
This is a repository copy of DYNAPARC: AI-Driven Predictive Path Failure Management 
for Industrial IoT-Fog Networks.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/223728/

Version: Accepted Version

Proceedings Paper:
Alawadh, Rehab and Ahmadi, Hamed orcid.org/0000-0001-5508-8757 (2025) 
DYNAPARC: AI-Driven Predictive Path Failure Management for Industrial IoT-Fog 
Networks. In: DYNAPARC: AI-Driven Predictive Path Failure Management for Industrial 
IoT-Fog Networks. IEEE International Conference on Computer Communications, 19-22 
May 2025 IEEE Communications Society , GBR 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/id/eprint/223728/
https://eprints.whiterose.ac.uk/


DYNAPARC: AI-Driven Predictive Path Failure

Management for Industrial IoT-Fog Networks

Rehab Alawadh

Department of Computer Science

University of York, UK

rehab.alawadh@york.ac.uk

Poonam Yadav

Department of Computer Science

University of York, UK

poonam.yadav@york.ac.uk

Hamed Ahmadi

School of Physics, Engineering and Technology

University of York, UK

hamed.ahmadi@york.ac.uk

AbstractÐThe increasing adoption of IoT-Fog networks in
industrial environments demands resilient systems to meet
stringent Quality-of-Service (QoS) requirements. Network
failures disrupt critical processes and degrade QoS, ne-
cessitating innovative predictive failure management. This
paper presents the Dynamic Resilient Path Recovery (DYNA-
PARC) system, an AI-centric solution leveraging Software-
Defined Networking (SDN) to predict and mitigate failures
in industrial IoT-Fog networks. DYNAPARC integrates AI-
based reliability prediction model with SDN’s programmable
architecture and routing protocols to enhance resilience. A
hybrid approach combines proactive and reactive methods:
secondary paths are pre-installed (proactively) for immediate
failover during primary link failures, while new alternative
paths are dynamically calculated in real-time (reactively) for
multiple failures, ensuring adaptive routing. To quantify the
system’s performance, a novel Network Performance Score
(N) measures QoS under failure conditions. Simulations show
that DYNAPARC maintains an N score above 0.975135
before and after failures, outperforming traditional reactive
and proactive methods. Integrating machine learning in the
SDN controller significantly reduces packet loss by selecting
the most reliable paths. These results highlight the potential
of AI-driven prediction and SDN to achieve predictive
reliability, ensuring superior resilience, fast recovery, and
efficient traffic management in fog-based IIoT environments.

Index TermsÐMachine learning (ML), software-defined
networks (SDNs), fog computing, industrial Internet of
Things (IIoT), resilience, link failure, and routing protocols.

I. INTRODUCTION

The Industrial Internet of Things (IIoT) is poised to

become a crucial component of future industrial systems,

connecting machines, sensors, and actuators in critical

manufacturing environments to enhance efficiency and

performance. The integration of fog computing into IIoT

can significantly decrease decision-making delay, optimise

bandwidth usage, and improve privacy protection [1]. Re-

liable connections in IIoT require effective communication

protocols to ensure low latency, high throughput, minimal

packet loss, and efficient data transmission. Enhancing IoT

application design is essential for managing the entire

infrastructure. Therefore, SDN is employed to provide

efficient and reliable IoT management [2]. SDN addresses

traditional network limitations by enabling centralised

control and programmatic management. It separates rout-

ing from traffic forwarding, offering a global view for

improved network management [3]. The SDN controller

is an essential element tasked with managing network

traffic, rerouting it in real-time during link failures, and

updating forwarding rules to minimise downtime. While

SDN enhances network management, challenges such as

link failure handling remain. Industrial IoT applications

demand strict control over delay and packet loss due to

the dynamic nature of IoT environments, which require

near 100% data transmission success and minimal latency

[4]. Consequently, SDN must incorporate fault tolerance

capabilities to address such issues. Network failures are

caused by errors, and management involves detection

and recovery methods [5]. In SDN, detection methods

are periodic or event-based, while recovery strategies are

proactive or reactive, each with its own implementation

mechanism [6]. Reactive flow installation is essential after

a failure to redirect traffic, but it introduces significant

delays due to switch-controller communication issues.

