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Enhancing children’s numeracy and
executive functions via their explicit
integration
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GaiaScerif 1,7 , JelenaSučević1,7, HannahAndrews1, EmmaBlakey 2, SylviaU.Gattas1, AmyGodfrey1,

Zachary Hawes3, Steven J. Howard 4, Liberty Kent1, Rebecca Merkley5, Rosemary O’Connor1,

Fionnuala O’Reilly1 & Victoria Simms6

Executive functions (EF) are crucial to regulating learning and are predictors of emergingmathematics.

However, interventions that leverage EF to improvemathematics remain poorly understood. 193 four-

year-olds (mean age = 3 years; 11 months pre-intervention; 111 female, 69% White) were assessed

5 months apart, with 103 children randomised to an integrated EF and mathematics intervention. Our

pre-registered hypotheses proposed that the intervention would improve mathematics more than

practice as usual. Multi-level modelling and network analyses were applied to the data. The

intervention group improved more than the control group in overall numeracy, even when controlling

for differences across settings in EF and mathematics-enhancing practices. EF and mathematics

measures showed greater interconnectedness post-intervention. In addition, disadvantaged children

in the intervention group made greater gains than in the control group. Our findings emphasise the

need to consider EFs in their integration with co-developing functions, and in their educational and

socio-economic context.

Executive functions (“EFs” henceforth) are cognitive skills that help main-
tain goals in mind, inhibit inappropriate responses and think flexibly. In
adults, EFs form an overarching unitary construct that is also separable into
distinct components, working memory updating (“WM”), inhibitory con-
trol (“IC”), and cognitive flexibility (“CF”)1,2. In younger participants,
separable EF skills can be captured, but they cluster into a smaller number of
latent factors, with one or two latent components underlying EF in
preschool3,4. Multiple empirical andmeta-analytic findings highlight robust
and replicable correlations betweenmathematics and EF, both construed as
a holistic construct and as separable components, throughout the primary
school years5–7 and from the preschool period8–15. For example, a meta-
analysis10 found that EF was modelled both as holistic and separate con-
structs related to mathematics achievement in preschool children. In
addition, 3-year-olds’ holistic EF predicted mathematics achievement both
later in the same year, and when they were five years of age8.

Despite this strong correlational and longitudinal evidence, interven-
tions focused on training EF in isolation have failed to yield improvements
in other correlated cognitive domains, includingmathematics16–18. Recently,
meta-analyses and position pieces have highlighted that interventions

integrating EFs and mathematical content are more likely to improve early
mathematics attainment, given thatmathematics requires the integration of
mathematics-specific skills and EF19,20. However, the empirical literature on
integrated EF and mathematics interventions remains limited and requires
further replication, particularly for very young children. A meta-analysis19

identified very few integrated interventions prior to school entry. Some
studies report encouraging evidence of improvements in mathematics fol-
lowing combined mathematics and EF interventions21–23, but others report
less success24,25 or failures to replicate26. Therefore, while integrating EF and
co-developing functions like mathematics has the potential to improve
mathematics, the empirical evidence, particularly in young children,
remains limited and mixed.

Scerif and colleagues20 argued that these inconsistencies dependona lack
of explicit focus on the mechanisms of integration between EFs and mathe-
matics. They hypothesise that for young children who are establishing their
mathematical skills, practising EF challenge in the context of mathematical
content provides opportunities for deeper processing and learning, thereby
enhancing the co-development of EF andmathematics. This proposal focuses
on testing the mechanisms of integrated interventions as a tool to improve
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mathematics achievement, but it is also consistent with broader and general
theoretical frameworks for neurocognitive development, such as the inter-
active specialisation27 or mutualistic/transactional framework6,13,28, in which
the dynamic interplay of domain-general control functions (such as EFs) and
domain-specific skills (such as numerical cognition) promotes their change.

Indeed, large-scale longitudinal data suggest that EF does not act as a
unidirectional influence on mathematics. Instead, these data support mutua-
listic influences between components of EF andmathematics6,13. For example,
working memory updating and cognitive flexibility predict change in mathe-
matical achievement, while at the same time, mathematical achievement
predicts change in working memory updating and cognitive flexibility across
the primary school years6 pointing to the co-development of EF and mathe-
matics.Thismutualistic interplay suggests that intervening in the integrationof
EFandmathematicswould yieldbenefits tomathematics achievement inways
that, thus far, interveningonEFalonehas failed to engender.The current study
aims to test the efficacyof an integrated intervention, at a timewhen these skills
are rapidly developing for very young children.

Early childhood is a period of great interest for integrated EF and
mathematics interventions for theoretical and societal reasons. From a the-
oretical viewpoint,EFandmathematical skills arebothdeveloping rapidly and
bidirectionally relationships from preschool, as detailed above9,13,29, so that
integrated interventionsmay leverage this interplay. In addition, thepreschool
period offers a window of opportunity for societal uplift, as young children’s
skills are rapidly emerging. Intervening at this juncture could lay the foun-
dation with strong executive skills that may benefit their mathematical
learning30, but also more broadly in how well they do at school and beyond.
Indeed, there is evidence that EF andmathematics are not fixed skills, but are
malleable, so that integrated interventionsmay benefit children growing up in
conditions of disadvantage most because they have more to gain from such
experiences31. However, the way in which integrated interventions improve
outcomes for all children remains unclear and must be studied further.

