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Abstract

Solar activities significantly influence space weather and the Earth’s environment, necessitating accurate and
efficient sunspot detection. This study explores deep learning methods to automate sunspot identification in solar
satellite images, keeping personal bias to a minimum. Utilizing observations of the Solar Dynamics Observatory,
we leverage active-region data from the Helioseismic Magnetic Imager active-region patches to locate sunspot
groups detected between 2011 and 2023. The Morphological Active Contour Without Edges technique is applied
to produce pseudo-labels, which are utilized to train the U-Net deep learning architecture, combining their
strengths for robust segmentation. Evaluation metrics—including precision, recall, F1-score, intersection over
union, and Dice coefficient—demonstrate the superior performance of U-Net. Our approach achieves a high
Pearson correlation coefficient of 0.97 when compared with the sunspot area estimation of the Space Weather
Prediction Center and 0.96 in comparison with the Debrecen Photoheliographic Data. This hybrid methodology
provides a powerful tool for sunspot identification, offering the improved accuracy and efficiency crucial for space-
weather prediction.

Unified Astronomy Thesaurus concepts: sunspot number (1652)

1. Introduction

Solar activity encompasses various phenomena on the Sun’s
surface, including sunspots, solar flares, and coronal mass
ejections (CMEs; D. H. Hathaway 2010; P. Papathanasopoulos
et al. 2016; J. Zhang et al. 2021; J. Liu et al. 2023; L. Miroshni-
chenko 2023). Sunspots are dark, cooler areas on the Sun’s
surface associated with strong magnetic activity. They exhibit an
approximately 11 yr solar cycle, with increased sunspot numbers
during the solar maximum, which correlates with elevated solar
activities, including the occurrence of solar flares and CMEs.
These highly explosive phenomena release large amounts of
energy and bursts of charged particles, influencing space weather
and potentially disrupting our high-tech facilities and technology
installations, such as, e.g., satellites, telecommunications systems,
and power grids. Sunspot monitoring is therefore crucial for
predicting these eruptive solar events and understanding the Sun’s
magnetic dynamics, not to mention the preventive protection of
our technosphere (M. K. Georgoulis et al. 2024).

Traditionally, sunspots have been observed and identified
using white-light images acquired from ground-based observa-
tories. However, with advancements in observational equip-
ment, the amount of data generated from sunspot observations
has increased. The Solar Dynamics Observatory (SDO;
W. D. Pesnell et al. 2012), launched by NASA in 2010,
continuously monitors the Sun, capturing high-resolution
images of and data relating to solar activity, magnetic fields,

and the Sun’s atmosphere, to enhance our understanding of

solar phenomena and their impacts on Earth. Early manual

methods for sunspot identification are now inadequate for the

growing data volume, leading to the development of semi-

automated techniques like the one yielding the Debrecen

Photoheliographic Data (DPD; T. Baranyi et al. 2016).

Nevertheless, these methods are hindered by factors such as

penumbra diffusion, noise, limb darkening, and pixel varia-

tions. Moreover, human bias in identification is unavoidable,

highlighting the urgent need for a robust and efficient automatic

method in solar physics—see, e.g., M. B. Korsós et al. (2021)

and H. Morgan & M. B. Korsós (2022).
Many, if not most, sunspot detection methodologies have

primarily employed manual or semi-automated threshold

techniques, applied to white-light image intensity data.

S. Zharkov et al. (2005), J. Curto et al. (2008), and F. Watson

et al. (2009) have proposed the use of mathematical

morphology prior to applying a threshold for sunspot

segmentation. S. Bourgeois et al. (2024) adopted mathematical

morphology for sunspot segmentation together with manual

feature selection. T. Colak & R. Qahwaji (2008) introduced a

method that integrates thresholds with a fully connected neural

network to detect and classify sunspot groups. D. Djafer et al.

(2012) developed a sunspot recognition technique based on

wavelet transformations. S. Goel & S. Mathew (2014) utilized

the Selective Binary and Gaussian Filtering Regularized Level

Set method for sunspot identification. C. Zhao et al. (2016)

proposed a method that begins with Gaussian preprocessing,

followed by sunspot identification using a morphological bot-

hat operation and Otsu thresholding.

The Astrophysical Journal, 980:261 (11pp), 2025 February 20 https://doi.org/10.3847/1538-4357/adac5e

© 2025. The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms

of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title

of the work, journal citation and DOI.

