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Virtual fragment screening for DNA repair
inhibitors in vast chemical space

Andreas Luttens 1,2,3, Duc Duy Vo1, Emma R. Scaletti4, Elisée Wiita5,

Ingrid Almlöf5, Olov Wallner5, Jonathan Davies4, Sara Košenina 4,

Liuzhen Meng5, Maeve Long5, Oliver Mortusewicz 5, Geoffrey Masuyer 4,

Flavio Ballante 1, Maurice Michel5, Evert Homan5, Martin Scobie5,

Christina Kalderén5, Ulrika Warpman Berglund5, Andrii V. Tarnovskiy6,

Dmytro S. Radchenko 6, Yurii S.Moroz 6,7,8, Jan Kihlberg 9, Pål Stenmark 4,

Thomas Helleday5,10 & Jens Carlsson 1

Fragment-based screening can catalyze drug discovery by identifying novel
scaffolds, but this approach is limited by the small chemical libraries studied
by biophysical experiments and the challenging optimization process. To
expand the explored chemical space, we employ structure-based docking to
evaluate orders-of-magnitude larger libraries than those used in traditional
fragment screening. We computationally dock a set of 14 million fragments to
8-oxoguanine DNA glycosylase (OGG1), a difficult drug target involved in
cancer and inflammation, and evaluate 29 highly ranked compounds experi-
mentally. Four of these bind to OGG1 and X-ray crystallography confirms the
binding modes predicted by docking. Furthermore, we show how fragment
elaborationusing searches amongbillions of readily synthesizable compounds
identifies submicromolar inhibitors with anti-inflammatory and anti-cancer
effects in cells. Comparisons of virtual screening strategies to explore a che-
mical space of 1022 compounds illustrate that fragment-based design enables
enumeration of all molecules relevant for inhibitor discovery. Virtual fragment
screening is hence a highly efficient strategy for navigating the rapidly growing
combinatorial libraries and can serve as a powerful tool to accelerate drug
discovery efforts for challenging therapeutic targets.

Drug discovery efforts have generated millions of diverse com-
pounds that are exploited in screening campaigns for novel ther-
apeutic targets. However, high-throughput screening (HTS) of these
libraries often yields low hit rates and weakly active compounds that
require extensive optimization1. For these reasons, major focus has

been put on development of techniques that can expand the acces-
sible chemical space2–4. Advances in synthetic chemistry have
enabled screens of increasingly larger chemical libraries and >30
billion compounds recently became available in make-on-demand
catalogs5. These ultralarge compound collections are four orders of
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magnitude larger than those tested by HTS, providing new oppor-
tunities for drug discovery.

Two central questions for drug discovery are how to efficiently
find chemical probes in ultralarge libraries, and to what extent access
to these collections improves chemical space coverage. Emerging
techniques such as DNA-encoded libraries and large-scale virtual
docking have identified potent leads from screens of several billion
drug-like compounds6–8. However, considering that the total number
of drug-like molecules has been estimated to range between 1023 and
1060, these libraries still only cover a very small fraction of chemical
space9,10. The fact that the number of possible molecules grows
exponentially with molecular size supports the use of fragment-based
screening to initiate drug discovery. In fragment-based lead discovery,
libraries of low-molecular-weight compounds (typically <250Da or
9-16 heavy atoms) are first screened for ligands that bind to sub-
pockets of the target protein. Fragment hits bindweakly to theprotein,
yet form high-quality interactions with the binding site. In the second
step, the affinity and selectivity of the fragments are improved by
increasing the size and complexity of the molecules11–13. As the esti-
mated number of fragment-like compounds is only in the order of 1011,
chemical space is more efficiently sampled in fragment screens than
will ever be possible using drug-like collections14,15.

Established techniques for fragment-screening, suchasNMR,SPR,
and X-ray crystallography are limited to collections of hundreds to
thousands of molecules and restricted to physically available
compounds11. The millions of fragments that are available in make-
on-demand libraries are therefore inaccessible to traditional screening
approaches. In contrast, structure-based virtual screening could
rapidly evaluate large make-on-demand libraries and thereby reach
further into chemical space. However, considering the small size and
weak affinities of fragments, one potential caveat is that scoring
functionsmaynot have the accuracy needed to predict the affinities or
binding modes of such compounds16–19. Fragment-based lead genera-
tion can also prove challenging and extensive chemical elaboration is
generally required12. In this step, the >30 billion make-on-demand
compounds could potentially be a valuable resource by providing
access to readily available elaborations of fragments20. However, it is
not clear if the number of fragment analogs and the diversity of these
will be sufficient to enable successful fragment-to-lead optimization.

In this work, we explore the potential of vast chemical libraries
using virtual fragment screening. Our approach is applied to discover
inhibitors of 8-oxoguanine DNA glycosylase (OGG1), an enzyme that is
part of the DNA damage response pathway. OGG1 recognizes the
presence of the oxidized nucleobase 7,8-dihydro-8-oxoguanine (8-
oxoG) in DNA and initiates repair by excision of the damaged base21.
Recent studies demonstrate that inhibition of OGG1 is a promising
strategy for the development of drugs against cancer and
inflammation22–24. However, DNA-binding proteins are challenging
drug targets due to their polar and flexible binding sites25–27 and only a
few OGG1 inhibitors have been identified to date22,28–30. We dock
ultralarge compound libraries to theOGG1 active site and evaluate top-
ranked compounds experimentally to identify starting points for
inhibitor development. Crystal structures of OGG1-fragment com-
plexes combined with docking of tailored chemical libraries enable
rapid discovery of potent inhibitors displaying efficacy in cell models
of cancer and inflammation. In addition, comparisons of different
virtual screening strategies reveal efficient routes to identify chemical
probes in vast chemical libraries.

Results
Ultralarge docking screens for OGG1 inhibitors
The determination of the crystal structure of mouse OGG1 in complex
with a small molecule inhibitor (TH5675) enabled structure-based
virtual screens for novel scaffolds (Fig. 1)22. At the time of the study,
thiswas the only available crystal structure ofOGG1 in complexwith an

inhibitor. A subsequently solved structureof inhibitorTH5487 showed
that the active sites of the mouse and human OGG1 were close to
identical23. TH5675 blocks the binding of the oxidized DNA substrates
by occupying both the nucleobase- and furanose-binding regions of
the active site. The active site is highly polar and adopts different
shapes in the complexes with the inhibitor and DNA, which are prop-
erties characteristic of challenging drug targets (Fig. 1a, b)26. The
molecular docking performanceon the crystal structurewas evaluated
by redocking TH5675 to the active site and assessing if the scoring
function could enrich inhibitors over property-matched decoys31. The
docking calculations were performed using DOCK3.7, which success-
fully reproduced the binding mode of TH5675 and identified the
inhibitor scaffold among decoys (Supplementary Fig. S1)32.

Two ultralarge chemical libraries were docked to the OGG1
structure with the goal of identifying compounds binding to the
nucleobase subpocket. The fragment-like (MW<250Da) library con-
tained 14million compounds and the lead-like librarywascomposedof
235 million molecules that were larger in size and complexity
(250≤MW<350Da). The vast majority of these compounds have
never been synthesized and were hence not available for testing by
experimental screening methods. Each molecule in the two chemical
libraries was represented by multiple conformations, which were
scored in thousands of orientations in the active site. In total, 13 trillion
fragments and 149 trillion lead-like complexes were evaluated by the
docking scoring function. The top-ranked compounds from the
screens were buried within the pocket occupied by the 4-iodo-
phenylurea group of TH5675. Encouragingly, a large number of
molecules containing similar motifs were among the top-ranked
compounds. However, as such compounds were expected to bind to
this pocket, we excluded all N-acylated six-membered arylamines from
the library to bias the screen toward identification of novel chemo-
types. For the fragment library, the 10000 top-ranked compounds
(corresponding to 0.07% of the library) were clustered by topological
similarity to identify a diverse set of candidate molecules. A set of 29
compounds was selected for experimental evaluation from the 500
top-ranked clusters based on visual inspection of the predicted com-
plexes. Similarly, the 100000 top-ranked compounds from the lead-
like library (corresponding to 0.05% of the library) were clustered and
36 compounds were selected from the 4000 top-ranked clusters. In
the selection step, we inspected the complementarity of the com-
pounds to the binding site and took into account contributions to
ligand binding that are poorly described by the docking scoring
function, in line with the standard practices of virtual screening33.
Compounds were excluded from experimental evaluation based on
widely-used criteria suchas ligand strain, unsatisfiedpolar atoms in the
binding site or the compound itself, and improbable tautomeric or
ionization states34. In the selection of fragments, we focused primarily
on compounds in the pocket occupied by the 4-iodo-phenylurea
group of TH5675, which was the deepest cavity of the binding site and
hence a promising anchoring point for an inhibitor. Whereas the
fragments primarily occupied the deep cavity, the lead-like com-
pounds were predicted to bind both in this pocket and other parts of
the active site. The 65 selected compounds were available in make-on-
demand catalogs and were successfully synthesized in 4–5 weeks
(Supplementary Table S1). The compounds were first tested in a
thermal shift assay based on differential scanning fluorimetry (DSF) at
concentrations of 99 μM for lead-like compounds and 495 μM for
fragments, which corresponded to conditions typically used in HTS
and fragment screening campaigns, respectively35. Of these, com-
pounds 1 and 2 from the fragment screen induced the largest shifts in
thermal stability of OGG1 (2.8 and 1.6 K, respectively, Supplementary
Table S2). In contrast, none of the lead-like molecules stabilized
OGG1 significantly (ΔTm <1 K). Based on these results, further char-
acterization was focused on the hits from the fragment screen (Sup-
plementary Table S1).
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Crystal structures of fragments
Compounds 1, 2 and four additional fragments showing weaker sta-
bilization of OGG1 (ΔTm ≥ 0.5 K, Supplementary Table S1) were eval-
uated using protein crystallography, resulting in high-resolution
structures of four complexes. Structures of compounds 1 (PDB code:
7QEL), 2 (PDB code: 7ZG3), 3 (PDB code: 8CEX), and 4 (PDB code:
8CEY) bound to mouse OGG1 were determined at resolutions ranging
from 2.0 to 2.5 Å (Supplementary Table S3). For each fragment, an
unambiguous binding mode could be determined from the electron
density (Supplementary Fig. S2). The fragments represented four dif-
ferent chemotypes and formed similar interactions with the binding
site. The compoundswere anchored in the binding site by heterocyclic
rings connected to an amide group, which formed hydrogen bonds to
Gly42 and Lys249, and hydrophobic rings were positioned in the
pocket at the entrance of the binding site. Two distinct binding site