Traditional analyses of the efficacy of intervention trials can fall short of
studying how the interplay between multiple cognitive processes operates,
because they focus on outcome variables in isolation (e.g., testing
improvement in mathematics achievement, but not testing changes in
contributing foundational mathematics, e.g., cardinality, or other skills, e.g.,
executive skills), insteadof describing changeswithin networks of correlated
cognitive skills. Recently, graph-theory-based network analyses have been
championed to complement traditional univariate analyses, to characterise
(changes in) the inter-relations between cognitive functions32. This novel
approach is far less familiar in psychology than it is in other fields of
science33, but it has strong potential value as a tool to investigate how
integrated interventions operate and therefore better understand
intervention-induced change across domains. In particular, network ana-
lysis enables researchers to consider how cognitive processes change in their
inter-relationships following an integrated intervention, in a way that uni-
variate statistics do not. For example, network analyses have been used to
investigate changes in the interconnectedness of EF indices from before to
after an EF-focused intervention in late childhood and adolescence34. This
approach revealed multiple changes that extended beyond changes in
univariate statistics following the intervention. More specifically, children’s
EF network showed bothweaker and fewer connections than the adolescent
networkprior to the intervention.However, post-intervention the children’s
network had denser, more numerous and stronger connections, resembling
the adolescent network. In addition, network analyses have been employed
to test unitary models of EF and their component processes across the
lifespan35. Most recently, network analytic approaches have found that
distinct EFs (e.g., inhibition, working memory updating, cognitive flex-
ibility) differ in their interconnectedness from childhood to adolescence36,
reporting that inhibition is more densely interconnected and central to EF
networks in childhood, whereas workingmemory updating takes this more
central role in adolescence. To our knowledge, networkmodels have not yet
been used tomodel the inter-relations between EF and mathematics, either
naturalistically, or following interventions that integrate EF and
mathematics.

Therefore, there are a number of pressing limitations to the existing
evidence base on integrated EF and mathematics interventions. First, the
published evidence of integrated EF training remains limited, precluding
meta-syntheses of results. This evidence is required to informmore explicit
theories of change, and data on improvements in mathematics following
integrated EF interventions are needed. Second, there remains a clear gap in
understanding how the relationships across executive and mathematical
skills change in the face of fast early development and integrated inter-
ventions. Network analyses can offer novel insights because they are able to
supplement findings of quantitative improvements in individual cognitive
skills, to additionally investigate changes in the relations among them.

The current study evaluated the efficacy of the Orchestrating
Numeracy and the Executive (“ONE”) programme. This programme was
designed to provide early childhood educators with training and supportive
activities integrating EF and mathematics learning. The programme con-
sisted of: (1) professional development (“PD”) for Early Years practitioners,
focused on fostering educators’ understanding of EF in early mathematics,
and (2) an induction into a set of 25 activities, co-developed with educators,
predicated on integrating EF and early mathematics. The activities were
designed to be easily embedded into preschool contexts and routines. The
ONE followed the structure of a similarly paced PD-based intervention
integrating EFs into play-based activities (albeit without a specific mathe-
matics focus) inAustralia (PRSIST37),whichresulted in improvements inEF
for the intervention settings (but not an improvement in mathematics
attainment). The ONE adapted the delivery framework of PRSIST but
combined the EF challenge with mathematics-specific content by generat-
ing new or modifying existing preschool activities. It aligned with the non-
statutory Early Years curriculum guidance in the United Kingdomwith the
support and advice of UK-based Early Years Practitioners. The target
mechanism of change was the explicit integration of the EF challenge
embedded in mathematics activities. Here we evaluate mechanistic
hypotheses about the effects of this integrated EF and mathematics
intervention.

First, we hypothesised that earlymathematics scores would improve to
a greaterdegree for children in the interventiongroup than for a comparison
group of children. This a priori hypothesis and the trial protocol were
detailed in the Open Science Framework [https://osf.io/8y5u6/]. Our pre-
registered hypotheses focused on testing improvements in mathematics
achievement, as education intervention trials have tended to focus on this,
and because previous cognitive studies of transfer effects from EF training
have also used mathematics achievement as a target transfer variable.
However, an improvement in EF itself is also an expected consequence of
integrated mathematics and EF interventions. We, therefore, assessed
improvements across a cumulative index of earlymathematics (our primary
outcome measure), and we also tested improvements in cumulative EF, as
well as separate contributing numerical (e.g., counting, cardinality, ordinal
processing) and EF (e.g., inhibitory control, cognitive flexibility, working
memory) skills. Second, we used network-based approaches to test the
hypothesis that the interconnectedness of EF andmathematicsmeasures, as
indexed by network parameters, changed more in the intervention group
than in the comparison group.

Results
Intervention efficacy
Efficacy analyses focused on an intention-to-treat analytical approach. This
conservative analytical approach treats children allocated to the interven-
tion arm as having received the intervention, even if educators did not
deliver activities to the requested level of adherence, either because this was
not feasible, or because of other constraints. We report information on the
feasibility, acceptability, adherence and implementation quality of the
programme in the supplementary materials.

Mathematics. Unadjusted means, estimated marginal means (with
standard deviations), statistics (F, p) and effect sizes (Hedge’s g) for all
mathematics measures are reported in Table 1. For EYTN, there was a
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Table 1 | Effects of intervention, disadvantage and their interaction on mathematics variables

Measure Group Time 1 Unadj.

Mean (stdev)

Time 2 Unadj.