1



These techniques have enabled sunspot identification and
feature extraction but often require threshold selection and
struggle with complex images, due to limited feature-learning
capabilities. In contrast, convolutional neural network (CNN)

models offer a robust solution to this challenge of feature
learning (A. Krizhevsky et al. 2017; K. Cao et al. 2023;
T. Talaei Khoei et al. 2023). These features, which range from
simple edges to complex textures and high-level concepts, are
acquired during the training process. Let us briefly recall some
of the key steps relevant in the present context.

C. Chola & J. V. B. Benifa (2022) integrated AlexNet with a
support vector machine to classify satellite continuum images
as either containing sunspots or depicting a quiet Sun.
Similarly, J. Santos et al. (2023) applied YOLOv5 for sunspot
detection using data from the Geophysical and Astronomical
Observatory of the University of Coimbra data set. While these
approaches detect sunspots using bounding boxes, they do not
perform segmentation.

Segmentation is essential for estimating sunspot properties such
as area and count. Traditional intensity-threshold-based techniques
can be employed to estimate initial sunspot boundaries, with deep
learning models subsequently refining the delineations. For
instance, N. Sayez et al. (2023) employed the black-top-hat
transform, a mathematical morphology operation, to generate
pseudo-labels for training a U-Net model. However, when applied
to full-disk continuum images, this transform erroneously
classifies black dots distant from active regions as sunspots,
resulting in numerous false positives. As an alternative, A. Mou-
rato et al. (2024) utilized a flood fill algorithm to generate pseudo-
labels, requiring sunspot coordinates and area data, sourced from
the DPD (T. Baranyi et al. 2016). The DPD data set, finalized in
2015 and derived from ground-based observations, may exhibit
discrepancies when compared to future data sets collected by
advanced instruments or space-borne telescopes with higher
resolutions. Furthermore, given the continuous evolution of solar
activity, sunspot characteristics are subject to temporal variation.
Consequently, using the DPD data set for pseudo-labeling may
introduce covariate shift—a phenomenon in machine learning
where the distribution of input features diverges between the
training and testing data, while the conditional distribution of the
target variable, given the input, remains constant.

To address the aforementioned limitations, this work
introduces an automated sunspot detection method that
integrates physics-based knowledge. By employing deep
learning techniques, the method confines the search for
sunspots exclusively to active regions. Initially, active-region
patches are extracted from full-disk continuum observations
based on the Helioseismic Magnetic Imager (HMI) Active Area
Patch (HARP) data set. The Morphological Active Contour
Without Edges (MorphACWE) algorithm is then applied to
these active regions to delineate the initial boundaries of
sunspots. This approach ensures that noise far from active
regions is not mistakenly identified as sunspots. The resulting
sunspot masks are subsequently utilized as pseudo-labels for
training a U-Net model, refining the final sunspot outlines. By
doing so, we avoid introducing subjective sunspot segmenta-
tion standards, thereby achieving more consistent results.

Additionally, our method is also adaptable to observations
from other instruments, including ground-based observations,
where fewer sunspots may be detected due to atmospheric and
weather conditions. It is also well suited for data from new
space-borne telescopes with higher resolutions, as the method

is robust to variations in resolution. The accurate and consistent
sunspot segmentation achieved through this approach will
significantly benefit subsequent research, such as automated
sunspot number estimation and sunspot group classification.

2. Data

The data employed in this study comprise observations from
SDO and HARP (M. Bobra et al. 2014), spanning from 2011
January 1 to 2023 July 1. A subset of the data was deliberately
excluded, to prevent data leakage. Specifically, data from
January 1 to September 15 of each year were applied as the
training set, while the test set comprised data from October 1 to
December 15. Given that the Sun has a rotation of
approximately 27 days, this approach ensures that the sunspots
in the training and test sets do not resemble each other, thereby
reducing the risk of overfitting and improving the general-
izability. The final training set contains 2464 white-light HMI
observations, and the test set has 775 observations. The image
dimensions are 4096 by 4096 pixels.
The full-disk continuum observations are downloaded from

the JSOC server.8 Since sunspots usually appear within active
regions, additional information is required for identifying the
active regions in the raw full-disk images and we utilize the
HARP service9 (J. Hoeksema et al. 2014). The obtained data
contain partial-disk, automatically identified active-region
patches. However, the HARP data do not provide detailed
contours for individual sunspots within the active regions.
Instead, they offer an approximate boundary for the whole
sunspot group, which is an appropriate tool for choosing the
regions of interest in the full-disk images. The full-disk
continuum observations and the HARP active-region data are
downloaded once a day at 12 PM International Atomic Time.
Before conducting the analysis, the full-disk raw observations

must be preprocessed. To address potential misalignment of the
Sun’s north–south axis in the observational data, a rotation
function is employed to correct the image orientation. Limb
darkening is corrected using a function that applies a fifth-order
polynomial fit to the limb-darkening constants u and v provided
by A. Cox (2000). The corrected photon counts pc in an arbitrary
position r of the solar disk can be estimated based on the raw
photon count pr by employing:

