M

[
− 1

2(∂iA0)2 − F 2
π

16 tr(R2
i )−

1
32g2 tr

(
[Ri, Rj ]2

)
+ F 2

π m2
π

8 tr(12 − U)

+ e

2A0B0
]
d3x. (2.17)

It will now be convenient to switch to Skyrme units, by rescaling lengths and energies by
xi → λxi and E → µE, respectively, for which we get the Skyrme units with energies and
lengths measured in units of

µ = Fπ

4g
, λ = 2

gFπ
, (2.18)

and we are left with the dimensionless energy functional

E =
∫

M

[
−κ

2 (∂iV )2− 1
2 tr(R

2
i )−

1
16 tr

(
[Ri,Rj ]2

)
+m2 tr(12−U)+κV B0

]
d3x, (2.19)

where we have defined

m ≡ 2mπ

gFπ
, V ≡ 4

egFπ
A0, κ ≡ e2g2

2 . (2.20)

The energy functional and hence the (static) theory depends only on two parameters: m

and κ (after fixing length and energy units).
For numerical calculations, it will be more convenient to use a 4-vector field ϕ

U = 12ϕ0 + iτaϕa, a = 1, 2, 3, (2.21)

instead of the SU(2) matrix-valued field U . In terms of the ϕ = {ϕ0, ϕ1, ϕ2, ϕ3} field, the
energy functional reads

E =
∫

M

[
− κ

2 (∂iV )2 + ∂iϕ · ∂iϕ + 1
2(∂iϕ · ∂iϕ)2 − 1

2(∂iϕ · ∂jϕ)2 + 2m2(1− ϕ0)

+ κV B0
]
d3x, (2.22)

5The model is static if we treat the electric potential as a scalar field. If we treat it instead as the
time-component of a vector field, the Legendre transform will modify the Hamiltonian, but only by a
total derivative.
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the baryon charge density now reads

B0 = 1
12π2 ϵijkϵabcd∂iϕa∂jϕb∂kϕcϕd, (2.23)

where we adopt the conventions ϵ123 = ϵ0123 = +1 and the vector indices a, b, c, d = 0, 1, 2, 3.
The equations of motion read

∂2
i ϕa − (ϕ · ∂2

i ϕ)ϕa + (∂jϕ)2∂2
i ϕa − (∂jϕ)2(ϕ · ∂2

i ϕ)ϕa + (∂i∂jϕ · ∂jϕ)∂iϕa

−(∂2
i ϕ · ∂jϕ)∂jϕa − (∂iϕ · ∂jϕ)∂i∂jϕa + (∂iϕ · ∂jϕ)(ϕ · ∂i∂jϕ)ϕa

+ κ

8π2 ϵabcdϵijk∂iV ∂jϕb∂kϕcϕd + m2 (δa0 − ϕ0ϕa) = 0, (2.24)

∆V = −∂2
i V = B0. (2.25)

Notice that standard variational approaches to minimizing the energy will fail due to the
“wrong sign” of the kinetic energy for V . For this reason, we have to use a constrained
variational method that we developed in ref. [35].

It will prove convenient to rewrite the Coulomb part of the energy

EC =
∫

M

[
− κ

2 (∂iV )2 + κV B0
]
d3x

= κ

2

∫
M

V (∂2
i V + 2B0) d3x

= κ

2

∫
M
(∂iV )2 d3x

= κ

2

∫
M

V B0 d3x, (2.26)

where we have integrated the kinetic term for V by parts and used the equation of motion.
The last line in the above equation is numerically easier to evaluate, because for m ̸= 0, the ϕ

fields tend to (1, 0, 0, 0) exponentially, whereas V tends to zero polynomially at spatial infinity.
Importantly, the second last line proves that the Coulomb energy is positive semi-definite,
which is not a priori clear from the energy functional (2.22).

2.2 Geometric approach to the variational problem

The Skyrme energy of a smooth map ϕ : M → G, where M = R3 is physical space, and
G = SU(2) is target space, is

ESkyrme(ϕ) =
∫

M

{
|ϕ∗µ|2 + 1

4 |ϕ
∗ω|2 + f(ϕ)

}
, (2.27)

where µ ∈ Ω1(G)⊗ g is the right Maurer-Cartan form on G, ω ∈ Ω2(G)⊗ g is the associated
2-form ω(X, Y ) = [µ(X), µ(Y )], f : G → R is a potential function (required to give the
pions mass) and we have chosen an Ad(G) invariant inner product on g (namely ⟨X, Y ⟩g =
−1

2 tr(XY )). If we interpret ϕ as a static Skyrme field, we should ascribe to it the electric
charge density

ρ = 1
2 ∗ ϕ∗Ω, (2.28)
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where Ω is the volume form on G normalized so that
∫

G Ω = 1, and ∗ is the Hodge isomorphism
on M . Note that we have implicitly chosen e, the charge of a proton, as our unit of electric
charge in making this assertion, and that the total electric charge is

∫
M ρ = B/2, so that

our interpretation of ϕ is consistent only if B is even. Since the field has electric charge, it
induces an electrostatic potential V : M → R which is, by definition, the solution of

∆V = ρ

ε0
, (2.29)

satisfying the boundary condition V (∞) = 0. Here ∆ = −∂2
i is the Laplacian in the geometer’s

sign convention and ε0 is the permittivity of free space, a universal physical constant whose
numerical value in our coordinate system will depend on our choice of calibration (see later).
It follows that the field ϕ induces a Coulomb energy

EC(ϕ) =
1
2

∫
M

V ρ, (2.30)

and hence that the map ϕ : M → G corresponding to an isospin 0 nucleus of even baryon
number B (consisting of B/2 protons and B/2 neutrons) is not (as is usually taken) the
degree B field that minimizes ESkyrme(ϕ), but rather the degree B field that minimizes

E(ϕ) = ESkyrme(ϕ) + EC(ϕ). (2.31)

The purpose of this section is to derive the first variation formula for this variational problem.
Let ϕt be a smooth variation of ϕ = ϕ0 : M → G of compact support (meaning that

ϕt(x) = ϕ(x) for all x outside some compact subset of M), and ε = ∂tϕt|t=0 ∈ Γ(ϕ−1TG)
its infinitesimal generator (necessarily also of compact support). We seek a formula for the
section gradE(ϕ) ∈ Γ(ϕ−1TG) which, by definition, for all such variations satisfies

d
dt

E(ϕt)
∣∣∣∣
t=0

= ⟨ε, gradE(ϕ)⟩L2 . (2.32)

A map ϕ is then a critical point of E if gradE(ϕ) = 0.
The calculation of gradE(ϕ) is nontrivial principally because EC(ϕ) is a nonlocal func-

tional of ϕ. Indeed, the first variation of ESkyrme(ϕ) is well known [36]:

d
dt

ESkyrme(ϕt)
∣∣∣∣
t=0

=
〈

µ(ε), 2δϕ∗µ + 1
2δξϕ + µ(∇f)

〉
L2

, (2.33)

where ξϕ ∈ Ω1(M) ⊗ g is the g-valued one-form

ξϕ(X) =
∑

i

[ϕ∗µ(ei), ϕ∗ω(X, ei)] , (2.34)

{ei} is a local orthonormal frame on M and δ = −∗ d∗ : Ω1(M) → Ω0(M) is the coderivative
adjoint to d. Hence

gradESkyrme(ϕ) = dRϕ

{
δ

(
2ϕ∗µ + 1

2ξϕ

)}
+ (∇f) ◦ ϕ (2.35)
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where Rϕ : G → G is the right multiplication map g → gϕ. We note in passing that the
formula (2.35) for gradESkyrme is valid on any oriented Riemannian 3-manifold M , for any
compact semi-simple Lie group G.

It remains to compute the gradient of

EC(ϕ) =
1
2

∫
R3

V ρ = ε0
2

∫
R3

V ∆V. (2.36)

Here we must be careful: although the variation of ϕ (and hence of ϕ∗Ω) has compact support,
V and its induced variation do not. Boundary terms must be treated with care, therefore,
and our analysis is restricted to the case of primary interest (M = R3, G = SU(2)). Let us
assume that ϕ : M → G is exponentially spatially localized, in the sense that both |ϕ − I2|
and |dϕ| are exponentially localized, that is, there exists C > 0 such that, for all x ∈ M ,

|ϕ(x)− I2|, |dϕx| ≤ Ce−|x|/C . (2.37)

This condition is natural since the underlying model has massive pions, so we expect the
Skyrme field to decay like e−mπ |x|. Since our variation has compact support, it follows
immediately that ϕt is also localized in the same sense, and that the electric charge density of
ϕt, ρt = 1

2 ∗ϕ∗
tΩ is exponentially spatially localized. A key observation is that the electrostatic

potential induced by such a charge distribution is (at least) 1/|x| localized:

Lemma 1. Let C > 0 and ρ : R3 → R be any smooth function such that |ρ(x)| ≤ Ce−|x|/C

for all x. Let V : R3 → R be the electrostatic potential induced by ρ. Then there exists K > 0
such that, for all x ∈ R3,

|V (x)| ≤ K

|x|
,

∣∣∣∣ ∂V

∂|x|
(x)
∣∣∣∣ ≤ K

|x|2
.