Mean (stdev)

Effect Estimated Marginal Means (stdev) F ratio P Hedge’s g

Early Years Toolbox

Numeracy(raw score)

Intervent. 28.59 (13.88) 34.91 (14.90) Intervention MCon = 25.99 (14.58); MInt = 32.18 (14.70) F(1,21) = 7.44 0.012 0.42

Control 27.07 (13.69) 33.43 (14.83) EYPP MEYPP_Yes = 22.61 (16.21); MEYPP_No = 33.47(13.26) F(2,210) = 15.08 <0.001 0.77

Int*EYPP MEYPP_Yes_Con = 16.65 (11.32);

MEYPP_Yes_Int = 28.56 (17.42)

F(2,210) = 3.38 0.036 0.64

Count High (maximum count) Intervent. 16.84 (18.31) 23.25 (23.17) Intervention MCon = 15.53 (14.44); MInt = 19.29 (21.09) F(1,25) = 2.00 0.170

Control 15.57 (17.67) 17.91 (9.78) EYPP MEYPP_Yes = 13.66 (20.24); MEYPP_No = 19.44 (17.51) F(2,164) = 2.70 0.070

Int*EYPP MEYPP_Yes_Con = 11.70 (17.25);

MEYPP_Yes_Int = 15.63 (19.77)

F(2,161) = .03 0.967

Give N (score) Intervent. 6.47 (4.66) 8.77 (4.76) Intervention MCon = 5.83 (4.79); MInt = 8.60 (4.80) F(1,27) = 11.25 0.002 0.58

Control 8.00 (4.84) 8.36 (4.76) EYPP MEYPP_Yes = 4.65 (4.93); MEYPP_No = 8.75 (9.17) F(2,282) = 20.63 <0.001 0.49

Int*EYPP MEYPP_Yes_Con = 2.68 (4.61); MEYPP_Yes_Int = 6.61 (4.86) F(2,286) = 1.07 0.343

Number Comparison (proportion

correct)

Intervent. 0.57 (0.19) 0.66 (0.19) Intervention MCon = 0.55 (0.21); MInt = 0.62 (0.19) F(1,32) = 4.58 0.040 0.35

Control 0.54 (0.22) 0.63 (0.19) EYPP MEYPP_Yes = 0.55 (0.19); MEYPP_No = 0.63 (0.20) F(2,216) = 4.20 0.016 0.40

Int*EYPP MEYPP_Yes_Con = 0.48 (0.11); MEYPP_Yes_Int = 0.61 (0.19) F(2,219) = 1.32 0.270

Number Naming (score) Intervent. 11.22 (6.52) 13.00 (5.25) Intervention MCon = 11.47 (5.87); MInt = 11.53 (5.97) F(1,38) = .003 0.956

Control 11.79 (6.29) 13.59 (5.37) EYPP MEYPP_Yes = 9.56 (7.11); MEYPP_No = 13.27 (4.98) F(2,276) = 9.76 <0.001 0.66

Int*EYPP MEYPP_Yes_Con = 8.49 (6.79);MEYPP_Yes_Int = 10.63 (7.16) F(2,278) = 1.98 0.140

Order Processing (score) Intervent. 1.15 (2.84) 2.97 (4.21) Intervention MCon = 1.69 (3.78); MInt = 1.98 (3.68) F(1,27) = .27 0.610

Control 1.75 (3.64) 2.54 (3.92) EYPP MEYPP_Yes = 1.44 (3.39); MEYPP_No = 2.40 (3.38) F(2,187) = 1.92 0.149

Int*EYPP MEYPP_Yes_Con = 0.65 (1.12); MEYPP_Yes_Int = 2.23 (3.93) F(2,190) = 1.75 0.177

BAS – PC (t-score) Intervent. 51.91 (11.41) 53.99 (10.72) Intervention MCon = 50.29 (11.71); MInt = 53.26 (11.09) F(1,27) = 2.99 0.095

Control 51.55 (12.68) 53.98 (10.58) EYPP MEYPP_Yes = 47.27 (13.07); MEYPP_No = 54.24 (10.38) F(2,203) = 10.23 <0.001 0.63

Int*EYPP MEYPP_Yes_Con = 43.31 (10.19);

MEYPP_Yes_Int = 51.23 (13.15)

F(2,206) = 4.26 0.015 0.65

Please note that conditionmeansandeffect size indices for themain effect of EYPPare reportedonly for childrenwhosestatuswas confirmed, and for the interaction effect, they are reported for disadvantagedchildren (EYPPeligible) here, for brevity. Effect size (Hedge’sg) is

also reported for statistically significant effects only, for brevity. Other estimated marginal means are reported in the Supplementary Online Materials (Supplementary Table 2).

EYPPEligible for Early YearsPupil Premium, aUK-based index of economic disadvantage,EYPP_YesEYPPEligible, therefore disadvantaged,ConControl, Int Intervention, Int*EYPP Interaction effect between Intervention andEYPPeligibility,BAS –PCBritish Ability Scale,

Pattern Construction.

Bold and italic values highlight statistically significant effects, associated p values and Hedge's g.
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statistically significant main effect of the Intervention group, driven by
higher improvements in numeracy for children in the Intervention group
compared to children in the Control group (see Fig. 1a). There were also
main effects of the intervention on Give N and Number Comparison,
again driven by higher improvements in the Intervention compared to
the Control Group. EYPP eligibility had a significant main effect on all
mathematics variables except for Count High and Order Processing. For
all main effects, children who grew up at a disadvantage (eligible for
EYPP) had significantly lower scores compared to non-EYPP-eligible
children.