The proactive strategy pre-installs flow rules, reducing

latency and enabling faster link failure recovery. However,

it lacks flexibility for dynamic network changes, leading

to potential performance issues and increased storage

overhead. Another significant challenge lies in effectively

QoS by selecting alternative paths that prioritise reliability

while minimising delay. To address the need for pre-

failure prediction and post-failure management, this study

proposes the Dynamic Resilient Path Recovery (DYNA-

PARC) framework. The framework dynamically adjusts

optimal paths in response to link failures and evolving

network conditions. By integrating continuous monitoring

protocols and using machine learning to provide the con-

troller with predicted link reliability, the system effectively

minimises the computation time required to determine

optimal paths and reduces the amount of communication

required between the controller and switches. We highlight

the major contributions of this paper as follows:

1) Development of a hybrid traffic management strat-

egy combining proactive secondary path pre-

installation with reactive path calculation to balance



quick failover and adaptive routing, enhancing re-

silience to network failures.

2) Introduction of a novel network performance metric

(N) to evaluate the hybrid strategy’s effectiveness

against reactive and proactive approaches, consider-

ing QoS parameters like throughput, data transfer,

and delay.

3) QoS-optimised path selection leverages machine

learning to predict link reliability for critical data

transmissions, enhancing network performance.

4) Extensive simulation using TensorFlow, Mininet,

and the Ryu controller to evaluate the hybrid strat-

egy against reactive and proactive approaches, fol-

lowed by assessment before and after integrating

AI, highlighting its effectiveness in fog-based IIoT

environments.

The structure of this paper is as follows: Section II

provides a comprehensive review of relevant studies in

the existing literature. Section III outlines the problem

statement. Section IV describes the DYNAPARC system

model and notation. Section V details the implementation

and evaluates the system’s performance. Finally, Section

VI concludes with future research directions.

II. RELATED WORK

Our previous work [7], introduced the Hybrid Intelli-

gent Fast Failure Recovery (HIFFR) framework, lever-

aging SDN for network resilience against link failures.

It included a pre-failure stage using machine learning

for prediction and prevention and a post-failure stage

for swift routing adjustments to ensure continuity. While

the prior study focused on the framework and theory,

this study implements and evaluates it, showcasing its

effectiveness in enhancing network resilience through

predictive and reactive strategies. A number of studies

have examined the management of link failures. Xia et

al. [8] present ShareBackup, an architecture that enhances

failure recovery in data centres by using a small pool

of backup devices to quickly replace failed switches,

reducing bandwidth loss. However, it doesn’t fully ad-

dress integration challenges during dynamic changes. The

authors in [9], [10] explore how SDN and NFV enhance

traffic management. The first study improves load distribu-

tion by dynamically adding secondary vSDN controllers,

while the second suggests integrating SDN and NFV

features for a more agile, efficient, and high-performance

network. Their findings highlight the potential of these

technologies to optimise network performance. Yang et

al. [11] proposed a hybrid IP/SDN strategy using tun-

nelling and a selection algorithm to reduce delays and

optimise bandwidth. However, it lacks consideration of

multiple link failures, highlighting the need for further

investigation. Isyaku et al. [12] propose an algorithm for

backup path computation in SDN, considering flow vari-

abilities, losses, and flow table utilisation. However, it does

not evaluate performance under dynamic conditions like

topology changes, link failures, and traffic fluctuations.

Zheng et al. [13] introduced Sentinel, a framework for

SD-WANs that improves recovery efficiency by using

backup tunnels to redirect traffic during link failures. It

minimises traffic loss and maximises capacity but requires

further research on dynamic changes and handling multi-

link failures. Petale et al. [14] propose a Group Table-

based Rerouting (GTR) technique using OpenFlow’s Fast

Fail-over feature to optimise memory and reduce resource

consumption. Sharma et al. [15] propose a swift recovery

approach for OpenFlow networks utilising conventional

routing protocols such as BGP and OSPF to manage fail-

ures. However, it overlooks implementation complexities

and scaling challenges, potentially limiting its practical

applicability. Previous studies indicate that current SDN

environments often rely on static failover mechanisms that

redirect traffic to predefined paths during link failures, but

this approach has significant limitations:

1) Pre-computed failover paths do not adapt to real-

time network conditions, leading to suboptimal rout-

ing decisions.

2) The delay in detecting link failures and implement-

ing rerouting can result in significant downtime and

packet loss.

3) The SDN-based literature reroutes data flows along

an alternative shortest path by either a reactive or

proactive flow installation method.

The proposed DYNAPARC system mitigates the identi-

fied limitations by addressing the challenges of previous

approaches.

1) DYNAPARC utilises various routing protocols to

dynamically calculate optimal paths according to

real-time network conditions.