conformations were stabilized by the fragments. Whereas compounds
2 and 3 stabilized a binding site conformation that was similar to the
structure used in the docking screen, alternative side chain rotamers
for residues Phe319 and His270 were observed in the complexes with
compounds 1 and 4. The binding modes obtained by molecular
docking agreed remarkably well with the crystallographic structures
(Fig. 1f). Three predicted poses (compounds 1, 3, and4) had rootmean
square deviations (RMSDs, ligand heavy atoms) to the crystal structure
of less than 1 Å and all the key interactions with the binding site were
captured in the fourth case (compound 2, RMSD= 2.2 Å).

Fragment elaboration by navigating in synthetically accessible
chemical space
Our fragment growing approach was based on docking of computa-
tionally generated chemical libraries, which were either obtained from

Fig. 1 | Overview of virtual screening for OGG1 inhibitors. a Structure of human
OGG1 bound to DNA (PDB accession code: 3KTU). OGG1 is shown as a purple
cartoon with key residues depicted as sticks. The oligonucleotide is shown in
orange and the fluorinated 8-oxoguanosine is depicted as ball and sticks. Hydrogen
bonds are shown as dashed lines. b Structure of mouse OGG1 in complex with
inhibitor TH5675 (PDB accession code: 6G3Y). c The ZINC15 libraries (14 million
fragments or 235 million lead-like compounds) were docked to the OGG1 active
site. d Compounds were evaluated in a thermal shift assay (differential scanning
fluorimetry). e Compounds displaying thermal shift of OGG1 were evaluated in an
enzyme inhibition assay. In this experiment, OGG1 cleaves 8-oxoadenine, followed

by phosphodiester hydrolysis at the abasic site by the enzyme APE1, leading to
disentanglement of the fluorophore-containing oligonucleotide. f Confirmation of
the predicted bindingmodes by high-resolution crystal structures of mouse OGG1.
The complexes predicted by docking (protein and fragments 1–4 are shown as
white cartoons and green sticks, respectively) are depicted together with crystal
structures (protein and fragments 1–4 are shown as purple cartoons and yel-
low sticks, respectively). Selected side chains are shown as sticks, and hydrogen
bonds are shown as dashed lines. The accuracy of the predicted binding mode was
quantified using the heavy atom root mean square deviation (RMSD) from the
crystal pose.
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searches among billions of make-on-demand compounds or via in
silico reactions using commercial building blocks (Fig. 2). As fragment
1 induced the largest thermal shift in the DSF assay, we focused frag-
ment expansion on this scaffold. Fragment 1 also inhibited OGG1 at
high concentrations in an enzyme activity assay, but was too weak to
determine an IC50 value (Fig. 2a).

The potential for elaboration of fragment 1 was first explored
by performing substructure searches in make-on-demand libraries
for analogs of this compound. However, among the >11 billion
available compounds (Enamine REAL database, version November
2019), there were only seven superstructures of fragment 1 and none
of these could be docked successfully into the active site due to
steric clashes. Based on analysis of the binding mode of fragment 1,
we further optimized the search to consider all compounds con-
taining the N-(tetrahydrobenzisoxazole-3-yl)-formamide core, which
anchored the compound in the active site. In this case, 42937 make-
on-demand molecules matched the search pattern and were docked
to OGG1. Elaborations that did not preserve the binding mode of the
fragment core were automatically discarded and the remaining top-
ranked complexes were inspected. Compounds were selected based
on their complementarity with the active site and the potential for
growing towards other subpockets. Five iterations of optimization
were performed and a total of 62make-on-demand compounds were
experimentally evaluated (Table 1 and Supplementary Table S4).

Among the compounds from the first three iterations, 5 and 6

showed improved inhibitory potencies (58 and 36 μM, respectively).
A crystal structure of compound 5 in complex with mouse OGG1
corroborated our binding mode predictions (PDB codes: 7Z5R,
Fig. 2b), which positioned the core scaffold in the same pocket and
orientation as observed for fragment 1. Compounds 5 and 6 both
contained a benzyl group that provided a starting point for extend-
ing toward other subpockets. Pattern searches in make-on-demand
libraries for compounds containing the same topology as 5 and 6

identified 905 compounds. Of the 28 experimentally evaluated
compounds from this set, compound 7 showed the largest
improvement of potency with an IC50 value of 6.6 μM and a thermal
shift of 5.5 K at 99 μM in the DSF assay (Fig. 2b and Supplementary
Table S5). A crystal structure of this inhibitor bound to mouse OGG1
(2.3 Å resolution, PDB code: 7ZC7) confirmed that the overall binding
mode observed in the complexes with compounds 1 and 7 was
maintained. Unexpectedly, the structure showed that the pyrazole
ring of compound 7 extended into a subpocket formed by His270,
Phe319, Leu323, and Asp322. The pyrazole formed pi-stacking inter-
actions with His270, which disrupted its salt-bridge to Asp322, and
this reorganization revealed opportunities for further potency opti-
mization. However, searches for elaborations of compound 7 that
could stabilize interactions in this pocket did not identify any sui-
table molecules in commercial chemical libraries. In total, a > 15-fold

Fig. 2 | Fragment expansion in synthetically accessible chemical space.

a Docking of commercial chemical libraries containing 14million (14M) fragments
led to identification of fragment 1, a weak OGG1 inhibitor. b Crystal structures of
mouse OGG1 bound to inhibitors enabled increasingly complex chemical pattern
searches in commercial make-on-demand libraries. By stepwise increasing the size
of the fragment, compounds 5 and 7 (IC50 = 58 and 6.6 μM, respectively) were
discovered and crystal structures of these were determined (PDB accession codes:
7Z5R and 7ZC7). c Suitable building blocks were retrieved using pattern matching
basedon themolecular topologyof compound 7. A tailored virtual chemical library

was constructed based on several coupling reactions, yielding 6720 products.
Docking then guided selection of compounds from the virtual library, which were
synthesized in-house and led to the discovery of compounds 17 and 23

(IC50 = 600nM, Table 1). A crystal structure of mouse OGG1 in complex with
compound 17 (PDB accession code: 7Z5B) confirmed the computationally designed
hydrogen bond to Asp322. Structure-guided elaboration leading to compounds 17
and 23 resulted in a > 165-fold increaseof inhibitory potency compared to fragment
1. Source data are provided as a Source Data file.
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improvement of inhibitory potency compared to fragment 1 was
achieved by optimization using make-on-demand chemical libraries.

As commercial chemical space lacked elaborations of our most
potent inhibitor, further optimization was driven by reaction-based
enumeration of virtual libraries using commercial building blocks.
Reagents compatible with Chan-Lam, Suzuki, Ullmann, or amide cou-
plings were identified and reacted in silico to afford molecules with
similar topologies as compound 7 (Supplementary Fig. S3). The
resulting synthetically accessible virtual library contained 6720 mole-
cules that were not available in make-on-demand catalogs (Fig. 2c).
Visual inspection of the complexes predicted by docking guided the
selection of building blocks required to synthesize the target mole-
cules. As the docking was performed to the active site conformation of
OGG1 observed in the complex with inhibitor 7, several compounds
were designed to extend into the additional subpocket identified in
this structure. In total, 16 compounds (8-23, Supplementary Table S5)
were successfully synthesized in-house and detailed synthetic proce-
dures are provided in the Supplementary Information. Twelve com-
pounds showed comparable or better potencies than compound 7

(Supplementary Table S5). Five of these were submicromolar

inhibitors (17-20, and 23) and stabilized OGG1 by 7.4-9.0K at 99 μM
(Supplementary Table S5). Crystal structures of complexes were
determined for two inhibitors (8 and 17). Compound 17

(IC50 = 600nM, ΔTm = 8.1 K at 99 μM) was designed to form an addi-
tional hydrogen bond to Asp322 by repositioning of a nitrogen atom in
the five-membered aromatic ring and this interaction was confirmed
by the crystal structure (2.4 Å resolution, PDB code: 7Z5B, Fig. 2c). The
activity displayed by the most potent compounds (17 and 23,
IC50 = 600 nM, Fig. 2c) corresponded to a > 165-fold improvement of
activity compared to fragment 1. These compounds therefore exhib-
ited inhibitor potencies comparable to TH5487 (IC50 = 340 nM,
Fig. 3a). Notably, compounds 17 and 23 (ΔTm = 8.1 and 9.0K, respec-
tively) also showed greater thermal stabilization in the DSF assay than
TH5487 (ΔTm =4.3 K),whichmaybe due to the inhibitors representing
different scaffolds36. Finally, compounds 17 and 23 exhibited physi-
cochemical properties that were closer to the ideal profile of a lead
compound, such as lower molecular weight and LogP, and higher
lipophilicity ligand efficiency (Supplementary Table S6)37–39.