This follows from elementary estimates on the integral formula for V obtained by Green’s
function methods, which we present in appendix A.

Let Vt be the potential induced by ρt and V̇ = ∂tρt|t=0. Denote by BR the ball in R3

centred at 0 of radius R. Then
d
dt

EC(ϕt)
∣∣∣∣
t=0

= ε0
2

∫
R3
(V̇ ∆V + V ∆V̇ )

= lim
R→∞

ε0
2

∫
BR

(V̇ ∆V + V ∆V̇ )

= lim
R→∞

ε0
2

{
2
∫

BR

V ∆V̇ +
∫

∂BR

(V ∗ dV̇ − V̇ ∗ dV )
}

, (2.38)

where we have used Stokes’s theorem. Now V is induced by ρ, which is exponentially localized,
and V̇ is induced by ρ̇, which has compact support, and hence is also exponentially localized.
It follows from Lemma 1 that

lim
R→∞

∫
∂BR

(V ∗ dV̇ − V̇ ∗ dV ) = 0, (2.39)

and hence
d
dt

EC(ϕt)
∣∣∣∣
t=0

= ε0

∫
R3

V ∆V̇ =
∫
R3

V ρ̇. (2.40)
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By the Homotopy Lemma,

ρ̇ = 1
2∂t ∗ ϕ∗

tΩ
∣∣
t=0 = 1

2 ∗ d(ϕ∗ιεΩ), (2.41)

and hence
d
dt

EC(ϕt)
∣∣∣∣
t=0

= lim
R→∞

1
2

∫
BR

V dϕ∗ιεΩ

= lim
R→∞

1
2

{∫
∂BR

V ϕ∗ιεΩ−
∫

BR

dV ∧ ϕ∗ιεΩ
}

= −1
2

∫
R3

dV ∧ ϕ∗ιεΩ, (2.42)

since ε has compact support.
To extract gradEC from eq. (2.42) we note that the normalized volume form at I2 ∈ G

is the totally skew-symmetric map

ΩI2 : g× g× g → R, ΩI2(X, Y, Z) = − 1
4π2 ⟨X, [Y, Z]⟩g . (2.43)

But Ω is right invariant, so

Ωg(X, Y, Z) = − 1
4π2 ⟨µ(X), ω(Y, Z)⟩g . (2.44)

Hence

∗dV ∧ ϕ∗ιεΩ = (dV ∧ ϕ∗ιεΩ)(e1, e2, e3)
= e1[V ]Ω(ε, dϕ(e2), dϕ(e3)) + cyclic perms

= −1
4π2

{
e1[V ] ⟨µ(ε), ϕ∗ω(e2, e3)⟩g + cyclic perms

}
=
〈

µ(ε), −1
4π2 ∗ dV ∧ ϕ∗ω

〉
g

. (2.45)

It follows that
d
dt

EC(ϕt)
∣∣∣∣
t=0

=
〈

µ(ε), 1
8π2 ∗ dV ∧ ϕ∗ω

〉
L2

, (2.46)

and hence that

gradEC(ϕ) =
1

8π2dRϕ(∗dV ∧ ϕ∗ω). (2.47)

In conclusion, a smooth exponentially localized map ϕ : M → G is a critical point of
E = ESkyrme + EC with respect to all smooth variations of compact support if and only if

gradE(ϕ) = dRϕ

{
δ

(
2ϕ∗µ + 1

2ξϕ

)
+ 1

8π2 ∗ dV ∧ ϕ∗ω

}
+ (∇f) ◦ ϕ = 0, (2.48)

where V : M → R is the unique solution of eq. (2.29). Note that this formula for
gradE(ϕ) coincides with (minus two times) the left hand side of (2.24) in the case where
f(ϕ) = m2 tr(I2 − ϕ) = 2m2(1− ϕ0) is the usual pion-mass potential and up to the correct
normalization of V .
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In order to normalize V correctly, we recall that the energy functional for ϕ (2.27) is
defined in “Skyrme units”, whereas Gauss’ law is defined with ρ normalized by the charge
of the proton. The correct rescaling of V is thus V → e

2λV , with e being the charge of the
proton and λ being the length unit. In order to compute the coupling between the Skyrme
field ϕ in Skyrme units and the field V , we need to compare the energy units of the Coulomb
energy and the Skyrme energy functional. This amounts to multiplying the Coulomb energy
by the length scale and dividing by the energy scale. Combining it all and using that the
Coulomb energy contains two V ’s, we have

κ =
(

e

2λ

)2 λ

µ
= e2

4µλ
= e2g2

2 , (2.49)

where in the last step we have used the definitions of the length and energy units of eq. (2.18).
Notice that we have recovered the coupling κ of eq. (2.20), which should be inserted in front
of the last term in the curly braces of the gradient (2.48).

2.3 Derrick scaling

It is instructive to consider how the Coulomb energy behaves under isotropic dilation of
the Skyrme field [37]. That is, for given ϕ : M → G, consider the one-parameter family
ϕλ : M → G, ϕλ(x) = ϕ(λx) where λ ∈ (0,∞). The associated electric charge density is
ρλ(x) = λ3ρ(λx), so the electrostatic potential Vλ induced by ϕλ satisfies

−λ2
3∑

i=1

∂2

∂(λxi)2 Vλ = λ3

ε0
ρ(λx), (2.50)

whence we deduce that Vλ(x) = λV (λx). Hence, the Coulomb energy of ϕλ is

EC(ϕλ) =
1
2

∫
R3

Vλ(x)ρλ(x) d3x = λ

2

∫
R3

V (λx)ρ(λx) d3(λx) = λEC(ϕ). (2.51)

Defining, as usual, the individual contributions to ESkyrme,

E2(ϕ) = ∥ϕ∗µ∥2
L2 , E4(ϕ) =

1
4∥ϕ∗ω∥2

L2 , E0(ϕ) =
∫

M
∗f ◦ ϕ, (2.52)

we note that EC has the same scaling behaviour as E4.
Since any static solution of the model is a critical point of E(ϕ) for all smooth variations

of ϕ, including ϕλ, we conclude that such a solution must satisfy the virial identity

d
dλ

E(ϕλ)
∣∣∣∣
λ=1

= d
dλ

{ 1
λ

E2(ϕ) + λ(E4(ϕ) + EC(ϕ)) +
1
λ3 E0(ϕ)

} ∣∣∣∣
λ=1

= 0,

⇒ −E2(ϕ) + E4(ϕ) + EC(ϕ)− 3E0(ϕ) = 0. (2.53)

This provides a useful check on our numerical results. In particular, for fields defined on
a bounded box, the variation ϕλ is only well-defined for λ ∈ [1,∞), and minimality of E

implies only that dE(ϕλ)/dλ|λ=1 ≥ 0. Hence, on a bounded domain, the virial identity
is replaced by the condition

1
E(ϕ) {−E2(ϕ) + E4(ϕ) + EC(ϕ)− 3E0(ϕ)} ≥ 0, (2.54)
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and the value of this quantity measures the pressure exerted by the box boundary. Of course,
one aims to choose the computation domain large enough that this pressure is small. Typical
values for the numerical solutions presented below are 0.01–0.08% for “light” Skyrmions,
i.e. with baryon numbers in the range [4, 16] and around 0.35% for the large B = 40 solutions.
The latter rather large pressure suggests that the computational box we have used is on the
limit of being big enough, but due to the heavy computational cost of those computations,
we have chosen this compromise.

Since EC scales similarly to E4, it is natural to wonder whether Skyrmions can be
stabilized by EC alone, dropping E4 entirely. Simulations in the B = 4 sector suggest
that they can, but the model with no Skyrme term is unlikely to be phenomenologically
competitive. Our simulations suggest that the electromagnetic coupling (charge) should
be about two orders of magnitude larger than experimentally known values, in order to
reproduce phenomenologically viable sizes of the nuclei. The stabilization of Skyrmions
through electromagnetic interactions alone, with no Skyrme term, was also observed in the
gauge-theoretic context in ref. [8].