In addition, for EYTN, there was also a statistically significant Inter-
vention * EYPP interaction effect (see Fig. 1b). For children with EYPP
eligibility, changes in EYTN scores were larger in the Intervention group
(T1 = 25.04; T2 = 32.07) than in the Control group (T1 = 14.86, T2 = 18.48,
p = 0.001). In addition, EYPP-eligible children scored less well on this
overall numeracy measure than non-eligible children in the Control group
(p < 0.001), but this difference was reduced for children in the Intervention
group (p = 0.026). Furthermore, for spatial skills (as indexed by BAS3-PC),

there was also an Intervention * EYPP eligibility interaction effect
(see Fig. 2). Children with EYPP eligibility improved more in the Inter-
vention group (T1 = 48.49; T2 = 53.98) than in the Control group
(T1 = 42.31; T2 = 44.30). Children with EYPP eligibility had poorer spatial
skills than children without EYPP eligibility in the Control group, p < 0.001,
butnot in the interventiongroup,p = 0.366. In addition, childrenwithEYPP
in the Intervention arm had better spatial skills than children with EYPP in
the control group, p = 0.006. None of the other main or interaction effects
reached statistical significance.

Executive functions. The unadjusted condition means, estimated
marginalmeans (with standard deviation), statistics (F, p) and effect sizes
(Hedge’s g) for EFs measures are reported in Table 2. There was a main
effect of the intervention on the Corsi Blocks Score (see Fig. 3a), but there
were no other statistically significant main intervention effects. EYPP
eligibility had a significant main effect on all EF variables, except for
Rabbits and Boats. For all main effects, children who grew up at a dis-
advantage (eligible for EYPP) had significantly lower scores compared to
EYPP-not-eligible children and children whose status was unknown.

In addition, there was a significant Intervention * EYPP eligibility
interaction effect for Corsi Blocks, forMr Ant and for the EF latent variable
(Figs. 3b and 4). For Corsi Blocks, the interaction effect was driven by
significantly greater changes in Corsi Blocks scores for children who were
EYPPeligible in the InterventionGroup (T1 = 3.68; T2 = 4.70) compared to
EYPP-eligible children in the Control group (T1 = 2.58; T2 = 2.63,
p = 0.020). EYPP-eligible children in the Control group scored lower than
non-EYPP-eligible children (p < 0.001), but this difference was smaller for
EYPP-eligible children in the Intervention group (p = 0.011). For Mr Ant,
the interaction effectwas againdrivenbyagreater change in scores forEYPP
children in the Intervention group (T1 = 1.35; T2 = 1.50) compared to the

Fig. 1 | Statistically significant main effect of Intervention and Intervention *

EYPP eligibility Interaction Effect for Numeracy Scores. Numeracy scores

(EYTN) in the control and intervention group, split by assessment time (before and

after the intervention) first presented together (a) and then split into EYPP eligible

and children not eligible for EYPP (b). Box plots depict the median, median,

minimum, maximum and interquartile range, and superimposed violin plot

showing distribution of the data. Black dots represent individual children. In (b), the

vertical dimension represents the comparison between control and intervention

arm, on similarly scaled axes.

Fig. 2 | Statistically significant effects for British Ability Scale - Pattern Con-

struction scores. British Ability Scale - Pattern Construction (indexing spatial

ability) in the control and intervention group, split by assessment time (before and

after the intervention) and into EYPP eligible and children not eligible for EYPP. Box

plots depict the median, median, minimum, maximum and interquartile range, and

superimposed violin plots showing the distribution of the data. Black dots represent

individual children. The vertical dimension represents the comparison between the

control and intervention arms, on similarly scaled axes.
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Table 2 | Effects of intervention, economic disadvantage and their interaction on EF variables

Measure Group Time 1 Unadj.
Mean (stdev)

Time 2 Unadj.
Mean (stdev)

Effect Estimated Marginal Means (stdev) F ratio P Hedge’s g

Corsi Blocks (score) Intervention 4.84 (2.80) 5.60 (2.79) Intervention MCon = 4.48 (2.64); MInt = 5.34 (2.81) F(1,28) = 4.55 0.042 0.31

Control 5.18 (2.65) 5.17 (2.64) EYPP MEYPP_Yes = 3.40 (2.95); MEYPP_No = 5.55 (2.55) F(2,224) = 19.23 <0.001 0.80

Int*EYPP MEYPP_Yes_Con = 2.60 (2.13); MEYPP_Yes_Int = 4.19 (3.15) F(2,225) = 3.87 0.022 0.56

Mr Ant (score) Intervention 1.29 (0.70) 1.48 (0.82) Intervention MCon = 1.28 (0.77); MInt = 1.38 (0.77) F(1,24) = .56 0.460

Control 1.35 (0.76) 1.55 (0.77) EYPP MEYPP_Yes = 1.16 (0.78); MEYPP_No = 1.48 (0.75) F(2,232) = 4.18 0.016 0.42

Int*EYPP MEYPP_Yes_Con = 0.90 (0.76); MEYPP_Yes_Int = 1.42 (0.78) F(2,236) = 4.51 0.012 0.66

Rabbits & Boats (post-

switch score)

Intervention 3.36 (4.17) 5.26 (4.26) Intervention MCon = 4.57 (4.29); MInt = 4.54 (4.31) F(1,28) = 0.001 0.973

Control 4.47 (4.22) 5.64 (4.30) EYPP MEYPP_Yes = 4.11 (4.28); MEYPP_No = 5.00 (4.32) F(2,267) = 1.08 0.340

Int*EYPP MEYPP_Yes_Con = 4.22 (4.06); MEYPP_Yes_Int = 4.01 (4.21) F(2,269) = 0.164 0.849

Go-no-go (impulse

control score)

Intervention 0.49 (0.20) 0.59 (0.20) Intervention MCon = 0.54 (0.20); MInt = 0.54 (0.21) F(1,24) = 0.03 0.863

Control 0.51 (0.19) 0.59 (0.21) EYPP MEYPP_Yes = 0.49(0.22); MEYPP_No = 0.56(0.21) F(2,153) = 3.96 0.021 0.33