Selectivity and target engagement in cells
Selectivity for OGG1 was assessed by measuring the inhibition of four
other DNAglycosylases and base excision repair enzymes (APE1, NEIL1,
MTH1 and SMUG1, see Methods)22,30. Five inhibitors (9, 11, 17, 18, and
23) wereevaluated and threeof these (9, 11, and23) didnotdisplay any
significant inhibition of the four enzymes (IC50 > 99 µM, Fig. 3b). For
compound 23, inhibitor interactionwithOGG1 in cells was evaluated in
two assays. Target engagement was confirmed using a cellular thermal
shift assay (CETSA), which indicated a strong thermal stabilization of
OGG1 by compound 23 in cells (Fig. 3c). Recruitment of OGG1-GFP to
laser-induced DNA damage sites was impaired in U2OS cells treated
with compound 23, confirming an intracellular target engagement
(Fig. 3d, e). In this assay, compound 23 showed activity comparable to
the reference inhibitor TH5487.

Therapeutic potential of OGG1 inhibitors
The anti-inflammatory and anti-cancer effects of the OGG1 inhibitors
were evaluated in disease-relevant cell models. Inhibition of OGG1
limits binding to 8-oxoG in G-rich promoters of pro-inflammatory
genes, which impedes the loading of the nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB) transcription factor. By
blocking pro-inflammatory gene transcription, downstream inflam-
matory responses are attenuated21. The anti-inflammatory effect was
evaluated in a TNF-α-induced NF-κB activation assay in HEK293T pGF
NF-κB cells (Fig. 3f). All the tested compounds (8-12, 14, and 17-23)
showed dose-dependent inhibition of the inflammatory effect with
EC50 values ranging from 6.3 to 36 μM (Supplementary Table S5), and
compound 23 was the most potent compound (EC50 = 6.3 μM).

Cancer cells inherently have elevated levels of DNA damage,
which can be attributed to disturbed redox homeostasis or
oncogene-induced replication stress. For this reason, cancer cells are
heavily reliant on functional DNA damage response and repair
pathways40. We determined effects on the cell viability of three
cancer cell lines (A2780, A549, and HCT116; representing ovarian,
lung and colon cancer, respectively) and one non-transformed
control cell line (BJhTERT, immortalized normal fibroblasts) for a
subset of our OGG1 inhibitors (compounds 8-12, 14, 17-23). Com-
pound 11 induced the largest loss of viability in A2780 cancer cells
(EC50 = 5.4 μM) and was well tolerated (EC50 > 70 μM) in non-
transformed cells (Fig. 3g, h).

Compounds 17 and 23 were also evaluated for their in vitro
pharmacokinetic properties, with the previously discovered inhibitor
TH5487 used as a reference (Supplementary Table S6). Compound 17

had slightly better cell permeability thanTH5487 and compound 23. In
human liver microsomes, compounds 17 and TH5487 exhibited high
metabolic stability (intrinsic clearance CLint = 23.9 and 4.6μL/min/mg,

Table 1 | Fragment elaborations, inhibitory potencies, and
thermal stabilizations

Cmpd Structure pIC50
a

∆Tm (K)b

5 4.24 ± 0.18 4.1 ± 0.7

6 4.44 ±0.38 1.1 ± 0.5

7 5.18 ± 0.05 5.5 ± 1.2

8 5.19 ± 0.08 5.4 ± 0.5

11 5.89 ±0.06 4.8 ± 0.4

17 6.22 ± 0.13 8.1 ± 0.1

23 6.22 ± 0.10 9.0 ±0.2

a pIC50 values from enzyme inhibition assay.
b Thermal shift values from DSF experiments at a concentration of 99 μM. pIC50 and ∆Tm values

are expressed as mean ± SD from at least three independent replicates.
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respectively) whereas compound 23 was moderately stable (CLint =
39.7μL/min/mg). However, the low CLint value of TH5487 is likely a
consequence of the very high protein binding of this compound, as
compared to 17 and 23. Previous studies have identified high plasma
protein binding and low solubility as a major limitation of TH548722.
These observations were confirmed in our ADME assays, which also
showed that compounds 17 and 23 have considerably better proper-
ties. The thermodynamic solubility of compound 17 (667μM) was
>600-fold higher than for TH5487 (< 1μM), which would be expected
to precipitate at the highest concentrations used in biological experi-
ments. In addition, TH5487 had a very low unbound fraction in the
plasmaprotein binding assay (fu = 0.1%), whichwas consistentwith the
reduction of inhibitory potency observed in the presence of serum
albumin23. In contrast, 17 and 23 exhibited lower plasma protein
binding levels (fu = 1.4 and 4.8%, respectively), i.e. the compound
concentration available to inhibit OGG1 could be considerably higher
in vivo compared to TH5487 at the same dose.

Comparison of strategies to explore chemical space
Toassess the efficiency of different virtual screening strategies inmore
general terms, we explored paths in chemical space to identify our
OGG1 inhibitors. The chemical space coverage of the fragment-based
approach and virtual screens of multi-billion-scale libraries containing
lead-like compounds were compared. As docking of several billion
compounds is now feasible41,42, we quantified what coverage of che-
mical space could be achieved with libraries of this size and assessed
the impact of access to structural data during fragment elaboration.

We first analyzed the chemical space containing all molecules up
to the size of the lead-like compound 17 (26 heavy atoms) and a
fragment representing the core scaffold of the inhibitor (13 heavy
atoms) (Fig. 4a). In order to estimate the size of each chemical space,
we implemented an open-source version of the Generated Database
(GDB) algorithm, which can enumerate all chemically stablemolecules
composedofH, C, N,O, S, and halogen atoms14. The algorithmwas first
used to generate all chemically stable molecules containing up to 11

Fig. 3 | Selectivity and cell activity of OGG1 inhibitors. a Chemical structures of
OGG1 inhibitors TH5487 and compound 23. b Inhibition of DNA repair enzymes
(OGG1, SMUG1, APE1, NEIL1, MTH1, see Methods for abbreviations) by five OGG1
inhibitors. Mean IC50 values from three independent experiments are shown. Grey
boxes indicate IC50 > 99 μM. c Shift in thermal stabilization of OGG1 in HL60 cells
treated with OGG1 inhibitors. Mean values ± SEM from three independent experi-
ments (dot plots) are shown. d Maximum fluorescence intensity of OGG1-GFP
accumulation at laser-induced DNA damage sites after indicated treatments. Mean
values of 15 cells for each condition from three independent experiments are
shown. Statistical significance was determined using One-way Anova (p =0.0092
for 10 μM compound 23, p <0.0001 for 50μM compound 23, and p =0.0048 for
TH5487). e Recruitment kinetics of OGG1-GFP to laser-induced DNA damage sites

in U2OS cells after 1 h pre-treatment with compound 23 and TH5487. Results of 15
cells for each condition from three independent experiments are shown ± SEM.
f Anti-inflammatory effect of TH5487 and compound 23 in NF-κB activation assay.
Mean values ± SD from three independent experiments are shown. g The percen-
tage cell viability of transformed and non-transformed cell lines upon treatment
with different OGG1 inhibitors (100 μM). A2780, A549, and HCT116 represent
ovarian, lung and colon cancer, respectively, and BJhTERT is a non-transformed
control cell line. Mean values from two independent experiments are shown.
h Cytotoxicity of TH5487 and compound 11 (Table 1) in A2780 and BJhTERT cell
lines. Mean values from two independent experiments are shown. Source data are
provided as a Source Data file.
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heavy atoms, and this library contained 21.2 million unique com-
pounds, which is in agreement with previous estimates (Supplemen-
tary Table S7)14. Due to the combinatorial explosion of chemical space
for largermolecules, the size of the libraries with up to 13 and 26 heavy
atoms were calculated by extrapolation15, resulting in estimates of 109

and 1022molecules for the fragment and lead-like space, respectively. A
docking screen of one billion compounds could hence evaluate every
possible fragment but is restricted to only 10-11% of the lead-like che-
mical space.