2) Continuous network monitoring enables real-time

detection and swift response to link failures, min-

imising latency and packet loss.

3) QoS considerations include evaluating path reliabil-

ity levels using machine learning algorithms when

computing alternative paths.

By integrating these advanced capabilities, DYNAPARC

enhances network resilience, ensuring continuous and

reliable service even during and after disruptions.

III. PROBLEM STATEMENT

In modern manufacturing plants, IoT sensors monitor

machines for operational status and performance. The data

collected from these sensors is critical for maintaining

smooth operations and performing predictive maintenance.

To handle the vast amount of data generated, fog comput-

ing is introduced as an intermediary layer between the IoT

devices and the cloud, providing localised data processing

and decision-making capabilities as shown in Fig. 1.

This reduces latency and improves real-time respon-

siveness, which is crucial for time-sensitive applications



Fig. 1: Architecture of a Software-Defined IIoT System

Utilising Fog Computing in a Smart Factory.

in industrial environments. For the experiments, a single

fog server is used as a central control point for data

aggregation, processing, and decision-making. It receives

data from multiple base stations (IoT gateway nodes)

in various cities, which collect and transmit sensor data

for analysis and action. Reliable traffic characteristics

are essential, with key factors including data integrity

and guaranteed delivery, ensuring accurate, complete data

transmission without loss, and preventing gaps in moni-

toring. To ensure QoS efficient delivery, three SDN-based

strategies were created. The first strategy is reactive, where

each SDN switch between the plant and the fog server

requests the path from the controller to forward each

packet. The second strategy is proactive, where two paths

between the plant and the fog server are pre-calculated and

stored on the switches. The third strategy is hybrid, which

combines both approaches: paths are stored proactively,

but in case of link failure, switches request new paths from

the controller and store them for future communication.

IV. SYSTEM MODEL AND NOTATIONS

This section provides an overview of the system model

used in the DYNAPARC framework, outlining key com-

ponents and mechanisms that form the basis for the perfor-

mance evaluation and analysis in the following sections.

A. DYNAPARC System Model

To improve SDN-IIoT network performance, the con-

troller is enhanced by incorporating routing protocols and

applications that manage real-time packet rerouting during

link failures, as shown in Fig. 2.

The key component of the DYNAPARC system is

the SDN controller, which manages network operations,

makes routing decisions, and communicates with net-

work devices. The framework comprises five modules that

collaborate with the controller to enhance detection and

recovery processes. The first module is the Monitoring

Module, which continuously defines the network struc-

ture and provides information about sensor nodes and

Monitoring Module

Intelligent Module 

Routing Module

Failure detector Module

Northbound Interface

Southbound Interface

REST API

SDN RYU controller

Recovery Module

Fig. 2: DYNAPARC System Model.

links. This data is utilised by NetworkX to construct a

graph, which is then stored in the controller’s memory

to streamline the routing process. The Intelligent Mod-

ule analyses traffic flow characteristics to prioritise and

route data effectively, using a feedforward neural network

machine learning algorithm to route reliable traffic along

paths optimised for maximum reliability. The Routing

Module dynamically computes optimal paths based on

real-time network conditions and insights from the Intelli-

gent Module, sharing routing information with all routers

and calculating alternative paths even in the absence of

link failures. The Failure Detector Module constantly

observes the network for link faults, quickly identifying

communication issues between network entities. This en-

sures efficient failure detection with rapid response time

and minimal overhead. Upon detecting a failure, it notifies

the SDN controller, triggering the Recovery Module.

The Recovery Module activates upon failure detection,

implementing the pre-computed optimal path to minimise

disruption and ensure the continuity of network services.

These modules work together to preserve network con-

nectivity in the industrial IoT system during link failures.

B. DYNAPARC system Architecture

The physical structure of the SDN-enabled IIoT-fog

system is composed of a collection of SDN switches S, a

fog server N , a set of IoT devices D, and a collection of

links E, where E = {eij : si ↔ sj} are the links between

nodes represent the communication paths. This system

is modelled as a directed graph H = (S ∪ N,E). The

SDN controller periodically gathers the QoS-related data

from the underlying network with intervals of t seconds

to optimise the routing strategy for new traffic flows.

Each ej ∈ E within the network has a set of functions

associated with it. The function B(ej) : ej → (0, 1]
is utilised to calculate the throughput of a given link

ej ∈ E, while the function T (ej) : ej → (0, 1] computes

the data transfer for the link. Additionally, the function

D(ej) : E → dej > 0 is employed to determine the

transmission delay across the link.