Int*EYPP MEEYPP_Yes_Con = 0.48 (0.20); MEYPP_Yes_Int = 0.49 (0.21) F(2,153) = 0.09 0.918

EF latent factor (factor scores) Intervention −0.09 (0.99) 0.004 (0.97) Intervention MCon =−0.21 (0.10); MInt =−0.01 (0.98) F(1,26) = 1.88 0.183

Control 0.10 (1.00) −0.004 (0.99) EYPP MEYPP_Yes =−0.56(1.01); MEYPP_No = 0.131(0.97) F(2,245) = 14.03 <0.001 0.70

Int*EYPP MEEYPP_Yes_Con =−0.84 (0.93);

MEYPP_Yes_Int =−0.27 (1.04)

F(2,245) = 3.22 0.042 0.57

Please note that conditionmeansandeffect size indices for themain effect of EYPPare reportedonly for childrenwhosestatuswas confirmed, and for the interaction effect, they are reported for disadvantagedchildren (EYPPeligible) here, for brevity. Effect size (Hedge’sg) is

also reported for statistically significant effects only, for brevity. Other estimated marginal means are reported in the Supplementary Online Materials (Supplementary Table 3).

EYPP Eligible for Early Years Pupil Premium, a UK-based index of economic disadvantage, Int*EYPP Interaction effect for Intervention and EYPP status, Con Control, Int Intervention.

Bold and italic values highlight statistically significant effects, associated p values and Hedge's g.
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Control group, (T1 = 91; T2 = 93, p = 0.009). In addition, EYPP-eligible
children scored less well than EYPP non-eligible children in the Control
Group (p < 0.001), but not in the intervention group (p = 0.932). For the
latent EF variable, the interaction effect was driven by significantly greater
change factor scores for childrenwhowereEYPPeligible in the Intervention
Group (T1 =−0.38; T2 =−0.17), compared to EYPP-eligible children in
the Control group, (T1 =−0.78; T2 =−0.90, p = 0.021). EYPP-eligible
children in the Control group had lower EF factor scores than non-EYPP-
eligible children (p < 0.001), but this differencewasnot significant forEYPP-
eligible children in the Intervention group (p = 0.170). None of the other
main or interaction effects reached statistical significance.

Intervention mechanisms: network analyses
The above analysis revealed that the intervention led to improvements in a
number of individualmathematics andEF indices. Tobetter understandhow
the intervention impacted the relations between EF and maths skills, we
complemented these univariate analyses with network analysis. The network
analysis revealed that EF andmathematics are highly connected. In addition,
the structure and strength of edges differed in the T2 intervention network
compared to the T2 control network (see Fig. 5, and Supplementary Fig. 3 for

bivariate correlations across all variables). The T1 network included both sets
of children who were later randomised to either control or intervention
settings. This is because the smallest network at the first time point (the
network for control children,N = 90) failed to converge, likely because of the
small sample andbecause children atTime1were younger andmore variable
in performance than they all became5months later.We therefore refer to the
network prior to the intervention as the T1 overall network throughout. The
T2 control network was more similar to the T1 overall network than the T2
intervention network, as indicated by their correlation coefficients (T2 con-
trol network correlation with T1 overall network: r = 0.714; T2 intervention
network correlation T1 overall network: r = 0.566), showing that the inter-
vention network differed from Time 1 more than the control network.

A focus on additional network parameters gave further insights into
the ways in which this difference operated (see Fig. 5). First, nodes in the T2
intervention network showed increased centrality (i.e., increased con-
nectedness), as indexed by higher Strength, Expected Influence, Closeness,
andBetweenness, of severalmathematicsnodes (Fig. 5b). For example, there
was greater connectedness for Number Comparison and Order Processing
after the intervention, measures that require high integration of EF and
mathematical knowledge compared to other measures (e.g., Number
Naming or Count High, which rely on rote learning). In turn, these dif-
ferences supported the view that integrated EF and mathematics activities
strengthen the connectedness of these skills. Second, the strength and
connections of bridge nodes between EF and mathematics clusters differed
in the T2 intervention network compared to the T2 control network. For
example, Corsi Blocks (an index ofmaintenance inmemory) was identified
as the main EF bridge node, and the EF node that was most strongly
connected to all mathematics nodes (Fig. 5c). Corsi Blocks was most
strongly connected to BAS – PC (an index of spatial skills) in the T1 overall

Fig. 3 | Statistically Significant Effects for Corsi Block scores. Statistically sig-

nificant Main Intervention Effect and Intervention * EYPP Interaction Effect. Corsi

Block scores (indexing maintenance in working memory) in the control and

intervention group, split by assessment time (before and after the intervention) first

presented together (a) and then split into EYPP eligible and children not eligible for

EYPP (b). Box plots depict the median, median, minimum, maximum and inter-

quartile range, and superimposed violin plots showing the distribution of the data.

Black dots represent individual children. In (b), the vertical dimension represents the

comparison between the control and intervention arms, on similarly scaled axes.

Fig. 4 | Statistically Significant Intervention * EYPP eligibility Interaction Effect

for Mr Ant. Mr Ant scores (indexing maintenance in working memory) in EYPP

eligible and children not eligible for EYPP, in the control and intervention group,

split by assessment time (pre- and post-intervention). Box plots depict the median,

median, minimum, maximum and interquartile range, and superimposed violin

plots showing the distribution of the data. Black dots represent individual children.