To further explore the fragment-based path to identify lead-like
compound 17, we developed the UniverseGenerator tool to generate
all possible elaborations of a specific scaffold using our database of
enumerated substituents. To construct a chemical space with a com-
mon-substructure, the library containing all possible molecules with
up to 11 heavy atoms was prepared for connection onto a scaffold
using activation-tags (Fig. 4b and Supplementary Fig. S4). Substituents
could be attached through five distinct mechanisms: introduction of a
single, double, or triple bond substituent, fusionof two ring structures,
and the spiro-cyclizationof two ring structures. In total, the 21.2million
substituents could be attached to a scaffold in more than 385 million
distinct arrangements (Fig. 4c). Analogous to the activation of sub-
stituents, connection sites (i.e. growing vectors) on the fragment
scaffold were first identified, followed by combinatorial enumerations
to find all the 7154 unique configurations in which multiple sub-
stituents could be introduced (Supplementary Fig. S5). To finally
construct all superstructures, an atom-distributing algorithm deter-
mined all possible combinations to attach differently sized sub-
stituents over a particular set of growing vectors (Fig. 4d and

Supplementary Fig. S6).We then explicitly generated compoundswith
up to8 additional heavy atomsand estimatedby extrapolation that the
fragment has in the order of 1013 superstructures with up to 26 heavy
atoms. To estimate the impact of access to structural information, we
introduced elaboration constraints based on visual inspection of
protein-fragment complexes determined for OGG1. Excluding growing
vectors leading to steric clashes with the binding site (Fig. 4e) reduced
the number of superstructures by four orders of magnitude, resulting
in adatabase size (109 compounds) that is feasible to evaluate explicitly
by molecular docking (Fig. 4f).

By combining the results of our analysis of the theoretical che-
mical space, we cancompare the two virtual screening strategies.What
are the odds of identifying our lead-like OGG1 inhibitor? By using a
fragment-based approach, all theoretically possible fragment-like
molecules up to 13 heavy atoms (one billion compounds) and every
relevant elaboration of a single scaffold (an additional one billion
compounds) could be evaluated by docking of two billion compounds
in two steps. In contrast, a selection of twobillion compounds from the
lead-like chemical space (1022) cannot be expected to contain any
relevant representatives of this scaffold.

Applicability of fragment-based virtual screening to other drug
targets
We assessed if our approach could rapidly identify promising com-
poundsofother drug targets. Threeunrelatedprotein targets linked to
cancer or inflammation (SMYD3, NUDT5, and PHIP) were selected43–45.
Experimental fragment screening had been conducted for each target,
and crystal structures of protein-fragment complexes were available.

Fig. 4 | Strategies to explore chemical space. a Strategies to discover compound
17 based on screens of chemical libraries were analyzed. Screens of large chemical
libraries with up to 26 heavy atoms (HAs) were compared to a fragment-based
design approach using the tetrahydrobenzisoxazole core of compound 17 as a
starting point. b Activated substituents can be attached to a core scaffold through
five distinct mechanisms: introduction of a single (sand vectors), double (green
vectors), or triple bond substituent (purple vectors), fusion of two ring fragments
(blue vectors), and the spiro-cyclization of two ring fragments (orange vectors).
c Generation and activation of all chemically stable molecules containing up to 11
heavy atoms. Curves represent the number of unique compounds in successive

steps of molecule differentiation. d Generation of a superstructure by introducing
substituents with a specified numbers of heavy atoms onto an activated scaffold.
eAccess toprotein-ligandcomplexes enables exclusionofunsuitable (red) growing
vectors due to steric hindrance (orange surface). Regions of the binding pocket
accessible to suitable (blue) growing vectors are depicted as a purple surface. f Bar
chart of estimated sizes of chemical spaces. The theoretical chemical spaces with
up to 26 and 13 heavy atoms contain 1022 (orange) and 109 (red) compounds. The
core scaffold of compound 17 was estimated to have 1013 elaborations (raspberry),
of which 109 were compatible with the binding site (purple). Source data are pro-
vided as a Source Data file.
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For each selected drug target, we evaluated if make-on-demand che-
mical libraries could enable efficient fragment elaboration (Fig. 5a).

The chemical structures of the co-crystallized fragments were
used to perform substructure searches in the make-on-demand
libraries, followed by docking of the matching compounds to the
binding sites. Whereas only a small number of analogs was available in
stock for each target (3-212 compounds), large sets of readily synthe-
sizable fragment elaborations were identified by searches in make-on-
demand libraries (9914-737407 compounds, SupplementaryTable S8).
Many of these had improved docking scores compared to the initial
fragment (Fig. 5b) with maintained overall binding mode (814-45679
viable analogs, Supplementary Table S8). As in the case of OGG1, more
efficient retrieval of suitable elaborations could be achieved by tai-
loring the search pattern through the exclusion of growing vectors
incompatible with the binding site (Fig. 5b, c, Supplementary
Table S8). For each target, compoundswith both improved energy and
maintained binding mode were retained while the number of com-
pounds to dock was reduced, e.g. by 145-fold for NUDT5. For com-
parison, we also docked chemical libraries containing random
molecules to each target, and substantially worse docking scores were
typically obtained for these sets. The fragment-based approach had 6-
to 125-fold higher enrichment of compounds with improved docking

scores (Supplementary Table S8). Our approach therefore enables
rapid identification of the most promising fragment elaborations for
experimental evaluation.

Discussion
Our efforts to identify enzyme inhibitors by structure-based virtual
screening of vast chemical libraries resulted in three main observa-
tions. First, molecular docking of 14 million fragments identified four
compounds binding to the OGG1 active site and crystal structures of
complexes confirmed the computational predictions. Second, frag-
ment elaboration was guided by docking calculations that made
effective use of virtual libraries containing billions of readily synthe-
sizable compounds. The combinationofmoleculardocking and crystal
structure determination led to selective submicromolar inhibitorswith
anti-inflammatory and anti-cancer activity. Finally, the results of the
prospective virtual screens combined with analyses of the theoretical
chemical space demonstrate the efficiency of a fragment-based
docking approach.

The number of commercially available compounds continues to
increase rapidly and the computational cost to performvirtual screens
of these databases is becoming prohibitive. However, it should be
noted that the fractionof the libraries that ismost subject to inflation is

Fig. 5 | Fragment-to-lead elaboration by docking of commercial

chemical space. a For each of the three targets (SMYD3, NUDT5, and PHIP), a
SMARTS chemical pattern was generated based on the bound fragment, followed
by searches in make-on-demand libraries containing billions of compounds for
superstructures. The subset of matching compounds that was compatible with the
accessible vectors was also identified (constrained superstructures). For example,
moieties forming key hydrogens in the crystal structure of the protein-fragment
complex (highlighted in green) were maintained in the constrained set. Molecular
docking of the matching compounds enabled identification of suitable candidates
for synthesis and experimental evaluation.bNormalized frequencydistributions of

molecular docking scores for SMYD3, NUDT5, and PHIP. Docking scores of the
fragments are represented by dashed lines whereas scores of random molecules,
superstructures, constrained superstructures, and superstructures that maintain
the fragment binding mode are represented by blue, green, yellow and red curves,
respectively. c Examples of predicted binding modes of elaborated fragments. The
experimentally determined protein structures and bound fragments are shown as
purple cartoons and yellow sticks, respectively. Key hydrogen bonds between the
protein and fragments are indicated as yellow dashed lines. The predicted binding
modes of top-scoring superstructures are shown as green sticks.
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populated by drug-like molecules. In fact, 97% of the >30 billion
compounds in the largest make-on-demand library have a molecular
weight exceeding 350Da. In contrast, there are only 50 million frag-
ments in the database (MW<250Da), which are feasible to screenwith
available computational resources. Focusing on fragments will not
only lead to substantially better chemical space coverage, but should
also improve hit rates because drug-like molecules are less likely to
bind due to their intrinsically higher molecular complexity46. In
agreement with these ideas, we did not identify any OGG1 inhibitors
with relevant activity from our docking screen of 235 million lead-like
compounds. This library only contained two lead-like superstructures
of the most potent fragment and none of these were top-ranked,
illustrating that coverage of specific scaffolds is still limited in these
libraries. The fragment docking campaign identified four diverse
ligands and each of these represent starting points for development of
unique inhibitor scaffolds.

Fragment-based drug discovery relies on efficient elaboration of
hits, which can require synthesis of a large number of analogs12. The
make-on-demand libraries enable rapid design-make-test cycles, but
despite the billions of purchasable compounds, the availability of
analogs to screening hits can still be scarce. As only a few elabora-
tions of fragment 1 were commercially available, we used the pre-
dicted bindingmode to identify the scaffold forming key interactions
with the active site. Searches based on these molecular patterns
enabled us to navigate to relevant regions of commercial chemical
space. However, as the size and complexity of the optimized inhibi-
tors increased, the number of relevant analogs in commercial space
dwindled. At this point, chemical space coverage was further
increased by generating tailored libraries of analogs made from
accessible building blocks and this strategy proved efficient. Only 16
compounds were synthesized in-house to identify submicromolar
OGG1 inhibitors, corresponding to a > 165-fold increase of potency
compared to fragment 1.

The efficiency of our virtual screening approach is also illu-
strated by comparing to previous drug discovery efforts for OGG1
based on traditional approaches22. In the campaign by Visnes et al.,
two inhibitors representing a single scaffold were discovered from an
HTS, corresponding to a hit rate of 0.01%. This was followed by
extensive in-house medicinal chemistry efforts without any access to
enzyme-inhibitor structures, leading to the discovery of the sub-
micromolar inhibitor TH5487. In total, this drug discovery campaign
involved the evaluation of >18,100 compounds experimentally. In
comparison, we tested only 29 compounds from the fragment
docking in experimental assays. As expected, the discovered frag-
ments were less potent than the HTS hits, but represented four dis-
tinct scaffolds that each could serve as starting-points for
optimization. Only 78 compounds, of which a majority originated
from readily available make-on-demand libraries, were then synthe-
sized to identify our submicromolar inhibitors. Our strategy there-
fore yielded a > 1000-fold higher screening hit rate and required
evaluation of >150-fold fewer compounds to identify inhibitors with
potencies comparable to TH5487. Furthermore, our inhibitors also
had more promising physicochemical and in vitro pharmacokinetic
properties, such as considerably higher solubility and lower plasma
protein binding. Together, these results highlight the advantages of
our virtual screening technique and are consistent with the idea that
a fragment-based approach results in lead compounds of higher
quality compared to traditional approaches35,37.