2.4 Topological energy bound

The Skyrme part of the energy has the topological energy bound given in refs. [34, 38, 39]:

ESkyrme ≥ 12π2
(
√

α +
128

√
m(1− α)

3
4Γ2(3

4)
45π

3
2

)
|B|, (2.55)

with α ∈ [0, 1]:

α = a2

2

(√
1 + 4

a2 − 1
)

, (2.56)

and finally

a = 225π3

4096mΓ4(3
4)

. (2.57)

We will shortly calibrate the model and obtain m ≃ 0.650, for which a ≃ 1.162, α ≃ 0.6688 and

ESkyrme ≥ 1.088× 12π2|B|. (2.58)

Since the Coulomb energy is positive semi-definite, we can infer that the total energy has
an energy bound E ≥ ESkyrme. It would be interesting to know whether this bound can
be improved.

2.5 Numerical algorithm

The numerical algorithm that will be used in this paper is basically that developed in ref. [35].
That is, we perform an arrested Newton flow for the Skyrme field ϕ:

Pϕ(ϕ̈) = − gradE(ϕ), (2.59)

where Pϕ : R4 → TϕN denotes the orthogonal projection defined by the isometric embedding
N ⊂ R4, with N = S3 here, and gradE(ϕ) is given in eq. (2.48). The “arrested” part of
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the Newton flow consists of monitoring the total energy Eϕ at every step and restarting the
flow with vanishing kinetic energy ϕ̇ = 0, if the energy increases. The Coulomb potential V ,
on the other hand, cannot be solved with the same variational methods, due to its “wrong
sign” in the action. For this reason, the numerical algorithm developed in ref. [35], solves the
eq. (2.29) or (2.25) completely, at each step of the arrested Newton flow, using the conjugate
gradient method. In this sense, the method is a constrained arrested Newton flow where the
flow only takes place on trajectories where V is a solution to its governing equation.

An important difference and technical detail, is that the ω0 field in ref. [35] was massive
and hence enjoyed exponential spatial localization, whereas A0 and hence V in the present
paper is massless and obeys a power-law falloff. This makes the accurate evaluation of the
total energy at each step of the arrested Newton flow difficult. The solution is simply to use
the Coulomb energy functional written in the last line of eq. (2.26) (see also eq. (2.30)), as
opposed to that written in the second to last line. Since the baryon charge B0 is exponentially
spatially localized, so is the integrand V B0.

The boundary condition on U : lim|x|→∂box U(x) = 1 is simple to impose for a sufficiently
large box size. In practice, we will instead adopt a Neumann condition on the boundary of the
box, since it induces a smaller numerical error in energy and topological charge computations.
On the other hand, the boundary condition lim|x|→∞ V = 0 is difficult to impose on a finite
box, since the power-law falloff is too slow for any manageably sized box. One could attempt
to use a complicated Robin boundary condition: |x|V + x̂ · ∇V = 0, where the charge needs
not be specified. The unspecificity of the charge allows for complicated charge distributions,
but these Robin boundary conditions are somewhat tricky to work with for the conjugate
gradients method. A much more stable boundary condition, is to assume that the box size is
sufficiently large, so that it induces only a small inaccuracy to impose the Dirichlet boundary
condition lim|x|→∂box V (x) = B

4π|x| , where B is the total baryon number.6 This choice of
boundary conditions is very stable, but gives an inaccurate solution for V near the boundary
of the box. This inaccuracy is negligible for the energy integral of EC , due to the strong
localization of the electric charge distribution ρ = eB0/2. In this work, we thus work with
larger box sizes, i.e. 1513 lattice sites (sometimes larger) and a lattice distance typically of
the order of hx ≃ 0.13, in order to minimize the inaccuracy of the Coulomb energy.

To summarize the numerical algorithm:

1. Perform Newton flow step using Runge-Kutta 4 (RK4).

2. Solve Gauss’s equation for V .

3. Compute the total energy and compare with the value of the previous step: if larger,
set all kinetic energy to zero.

4. If the residue of the Skyrme field is smaller than a threshold value ∥ gradE(ϕ)∥2
L2 < T

(T is typically chosen as T = 10−3), then stop the algorithm.

5. Continue to the next step (start over).

Our code is implemented in CUDA C and run on a small cluster of NVIDIA GPUs.
6Notice that the total charge is not B, but eB/2. However, in the rescaled fields V obeys eq. (2.25). The

integral of the right-hand side is B and hence the approximation of V with a point-charge B source is B/4π|x|
in Heaviside-Lorentz units.
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Figure 1. Dependence of the (a) radius, (b) total energy and (c) Coulomb energies on κ in Skyrme
units for the B = 4a cube. The four curves correspond to m = 0.5, 1, 1.5, 2, respectively.
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Figure 2. Dependence of the (a) radius, (b) total energy and (c) Coulomb energies on κ in Skyrme
units for the B = 12a chain. The four curves correspond to m = 0.5, 1, 1.5, 2, respectively.

2.6 Calibration

Numerically, in Heaviside-Lorentz units, the electric charge is related to the fine-structure
constant [40]

α = e2

4π
≈ 1

137.036 , (2.60)

and thus equal to

e = 2
√

πα ≈ 0.302822. (2.61)

The pion masses are given by [40]

mπ± ≈ 139.570 MeV, mπ0 ≈ 134.977 MeV . (2.62)

Since we work with unbroken isospin symmetry, we will take the geometric average

mπ = 3
√

m2
π±mπ0 ≈ 138.022 MeV . (2.63)

In order to calibrate the model, we need two data points of energy and length dimensions,
respectively. We will consider the following calibration scheme: we fit the mass and size of
the lowest energy B = 12 Skyrmion to those of the Carbon-12 nucleus.
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Figure 3. B = 12 Skyrmion solutions in order of increasing mass (energy), for κ = 0 and pion mass
m = 1. These figures are taken from ref. [34].

In order to see some qualitative dependence on the parameters m, κ for the Skyrmion
observables, we plot the radius, the total energy and the Coulomb energy as a function
of κ for various m = 0.5, 1, 1.5, 2 in figures 1 and 2 for the B = 4a (cube) and B = 12a

(chain of cubes) Skyrmions, respectively. Clearly the strongest impact on both the radius
and the total energy comes from any change in the pion mass parameter, m, whereas the
dependence on κ is very mild.

In order to understand which B = 12 Skyrmion has the lowest energy as a function
of the pion mass, we take all the B = 12 Skyrmion solutions of the Smörgårdsbord [34]
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Figure 4. B = 12 Skyrmion solutions as functions of the pion mass m for κ = 0. Since the energy
grows drastically with m, we display the energies divided by their topological energy bound, see
eq. (2.55). When a curve stops, the solution ceases to exist, but when a curve drops to another existing
curve, the solution decays or transforms itself to that solution.

(they are displayed for m = 1 and κ = 0 in figure 3) and vary the pion mass parameter in
the range m ∈ [0, 1], which a posteriori turns out to be sufficient for calibrating the theory.
For Skyrmion number B = 12 and in particular for the most stable B = 12 Skyrmions,
the backreaction of the Coulomb energy has a nearly negligible impact, see figure 2. The
energy of all the B = 12 solutions of figure 3 are shown in figure 4 as functions of their
pion mass parameter, m, for κ = 0. When a curve stops, the solution ceases to exist, but
when a curve drops to another existing curve, the solution decays or transforms itself to
that solution. Hysteresis is existing, but is negligible and comparable to the slope of the
curves transitioning between solutions.

Ignoring for the moment the backreaction of the Coulomb energy, we can read off the
stable B = 12 Skyrmion solutions in the interval m ∈ [0, 1], which we illustrate in figure 5.
It turns out that the chain of 3 alpha particles is only the ground state of the B = 12
sector for large pion mass, near m ∼ 1, whereas the relevant Skyrmion for a more realistic
pion mass is made of two B = 7 Skyrmions sharing a face. We also checked explicitly,
that turning on a finite κ of order one, does not change the ground states (global energy
minimizers). The evolution of the solutions as functions of the pion mass parameter m

for κ = 0 is shown in figure 6.
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(a) 0≤m≤0.547 (b) 0.547≤m≤0.566 (c) 0.566≤m≤0.928 (d) 0.928≤m≤1

Figure 5. Stable B = 12 Skyrmion solutions (global energy minimizers) for κ = 0 and pion mass in
the interval m ∈ [0, 1].