The vertical dimension represents the comparison between the control and inter-

vention arms, on similarly scaled axes.

https://doi.org/10.1038/s41539-025-00302-9 Article

npj Science of Learning |            (2025) 10:8 6

www.nature.com/npjscilearn


Fig. 5 | The EF-mathematics networkmodel.The EF-mathematics networkmodel.

aNetwork structure for the overall sample prior to the intervention (Time 1) and in

the control and the intervention group (Time 2). b Centrality indices for the three

estimated networks: the Strength index refers to the absolute sum of all edges to a

particular node, the Expected Influence index takes into account an edge sign

(positive or negative), Betweenness refers to how often a node is on the shortest path

between other nodes, Closeness refers to a mean distance from a node to all other

nodes in the network. Values on the y-axis represent the standardised centrality

coefficients (z-scores) for each centrality measure. The x-axis depicts the network

nodes. c Bridge nodes (nodes in one domain most strongly connected to all nodes

from the other domain): Corsi Blocks and EYTN are the strongest bridge nodes

across networks. The first four nodes represent EF tasks (orange background) and

the later 7 nodes represent mathematics tasks (blue background).
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network (r = 0.307) and T2 control network (r = 0.251), but it was most
strongly connected to EYTN (an index of overall numeracy) in the T2
intervention network (r = 0.335). Furthermore, the strength of the Corsi
Blocks bridge node was higher in the T2 intervention group than in the T2
control group, suggesting that the intervention might have contributed to
the integration, increasing the impact of EFnodes onmathematics nodes. In
turn, this added support to the suggestion that integrated approaches sup-
port the co-development of EF and mathematics.

Finally, data-driven cluster analyses identified three clusters in all three
networks (Fig. 6), but the structureof clusters (i.e., thenodeswhich comprise
each cluster) was more similar for the T1 overall network (Fig. 6a) and T2
control networks (Fig. 6b), than for the T2 interventionnetwork (Fig. 6c). In
the T2 intervention network, most EF and mathematics nodes grouped
together in a big cluster (Order Processing,NumberComparison, Rabbits&
Boats, Go/No-Go, BAS – PC and Mr Ant), and EYTN and Corsi Blocks
formed a central cluster. Additional findings on bridge nodes and cluster
differences, consistent with greater integration in the T2 intervention net-
work, are detailed in the Appendix.

Discussion
The present study aimed to evaluate the efficacy of an integrated EF and
mathematics intervention in improving early numeracy outcomes for
children. Previous research points to concurrent, longitudinal, and trans-
actional dynamics between early numeracy and EF6,9,11,13–15,38, but inter-
ventions that have focused on executive functions in isolation have tended
not to result in improvements in correlated functions17,18. Recent reviews
have hypothesised that interventions integrating executive challenge within
the targeted domain(s) – in this case, mathematical content – have the
potential to improve early numeracy most effectively19,20. These proposals
also connectwithbroader frameworks of neurocognitive development, such
as interactive specialisation27 andmutualistic28 or transactional views6,13. Yet
empirical evidence on the efficacy of integrated EF interventions, for young
children in particular, has been more limited and mixed. Moreover, the
relationships between specific numerical and specific EF preschool skills
both prior to and following interventions have beenunder-investigated thus
far, as most studies focus on multi-componential indices of mathematics
achievement or EF factors.

We hypothesised that an integrated EF and mathematics intervention
would result in improvements in mathematics. In the current study, an
integrated intervention resulted in a greater differential change in an overall
early numeracy measure for children in the intervention arm compared to
those in the control group. Our primary hypothesis had focused on overall
mathematics achievement because this has been the target of previous
educational interventions and studies of transfer post-EF training, but
children in the intervention group also improvedmore than children in the
control grouponEFmeasures, particularly forworkingmemory indices and
in the context of economic disadvantage. Our efficacy findings therefore
support our hypothesis, even when modelling baseline practice-as-usual
differences across settings in the level of support offered by educators to
children in their care. The beneficial effects of integrating earlymathematics
and EF on mathematics add to a growing body of evidence in favour of
integrated interventions39. Moreover, our study addressed calls to gather
more evidence on the integration of domain-specific and domain-general
co-developing skills, in order to understand the successes and failures of
interventions19,20,40. Although we did not collect neural or long-term long-
itudinal data, our findings are also consistent with broader theoretical fra-
meworks of neurocognitive development and longitudinal data that
emphasise the integration of co-developing skills over time, both
generally27,28 and specifically in the context of EF and mathematics6,13.

Complementing efficacy analyses that focus on variables in isolation,
our network-based approach showed that there was a high degree of
interconnectedness between EF skills themselves, and between EF and
mathematics skills. The highdegree of interconnectedness is consistentwith
previous data on EF35 and EF and mathematics10 in the preschool years. In
addition, the interconnectedness was higher in the post-intervention net-
work. The EF-mathematics post-intervention network for children in the
intervention group differentiated from the pre-intervention network to a
greater degree in terms of overall similarity, centrality indices, bridge nodes
and data-driven clusters of nodes compared to the Time 2 control group’s
network. These findings point to additional benefits that would not be
expected from simply addressing either EF or mathematics on their own.
The efficacy-based findings and network analyses provided two com-
plementary approaches that, together, indicate that the integrated EF and
mathematics intervention did not simply improve outcome variables in
isolation, but also changed their interconnectedness. This might be because
children practised EF and mathematics skills together to a greater degree
than in practice-as-usual.

One of the key benefits of graph-theory-based approaches is that they
model intercorrelations between multiple variables, rather than treating
them in isolation32. Network analyses offer a strong complementary alter-
native to data reduction approaches such as exploratory or confirmatory
factor analyses that have come under criticism recently41. This is because
networks do not only model shared variance, but they also represent cor-
relations between nodes once all others have beenmodelled42. Our findings

Fig. 6 | Network clusters. Network clusters (a) at the start of the study (T1 overall

network) and at Time 2 (T2) for b the control group and c the intervention group.