One of the central aims of this study was to compare strategies to
screen the rapidly growing space of readily synthesizable molecules,
whichwill surpass trillions in the near future. To address this question,
we developed the UniverseGenerator, which enabled us to estimate
the size of theoretical libraries containing all possible stable com-
pounds. Out of the 1013possible compounds representing our scaffold,
we evaluatedonly a few thousand computationally and tested less than

100 experimentally, illustrating the limited coverage of commercial
catalogs. Our chemical space analysis demonstrates that molecular
docking enables evaluation of all theoretically possible fragments up
to 13 heavy atoms, whereas virtual screens of libraries with billions of
drug-like compounds (e.g. from make-on-demand catalogs) remain
limited to sampling infinitesimal fractions of chemical space. By
leveraging structural information, it is even possible to computation-
ally evaluate all relevant elaborations of a fragment, which may
become accessible for experimental testing as methods to synthesize
complex molecules improve.

The use of structure-based virtual screening to identify and opti-
mize fragments has been debated16–19, and our study reveals strengths
and weaknesses of this approach. In contrast to common belief, our
results support the use of molecular docking as a tool to identify
fragment ligands. Crystal structures revealed that the binding modes
predicted by docking were strikingly accurate, and the hit rate was 5 to
10-fold higher than experimental fragment screening27. Similar obser-
vations weremade in docking screens of fragment libraries for ligands
of viral enzymes and G protein-coupled receptors47–50. Notably, our
results from the fragment optimization step highlighted a well-known
problem of molecular docking: the lack of binding site flexibility.
Several distinct conformations of the active site were observed in
crystal structures solved with different fragments. In two of these
structures, the subpocket that our most potent inhibitor occupies was
blocked due to changes in the side chain conformations. As the
docking algorithm did not take protein flexibility into account, access
to multiple structures of OGG1 representing different active site con-
formations was crucial for successful fragment elaboration. Fragment
expansion should therefore consider several structures of the target if
these are available or be performed using a flexible receptor
algorithm51.

The rapid growth of make-on-demand chemical libraries has sti-
mulated the development of several novel virtual screening
strategies20,52–55. For example, the V-SYNTHES technique uses an
iterative approach to screen combinatorial compound libraries con-
taining billions of compounds. Instead of screening all the compounds
in the library, fragment-sized compounds representing the scaffolds
available in the library arefirst docked to thebinding site. In the second
step, the top-scoring fragments are identified and libraries of larger
molecules representing the same scaffold are docked to identify
compounds for experimental evaluation. Our strategy and V-SYNTHES
both employ a divide-and-conquer approach,which is a cornerstone of
fragment-based drug discovery, and have complementary advantages.
In the first step, both methods dock libraries of fragment-like com-
pounds to the binding site. Whereas our approach uses commercially
available libraries, V-SYNTHES is based on computationally generated
fragments. A key benefit of our strategy is that false positives are
identified experimentally at this stage, allowing us to focus on frag-
ments with verified activity. In contrast, V-SYNTHES needs to rely on
the accuracy of the docking scoring function. In the second step,
V-SYNTHES depends on the predicted binding modes, whereas we
iteratively solved structures of protein-ligand complexes. For OGG1,
access to multiple experimental structures was essential because the
challenging target binding site exhibited considerable induced-fit
effects. Finally, V-SYNTHES is constrained to predict compounds that
are available in the combinatorial library, which we found was a lim-
itation in the optimization of the OGG1 inhibitors. The creation of
tailored chemical libraries was required to obtain submicromolar
OGG1 inhibitors, which has also been the case for other challenging
targets7. Our strategy may be more suitable for difficult targets with
flexible binding sites, but does require access to crystallography and
sensitive experimental methods to detect weak binding. V-SYNTHES is
preferable for targets with more well-defined binding sites and if
structure determination is challenging, such as in the case ofGprotein-
coupled receptors.
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Access to chemical probes is essential for understanding biolo-
gical systems and can enable drug discovery for novel therapeutic
targets. The DNA repair enzyme OGG1 has been identified as an
interesting drug target, but only a few inhibitors have been identified
despite considerable efforts22,28–30. Here, we demonstrate how virtual
fragment screening can rapidly identify inhibitors of challenging tar-
gets and achieve potencies sufficient to demonstrate activity in cell
models. Our most advanced inhibitors are attractive leads for further
development and can accelerate drug discovery efforts for this
emerging target.

Methods
Ethics statement
Humanplasmawas collected from twovoluntary healthy blooddonors
(non-smoking, citric acid) as part of routine procedures by Uppsala
Academic Hospital. Written informed consent was obtained fromboth
donors at time of collection. Human plasma samples were pooled
before use in this study. As all human samples were anonymised, IRB
approval at Uppsala University was not required.

Molecular docking
A crystal structure (PDB accession code: 6G3Y, chain A) of OGG1
bound to an inhibitor (TH5675) was used in the docking screens22.
Crystallographic waters and other solvent molecules were removed
from the structure, except for the binding site water molecule with
residue number 504. This water molecule was deeply buried and
coordinated by several polar protein atoms, suggesting that displa-
cing it would be challenging. Therefore, the water was treated as part
of the binding site, enabling docked compounds to form hydrogen
bonds with the oxygen atom. The atoms of TH5675, with the excep-
tion of the amino-benzimidazolone ring system, were used to gen-
erate 45 matching spheres in the deepest subpocket of the active
site. DOCK3.7 uses a flexible ligand algorithm that superimposes
rigid segments of a molecule’s pre-calculated conformational
ensemble on top of the matching spheres32. Histidine protonation
states were assigned manually based on visual inspection of local
hydrogen bonding networks. For example, His54 was protonated at
the Nδ atom because of the hydrogen bonding interactions with the
backbone carbonyl of Pro52 and amide proton of Leu16. Histidines
10, 13, 54, 97, 112, 179, 185, 195, 270, 276, and 282 were protonated at
the Nδ atom, whereas histidines 119 and 237 were protonated at the
Nε atom. The remainder of the enzyme structure was protonated by
REDUCE56 and assigned AMBER57 united atom charges. The dipole
moments of polar residues involved in recognition of TH5675 were
increased to favor interactions with these. This technique is common
practice for users of DOCK3.7 to improve docking performance and
has been used in previous virtual screens33. The partial atomic char-
ges of the backbone amide of residue Gly42 were increased without
changing the net charge of the residue. The atoms of the co-
crystallized inhibitor were used to create a set of low protein
dielectric spheres within 2 Å of the ligand and located near the pro-
tein surface to define the boundary between solute and solvent.
Scoring grids were pre-calculated using QNIFFT58 for Poisson-
Boltzmann electrostatic energies, SOLVMAP59 for ligand desolva-
tion energies, and CHEMGRID60 for AMBER van der Waals energies.
Property-matched decoys of OGG1 ligands were generated using in-
house scripts31. The obtained control sets were used to evaluate the
performance of the docking grids by means of ligands-over-decoys
enrichments. Enrichment values and predicted poses of ligands were
used to select the final grid parameters.

DOCK3.7 was used to dock the fragment (MW≤ 250Da) and lead-
like (250Da <MW≤ 350Da) ready-to-dock subsets of ZINC15 to the
OGG1 active site61. The libraries contained approximately 14 and 235
million commercially available molecules, respectively, and 14 and 212
of these were successfully docked. Fragments were screened using an

orientational sampling parameter of 5000 matches and for lead-like
compounds, this parameter was set to 1000 matches. For each frag-
ment, 9344 orientations were evaluated on average, and for each of
these orientations, an average of 202 conformations was sampled.
Each lead-like molecule had on average 3694 orientations evaluated
and, for each of these orientations, an average of 477 conformations
was sampled. For each ligand, the best scoring pose was optimized
using a simplex rigid-body minimizer. The virtual screens took 7066
(13 trillion fragment complexes) and 37355 (149 trillion lead-like
complexes) core hours and could be performed in approximately
2 hours and 11 hours on 3500 cores, respectively. Top-scoring mole-
cules were first filtered to eliminate compounds containing motifs
present in the OpenEye toolkit’s list of pan-assay interference com-
pounds (PAINS), thereby reducing the risk of encountering false
positives62. In addition, molecules containing an N-acylated six-mem-
bered arylamine were removed using SMARTS pattern matching to
increase the novelty of top-scoring molecules. For each library, the
remaining compounds were clustered based on Tanimoto similarity
using Morgan2 fingerprints (1024 bits with a radius of 2), which were
calculated using RDKit63. The clustering was performed using a toolkit
from the DOCK3.7 software package32: The molecules are first ranked
based on their docking scores. The best scoringmolecule is the cluster
head of the first cluster, and lower scoring molecules with a Tanimoto
similarity greater than 0.5 to this molecule are included in this cluster.
The first top-ranked molecule that is not part of this cluster becomes
the cluster headof a newcluster and this procedure is repeated until all
molecules have been assigned to a cluster. For the fragment screen,
the top 10000 compounds were clustered and out of the 2577
resulting clusters, the 500 top-scoring cluster heads were visually
inspected. For the lead-like library, we inspected the 4000 top-scoring
cluster heads, originating from clustering 100000 top-ranked com-
pounds into 20898 distinct clusters. In the fragment-to-lead genera-
tion step, crystal structures of OGG1 bound to fragment 1 (PDB
accession code: 7QEL) and compound 7 (PDB accession code: 7ZC7)
were prepared for molecular docking using the same protocols as
described above. In these calculations, the dipolemoment of the Ile152
backbone was increased to promote similar hydrogen bonding inter-
actions as observed in the crystal structure of TH5675. For each
docked fragment elaboration, the 50 lowest energy poses were
retained. The lowest energy pose that had a common-heavy-atom
RMSD value < 2 Å from the N-(tetrahydrobenzisoxazole-3-yl)-for-
mamide core in fragment 1 was considered as the most relevant
binding mode7.