( )
· ( ( )) · ( ( ))

1p
p

u v u r v r1 cos arcsin cos arcsin
.c

r

2
=

- - + +

After applying the limb-darkening correction, 1% of the
solar disk is trimmed to maintain a homogeneous background
near the solar limb.

3. Methodology

3.1. Pseudo-labeling

Manual annotation of solar sunspots is a labor-intensive
process susceptible to human error. To address these limitations
and enhance objectivity, we implemented MorphACWE
(P. Márquez-Neila et al. 2014), which works well without
well-defined boundaries. However, it requires that the inner
region of the feature is different from the outer regions on
average (T. Chan & L. Vese 1999). In case of a larger sunspot
group, the sunspots are usually separated by well-defined

8
http://jsoc.stanford.edu/

9
http://jsoc.stanford.edu/doc/data/hmi/sharp/sharp.htm
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boundaries, but this may not be true if the investigated region
contains smaller sunspots, especially solar pores. It can always
be safely assumed that a sunspot is darker than the quiet Sun,
hence the MorphACWE technique is perfectly suitable for this
application. MorphACWE operates as follows:

Assume C is the evolving boundary of a feature and c1 and
c2 represent the pixel intensity averages inside and outside the
same object. Furthermore, u0 is the intensity array of the whole
region of interest—for instance, a circle-shaped sunspot in the
center of the image. Let us introduce the “fitting energy,”
composed by

( ) ( ) ∣ ( ) ∣

∣ ( ) ∣ ( )

( )

( )

F C F C u x y c dx dy

u x y c dx dy

,

, . 2

C

C

1 2
inside

0 1
2

outside
0 2

2

ò

ò

+ = -

+ -

The terms F1(C) and F2(C) can be interpreted as two
separate actions, i.e., shrinking and expanding. If the first term
is larger (smaller), the contour shrinks (expands) in the next
iteration. The evolution of the contour stops if

{ ( ) ( )} ( )F C F Cinf 0. 31 2+ »

The algorithm can be significantly speeded up, when the
initial contour is relatively close to the final contour. Therefore,
we define respective threshold intensities for every active
region. Let us consider the quiet-Sun regions as random noise,
which can be fitted by a Gaussian distribution X,

( )X , 2m s~  , where μ and σ are the average and the standard
deviation of the sample. The initial threshold τ is now
described by

( ) ( )5 . 4t m s= +

Every pixel exceeding the threshold τ is omitted from the

statistics. The remaining pixels compose the region of interest

without noise, which now can be used as an initial condition for

the MorphACWE algorithm. Figure 1 shows the distribution of

the photon-intensity count with the proposed threshold.
HARP metadata provide the coordinates of the patch

boundaries for the active regions derived from SDO/HMI
continuum and magnetogram observations, which are used to
crop these active-region patches. An initial threshold intensity τ
is calculated based on both the continuum and magnetogram of
an active-region patch. Using this threshold, MorphACWE is
performed on the active-region patch to iteratively refine the
boundaries of the penumbra region and produces a binary

sunspot segmentation mask. This algorithm identifies the
penumbra by detecting contiguous regions of pixels that meet
the intensity criteria, effectively distinguishing the penumbra
from the surrounding quiet Sun. For visualization purposes, the
resulting binary mask is then processed to extract the contours
of the penumbra, as demonstrated in Figure 2. This approach
avoids hard-coded thresholds, making the method flexible
across different active regions and solar activity levels. Each
active-region patch with the form of a binary mask is mapped
back to its original position on the solar disk. The values
outside active regions are set to be zero. In the MorphACWE
method, the intensity threshold for detecting sunspots is 5σ, the
number of iterations for morphological snakes is 100, and the
minimum number of the pixel threshold for filtering out fake
sunspots is set to 1.
Solar full-disk continuum satellite images typically exhibit

high-contrast features, but edges may be blurred or discontin-
uous, partly due to solar atmospheric disturbances. Mor-
phACWE is well suited to segmenting sunspots, whose edges
are unclear, while the inner and outer aspects of the objects of
interest have different averages. The pseudo-label generation is
shown in Figure 3.