Fitting now the mass and radius of the B = 12 ground state to the mass and radius
of the 12C nucleus, we have [40, 41]

Fπ

4g
E12(m, κ) = M12C ≈ 11177.9 MeV,

2
gFπ

R12(m, κ) = R12C ≈ 2.4702 fm ≈ 1.2518× 10−2 MeV−1 . (2.64)

The charge radius of a Skyrmion in Skyrme units is calculated as

RB =
√

1
B

∫
M

r2B0 d3x, (2.65)

with r ≡ |x − x0| being the radial distance from the centre of the charge distribution, x0,
which is calculated as

xi
0 = 1

B

∫
M

xiB0 d3x, i = 1, 2, 3. (2.66)

We will now perform the calibration of the model, by computing the mass as a function
of m and κ, and it suffices to consider the B = 12b Skyrmion of figure 5(c), which is the
union of two B = 7 Skyrmions with icosahedral symmetry that share a face. The result
of the calibration is

m ≃ 0.650, κ ≃ 0.737, (2.67)

for which the Skyrme coupling constant and the pion decay constant read

g ≃ 4.010, Fπ ≃ 105.9MeV, (2.68)

both of which are smaller than those obtained by Adkins-Nappi-Witten using a fit of the
nucleon and the Delta resonance (both are B = 1 Skyrmions) [42], but both values are larger
than those fitted to Lithium-6 in ref. [43, eq. (77)].

2.7 Skyrmion solutions

We will now present the numerical Skyrmion solutions. The 4-Skyrmion is unaltered and is
still a cube, see figure 7. The 8-Skyrmions have reduced from 4 solutions in ref. [34] to only the
two lightest solutions, see figure 8. The lightest 8-Skyrmion at m = 1 is the 8a solution, which
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Figure 6. The evolution of B = 12 Skyrmion solutions of figure 3 as functions of the pion mass for
κ = 0, which is lowered from m = 1 (right-most column) to m = 0 (left-most column). The steps in
m between each column is twice as large as compared to those shown in figure 4.
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Figure 6. This figure is continued from the previous page.

Figure 7. The B = 4 Skyrmion.

(b) (a)

Figure 8. The two existing B = 8 Skyrmion solutions at m = 0.65. The 8b-Skyrmion is the lightest
in our calibration.

(α) (β) (γ) (δ)

Figure 9. B = 12 Skyrmion solutions that are new compared with the solutions of the Smörgås-
bord [34]. Since these solutions are computed for the pion mass m = 0.65, they may not exist
for m = 1.

becomes the next-lightest one at m = 0.65, whereas the 8b solution becomes the lightest state.
No apparent effect is visible from the Coulomb energy with full backreaction (for details on
the impact of the Coulomb force, see the next section); that is, the 2 heavier 8-Skyrmions that
were a 7-Skyrmion with a 1-Skyrmion and a 6-Skyrmion with a torus mounted on the side
instead of at the end, have both disappeared due to the lower pion mass, but with and without
the Coulomb backreaction taken into account they both decay to the lightest 8b Skyrmion.

Let us turn to the B = 12 Skyrmions. We start with listing the changes to the solutions
due to changing the fit of the model from m = 1, κ = 0 to m = 0.65, κ = 0.737, see
table 1. In the previous section, the EM interactions were not taken into account. Here we
compute the new solutions with m = 0.65 with and without the EM interactions turned
on; in both cases starting with the m = 1, κ = 0 solution as the initial condition. The
new solutions that appear in the process are shown in figure 9. The four cases where the
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config κ = 0 κ = 0.737
(m = 1) (m = 0.65) (m = 0.65)
12f 12c

∗12f

12g 12e 12e

12h 12d 12d

12m 12e 12e

12n 12b 12b

12p 12d 12d

12q 12o 12o

config κ = 0 κ = 0.737
(m = 1) (m = 0.65) (m = 0.65)

12s 12α
∗12b

12u 12β
∗12d

12v 12γ 12γ

12x 12l 12l

12y 12b 12b

12aa 12k
∗12e

12ab 12δ 12δ

Table 1. B = 12 Skyrmions’ change from m = 1, κ = 0 to the physical fit of m = 0.65
with and without the physical EM coupling, κ = 0.737, turned on. The red entries denote
solutions that differ from the m = 1 ones, whereas the ∗ denotes solutions that are different
when the electromagnetic interactions are taken into account compared with when it is turned
off. Skyrmions with Greek indices are new compared to the m = 1, κ = 0 case. Skyrmions
that remain unaltered are not shown in this table.

(f)

→

(c) (f)

(s)

→

(α) (b)

(u)

→

(β) (d)

(aa)

→

(k) (e)

Figure 10. B = 12 Skyrmions that differ when the electromagnetic interactions are taken into
account. The left-most column shows the initial conditions with m = 1, κ = 0, the middle column
shows the solutions for m = 0.65, κ = 0 and the right-most one is for m = 0.65, κ = 0.737.
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(v)

→

(γ)

(ab)

→

(δ)

Figure 11. B = 12 Skyrmions that flow to the same new Skyrmion solution due to the change of
the pion mass m = 1 → 0.65, independently of whether the Coulomb force is turned on or not. The
left-most column shows the initial conditions with m = 1, κ = 0, whereas the right-most column shows
the m = 0.65, κ = 0.737 case. The m = 0.65, κ = 0 solutions are the same as the κ = 0.737 ones.

Skyrmions flow to two different solutions for the Coulomb backreaction turned off (κ = 0)
and on (κ = 0.737), are shown in figure 10. The 12f -Skyrmion remains the 12f -Skyrmion
when the Coulomb force is turned on, but changes to the 12c-Skyrmion with κ = 0. The
12s- and 12u-Skyrmions flow to two new Skyrmion solutions when κ = 0 and m is lowered
from m = 1 to m = 0.65, which are denoted 12α- and 12β-Skyrmions, respectively. Finally,
the 12aa-Skyrmion flows to two different existing solutions, upon changing the pion mass
and including the EM interaction or not. The remaining ten Skyrmions in table 1 all flow
to the same Skyrmion solution upon changing the pion mass from m = 1 to m = 0.65,
independently of whether the Coulomb force is turned on or not. In most cases, the Skyrmion
flows to an existing lower-energy solution. However, in two cases, the Skyrmion flows to a
new solution. These two cases are shown in figure 11.

Finally, we show in figure 12 the ten lightest B = 12 Skyrmion solutions in our calibration
(pion mass m = 0.65) without taking the Coulomb force into account (left-hand side) and
with taking it into account (right-hand side). It is interesting to note that the expected global
energy minimizer (ground state), i.e. the chain of three cubes (alpha particles), turns out not
to be the minimizer in our calibration. Not only is it not the minimizer, it is not even in
the top-ten lightest states when the Coulomb backreaction is turned off (κ = 0), whereas
it figures as the 8th lightest state when it is taken into account. The four lightest states
turn out to be the same, whether EM interactions are backreacted or not. In particular, the
ground state for B = 12 is the same solution: namely the 12b-Skyrmion solution made up
of two icosahedrally symmetric Skyrmions that share a face.