Crystal structures of the three protein targets (SMYD3, NUDT5,
and PHIP) in complex with fragments were extracted from the PDB.
Details regarding the preparation of crystal structures for molecular
docking calculations are provided in Supplementary Table S9. Each
elaboration of the bound fragment was docked using an orientational
sampling parameter of 5000 matches and the 50 top-ranked poses
were retained. In our analysis of the fragment elaborations, both the
lowest energy pose and the lowest energy pose with a common-heavy-
atom RMSD value < 2 Å to the bound fragment were considered as
relevant binding modes.

Cheminformatics and preparation of chemical libraries
In searches for elaborations of fragment 1, chemical SMARTS patterns
were constructed using structural information and an interactive
SMARTS visualizer (https://smarts.plus)64. Chemical pattern matching
was performed with OpenEye’s OEToolkits and Enamine REAL space65,
enumerated (version November 2019). Matching molecules were fil-
teredbyusing a PAINS-filter fromOpenEye’s toolkits, which is basedon
the motifs identified by Baell et al.62 The remaining molecules were
prepared for docking using DOCK3.7 protocols. Conformational
ensembles were capped at 200 conformations per rigid segment and
an inter-conformer RMSD diversity threshold of 0.5 Å. Creation of
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synthetically accessible libraries was based on commercially available
building blocks. Chemical SMARTS patterns were used to retrieve
molecules that had suitable functional groups for the intended organic
synthesis from Enamine’s in-stock building block catalog (https://
enamine.net/building-blocks/building-blocks-catalog). Building blocks
were coupled in silico to the parent scaffold using reaction SMIRKS
patterns66. Chemical pattern matching and reagent coupling were
performed with in-house scripts based on OpenEye’s OEToolkits
(version 2020.2). The productmoleculeswerefiltered usingOpenEye’s
PAINS-filter, and the remaining compoundswere prepared for docking
using DOCK3.7 protocols as described above. Chemical pattern
matching for the three additional protein targets (SMYD3, NUDT5, and
PHIP) was performed with OpenEye’s OEToolkits and Enamine REAL
space database (version February 2024). Both random molecules and
fragment elaborations were prepared for molecular docking using the
protocols and parameters described above.

Construction of enumerated chemical spaces
The UniverseGenerator software for generating constrained chemical
spaces was developed using the C + + programming language and
libraries from RDKit63, adhering to the C + + 17 standard. To generate a
chemical space of superstructures of a common subgraph, molecules
were constructed by attaching substituent libraries to a scaffold of
interest according to the following three-step procedure:

Step 1: Substituent libraries. Our open-source implementation of the
Generated Database (GDB) algorithm14 was used to enumerate all
chemically stablemolecules (up to 11 heavy atoms) that are composed
ofH, C, N, O, S, and halogen atoms (Supplementary Fig. S4). For amore
detailed description of this workflow, we refer to the original pub-
lication that describes the GDB algorithm14. Briefly, planar graphs with
N (1 to 11) nodes with at most four other connections (tetravalent
carbon atoms) are first generated using the nauty toolkit67. The gen-
erated graphs are converted into saturated hydrocarbons following
atomic valency rules and subsequently embedded into three-
dimensional conformers using either corina or ChemAxon’s molcon-

vert toolkits68. Hydrocarbons with strained conformations are sys-
tematically filtered out by first calculating all volumes defined by the
all-carbon tetrahedrons present in the molecule. Molecules that have
at least one atomic volume smaller than 0.145 Å3 are discarded.
Carbon-carbon bonds in hydrocarbons with relaxed conformations
were systematically analyzed for their adjacent hydrogens to deter-
minewhether a double or triple bond could be introduced. All possible
molecules with unsaturations are then constructed via a combinatorial
enumeration that modifies viable bonds. Each carbon atom, together
with its bound hydrogen atoms, in (unsaturated) hydrocarbons is
analyzed to determine whether it can be mutated into a nitrogen or
oxygen atom based on valency rules. Molecules with multiple het-
eroatoms, are constructed via combinatorial enumeration of viable
carbon atoms. Molecules are further decorated by chemically trans-
forming existing functional groups in a combinatorial manner, e.g.,
transformation of carboxylic acids into sulfonic acids and phenolic
hydroxyl groups into halogen atoms. The resulting library of deco-
rated molecules encompasses candidate substituents for subsequent
superstructure generation. Each compound in this library was pre-
pared for connection onto a scaffold using activation-tags. Sub-
stituents could be attached through five distinct mechanisms:
introduction of a single, double, or triple bond substituent, fusion of
two ring structures, and the spiro-cyclization of two ring structures
(Supplementary Fig. S4). To determine if a site (atom or bond) in the
substituent is viable for a particular connection mechanism, the
available hydrogens are analyzed. Upon identification of a viable
connection site, an activation tag (represented by a specific transition
metal corresponding to the type of connection, e.g., lutetium for single
bonds, hafnium for double bonds, tantalum for triple bonds) is

attached to the substituent, and the corresponding SMILES string is
stored. Each SMILES string is also categorized based on the number of
heavy atoms in the substituent and the chemical nature of the con-
nection site, e.g., activated alcohols with five heavy atoms or activated
amines with four heavy atoms. This prevents the construction of
functional groups that do not abide by the rules of the GDB, e.g.,
formation of hydrazines, peroxides, and allenes. To accelerate the
retrieval of activated substituents, a symmetry analysis of each sub-
stituent’s molecular graph is carried out prior to activation. Only
connection sites that are unique in terms of molecular symmetry are
considered for activation, which avoids generation of duplicate acti-
vated substituents.

Step 2: Scaffold activation. Whereas substituents contain a single
activation tag, activated scaffolds can bear multiple activation tags
(sites of connection). Analogous to the activation of substituents, all
possible connections sites are determined for a given scaffold. These
sites are then combinatorically enumerated to find all ways sub-
stituents can be attached to the scaffold (Supplementary Fig. S5). The
SMILES strings of all activated scaffolds are deduplicated and stored.

Step 3: Generation of scaffold superstructures. Each scaffold with K
activated connection sites (generated in Step 2) is subjected to the
following procedure. A symmetry analysis of the scaffold’s molecular
graph is carried out to identify connection sites that are identical in
terms of molecular symmetry. This step speeds up the algorithm and
prevents generation of duplicate superstructures. To construct
superstructures of the scaffold that have N additional heavy atoms, an
atom-distributing algorithmdetermines all possible combinations that
introduce heavy atoms atK activated connection sites (Supplementary
Fig. S6). Each activated connection site must at least receive one new
heavy atom because the configuration of zero additional heavy atoms
corresponds to a separate activated scaffold configuration where that
specific connection site has no activation tag. The sum of newly
introduced heavy atoms over the K activated connection sites must be
equal to N. To connect new substituents onto a connection site, a
SMARTS representation of the connection site is used to retrieve
compatible activated substituent libraries (Supplementary Fig. S6).
These compatibilities ensure that the formed superstructures comply
with GDB rules that also govern the substituent spaces, leading to
generation of molecules are deemed relevant and chemically stable.

Analysis of enumerated chemical spaces
To estimate the sizes of chemical spaces as a function of the number of
heavy atoms, logarithmic curves were fitted based on the number of
molecules generated by our enumeration algorithm15. The curves were
fitted using Python’s SciPy library.

Crystallization
Aliquots of purified mOGG1 (22mg/mL) were pre-incubated individu-
ally with the compounds 1, 2, 7, 17 (12.5mM), 5 (6.25mM), 8 (1.25mM),
3 (6.5mM), or 4 (6.5mM). All protein samples were crystallized via
sitting drop vapor diffusion in various conditions of Morpheus Screen
(Molecular Dimensions). This included 0.09M Halogens, 0.1M Buffer
System 1 pH 6.5, 30.0% v/v GOL_P4K (mOGG1-compound 1), 0.12M
Monosaccharides, 0.1M Buffer System 2pH 7.5, 30.0% v/v GOL_P4K
(mOGG1-compound 2), 0.12M Alcohols, 0.1M Buffer System 1 pH 6.5,
30.0% v/v GOL_P4K (mOGG1-compound 5), 0.09M Halogens, 0.1M
Buffer System 1 pH 6.5, 30.0% v/v P500MME_P20K (mOGG1-com-
pound 7), 0.12M Alcohols, 0.1M Buffer System 2pH 7.5, 30.0% v/v
EDO_P8K (mOGG1-compound 8), 0.09M Halogens, 0.1M Buffer Sys-
tem 1 pH 6.5, 37.5% v/v MPD_P1K_P3350 (mOGG1-compound 17),
0.03M ethylene glycols, 30% v/v GOL_P4K, 0.1M MOPS/HEPES-Na pH
7.5 (mOGG1-compound 3), or 0.02M monosaccharides, 30% v/v
GOL_P4K, 0.1MMES/imidazole pH 6.5 (mOGG1-compound 4) at 18 °C.
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Protein crystals were fished without additional cryoprotectant and
flash-frozen in liquid nitrogen.