3.2. Sunspot Segmentation with U-Net

The traditional image processing techniques, such as Mor-
phACWE, are sensitive to parameter selection, requiring tuning to
achieve optimal performance. In contrast, U-Net, a deep learning
image-segmentation architecture, can automatically learn complex
features and patterns from a large amount of labeled training data
(O. Ronneberger et al. 2015). In this work, the output of
MorphACWE is used as the pseudo-labels to train U-Net.
The U-Net architecture consists of an encoder and a decoder,

forming a U shape, as shown in Figure 4. During the encoding
phase, U-Net gradually extracts multilevel features, from low to
high, of the image through a series of convolutional blocks and
pooling layers. The sizes of the feature maps decrease, while
the number of feature channels increases. During the decoding
phase, deconvolutional layers and upsampling operations are
used to restore the image resolution. Skip connections between
the encoder and decoder layers ensure that high-resolution
features of the encoding phase are preserved, which can
prevent small sunspots from being ignored during down-
sampling of the convolutional operations. Finally, the feature

Figure 1. Sample photon-intensity distribution based on an observation
without active regions. The proposed threshold separates the background from
the sunspots. Figure 2. Segmentation results of MorphACWE in Active Region No. 12665

on 2017 July 14.
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map is converted to a single-channel image by a layer of

convolution. The pixels of the output probability maps are

normalized to be between zero and one, using the sigmoid

activation function. The value of the output represents the

probability that each pixel belongs to a sunspot.
This approach leverages the strengths of both techniques,

utilizing MorphACWE to handle images with indistinct edges

and noise, while exploiting U-Net for the much finer

segmentation. Our experiments show that U-Net struggles

with small objects, because it combines features from different

levels of the network. If small objects are not well represented

in the higher resolution of the earlier layers, they might be

overlooked when features are combined. Furthermore, sig-

nificant computational challenges are raised due to the use of

the large images. Therefore, the original images of dimension

4096 by 4096 pixels need to be tiled into 16 patches, with each

patch of dimension 1024 by 1024 pixels. These small patches

reduce the amount of background information, allowing the

model to focus more on the objects within each patch. An

evaluation of the overlapping patch technique when slicing the

images revealed negligible differences compared to nonover-

lapping slicing. This may be because U-Net learns the

boundaries of the split sunspots as part of the sunspot features.

Consequently, nonoverlapping patch slicing was chosen to

optimize computational efficiency.
A binary cross-entropy loss function (BCELoss) and the

Adam optimizer are utilized. During training, the learning rate

is set to 0.001. Due to computational limitations, the batch size

Figure 3. Pseudo-label generation with MorphACWE. The original continuum image (left panel), the preprocessed image (middle panel), and the binary
MorphACWE segmentation mask (right panel) are shown.

Figure 4. Architecture of U-Net. Adopted from O. Ronneberger et al. (2015).

4
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is set to one. The model is trained for nine epochs, at which

point it converges. Notably, since each batch contains only one

patch of an image in this application, batch normalization

(BatchNorm) is replaced with group normalization (Group-

Norm). The normalization method GroupNorm, introduced by

Y. Wu & K. He (2018), overcomes the shortcomings of

BatchNorm, particularly in situations where the batch size is

small or highly variable. GroupNorm normalizes the activation

of a neural network across groups of channels, rather than

across the entire batch or individual layers, providing consistent

performance regardless of batch size.

4. Results and Discussions

4.1. Limb-darkening Correction

The sunspot segmentation results produced by Mor-

phACWE, with and without limb-darkening correction, have

been compared. As illustrated on the left sides of Figures 5(a)

and (b), the absence of limb-darkening correction prevents

MorphACWE from recognizing the penumbra, due to the

inhomogeneous intensity in the solar disk’s background.

Additionally, our experiments indicate that even with limb-

darkening correction, it is crucial to remove the dark edge (1%)

of the solar disk. Neglecting this step produces results with two

types of segmentation errors: first, the outcomes resemble those

shown on the left side of Figure 5(a); and second, as depicted

on the left side of Figure 5(b), MorphACWE identifies the edge

of the solar disk as a penumbra by mistake. These observations

reveal that applying limb-darkening correction and trimming

the limb by 1% could significantly enhance the performance of

MorphACWE.
The solar disk gradually darkens from the center to the edge,

with the gradient becoming more pronounced closer to the

edge. The U-Net model learns this position-dependent gradient

as a feature across all sunspots, which is not essential and may

reduce its effectiveness.