We now turn to the rather large ensemble of Skyrmions, i.e. the B = 16 sector of the
Smörgåsbord [34]. As one could expect from the results in the B = 12 sector, the alterations in
this sector will be even more. Due to the large number of B = 16 solutions, we do not display
all the known solutions and refer to the labels of the solutions used in ref. [34] using the Latin
alphabet. The new B = 16 solutions are denoted using the Greek alphabet (skipping omicron,
since it looks like ‘o’). We start by listing a table of the changes that happen when using the
B = 16 Skyrmions as initial conditions for our calibration, i.e. with pion mass m = 0.65 with
and without taking into account the backreaction of the Coulomb force, see table 2.
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1692.28 (b) (b) 1693.89

1692.50 (c) (c) 1694.10

1692.94 (d) (d) 1694.57

1693.77 (e) (e) 1695.38

1694.04 (β) (l) 1695.76

1694.13 (l) (δ) 1695.94

1694.14 (α) (k) 1696.32

1694.29 (δ) (a) 1696.84

1694.69 (k) (o) 1696.87

1695.23 (o) (γ) 1696.94

Figure 12. The ten lightest B = 12 Skyrmion solutions with m = 0.65 without Coulomb backreaction
(left-hand side) and with the Coulomb backreaction taken into account (right-hand side). The solution
labels refer to the solutions of figures 3 and 9. Interestingly, the 12a solution that is a chain of three
cubes, is not the global energy minimizer in our calibration.
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config κ = 0 κ = 0.737
(m = 1) (m = 0.65) (m = 0.65)

16i – –
16k 16a 16a

16m 16c 16c

16o – ∗16o

16t 16c
∗16α

16z – –
16ae – ∗16β

16ai – ∗16aa

16av – –
16ax 16γ 16γ

16ay – –
16az 16c 16c

16bb 16c
∗16δ

16bc 16y 16y

16bd – –
16bf 16ε 16ε

16bj 16c 16c

16bl 16c 16c

16bm – ∗16p

16bq – –
16bs 16l

∗16d

16bu 16s 16s

16bx 16c 16c

16ce 16ζ 16ζ

16ci 16c
∗16ci

config κ = 0 κ = 0.737
(m = 1) (m = 0.65) (m = 0.65)
16cj 16η 16η

16cl 16p 16p

16cn 16c 16c

16co 16a 16a

16cr – ∗16cp

16cs – ∗16θ

16cu – –
16cv 16a

∗–
16cy – ∗16cy

16cz 16ι 16ι

16da 16κ 16κ

16dd – ∗16dd

16de 16aa 16aa

16dg 16λ 16λ

16dn 16dn
∗16µ

16do 16ν 16ν

16dp – –
16du 16c 16c

16dx 16c 16c

16eb – –
16ec 16ξ

∗16p

16eh 16π 16π

16ej 16dy 16dy

16em 16bw 16bw

16eo 16ρ 16ρ

Table 2. B = 16 Skyrmions’ change from m = 1, κ = 0 to the physical fit of m = 0.65
with and without the physical EM coupling, κ = 0.737, turned on. The — denote solutions
that do not exist, the red entries denote solutions that differ from the m = 1 ones, whereas
the ∗ denotes solutions that are different when the electromagnetic interactions are taken
into account compared with when it is turned off. Skyrmions with Greek indices are new
compared to the m = 1, κ = 0 case. Skyrmions that remain unaltered are not shown in
this table.

There are 9 cases, where the Skyrmion solution disappears; this can happen for example
by the smaller pion mass not squeezing the Skyrmion as much at m = 0.65 as compared
with at m = 1 and hence several Skyrmions inflate to the same more hollow solution. Other
possibilities include that the Skyrmion solution simply breaks up into smaller chunks and
hence does not count as a B = 16 solution.

There are furthermore 15 cases, where the solutions are different when the Coulomb
backreaction (CBR) is taken into account from when it is not. In 3 of the 15 cases, the
Skyrmion remained the same with the Coulomb backreaction turned on, but disappeared
when it was switched off and in 1 case, it remained with the backreaction (16ci), but changed
to a low-energy solution when it was turned off (16c). Only in one case, did the Skyrmion
solution disappear with CBR turned on and in this case (16cv) the solution without CBR
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(α) (δ) (µ)

Figure 13. New B = 16 Skyrmion solutions that were found with Coulomb backreaction taken
into account (m = 0.65 and κ = 0.737). In all these cases, the Skyrmion solution found without the
Coulomb force turned on was a known one. In the case of the 16µ-Skyrmion, the known solution was
the same as the initial condition (16dn).

(β) (θ)

Figure 14. New B = 16 Skyrmion solutions that were found with Coulomb backreaction taken
into account (m = 0.65 and κ = 0.737). In all these cases, no B = 16 solution was found when the
Coulomb force was not included.

(ξ)

Figure 15. New B = 16 Skyrmion solution found by changing to our calibration, but without the
Coulomb backreaction (m = 0.65 and κ = 0). Turning on the Coulomb backreaction gave a different,
albeit known Skyrmion solution (16p).

(γ) (ε) (ζ) (η) (ι) (κ)

(λ) (ν) (π) (ρ)

Figure 16. New B = 16 Skyrmion solutions found by changing to our calibration, but the solutions
are qualitatively the same with and without the Coulomb backreaction taken into account. The figure
shows the solutions for m = 0.65 and κ = 0.737.
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decayed to one of the lowest-energy solutions (16a). This may suggest that the Skyrmion
solutions are more stable with the CBR taken into account. In 3 cases, a new Skyrmion
solution was found when CBR was taken into account, whereas the solution flowed to a
known solution without CBR; in one of these cases, the solution without CBR remained the
same, see figure 13. In 2 cases, the new Skyrmion solution was found with CBR taken into
account, whereas no solution exists without it, see figure 14. In further 3 cases, no solution
exists without the CBR taken into account, but with CBR the solution flowed to a different,
albeit known Skyrmion solution, see table 2. In one case, the solutions flowed to 2 different
known solutions. Finally, in one case a new Skyrmion solution was found without the CBR
taken into account, whereas it flowed to a known solution (16p) with it, see figure 15.

We now conclude the B = 16 sector by showing the ten lightest Skyrmion solutions in
our calibration (pion mass m = 0.65) in figure 17, without taking the CBR into account
(left-hand side) and with it (right-hand side). Unlike the case of the B = 12 Skyrmions,
the ten lightest B = 16 Skyrmions are the same whether CBR is taken into account or not.
Interestingly though, there appears a new Skyrmion as 16γ as the 6th lightest Skyrmion in
our calibration. The ground state is however the same 16a solution as in ref. [34].

For the B = 40 Skyrmions, we seed the computations with 60 random configurations
using the algorithm of ref. [34] and run the arrested Newton flow to a final solution with and
without the Coulomb energy backreacted to the Skyrme fields. First some statistics. We find
that 15 of them come out equal. 5 of them do not give rise to solutions with B = 40 without
taking the Coulomb effect into account, but do flow to solutions when its backreaction is
taken into account. Of these 5 solutions, using the final solutions as input, in 1 case the
solution is equal when the Coulomb effect is turned off and in another the solution changes;
finally, in 3 cases the solution ceases to exist (with baryon number 40). The remaining 40
solution come out different; that is, starting with the same random initial configuration of
1-Skyrmions placed randomly, the arrested Newton flow algorithm find two different solutions
when taking into account the backreaction of the Coulomb force and when not taking it
into account. However, in 37 of these 40 cases, even though they flow to different solutions,
taking each of these final solutions as input, they both exist when respectively turning off
or switching on the Coulomb force. In 2 cases, the solution ceases to exist (with baryon
number 40) when the Coulomb force is switched off. Finally, in 1 single case, interestingly,
the solution without the Coulomb effect taken into account flows to the same solution from
that without it taken into account once the Coulomb force is turned on.

This rather limited statistical sample shows that, although the Coulomb effect is somewhat
small, it does have physical importance for the existence of certain Skyrmion states, but it
appears that it is more important for the dynamics of nuclei. We note, however, that the
dynamics here is not quite the physical dynamics, as the arrested Newton flow artificially
removes the kinetic energy to speed up the process of finding a minimum of the static
energy (although this removal of kinetic energy somehow crudely mimics energy being carried
away by radiation).

We start by comparing the ten lightest B = 40 Skyrmion solutions in our calibration,
with and without the CBR taken into account. The figures 18–22 show the n-th lightest
solution (n = 1, . . . , 10) with the CBR turned off on the left-hand side and taken into account
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2248.38 (a) (a) 2250.87

2249.10 (d) (d) 2251.61

2249.41 (e) (e) 2251.93

2249.98 (c) (c) 2252.54

2250.35 (b) (b) 2252.72

2250.50 (γ) (γ) 2253.02

2250.98 (h) (h) 2253.51

2251.44 (l) (l) 2253.96

2250.03 (o) (o) 2254.23

2250.05 (n) (n) 2254.25

Figure 17. The ten lightest B = 16 Skyrmion solutions with m = 0.65 without Coulomb backreaction
(left-hand side) and with the Coulomb backreaction taken into account (right-hand side). The solution
labels refer to the solutions of ref. [34] and γ refers to the new Skyrmion solution of figure 16. In this
sector, all the ten lightest Skyrmions are the same with and without the Coulomb backreaction taken
into account.
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(b) 5573.86 5585.62 (a)

κ = 0 κ = 0.737

(a) 5573.87 5585.65 (b)