Data collection, structure determination, and refinement
X-ray diffraction data was collected at stations I24 (mOGG1-compound
1 and mOGG1-compound 2), I03 (mOGG1-compound 7 and mOGG1-
compound 17) and I04 (mOGG1-compound 3 and mOGG1-compound
4) of the Diamond Light Source, the BioMAX beamline at MAXIV
(mOGG1-compound 8) and the P13 beamline at PETRA3 (mOGG1-
compound 5). Complete datasets were collected on single crystals at
100K for each complex. All datasets were processed and scaled with
xia269, DIALS70 and Aimless71 within the CCP4 suite72. Molecular repla-
cement was performed in Phaser73 using the structure of mouse OGG1
(PDB ID: 6G3Y) with all ligands and waters removed, as the search
model. Several rounds of manual model building and refinement were
performed using COOT74 and REFMAC575 during which waters and
ligands were incorporated into the structures.

OGG1 glycosylase activity assay
The OGG1 Glycosylase Assay was performed in black 384-well plates
(OptiPlate-384-F, 6007279 PerkinElmer) using final concentrations of
25mM Tris-HCl pH 8.0, 15mM NaCl, 2mM MgCl2, 0.5mM DTT,
0.0022% Tween-20, and 1:1000 dilution of dialyzed fish gelatin (Sigma
G7765), 41 pM human OGG1 enzyme, 2 nM APE1 and 10 nM 8-oxoA:C
substrate in a final volume of 50.5 µL. The 8-oxodA:C substrate was a
duplex oligonucleotide where 5′- FAM-TCTG CCA 8CA CTG CGT CGA
CCT G-3′ was annealed to a 25% surplus of 5′- CAG GTC GAC GCA GTG
CTG GCA GT-Dab-3′ to make sure the annealed DNA is quenched. “8”
signifies 8-oxoA and “FAM” and “Dab” signify fluorescein and dabcyl
(TriLink Biotech). Briefly, compounds dissolved in DMSO were dis-
pensed using an Echo 550 (Labcyte), followed by transfer of enzyme
and substrate solutions manually with a 16-channel pipette or with a
Multidrop (ThermoScientific). The plateswere centrifuged, sealed and
incubated at room temperature overnight (15 h) and read the following
morning in an Hidex Sense plate reader (Hidex Oy) using a 485-nm
filterwith a bandwidth of 10 nm for excitation and a 535-nmfilterwith a
bandwidth of 20 nm for emission.

Base excision repair enzymes and NUDIX hydrolase
selectivity assays
Inhibition of the following enzymes was assessed in the selectivity
assays: apurinic/apyrimidinic endonuclease (APE1), endonuclease
8-like 1 (NEIL1), oxidized purine nucleoside triphosphate hydrolase
(MTH1) and single-strand selective monofunctional uracil DNA glyco-
sylase (SMUG1). BER enzymes were assayed with a similar strategy as
OGG1, using identical DNA sequences surrounding the substrate lesion
and the same reaction buffer containing 2 nM APE1. To assess SMUG1
inhibition, a 375 nM substrate containing uracil opposite guanine and
0.3 U SMUG1 enzyme (M0336 fromNew England Biolabs) was used. To
assess NEIL1 inhibition, a 20 nM substrate containing thymidine glycol
opposite adenine and 10 nMNEIL1 was used. To assess APE1 inhibition,
an UNG2 substrate was pre-treated with E. coli Uracil-DNA glycosylase
(New England Biolabs M0280) to generate an AP-site opposite ade-
nine, whichwas used at 10 nM concentration in the presence of 0.1 nM
APE1. All BER inhibition assays were in the linear range and less than
40% of the total substrate had been consumed at readout. The
experiments were performed in three independent replicates and the
percentage inhibition was calculated relative to the signal of a DMSO-
treated control. To assess MTH1 inhibition, MTH1-catalyzed dGTP
hydrolysis was coupled to inorganic pyrophosphatase (PPase), thereby
releasing inorganic phosphate. The produced free phosphatewas then
detected using the malachite green assay76. These conditions gave
robust assays with Z′-factors between 0.5 and 1, and signal to back-
ground ratios above 3. Substrate concentration at the Km value for the

respective substrate was chosen if possible. Inhibition using 100 μM
compound was tested in reaction buffer (100mMTris-Acetate pH 8.0,
10mM magnesium acetate, 40mM NaCl, 1mM DTT, and 0.005%
Tween-20). Samples were incubated with shaking at 22 °C for 15min-
utes. The reaction was then stopped by the addition of the malachite
green reagent76. Absorbance was read at 630 nm using a Hidex Sense
plate reader after a period of incubation with the methylene green
reagent of 15minutes. The experiment was performed in three inde-
pendent replicates andpercentage inhibitionwas calculated relative to
the signal of a DMSO-treated control.

Differential scanning fluorimetry
The differential scanning fluorimetry (DSF) assay was performed in
white 384-well plates (04729749001, LightCycler 480 Multiwell Plate,
Roche Diagnostics) using final concentrations of 25mM Tris-Acetate
pH 7.5, 50mM CaCl2, 10% glycerol, 1mM DTT, 4 µM human OGG1
protein, 5× SYPRO Orange dye (S6651, Invitrogen, Ex492/Em610) in a
final volume of 10.1 µL/well. Briefly, compounds dissolved in DMSO
were dispensed using an Echo 550 (Labcyte), followed by transfer of
enzymemixmanuallywith a 16-channel pipette. Theplateswere sealed
(04729757001 LightCycler480 Sealing Foil, Roche Diagnostics), cen-
trifuged and read in a LightCycler® 480 (Roche Diagnostics). The
temperature was increased from 20 °C to 85 °C with 10 readings/
degree. Tm values were calculated using an excel template and fitting
to the Boltzmann equation in Prism v.6.07 (GraphPad Software).

Cellular thermal shift assay
CETSA experiments were carried out with intact HL60 cells treated in
culture. Cells were seeded at a density of 350000 cells/mL and treated
withDMSO (0.01%, v/v) or 20 µMtest compound for 2 h at 37 °C and 5%
CO2 in a humidified incubator. Cells were washed once in 1x TBS
(50mM Tris-HCl, pH 7.6, 150mM NaCl), resuspended in 1x TBS
supplemented with protease inhibitors (Roche), and then divided into
30-µL aliquots corresponding to approximately 600,000 cells per
sample in PCR strip tubes. Cells were heated in a Veriti Thermal Cycler
(Applied Biosystems) for 3min at indicated temperatures (tempera-
ture interval consisting of 2 °C increases, starting from 40 °C up to
62 °C) and cooled for 5min at room temperature to allowprecipitation
of denatured proteins. 5x NP-40 buffer was added to the samples and
cells were lysed by performing three freeze–thaw cycles at −80 °C for
3min and at 37 °C for 3min with gentle vortexing between the cycles.
Cell lysates were then centrifuged at 17,000 g and 4 °C for 30min to
remove cellular debris and insoluble proteins. Supernatant was pre-
pared for western blot analysis according to standard procedures.
Briefly, 14μL of the total protein samples were loaded on RunBlue 4-
12% Bis-Tris gels (Westburg) using 4x NuPage LDS Sample buffer
(Thermo Fisher Scientific) supplemented with 10mM DTT (Sigma
Aldrich) and blotted onto nitrocellulose membrane according to
standard protocols. Membranes were blocked with 5% milk-powder in
TBST and incubated with the indicated primary antibodies (α-OGG1
(Abcam, Cat. #ab124741, 1:1000) and anti-mouse SOD1 (G-11) (Santa
Cruz Biotechnology, Cat. #sc-17767, 1:1000) overnight at 4 °C. Incu-
bation with secondary antibody was performed in light-protected
conditions for 2 h at room temperature. Detectionwasperformedwith
the Odyssey CLx Infrared Imaging System (LI-COR). ImageJ was used
for image analysis.