4.2. Sunspot Segmentation

In this work, the segmentation results of MorphACWE are
utilized as pseudo-labels to train U-Net. The U-Net model
learns the mapping between the continuum observations and
the binary segmented output results, generating a mask where
each pixel value indicates whether it is part of the sunspots. For
building the ground-truth data set, the sunspot drawings
provided by the Uccle Solar Equatorial Table station of the
Royal Observatory of Belgium are referenced, to correct U-Net
outcomes manually.10

In this section, we present the evaluation results of our
sunspot segmentation methods: MorphACWE and U-Net. To
assess the performance of our semantic segmentation methods,
various standard image-segmentation and image-classification
metrics are utilized, including precision, recall, F1-score,
intersection over union (IoU), and Dice coefficient.
Precision represents the proportion of correctly predicted

positive samples among all predicted positives. Recall
measures the proportion of actual positive samples that are
correctly identified by the model. The F1-score is the harmonic
mean of precision and recall, providing a balance between
precision and recall. IoU quantifies the overlap between the
predicted and actual regions relative to their combined area.
The Dice coefficient, similar to IoU, emphasizes the agreement
between the predicted and ground-truth segments. That is, IoU
tends to penalize single instances of bad classification more
than the Dice coefficient. The formulas for these evaluation
metrics are shown below:

( )Precision
TP

TP FP
, 5=

+

( )Recall
TP

TP FN
, 6=

+

( )F1
2 Precision Recall

Precision Recall

2TP

2TP FN FP
, 7=

´ ´
+

=
+ +

Figure 5. Comparison of segmentation results using MorphACWE. The left (right) side of each subplot shows the results without (with) limb-darkening correction.
(a) Active Region No. 11312 on 2011 October 4; and (b) Active Region No. 11302 on 2011 October 4.

10
https://www.sidc.be/uset/
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( )IoU
Overlap Area

Union Area

TP

TP FN FP
, 8= =

+ +

( )

Dice
2 Overlap Area

Prediction Area Ground Truth Area

2TP

2TP FP FN
, 9

=
´

+

=
+ +

where TP (True Positive) denotes the instances where both the

predictions and the actual labels are positive. TN (True

Negative) indicates the instances where both the predictions

and the actual labels are negative. FP (False Positive) occurs

when the actual labels are negative but the predictions are

positive. FN (False Negative) arises when the actual labels are

positive but the predictions are negative.
A comprehensive comparison between MorphACWE and

U-Net across five evaluation metrics is presented in Table 1.
The segmentation results of both methods are visualized in
Figure 6. U-Net demonstrates superior performance in both
quantitative metrics and qualitative visual results, as explained
below.

First, MorphACWE assumes distinct average pixel inten-
sities within and outside the target object. Consequently, in the
presence of noise or substantial intensity inhomogeneities
within sunspot regions, MorphACWE may struggle to
delineate boundaries accurately. For instance, as illustrated in
the first three columns of Figure 6, the method’s failure can be

attributed to noise within the penumbra, where the pixel
intensities closely resemble those of the background.
Second, MorphACWE’s reliance on local intensity informa-

tion and its inability to integrate broader contextual information
about sunspots and their surroundings further limits its
effectiveness. As demonstrated in the fourth and fifth columns
of Figure 6, this limitation often leads to boundary breaches of
the penumbra.
Third, MorphACWE’s predefined energy-minimization cri-

teria are tailored for smooth and homogeneous regions, limiting
its accuracy in capturing boundaries with significant boundary
variations or spikes. While this simplification facilitates the
energy-minimization process, it restricts the method’s adapt-
ability to highly textured or heterogeneous regions.
Fourth, MorphACWE is constrained by its initialization and

energy-minimization framework, which limits its ability to
detect internal holes or discontinuities within sunspot regions.
As shown in the last column of Figure 6, MorphACWE fails to
segment the complex internal structure.
In contrast, U-Net leverages a deep CNN to learn

hierarchical and complex features from the entire sunspot
training set. This enables U-Net to capture intricate patterns,
including edges, textures, and global contextual relationships.
The incorporation of skip connections allows U-Net to
integrate fine-grained local details with global contextual
information. This architecture helps U-Net overcome the
limitations inherent in MorphACWE. U-Net’s robust feature
extraction capabilities enable it to effectively handle regions
with substantial texture or intensity variation and identify
internal structures within sunspots. Moreover, this architecture
enhances its robustness to noise and artifacts commonly present
in solar imagery, ensuring more reliable segmentation
performance.
The metrics presented in Table 1 are evaluated at the pixel

level, assessing the accuracy of each pixel classification. The
significantly higher recall achieved by U-Net is directly

Figure 6. Comparison of the segmentation results: continuum images after preprocessing (top), MorphACWE segmentation results (middle), and U-Net segmentation
results (bottom).