C. network performance score

To evaluate the DYNAPARC system against reactive

and proactive, we have developed a Network Performance



Score (N) to assess QoS in identifying the optimal path in

the event of a link failure. To define N, we incorporate the

target bandwidth, actual data transfer, actual throughput,

and delay on the end-to-end path.

N = α

(

Bactual

Btarget

)

+ β

(

T

Tmax

)

− γD (1)

The variables defined for this analysis are as follows:

N represents Network Performance Score, while Bactual

signifies the actual throughput, measured in kbps. The

Btarget denotes the desired bandwidth allocation, which

defines the optimal or expected bandwidth between nodes

expressed in kbps. The variable T refers to the total

amount of data transferred during a given time window

t , quantified in KBytes, and Tmax indicates the maximum

achievable transfer within the network. If the target band-

width was fully utilised for the duration of the test and is

calculated as:

Tmax =
Btarget · t

8
where t = 10 sec (2)

The variable t indicates the test time interval.

Additionally, D represents time taken for data to travel

from one node to another, expressed in ms. The parameters

α, β, and γ are defined as weighting factors used in the

analysis. The average delay has a negative impact on the

N score, and so the N captures the impact of delay on

network responsiveness and overall performance, making

the metric more adaptable and reflective of real-world

conditions. The weighting factors α and β emphasise

bandwidth utilisation and data transfer more heavily based

on the specific context or requirements. We will consider

both α, β = 0.5 and γ = 0.01.

V. IMPLEMENTATION AND EVALUATION

PERFORMANCES

A. Implementation

We evaluate the performance of the proposed approach

using the Mininet network emulator in conjunction with

the Ryu SDN controller. We created a hypothetical Hiber-

niaUK topology to simulate the network architecture for

this case study. This topology is based on the well-known

TopologyZoo dataset, which provides realistic network

topologies based on actual geographic locations [16]. The

HiberniaUK topology consists of 13 nodes representing

base stations deployed in different cities across the UK,

as shown in Fig. 3.

The design phase involves limiting nodes to three links

to mimic real-world scenarios and maintain redundancy.

Base stations are connected to nearby neighbours based

on geographical proximity to reduce congestion, latency,

and high bandwidth costs, creating a cost-effective IIoT

network for efficient infrastructure deployment. The ex-

periments are conducted with the objective of compre-

hensively evaluating the network performance score in the

Fig. 3: Network Topology

three different controllers: reactive, proactive, and hybrid.

In each approach, traffic is systematically generated be-

tween the server host h1 in London and the client host h6

in Leicester to simulate real-world scenarios. The study

analyses the network’s response to simulated link failures

between switch pairs S1-S5 and S5-S6, assessing the

effectiveness and robustness of each approach in managing

disruptions and optimising performance.

B. Post-failure management scenario

To evaluate the efficiency of the DYNAPARC system

in managing networks after link failures, we conduct

an experiment assessing the network’s performance by

sending packets from host h1 to host h6, allowing the

controller to dynamically select the most optimal path as

shown in Fig. 3.

Initially, the controller identifies two potential paths:

s1 → s5 → s6 as the primary link and s1 → s4 →
s5 → s6 as the secondary link, and selects the most

shortest reliable option as shown in Fig. 4. To test the

controller’s fast recovery capability, we simulate a link

failure by dropping the link between switches s1 and s5.

The controller then recalculates the routes and identifies

the primary alternative paths as s1 → s4 → s5 → s6 and

the secondary path as s1 → s3 → s2 → s7 → s6 as shown

in Fig. 5. After dropping another link between s5 and s6.

The controller again adapts, finding the new paths as the

primary link s1 → s3 → s2 → s7 → s6 then s1 → s4

→ s3 → s2 → s7 → s6 as a secondary path as shown in

Fig. 6.

Fig. 4: Initial paths selected.

Fig. 5: After the first link failure.

Fig. 6: After the second link failure.



(a) Initial performance. (b) Primary link failure performance. (c) Secondary link failure performance.

Fig. 7: Performance evaluation of different controllers under various conditions.

The experiment demonstrates the DYNAPARC con-

troller’s ability to swiftly recover from link failures by

selecting optimal alternative paths, minimising disruption,

and maintaining high network performance.