Laser microirradiation assay
Assays measuring recruitment of OGG1-GFP to laser-induced DNA
damage sites in U2OS cells treated with TH5487 and compound 23

were carried out as described previously77. In brief, U2OS cells stably
expressing GFP-tagged wild-type OGG1 were seeded on Ibidi µ-dish
(Ibidi #81166) 24 h prior to the indicated treatment. For laser micro-
irradiation, cells were pre-sensitized with 10 µg/mL Hoechst 33342
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(Thermo Fisher Scientific, Catalog No. 62249) for 10min at 37 °C. To
avoid background fluorescence from phenol red present in the DMEM
culture medium, we exchanged the medium to live cell imaging
medium (Thermo Fisher Scientific, Catalog No. 31053028) supple-
mented with penicillin–streptomycin antibiotics, 10% FBS and 25mM
HEPEScontaining either0.1%DMSOor 10 µMTH5487or compound23

for 1 h. Cells were then transferred to a 37 °Cpre-heated environmental
chamber attached to a Zeiss LSM 780 confocal microscope equipped
with a UV-transmitting Plan-Apochromat 40x/1.30 Oil DIC M27 objec-
tive. To induce DNA damage, a nuclear spot (dimensions: 10 x 10
pixels) was selected using the circular region tool of the ZEN software
(ZEN, Zeiss, Germany) and irradiated using a 405 nm diode laser set to
100% (spot irradiation, 1 iteration, zoom5, and pixel dwell time of 12.61
µs). For quantitative evaluation of the recruitment kinetics, the fluor-
escence intensity at the irradiated spot was corrected for background
and for total nuclear loss of fluorescence over the time course and
normalized to the pre-irradiation value.

NF-κB assay
The inhibition of TNF-α induced NF-κB activation was measured in
HEK293T cells transfected with the pGreenfire NF-κB plasmid. This is a
plasmid that has NF-κB response elements (TRE) coupled to GFP and
luciferase expression.When theNF-κB is activated byTNF-α, it binds to
the TRE and induces GFP expression, and the fluorescence can be
measured in a plate reader. The cells were authenticated with STR
profiling, frozen down and these stocks were used in experiments. The
HEK293T pGF NF-κB cells were kept in DMEM with 5% FBS and 1% P/S
but, when seeded for the assay the medium was changed to DMEM
FluoroBrite with 1% dialyzed FBS. All cell culture reagents were pur-
chased from Thermo Fisher Scientific. Compounds were nano-
dispensed (Echo acoustic dispenser) in 96-well, black/clear, assay
plates (Corning #3904), duplicate plates, in 8-points dose-response
curves, 1:2 dilutions, with DMSO compensation (0.3% DMSO). Cells
were seeded at 30000 cells/well in medium containing 10 ng/mL of
TNF-α (Sigma-Aldrich), except negative control wells which only con-
tained cells inmedium. Cellswere cultured for 24 hours in a humidified
incubator at 37 °C with 5% CO2 after which the GFP fluorescence was
measured in a Sense plate reader (Hidex) with ex485/em535. The RFU
data from the duplicate plates were combined to calculate % inhibition
of NF-κB activation and IC50-values were calculated using XLfit (IDBS).
In parallel with the NF-κB assay, a CellTiterGlo (Promega) cell viability
assay was run to exclude compounds affecting cell viability. Com-
pounds were nano-dispensed (Echo acoustic dispenser) in assay plates
in 11-points dose-response curves, 1:3 dilutions, without DMSO com-
pensation, with duplicates on the same plate. Cells were seeded at
7500 cells/well in 25 µL medium (DMEM FluoroBrite with 1% dialyzed
FBS) containing 10 ng/mL TNF-α and cultured for 24 hours, with col-
umn 24 containing only culture medium. After equilibration to room
temperature, the CellTiterGlo reagents were mixed and 25 µL/well
were added to the cell plate. After 2min mixing of the plate on an
orbital shaker, the platewas incubated for 10min at room temperature
followed by luminescence reading in Sense. The cell viability was cal-
culated compared to untreated control wells and the EC50 values were
determined in XLfit (IDBS). Three independent experiments were
carried out and for each experiment, five individual cells were
recorded.

Cancer cell viability assay
Three different cancer cell lines A2780 (ovarian cancer, ECACC
93112519, female), A549 (lung cancer, ATCC 60150896, male) and
HCT116 (colon cancer, ATCC CCL-247, male), and one immortalized
fibroblast cell line (BJhTERT) as control, were seeded in black/clear
384-well plates (Corning #3764), 50 µL/well, containing 11 concentra-
tions, nano-dispensed, dose-response curves of the test compounds.
A2780, HCT116, and HEK293T cell lines were authenticated with STR

profiling, frozendown, and these stockswereused inexperiments. The
A2780 cells were cultured in RPMI 1640, the A549 and BJhTERT cells in
DMEM, and the HCT116 cells in McCoys 5 A medium. All media were
supplemented with 10% FBS and 1% P/S. All cell culture media, addi-
tives, and reagents were purchased from Thermo Fisher Scientific. The
cell plates were incubated 72 hours in a humidified incubator at 37 °C
with 5% CO2, after which resazurin (Sigma-Aldrich), 10 µL/well, was
added to a final concentration of 10 µg/mL. The plates were incubated
for 6 hourswith resazurin followedbyfluorescence readings in a Sense
plate reader (Hidex), resorufin protocol (ex 544nm/em 595 nm). The
cell viability was calculated compared to untreated control wells and
the EC50 values were determined in XLfit (IDBS).

Metabolic stability in the presence of human liver microsomes
Human liver microsomes were purchased from BioIVT. Metabolic
stability was determined in 0.5mg/mL human liver microsomes at a
compound concentration of 1 µM in 100mM KPO4 buffer pH 7.4 in a
total incubation volume of 500 µL. The reaction was initiated by the
addition of 1mM NADPH. At various incubation times, i.e., at 0, 5, 10,
20, 40, and 60min, a sample was withdrawn from the incubation and
the reaction was terminated by the addition of cold acetonitrile with
warfarin as an internal standard. The amount of parent compound
remaining was analyzed by liquid chromatography coupled to triple
quadrupole mass spectrometry (LC-MS/MS).

Plasma protein binding and plasma stability in human plasma
Pooled human plasma was provided by Uppsala Academic Hospital
and was collected from two donors (non-smoking) (citric acid). In
brief, 0.2mL of the plasma (50% plasma, 50% isotonic buffer) test
solution (typically 10 µM final compound concentration) was trans-
ferred to the membrane tube in the RED insert (ThermoFisher Scien-
tific). 0.35ml isotonic phosphate buffer pH 7.4 was added to the other
side of the membrane. The 96-well base plate was then sealed with an
adhesive plastic film (Scotch Pad) to prevent evaporation. The sample
was incubated with rapid rotation (>>900 rpm) on a Kisker rotational
incubator at 37 °C for 4 h to achieve equilibrium. Prior to LC-MS/MS
analysis the plasma and buffer samples were treated with the addition
of Methanol (1:3) containing Warfarin as an internal standard to pre-
cipitate proteins. The standard curve was created using the plasma
standard. The plate was then sealed, and centrifuged and the super-
natant was analyzed by liquid chromatography coupled to triple
quadrupole mass spectrometry (LC-MS/MS).

Caco-2 cell permeability assay
Caco-2 cell monolayers (passage 94-105) were grown on permeable
filter support and used for transport study on day 21 after seeding.
Prior to the experiment a drug solution of 10 µM was prepared and
warmed to 37 °C. The Caco-2 filters were washed with pre-warmed
HBSS prior to the experiment, and thereafter the experiment was
started by applying the donor solution on the apical or basolateral
side. The transport experiments were carried out at pH 7.4 in both the
apical and basolateral chamber. The experiments were performed at
37 °C and with a stirring rate of 500 rpm. The receiver compartment
was sampled at 15, 30, and 60min, and at 60min also a final sample
from thedonor chamberwas taken to calculate themassbalanceof the
compound. The samples (100 µL) were transferred to a 96-well plate
containing 100 µL methanol and Warfarin as IS and was sealed
until analyzed by liquid chromatography coupled to triple quadrupole
mass spectrometry (LC-MS/MS).

Liquid chromatography coupled to triple quadrupole mass
spectrometry (LC-MS/MS)
The test compounds were optimized on a Waters Acquity UPLC XEVO
TQ-S microsystem (Waters Corp.) operating in multiple reaction
monitoring (MRM) mode with positive or negative electrospray
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ionization. Compounds were optimized by using the QuanOptimize
software (Waters Corp.). The following MS conditions were used:

Transition m/z Dwell time (s) Cone voltage Collision energy

324.4 > 128.04 0.028 10 60

324.4 > 171.03 0.028 10 50

For chromatographic separation, a C18 BEH 1.7 µm column was
used with a general gradient of 5% to 1000% of mobile phase B over a
total running time of 2min. Mobile phase A consisted of 0.1% formic
acid in purified water, and mobile phase B of 0.1% formic acid in 100%
acetonitrile. The flow rate was set to 0.5mL/min and 5 µL of the sample
was injected.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The ZINC15 library is available at https://zinc15.docking.org. The PDB
entry for the mOGG1 crystal structure used for molecular docking
calculations is 6G3Y. All compounds tested are listed in in the Sup-
plementary Information and Source Data File. Chemical identities,
purities (LC/MS), yields and spectroscopic analysis (1H,13C NMR) for
active compounds are provided in Supplementary Information. The
crystallographic data generated in this study have been deposited in
the PDB database under accession codes 7QEL, 7ZG3, 8CEX, 8CEY,
7Z5R, 7ZC7, 7Z3Y, and 7Z5B. Source data are provided with this paper.

Code availability
The UniverseGenerator source code is freely available and can be
found on the following GitHub repository (https://github.com/
carlssonlab/UniverseGenerator). The original code has deposited on
Zenodo (https://zenodo.org/records/14460126). Other scripts to pro-
cess molecular docking results can be found on the following GitHub
repository (https://github.com/carlssonlab/frag2lead).
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