Table 1

Evaluation Results of Our Sunspot Segmentation Methods: MorphACWE
and U-Net

Method Precision Recall F1 IoU Dice

Morph 0.9212 0.9250 0.9167 0.8608 0.9167

U-Net 0.9705 1.0000 0.9839 0.9705 0.9839

6
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attributed to its ability to address the limitations of
MorphACWE.

It is worth noting that U-Net presents a high IoU of 97%,
surpassing MorphACWE by 11%. However, the superiority of
U-Net over MorphACWE for the Dice coefficient is only 6%.
The results indicate that the vast majority of the inferences are
moderately better with U-Net than with MorphACWE, but
some of them are significantly worse using the latter. The
evaluation results highlight the effectiveness of combining
MorphACWE with U-Net for the sunspot segmentation,
resulting in a robust and precise segmentation solution.

4.3. Sunspot Areas

To further validate the accuracy of sunspot recognition in
this work, the sunspot areas are calculated for the test set. The
results are then compared with those provided by the Space
Weather Prediction Center (SWPC)

11 for the period 2011–2022
and the DPD12 for the period 2011–2015, to conduct a

comprehensive comparative analysis. SWPC uses a combina-
tion of ground-based and space-based observational data to
detect and track sunspots, mainly focusing on space-weather
monitoring. DPD primarily relies on full-disk white-light
observations from the Debrecen and Gyula observatories,
though gaps in their data are supplemented with solar images
from other ground-based and space-based observatories. Sun-
spot detection in both SWPC and DPD is carried out using a
combination of manual methods and thresholding-based
automated techniques.
A sunspot area is the total area of the pixels inside the

obtained contour lines. The real physical area can be easily
determined, if the sunspot is located around the center of the
observations. However, the area estimation may become a
challenging task if the investigated sunspot is close to the solar
limb. The area of the feature must be corrected for
foreshortening. The method introduced by H. Çakmak (2014)
for estimating the area is implemented. In the first stage, the
proposed models predict sunspot masks, which are binary
arrays indicating the positions of the sunspots. When a pixel is
inside a sunspot, the pixel is assigned a Boolean variable
TRUE, otherwise its value is FALSE. Next, the Carrington
heliographic (HG) coordinates are estimated for each TRUE
pixel. Two additional mask layers on top of the binary layer are
implemented. The first layer is the latitude mask, where each
pixel represents three properties—the x and y positions of a
pixel and the latitudinal position of the same pixel. The top
layer shows the same with HG longitude. Assuming the
latitudinal and longitudinal widths for the pixel (x, y) are
ΔBp(x, y) and ΔLp(x, y), respectively:

( ) ∣ ( ) ( )∣ ( )B x y P x y P x y, , 1 , , 10p B BD = + -

( ) ∣ ( ) ( )∣ ( )L x y P x y P x y, 1, , , 11p L LD = + -

Figure 7. Comparison of sunspot areas for each image in the test set between 2011 and 2015. The small blue dots show the sunspot areas predicted by the proposed
method compared to SWPC, while the large blue dots highlight the days with the most significant discrepancies, with the corresponding difference values labeled. The
small yellow dots represent the comparison between DPD sunspot areas (scaled by 0.6) and the proposed method. The red dashed line indicates the point where the
predicted areas match the actual values.

Table 2

Comparison Between the Seven Largest Discrepancies of Sunspot Areas by
SWPC and U-Net

Date SWPC U-Net Difference

1 2014.10.28 2790 1874 916

2 2014.11.25 2060 1184 876

3 2012.11.12 1600 886 714

4 2014.10.23 3090 3763 673

5 2014.11.24 2070 1491 579

6 2014.12.08 860 306 554

7 2013.11.12 1810 1288 522

11
https://www.swpc.noaa.gov/

12
http://fenyi.solarobs.epss.hun-ren.hu/DPD/
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where PB(x, y) and PL(x, y) are the HG latitude and longitude of

the pixel (x, y), respectively. PL(x + 1, y) is the HG longitude of

the pixel (x + 1, y), and PB(x, y + 1) is the HG latitude of the

pixel (x, y + 1). Since the HG area must be positive, the

absolute values of the widths are used.
When the parameters n and m are the total number of pixels