κ = 0 κ = 0.737

Figure 18. The lightest (left) and next-to-lightest (right) B = 40 Skyrmions. The three rows displays
the baryon charge isosurface at 1/4 of the maximum density, the σ = ϕ0 isosurface at ϕ0 = 0 and the
pion isosurfaces with ϕ1,2,3 = 3/4 (ϕ1,2,3 = −3/4) corresponding to red, green, blue (cyan, magenta,
yellow). The labels of B = 40 Skyrmion solutions are ordered according to the energies of the Coulomb
backreacted solutions (i.e. those with κ = 0.737).

on the right-hand side. The three rows correspond to the baryon-charge isosurface, the ϕ0 = 0
or σ = 0 isosurface which is the midpoint between the vacuum and the anti-vacuum, and
finally the pion clouds at ϕ1,2,3 = 3/4 shown by red, green and blue and ϕ1,2,3 = −3/4 shown
by the corresponding anti-colours. Although all found solutions have been tested to exist
both with and without CBR taken into account, it is a quite nice result that for such large
Skyrmions as B = 40 like the calcium nucleus, the ordering of the lowest-energy states differ
when CBR is taken into account or not. We expected this on physical grounds, since it is the
largest stable isospin-0 ground state with B = 4n and hence for baryon numbers higher than
40, we expect that the amount of protons is too large to give rise to a stable ground state
and hence the isospin must be nonvanishing (yielding more neutrons than protons). The only
reason for the number of neutrons and the number of protons being the same, is due to a fact
of the strong interactions, i.e. the symmetry energy favours the isospin-0 states, whereas the
Coulomb force obviously prefers more neutrons. Clearly a lot of the same solutions appear
among the ten lightest B = 40 Skyrmions. The two lightest states switch their order when
the CBR is turned on, see figure 18. The 3rd lightest state is the same with and without CBR,
see figure 19(left). The 4th lightest state only appears in top-10 with Coulomb interactions
turned on, see figure 19. Apart from that, the order is the same — with eliminating the flat
40d-Skyrmion from the CBR-off list, until the 7th-lightest state: this happens to be the same
with and without CBR, see figure 21. Essentially the 40g-Skyrmion and the 40h-Skyrmion
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(c) 5575.73 5587.50 (c)

κ = 0 κ = 0.737

(e) 5576.91 5588.68 (d)

κ = 0 κ = 0.737

Figure 19. The 3rd (left) and 4th (right) lightest B = 40 Skyrmions. For details, see the caption of
figure 18.

(f) 5576.99 5588.72 (e)

κ = 0 κ = 0.737

(h) 5577.77 5588.80 (f)

κ = 0 κ = 0.737

Figure 20. The 5th (left) and 6th (right) lightest B = 40 Skyrmions. For details, see the caption of
figure 18.
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(g) 5577.86 5589.56 (g)

κ = 0 κ = 0.737

(i) 5577.92 5589.57 (h)

κ = 0 κ = 0.737

Figure 21. The 7th (left) and 8th (right) lightest B = 40 Skyrmions. For details, see the caption of
figure 18.

(j) 5577.96 5589.75 (i)

κ = 0 κ = 0.737

(k) 5578.03 5589.81 (j)

κ = 0 κ = 0.737

Figure 22. The 9th (left) and 10th (right) lightest B = 40 Skyrmions. For details, see the caption of
figure 18.
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(bd) 5584.71
(0.)

5593.08
(5596.28) (aj)

κ = 0 κ = 0.737

(cq) 5598.93
(0.)

5602.49
(5610.34) (ca)

κ = 0 κ = 0.737

Figure 23. Two cases of a B = 40 Skyrmion that flows from an initial condition to two different
solutions with and without CBR: turning on the Coulomb effect on the κ = 0 solution changes it only
slightly (it looks like the κ = 0 figure and its energy is written in the κ = 0.737 column in parentheses).
Turning off the CBR on the κ = 0.737 solution, however yields no stable B = 40 Skyrmion, in both
cases. For details, see the caption of figure 18.

switch order when the CBR switched off. We also note that with the exception of the 40d

(the 4th lightest solution), all the lightest Skyrmion solutions have a hollow ϕ0 structure:
they basically have a “hole” or a less dense region inside the nucleus that is covered by a
shell. It is completely different from the fullerene-type solutions of refs. [44–47] since the
“hole” is not the anti-vacuum (ϕ0 = −1), but approximately the true vacuum (ϕ0 = 1), see
figures 18–22. The fourth-lightest B = 40 Skyrmion (40d) is different, as it is planar in the
sense of being of the “graphene”-type solution, see ref. [34].

We will now discuss a few selected Skyrmion configurations that differ from each other
when CBR is taken into account or not. First in figure 23 are shown two cases where the
initial configuration (not shown) flows to two different solutions. Taking the two end results,
the κ = 0 solution only changes slightly by taking into account CBR, but the κ = 0.737
solution disappears when switching off Coulomb interactions.

Another interesting case is shown in figure 24, where the configuration flows to two
different solution depending on whether CBR is taken into account or not. Interestingly,
taking the κ = 0 solution and turning on the Coulomb interaction, the solution flows to the
same κ = 0.737 solution as it flowed to from the initial condition. Turning off the Coulomb
interaction, however, just yields a slightly deformed version of the κ = 0.737 solution.

Another odd case is shown in figure 25, where the solution does not exist when CBR is
turned off during the flow from the initial configuration. Turning off the Coulomb interaction,
however, yields a somewhat deformed version of the κ = 0.737 solution.

Again a situation that only yields a B = 40 solution from a certain initial condition
when CBR is taken into account, is shown in figure 26. In this case, the solution does not
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(bv)
5593.16
(5590.28)

5601.46
(5601.46)

(bw)

κ = 0 κ = 0.737

0.

(5579.19)
5590.19

(0.)
(m)

κ = 0 κ = 0.737
Figure 24. A B = 40 Skyrmion that flows from
an initial condition to two different solutions
with and without CBR: interestingly, turning on
the Coulomb effect on the κ = 0 solution flows
it to the same solution as the initial solution
flowed to. Turning off the Coulomb force also
does not change the κ = 0.737 solution.

Figure 25. A B = 40 Skyrmion that only flows
to a B = 40 solution with the Coulomb effect
turned on. However, switching it off flows this
solution to a slightly different solution (shown on
the left). For details, see the caption of figure 18.

(bh) 5596.62 (5585.44)

Figure 26. A B = 40 Skyrmion that only flows to a solution with the Coulomb effect turned on.
Switching off the Coulomb effect, however, yields the same solution (energy shown in parentheses).
For details, see the caption of figure 18.
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(at) 5594.57

(ck) 5605.88

(co) 5609.94

Figure 27. B = 40 Skyrmions that only flow to a solution with the Coulomb effect turned on.
Switching off the Coulomb effect also yields no solution with B = 40. For details, see the caption of
figure 18.

change when the Coulomb interaction is turned off (but the total energy decreases slightly,
of course, which is shown in parenthesis in the figure).

The final three odd cases are shown in figure 27; again the solution only exists when
CBR is taken into account and more interestingly, taking these final solutions as inputs and
switching off the Coulomb interaction gives no stable solution with baryon number B = 40.

For completeness, we show the remaining 79 B = 40 solutions with higher energies
in appendix B.

2.8 The Coulomb energy and the effect of its backreaction

We are finally in a position to summarize the Coulomb energy for a broad range of Skyrmions
with baryon numbers 4, 8, 12, 16 and 40 as well as study the detailed effects of the backreaction
of the Coulomb force onto the Skyrmions. We begin with the latter.

Figures 28 through 32 show the (a) baryon charge density, (b) Coulomb (electric) potential,
(c) [(d)] difference between the baryon charge density [energy density] with backreaction of
the Coulomb energy and without it. Notice that the red surface (in panel (b)), corresponding
to nearly the maximum density of the electric potential (V ) has a distinct shape, whereas the
half-maximum density (purple) isosurface interpolates between the red surface’s shape and a

– 33 –



J
H
E
P
0
1
(
2
0
2
5
)
1
5
0

(a) (b) (c) (d)

Figure 28. The only B = 4 Skyrmion, corresponding to Helium-4: (a) displays the baryon charge
isosurface at 1/4 of its maximum density and (b) the Coulomb potential V at 98% (red), 90% (green)
and 50% (purple) of its maximum density. The last two panels show the Skyrmion (c) baryon
charge density and (d) energy density for the backreacted solution with the non-backreacted solution
subtracted off. The green isosurface is showing the positive region at half-maximum density and the
red shows the negative region at half-maximum (negative) density. The fact that these differences are
positive at larger radii and negative at smaller radii means that the backreacted Skyrmion solution
is larger than the non-backreacted one. The levelsets are at (a) 0.074, (c) green 4.8 × 10−5, (c)
red −2.0 × 10−4, (d) green 6.4 × 10−3, (d) red −0.034 and the maximum energy density is for
comparison 43.9.