C. Performance Evaluation of Approaches

The performance scores N for each strategy, assessed

under varying bandwidth loads and different link fail-

ure conditions (initial state, primary link failure, and

secondary link failure), were calculated using the previ-

ously explained formula. These performance scores were

evaluated to assess the impact of network load on the

effectiveness of each strategy in maintaining QoS and

ensuring fast failure coverage, as shown in the Fig. 7. In

the reactive approach, the performance score decreases

as bandwidth increases, dropping from 0.98199 at 1 Mbps

to 0.297225 at 5 Mbps, indicating poor performance under

higher loads. This decline is observed during both primary

and secondary link failures, emphasising the inefficiency

of the reactive approach. The proactive approach, on

the other hand, maintains higher and more consistent

performance scores above 0.93663 across all bandwidths.

While it shows the same performance during primary

link failures, it completely fails to handle secondary link

failures, resulting in a score of 0.0. The hybrid approach,

demonstrates strong performance, with scores consistently

exceeding 0.975135 across all bandwidths, similar to the

proactive approach. It maintains high performance scores

during both primary and secondary link failures, showing

its superior reliability compared to the proactive approach,

which only performs well during primary link failures.

Regarding the impact of network load, The reactive ap-

proach experiences significant performance degradation

under heavy network load due to its on-demand nature.

In contrast, the proactive and hybrid approaches maintain

higher performance by pre-installing flows, especially

during primary link failures. While the proactive approach

ensures quick failover, it fails during secondary link

failures. The hybrid approach, however, combines both

strategies, offering superior performance and reliability

during complex failure scenarios.

D. Pre-failure prediction scenario

In this section, we present a ML-based approach to

estimate link reliability in fog-based IIoT environments,

ensuring that critical communicationsÐsuch as automated

control signals, safety monitoring systems, and sensor

dataÐare prioritised and operate reliably without delay.

The SDN controller continuously monitors the health of

the Hibernia UK Network by measuring the utilisation of

each link’s capacity used to transmit data between plants.

These utilisation values are normalised and forwarded to

an AI module, which predicts links at risk of failure based

on historical data and current usage patterns. To achieve

this, we employ a feedforward neural network (FNN) al-

gorithm trained on a real-world network dataset. The FNN

model analyses key link parameters, including utilisation

rate, repair time, and failure frequency. The AI module

plays a critical role by identifying potential failures or

congestion points. This allows the SDN controller to

dynamically manage traffic and prevent congestion. Such

real-time decision-making improves the network’s ability

to handle high-priority traffic and reduces packet loss

by avoiding overloading critical links. In the simulation

results, we compare packet loss percentages before and

after the integration of AI. The results show the packet loss

experienced by three manufacturing plants in the Hibernia

UK Network (h7, h11, and h13), which transmit data to

the fog server in London (h1). The QoS performance is

enhanced by the integration of an AI module, as shown

in Fig. 8. Before applying QoS, the packet loss rates

were notably high: h7 experienced 30% packet loss, h11

had a significant 60%, and h13 recorded the highest at

70%. Such packet loss rates are unacceptable for critical

communications in an IIoT environment, where reliable

delivery of data from machines, sensors, and controllers

to the fog server is essential. High packet loss can

lead to delays, inaccurate readings, or even failures in

safety-critical systems, resulting in potential hazards or



Fig. 8: Packet loss percentages before and after integrating

the AI module.

production delays. After applying QoS, enhanced by the

integration of AI modules, significant improvements were

observed. h7’s packet loss dropped to 10%, representing a

67% improvement. Similarly, h11’s packet loss decreased

to 30%, showing a 50% improvement, while h13’s packet

loss reduced to 40%, reflecting a 43% improvement. These

reductions demonstrate a marked increase in network reli-

ability and data delivery. Combining real-time monitoring

and AI, the Hibernia UK IIoT network ensures resilience

under high demand and hardware issues.

VI. CONCLUSION AND FUTURE WORK

In this study, we introduced the Dynamic Resilience

Path Recovery (DYNAPARC) framework, which dynam-

ically adjusts the optimal route based on network link

failures and changing conditions. By utilising real-time

monitoring, it minimises the path computation time and

reduces communication overhead between the SDN con-

troller and switches. The framework integrates multiple

network protocols along with an ML algorithm to enhance

the performance. This approach enables the dynamic com-

putation of recovery paths, ensuring low latency and re-

liable packet delivery. DYNAPARC effectively addresses

both reactive and proactive network management in SDN-

based IIoT networks. For future work, we aim to extend

this solution by exploring relevant case studies, focusing

on integrating SDN with graph neural networks (GNNs)

to predict failures, particularly in real-time networks. This

combination of rapid recovery methods and intelligent

decision-making will significantly enhance the resilience

of the network.
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