of the active regions in the x- and y-dimensions, the total area
Adeg

2 of the sunspot can be estimated by

( ( ) ( )) ( )A B x y L x y, , . 12
x

n

y

m

P Pdeg

1 1

2 åå= D D
= =

The total sunspot area Adeg
2 is computed within the

framework of the Carrington coordinate system, which is
defined on a spherical surface. This approach ensures that the
sunspot area is measured in angular units (square degrees)
rather than in image-based units (square pixels). Consequently,

this method eliminates distortions, including those near the
solar limb, which are typically introduced by projection effects.
The total area can be converted to units of millionths of
hemisphere (MH) by applying

/ /( )
( )A

A

2 180 10
. 13MH

deg

2 7

2

p p
=

The transformed sunspot areas, as compared to those
provided by the SWPC, are presented in Figure 7. The analysis
reveals a strong alignment between the predictions of U-Net
(MorphACWE) and the SWPC data, with Pearson correlation
coefficients of 0.97 (0.96) over the 2011–2022 period. This
high correlation highlights the reliability of both U-Net and
MorphACWE in capturing sunspot areas consistent with
SWPC measurements. The success of our approach can be
attributed to the automated sunspot detection and segmentation
process. Pseudo-labels are generated using the MorphACWE
thresholding technique, which is applied to the active regions
detected by HARP. MorphACWE performs effectively in the
absence of well-defined boundaries. Restricting the analysis to
active regions ensures the removal of false sunspots. This label
generation process is not biased by subjective sunspot
segmentation criteria. Therefore, our method is adaptable to
data from various observational instruments, ranging from
ground-based observatories to space-based telescopes, as the
pseudo-label generation is independent of specific human
annotations for sunspot segmentation.

Figure 8. Evolution of the sunspots from 2014 October 27 to 29. The upper row presents the original continuum observations, while the lower row displays the
corresponding sunspot masks predicted by U-Net.

Table 3

Comparison of Sunspot Areas Between SWPC and U-Net from 2014 October
27 to 29

Date SWPC U-Net

2014.10.27 2530 2347

2014.10.28 2790 1874

2014.10.29 1630 1018
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In order to understand the reasons for some significant
discrepancies between SWPC and the predicted results, we
analyzed the top seven cases where the discrepancies are the
largest, as shown in Table 2. The first entry in Table 2
corresponds to 2014 October 28, where the discrepancy in the
sunspot areas between the SWPC and U-Net models reached
916, marking the largest difference observed in the test set. A
reduction in the sunspot areas is expected between 2014
October 27 and 29, as illustrated in Figure 8. The predictions
generated by U-Net, as presented in Table 3, align with this
expected trend. In contrast, the SWPC data indicate an increase
in the sunspot areas from 2014 October 27 to 28, which appears
to be inconsistent with the anticipated behavior. The second,
third, sixth, and seventh entries all demonstrate similar results,
where the SWPC results are inconsistent with the observed
evolution of the continuum images, but the U-Net results are

consistent. The fourth and fifth entries present cases where it is
challenging to determine which method is more accurate. In
71.42% of the seven cases, our method is supported by the
data, and in the remaining cases, it is indeterminate which
approach is superior. These findings suggest that our proposed
method may offer a more reliable sunspot area estimation than
the approach employed by SWPC. We analyze the top seven
cases with the most significant discrepancies and infer that
similar factors likely contribute to the remaining differences.
When comparing the U-Net-predicted sunspot areas to those

reported in the DPD data for the period 2011–2015, a Pearson
correlation coefficient of 0.96 is achieved, whereas Mor-
phACWE yields a slightly lower correlation coefficient of 0.95,
as illustrated in Figure 7. Notably, when a reduction factor of
0.6 is applied to the DPD sunspot areas, they align closely with
the predicted areas, as shown in Figure 9. To determine the

Figure 9. Daily comparison between DPD and the predicted sunspot areas for the test set. The blue line represents DPD sunspot areas scaled by a factor of 0.6, while
the red line represents predicted sunspot areas.

Figure 10. Daily comparison between SWPC and DPD sunspot areas for the test set. The blue line represents the DPD sunspot areas scaled by a factor of 0.6, while
the red line represents the SWPC sunspot areas.