There were three data-driven clusters identified across the networks, with cluster

membership differing across the networks.
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are consistent with the increases in connectedness reported for another
study investigating inter-relations between distinct EF nodes after an EF-
focused intervention in older children and adolescents, with the network for
children in the intervention group demonstrating network indices that were
more similar to the baseline adolescent network than children in the control
group34. The current post-intervention intervention network also differ-
entiated from the control network at Time 2 in terms of lower overall
similarity to the Time 1 overall network, it displayed greater centrality
(connectedness), stronger bridge nodes and different data-driven clusters of
nodes, supporting the suggestion that an intervention bringing EF and
mathematics together fosters the co-development of these skills.

Understanding not only whether integrated interventions work for all
children, but also whether children from different socio-economic back-
grounds benefit differently from them, is very important. In the current
study, children growing up in conditions of economic disadvantage scored
lower on most of our numeracy and EF variables, but, when in the inter-
vention group, they improved more than children who were also at an
economic disadvantage, but in the control group. These greater benefits
extended to overall numeracy, spatial skills, visual short-termmemory skills
and a latent EF variable. The lower performance on EF and mathematics
tasks in children living in poorer socio-economic circumstances is con-
sistent with prior research43–45. Risks for lower EF and mathematics per-
formance are likely to co-occur with economic disadvantage12,46. However,
strong EF can act as a protective buffer and predictor of good mathematics
performance at school entry15,38. Crucially, inequalities in EF and mathe-
matics are likely to depend on a complex host of factors, some of whichmay
be very hard to modify (e.g., systemic barriers to access to resources, per-
vasive environmental stressors, etc.)47.However, other factors are likely to be
modifiable through changes in policies and educational opportunities in
early years settings (such as opportunities to practice mathematical
activities44, support for parents48, high-quality early years support49). In this
study, exposure to an integrated EF andmathematics intervention benefited
the sample of children who were the most economically disadvantaged,
supporting the view that greater opportunities for exposure andpractice can
improve bothEF andmathematics in the context of economic disadvantage.
These findings are also consistent with the greater success of curriculum-
based interventions in improving EF and/or mathematics for children who
are experiencing more economic disadvantage than for children experien-
cing less severe disadvantage31,50. We believe that curriculum-based
approaches are promising for levelling the playing field early on before
attainment gaps set in and widen. The approach is advantageous as it does
not involve changing parenting behaviours, particularly for parents who
may already be under-resourced with limited time.

Togetherwith thesepositiveoutcomes, there are limitations andmuch-
needed future research before we have a good understanding of integrated
interventions such as The ONE programme. As a first limitation, here we
contrasted the intervention regime with a practice-as-usual control group,
rather than a control group engaged in a different intervention regime. We
did this explicitly because ethically we felt it was most appropriate to first
demonstrate the feasibility and acceptability of a newly developed inter-
vention programme, as well as its efficacy, before contrasting it with another
regime.Theneed for anactive control groupwas reducedby the fact that our
activities were delivered by the classroom educators, rather than a novel set
of adults (e.g., researchers) who might make children’s experience very
different to practice-as-usual. In addition, the activities did not involve the
use of unusual manipulatives and media. This is important because it
reduces the possibility that any improvement could depend on increased
attention to a novel set of objects or new researchers interacting with chil-
dren in each classroom. Instead, educators integrated activities into their
everyday practice. In addition, we reasoned that conceiving “practice-as-
usual” in educational intervention studies as “non-intervention”may in and
of itself be misguided. The pre-existing educational environment on which
an intervention is overlaid offers active elements that must be measured,
rather than ignored. This was indeed why we characterised the educational
differences across all settings, using an adaptation of standardised

observational measures of the educational environment and pedagogy used
in adult/child interactions (the Sustained and Shared Thinking and Emo-
tional Wellbeing Scale, SSTEW51). We then modelled these differences
analytically, to study whether The ONE added to variation in educational
contexts.

However, future studies could compare integrated interventions such
as The ONE programme directly with isolated EF interventions, to better
understand whether improvements in mathematics or EF are due to the
mathematical or EF elements of the intervention, or due to their integration.
The additional contrast with an active, but not integrated, EF comparison
regime, would further isolate the mechanisms underpinning whether and
how integrated interventions aremore effective. For example, a comparison
group working on EF activities without mathematical content (e.g.,
PRSIST37, with a focus onEFandnot integratedEF andmathematics)might
show changes in EF nodes, but more limited or no changes in the edges
connecting EF and mathematics nodes. A further alternative would be to
contrast different integrated regimes (e.g., EF and mathematics, as in The
ONE programme, and EF and another co-developing skill, such as oral
language) in terms of their general and specific benefits to EF and the skills
with which EF is integrated. At present, our findings point to preschool EF
andmathematics as sets of processes being in a state of dynamic interplay as
shownby all our networks. On thewhole, whilewe believe that independent
effects ofmathematics training and EF trainingmay be empirically tractable
and statistically measurable, interactions and dynamics best reflect both
longitudinal data from other studies and our intervention effects.