(a) (b) (c) (d)

Figure 29. The lightest B = 8 Skyrmion in our calibration (m = 0.65 and κ = 0.737), corresponding
to Beryllium-8. For details, see the caption of figure 28. The levelsets are at (a) 0.072, (c) green
1.4× 10−4, (c) red −3.6× 10−4, (d) green 0.021, (d) red −0.061 and the maximum energy density is
for comparison 43.7.

(a) (b) (c) (d)

Figure 30. The lightest B = 12 Skyrmion in our calibration (m = 0.65 and κ = 0.737), corresponding
to Carbon-12. For details, see the caption of figure 28. The levelsets are at (a) 0.072, (c) green
8.4× 10−4, (c) red −1.0× 10−3, (d) green 0.12, (d) red −0.16 and the maximum energy density is for
comparison 42.6.
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(a) (b) (c) (d)

Figure 31. The lightest B = 16 Skyrmion in our calibration (m = 0.65 and κ = 0.737), corresponding
to Oxygen-16. For details, see the caption of figure 28. The levelsets are at (a) 0.084, (c) green
6.8× 10−4, (c) red −1.0× 10−3, (d) green 0.10, (d) red −0.16 and the maximum energy density is for
comparison 50.1.

(a) (b) (c) (d)

Figure 32. The lightest B = 40 Skyrmion in our calibration (m = 0.65 and κ = 0.737), corresponding
to Calcium-40. For details, see the caption of figure 28. The levelsets are at (a) 0.084, (c) green
0.34, (c) red −2.5 × 10−3, (d) green 0.31, (d) red −0.42 and the maximum energy density is for
comparison 50.4.

sphere. It is interesting to see in what way the Skyrmions are altered by the backreaction of
the Coulomb energy. In the B = 4 Skyrmion, the backreaction amounts to increasing the
cube isotropically, see figure 28. This is consistent with the fact that the Coulomb interaction
acts similarly to the Skyrme term, but with a much smaller effect due to the smallness of
the electromagnetic coupling (charge). For the B = 8 Skyrmion, the solution increases not
isotropically but more in the direction of the rim, see figure 29. In the larger B = 12 and
B = 16 Skyrmions, the increase of the Skyrmions’ sizes takes place along the axis aligned
with the Skyrmion’s longest length. Finally, the B = 40 Skyrmion also grows, but in this
case it seems more complicated than with the simpler Skyrmions.

Table 3 shows the total energies, Coulomb energies and charge radii of the lightest
Skyrmion solutions with baryon numbers 4, 8, 12, 16 and 40. Additionally, experimental data
is used for comparison from the NuDat3 database [48–52]. The total energies are surprisingly
well described by the model in our calibration, with the largest deviation of 1.86% (excess)
for Helium-4 and only −0.96% deviation for Calcium-40. The fact that there is an excess
in the energies for B < 12 and a lack for B > 12 illustrates that the Skyrme model is too
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B = 4 Helium-4 abs. diff. rel. diff.
E 575.41
E 3.797GeV 3.727GeV 69.5MeV 1.86%
EC 1.919MeV 1.575MeV 0.3MeV 21.87%
R 1.422 fm 1.678 fm −0.256 fm -15.24%

B = 8 Beryllium-8 abs. diff. rel. diff.
E 1133.65
E 7.481GeV 7.455GeV 25.7MeV 0.34%
EC 5.713MeV 5.000MeV 0.7MeV 14.26%
R 1.908 fm – – –

B = 12 Carbon-12 abs. diff. rel. diff.
E 1693.85
E 11.177GeV 11.177GeV 0.0MeV 0.00%
EC 10.591MeV 9.828MeV 0.8MeV 7.77%
R 2.471 fm 2.470 fm 0.001 fm 0.04%

B = 16 Oxygen-16 abs. diff. rel. diff.
E 2250.87
E 14.853GeV 14.895GeV −42.5MeV -0.29%
EC 16.389MeV 15.874MeV 0.5MeV 3.25%
R 3.002 fm 2.699 fm 0.303 fm 11.23%

B = 40 Calcium-40 abs. diff. rel. diff.
E 5585.62
E 36.858GeV 37.215GeV −357.4MeV -0.96%
EC 77.388MeV 73.100MeV 4.3MeV 5.86%
R 3.525 fm 3.478 fm 0.047 fm 1.35%

Table 3. Total energy in Skyrme units, total energy in GeV compared with experimental
data [48–52], Coulomb energy in MeV compared with the fit 0.156B

5
3 of ref. [53], and charge

radii compared with experimental data [48–52]. The comparison is made both in absolute
values and in percentages.

tightly bound — i.e. the good old story of the too large binding energies. Nevertheless, the
problem is much milder than one would anticipate, when looking only at large Skyrmions
and ignoring the energy for the single nucleon (B = 1). Of course, these energies are classical
and no quantum corrections from vibrational modes etc. have been taken into account here
(recall that for spin-0 and isospin-0 states, there are no contribution from the zeromode
quantization of the Skyrmions).

Even though the total energies are predicted very precisely in our calibration, the Coulomb
energies are more imprecise and of the usual order of magnitude of errors in Skyrme-type
models. Specifically, the Coulomb energies are consistently overestimated by between 3.3%
and 21.9%, with Oxygen-16 being the most precise and Helium-4 the most imprecise. The
charge radii are slightly better with the Helium-4 being 15.2% too small and Oxygen-16
being 11.2% too large, as the two extremes.

Compiling the Coulomb energies into a figure, we show in figure 33 the Coulomb energies
computed for the ground states (the global energy minimizers for each baryon number)
with a large black cross and all the remaining solutions with smaller orange pluses. Taking
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Figure 33. Coulomb energies of the lightest Skyrmions (black crosses) as well as all remaining
solutions (orange pluses). The lightest Skyrmions are fitted to the power-law shown with a black
dot-dashed line. In comparison, the experimental fit of Tian et al. [53] and two fits of Ma et al. [32]
are shown. Panel (b) shows the same information, but relative to the fit of Tian et al. [53].

as the “experimental” fit, the fitted result of Tian et al. [53], our ground states are all
slightly above the nuclear “experimental” fit, but only about 4 MeV for Calcium-40 and
less or about 1 MeV for the other 4 nuclei. We summarize the four different Coulomb fits
that are shown in figure 33:

ETian
C = 0.156B

5
3 MeV,

EMa, APA
C = 0.152B

5
3 MeV,

EMa, num
C = 0.142B

5
3 MeV,

Efit
C = 0.165B

5
3 MeV, (2.69)

with ETian
C being the simplest fit of ref. [53], EMa, APA

C being the fit to the alpha-particle
approximation of ref. [32], EMa, num

C being a fit to their numerical alpha-particle solutions,
and finally Efit

C being a fit to our ground states in our calibration. It is worth mentioning
that the fit of ref. [53] is based on nuclei in the range B ∼ 11-75 and hence is not fitted
on our two lightest nuclei (B = 4 and B = 8). It is perhaps also important to notice that
their fit is made on nuclei, not only having vanishing isospin, so a fit in the isospin-0 sector
may be more precise than the fit of ref. [53].