9

The Astrophysical Journal, 980:261 (11pp), 2025 February 20 Chen et al.



optimal reduction factor, values ranging from 0.5 to 0.7 with a
step size of 0.01 were systematically tested. The mean absolute
errors (MAEs) between the predicted areas (U-Net or
MorphACWE) and the adjusted DPD areas were calculated
for each reduction factor. A reduction factor of 0.6 yielded the
smallest MAE, confirming its suitability for aligning the
predicted sunspot areas with the DPD measurements. Com-
pared to the sunspot areas of SWPC or DPD, U-Net achieves
higher Pearson correlation coefficients than MorphACWE.
Figure 7 further supports this, showing that the predicted
sunspot areas from MorphACWE exhibit more scatter than
those from U-Net. Similarly, the Pearson correlation coefficient
between the SWPC and DPD sunspot areas reaches 0.96, and
applying a reduction factor of 0.6 to the DPD areas aligns them
with the SWPC values, as shown in Figure 10. To explore the
reasons behind the consistently larger DPD sunspot areas
compared to those obtained from the proposed methods,
various scenarios involving individual sunspots or sunspot
groups are visualized in Figure 11. In each case, the sunspot
areas reported by DPD exceed those identified by the proposed
method by approximately 40%–50%. A detailed analysis
reveals two primary factors contributing to this gap. First,
DPD and the proposed method utilize distinct segmentation
techniques, resulting in different contours for the same
sunspots. Second, the methods used to estimate sunspot areas,
based on the pixel counts within the segmented contours, may
also differ between DPD and the proposed approach. Despite
these differences, the two data sets exhibit consistent trends in
sunspot area variation.

Solar cycles are approximately 11 yr long, and each cycle
varies in terms of intensity, duration, and characteristics. These
differences in sunspot activity across cycles can potentially
influence the performance of both MorphACWE and U-Net.
MorphACWE is sensitive to local intensity information and
typically performs well when sunspots are well defined and

distinct. However, during weaker cycles, with fewer or less
prominent sunspots, it may struggle to accurately detect or
segment smaller, less distinct sunspots. Furthermore, if
sunspots in a given cycle are larger, more complex, or have
intricate penumbra structures, MorphACWE may encounter
difficulties, as its reliance on local intensity is insufficient to
capture such complex details. In contrast, U-Net, with its deep
learning architecture and use of skip connections, is capable of
capturing both local and global context, enabling it to better
adapt to varying sunspot distributions and complex structures
across different solar cycles.

5. Conclusion

In this study, we address the challenge of segmenting
sunspots in high-resolution solar images by applying Mor-
phACWE within active-region boundaries, which are subse-
quently utilized to train a U-Net model. The U-Net model
achieves a mean performance of 0.98 across five evaluation
metrics over the entire test data set, whereas MorphACWE
alone yields a mean performance of 0.91. Additionally, the
Pearson correlation coefficients between the sunspot areas
reported by SWPC and DPD and those predicted by our
method are 0.97 and 0.96, respectively.
Traditional machine learning methods, relying on pixel

intensity thresholds, fall short in handling the intricate and
blurred edges presented in high-resolution images. Mor-
phACWE, with its robustness to noise and ability to manage
blurred boundaries, provides a foundation for generating initial
segmentation labels. These labels are then used to train a U-Net
model, which excels in learning complex features from labeled
data. The integration of MorphACWE and U-Net leverages the
strengths of both methods, resulting in accurate and efficient
sunspot segmentation. The use of MorphACWE eliminates the
need for manual annotation, which is not only time-consuming

Figure 11. Examples of sunspot identification results. The first row shows the original continuum observations. The second row presents the predicted sunspot masks
generated by U-Net. The third row displays the sunspot identification from DPD. The red numbers in the lower left corners of the images in the second and third rows
indicate the sunspot areas.
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but also requires specific expertise and may introduce human
bias. While MorphACWE is computationally intensive, the
trained U-Net model offers significant improvements in time
efficiency, segmenting a full-disk continuum image several
minutes faster than MorphACWE.

Both MorphACWE and U-Net may be affected by the
differences in sunspot characteristics across solar cycles, but
U-Net is likely to be more adaptable. To improve performance
across cycles, it would be beneficial to train these models on a
diverse data set including sunspot images from different solar
cycles, with varied sunspot sizes, shapes, and distributions.

The proposed method segments sunspots based on single
continuum images. However, examining multiple preceding
and subsequent images for sunspot segmentation could help
mitigate noise that might otherwise be mistaken for small
sunspots. As such, future work will explore deep learning
approaches that incorporate the evolutionary properties of
sunspots, which may further enhance sunspot segmentation
accuracy.
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