3 Conclusion and discussion

In this paper, we have considered the standard Skyrme model with the addition of the Maxwell
term and a source term for the electric field that matches with the Gell-Mann-Nishijima
relation. Formally, the equations are identical to those of the ω-Skyrme model [35], with
the identification of the electric potential A0 and ω0 and with the exception that A0 is
massless whereas ω0 is massive. This gives rise to a technical complication, because A0 with a
power-like falloff requires in principle very large domains for obtaining its solution. We solve
this problem with the approximation of assuming that the electric charge is approximately
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interchangeable with a point charge at the centre-of-mass of the Skyrmion, as seen at the
distance of the boundary of the box in which the numerical equations are solved. This would
be a poor approximation, if not used in conjunction with the trick of integrating-by-parts, so
that the Coulomb energy is evaluated as the product of the electric charge density (Skyrmion
baryon charge density) and the electric potential, integrated over space. Since the Skyrmion
baryon charge density is exponentially spatially localized in the massive Skyrme model, so
is this product. We calibrate the model to the size and energy of Carbon-12, which is a
relatively large nucleus, thus giving a larger range of “good behaviour” of our fit in baryon
numbers. The fit, however, requires a pion mass parameter smaller than unity (often used
in the literature) and this fact changes the solutions and ground states (lightest Skyrmion
solutions) with respect to the Smörgåsbord of ref. [34]. We find that the “dynamics” of the
Skyrmions is more sensitive to the inclusion of the Coulomb backreaction (CBR) than the
final state outcome. That is, starting with a particular initial condition, turning CBR on
or off may very likely result in different (local) solutions, whereas the global minimizer of
the energy is often the same. It turns out that for the largest stable nucleus with baryon
number B = 4n and isospin zero in the ground state, Calcium-40, the lightest Skyrmion
solutions differ with the CBR turned on or off. We fit the Coulomb energies of our Skyrmions
and find that the coefficient of the power-law is larger than the phenomenological one of
ref. [53], which in turn is larger than the result of ref. [32]. Nevertheless, the Coulomb
energies are within about 15% of the phenomenological fits, which is quite reasonable for a
simple over-bound Skyrme model without quantization taken into account. We notice that
the total energies are remarkably well described by our solutions in our calibration, with
the largest deviation of 1.86%. Finally, we should point out that the 100 B = 40 solutions
are new and due to the complexity of such large Skyrmions, we cannot for sure say that
we have found the global minimizer of the energy.

Clearly, the Coulomb effect is important for large nuclei and taking it into account with a
source term is just the simplest approach. As explained in detail in the introduction, there is
a more elaborate approach of gauging the Skyrme model and including Wess-Zumino-like or
Callan-Witten terms that reproduce the QCD anomalies. Such an approach would complicate
the model significantly and the fact that the Coulomb effect is most pronounced for large
nuclei, requires one to study large Skyrmions, like the B = 40 Skyrmions studied in this paper.
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A Proof of Lemma 1

Let ρ : R3 → R satisfy |ρ(x)| ≤ Ce−|x|/C and V : R3 → R be the electrostatic potential it
induces, that is, the unique solution of (2.29) decaying at infinity. Then

V (x) = 1
4πε0

∫
R3

ρ(x′)
|x − x′|

d3x′, (A.1)

and it follows immediately that |V (x)| ≤ C3V∗(x/C), where V∗ is the potential induced by
ρ∗(x) = e−|x|. The electric field E∗ = −∇V∗ induced by ρ∗ is radial, so we may compute V∗
explicitly by an application of the divergence theorem, obtaining

V∗(x) =
1
ε0

[2
r
− e−r

(
1 + 2

r

)]
, (A.2)

and the claimed localization of V immediately follows.
Let E = −∇V be the electric field induced by ρ. We seek an upper bound on |n · E|

where n = x/r is the unit radial vector. Now (A.1) implies that

E = 1
4πε0

∫
R3

x − x′

|x − x′|3
ρ(x′)d3x′, (A.3)

and hence that

|n · E| ≤ 1
4πε0

∫
R3

|ρ(x′)|
|x − x′|2

d3x′ (A.4)

≤ C

4πε0

∫
R3

e−|x′|/C

|x − x′|2
d3x′ = C

4πε0
f(r) (A.5)

where

f(r) = 2π

∫ 1

−1
dz

∫ ∞

0
ds

s2e−s/C

s2 + r2 − 2zsr

= 2π

∫ ∞

0
ds se−s/C log

∣∣∣∣s + r

s − r

∣∣∣∣
= 2πr

∫ ∞

0
ds se−(r/C)s log

∣∣∣∣s + 1
s − 1

∣∣∣∣ (A.6)

Choose and fix ε ∈ (0, 1/2). Then there exists K > 0 such that

log
∣∣∣∣s + 1
s − 1

∣∣∣∣ ≤


Ks, s ∈ [0, 1− ε],
K log

(
1

1−s

)
, s ∈ [1− ε, 1),

K log
(

1
s−1

)
, s ∈ (1, 1 + ε],

K/s, s ∈ [1 + ε,∞).

(A.7)

Hence

f(r) ≤ 2πrK

{
2
(

C

r

)3
+ e−r/C

r/C
+ ε(1− log ε)e−(r/C)(1−ε) + ε(1− log ε)(1 + ε)e−r/C

}

≤ K ′

r2 (A.8)

for some K ′ > 0. The claimed localization of |∂V/∂r| = |n · E| now follows.
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B The remaining B = 40 solutions

(k) 5589.89

(l) 5590.00

(n) 5590.49

(o) 5590.50

(p) 5590.64

Figure 34. B = 40 solutions with κ = 0.737 ordered by increasing static energy, excluding the 10
lightest solutions as well as that of figure 25.
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(q) 5590.73

(r) 5590.75

(s) 5590.76

(t) 5590.91

(u) 5591.09

Figure 35. B = 40 solutions with κ = 0.737 ordered by increasing static energy, continued from
figure 34.
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(w) 5591.45

(x) 5591.48

(y) 5591.70

(z) 5591.81

Figure 36. B = 40 solutions with κ = 0.737 ordered by increasing static energy, continued from
figure 35.
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(aa) 5591.83

(ab) 5591.98

(ac) 5591.99

(ad) 5592.16

(ae) 5592.23

Figure 37. B = 40 solutions with κ = 0.737 ordered by increasing static energy, continued from
figure 36.
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(af) 5592.26

(ag) 5592.26

(ah) 5592.29

(ai) 5592.32

(ak) 5593.23

Figure 38. B = 40 solutions with κ = 0.737 ordered by increasing static energy, continued from
figure 37 and excluding that of figure 23(left).
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(al) 5593.72

(am) 5593.78

(an) 5593.81

(ao) 5593.90

(ap) 5593.91

Figure 39. B = 40 solutions with κ = 0.737 ordered by increasing static energy, continued from
figure 38.
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(aq) 5594.12

(ar) 5594.14

(as) 5594.28

(au) 5594.58

(av) 5594.96

Figure 40. B = 40 solutions with κ = 0.737 ordered by increasing static energy, continued from
figure 39 and excluding the second row of figure 27.
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(aw) 5595.15

(ax) 5595.32

(ay) 5595.55

(az) 5595.61

(ba) 5595.75

Figure 41. B = 40 solutions with κ = 0.737 ordered by increasing static energy, continued from
figure 40.
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(bb) 5595.88

(bc) 5596.23

(be) 5596.32

(bf) 5596.52

(bg) 5596.62

Figure 42. B = 40 solutions with κ = 0.737 ordered by increasing static energy, continued from
figure 41 and excluding those of figures 23(left) and 26.

– 48 –



J
H
E
P
0
1
(
2
0
2
5
)
1
5
0

(bi) 5597.16

(bj) 5597.24

(bk) 5597.26

(bl) 5597.57

(bm) 5597.60

Figure 43. B = 40 solutions with κ = 0.737 ordered by increasing static energy, continued from
figure 42.
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(bn) 5598.41

(bo) 5598.68

(bp) 5599.11

(bq) 5600.52

(br) 5600.55

Figure 44. B = 40 solutions with κ = 0.737 ordered by increasing static energy, continued from
figure 43.

– 50 –



J
H
E
P
0
1
(
2
0
2
5
)
1
5
0

(bs) 5600.93

(bt) 5601.00

(bu) 5601.07

(bx) 5601.50

(by) 5601.75

Figure 45. B = 40 solutions with κ = 0.737 ordered by increasing static energy, continued from
figure 44 and excluding that of figure 24.
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(bz) 5602.28

(cb) 5602.52

(cc) 5602.83

(cd) 5603.10

(ce) 5603.65

Figure 46. B = 40 solutions with κ = 0.737 ordered by increasing static energy, continued from
figure 45 and excluding that of figure 23(right).
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(cf) 5604.15

(cg) 5604.27

(ch) 5604.30

(ci) 5605.21

(cj) 5605.55

Figure 47. B = 40 solutions with κ = 0.737 ordered by increasing static energy, continued from
figure 46 and excluding the second last row of figure 27.
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(cl) 5607.92

(cm) 5608.52

(cn) 5608.90

(cp) 5610.30

(cr) 5610.84

Figure 48. B = 40 solutions with κ = 0.737 ordered by increasing static energy, continued from
figure 47 and excluding the last row of figure 27 as well as that of figure 23(right).
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(cs) 5611.09

(ct) 5612.25

(cu) 5613.74

(cv) 5613.76

Figure 49. B = 40 solutions with κ = 0.737 ordered by increasing static energy, continued from
figure 48.
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