A second limitation is that our study was not designed to explicitly pit
against each other different latent factor accounts of EFs (e.g., a unitary vs
differentiated model), as measuring different later factors would have
required at least two EF observed indices per component EF skill3,4. Our
protocol aimed to provide breadth in both EF and mathematics, and it was
therefore simply unfeasible to test our very young children withmanymore
EF tasks pre- and post-intervention, in the time available. However, by
virtue of network analysis, we do report additional and novel relationships
between observed (although not latent) EFs with each other. Within the
limited context of our four observed variables, EF indices were highly cor-
related with each other, as previously reported for pre-schoolers3,4, sug-
gesting that either measuring separable EFs in this age group is very hard
with the current measures available, or simply that EFs cluster together
much more closely at this stage. In addition, Corsi Blocks played a central
role as anodewithin theEFnetwork, a very interestingfindingbecauseother
network analyses of EF later in life have pointed to cognitive flexibility
having increasing centrality in older childhood and adolescence35. Fur-
thermore, distinct EF components clustered differently with component
mathematics skills before the intervention compared to later, suggesting
both unity and diversity in the relationships between EF and mathematics.
In turn, this diversity is consistent with recent longitudinal data in the
primary school years6. Network analyses have recently been used to study
age-relateddifferences in the structure of EFs fromchildhood and across the
lifespan35,36. To our knowledge, these methods have not been employed to
investigate EF and mathematics networks at any age. Future work in pre-
schoolerswill need tomeasure larger samples andanevengreaternumberof
age-appropriate EF and mathematical tasks than we did, to study rela-
tionships between both observed measures of EF and mathematics, and in
latent factor structures of different complexity.

A third needed future direction is to replicate the intervention benefits
for children growing up in conditions of economic disadvantage by
broadening howwe approach disadvantage. By using EYPP eligibility as an
index of disadvantage, the disadvantage here was simply operationalised as
low income.Abroaderoperationalisation, goingbeyond low incomeonly, is
needed52. It would be helpful to extend this to look at parental education,
family resources, cultural practices related to learning, and the quality of
early years setting. Furthermore, in the current study, benefits for children at
economic disadvantage varied across indices of mathematics and EF: in the
context of disadvantage, children exposed to The ONE programme bene-
fited more than children in the control group on overall early numeracy,
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spatial processing and visual short-term memory indices, but not on other
measures. Potential explanations start with measurement considerations:
perhaps children at economic disadvantage had more “room to grow” on
these measures. However, explanations also extend to greater “integration
practice”: perhaps integrating space and shape games with EF may have
occurred more frequently than in practice-as-usual, in particular for dis-
advantaged children in the intervention. The differential stronger benefits
for some skills compared to others require further formal investigation.

Finally, a further required step is to test whether the current benefits of
The ONE programme are replicated in a larger sample of diverse children
and settings. This is because the current sample of disadvantaged children
was relatively small, although it exceeded the national United Kingdom
average of EYPPeligibility. Furthermore, herewe could only control for, but
not model explicitly, the impact of diversity across settings. A replication of
the programme with a larger number and more varied types of preschool
settings is important to examine the interplay between children’s char-
acteristics, preschools’ characteristics, and intervention success. A future
large-scale trial is necessary to test these multiple factors and their interplay
with sufficient statistical power. This will allow for a greater understanding
of whether and how the intervention is most effective when it has gone
to scale.

In conclusion, executive functions are known to correlate strongly
and robustly with co-developing functions such as early mathematical
skills, but interventions that have focused on training EF in isolation have
thus far failed to show reliable improvements in early mathematics.
Interventions that integrate EF with co-developing functions hold more
promise, but greater evidence about their efficacy, particularly for chil-
dren growing up at a disadvantage, and a better understanding of their
mechanisms, are required. Here, network analyses pointed to greater
changes in the EF-mathematics interplay associated with the interven-
tion than with the simple passage of time. In combination, these findings
point to the need to carefully consider and leverage the interplay between
EF and co-developing cognitive domains, rather than intervening on
these cognitive functions in isolation.

Methods
Ethics approval statement
This cluster randomised controlled trial (RCT) received research ethics
approval from the Central University Research Ethics Committees of the
University of Oxford (R68839/RE008: Fostering Resilience by injecting
executive challenge into early maths). Early Years education settings opted
into the study after receiving information about all its elements. Parents and
guardians decidedwhether to opt out of the study by communicating this to
settings, preserving their anonymity. Although informed consent to take
part in studies is a frequent mode of consent, the research ethics committee
waived this requirement exceptionally in this case andpermitted the opt-out
model of participation because it is more likely to represent families and
children from socio-economically disadvantaged backgrounds in long-
itudinal designs53.

Participants: children and settings
The study sample consisted of 193 children (Mage at
baseline = 47.2months, range = 41–54; 111 females; reported ethnicity: 69%
White, 16.1% Asian, 10.3% Multiple Ethnic Groups, 2.3% Black, 2.3%
Other). Child demographics by intervention and control group are reported
in Table 3. Economic disadvantage was identified by using eligibility for
Early Years Pupil Premium (EYPP). Eligibility for this programme in
England includes a family annual incomebelowGBP16,190 and/ormeeting
other high-risk criteria (e.g., asylum seeker status). EYPP eligibility is,
therefore, an index of economic disadvantage, although it may under-
estimate disadvantage because parents who are eligible do not all apply (for
reasons associated with stigma, social desirability, and/or administrative
barriers in the application process). EYPP eligibility was assessed based on
reporting by the child’s nursery school (N = 147) and parent-reported
income (N = 77). Of the 161 children (83.4% of the sample) for which these
data were available, 24.8% (N = 40) were deemed eligible for EYPP (higher
than the 14% national UK average for 2022). Of note, when the study was
conducted, all 3- to 4-year-olds in England were eligible for at least 15 h of
free preschool, whether they attended a private setting or not, making
preschool an appropriate environment to target disadvantaged, because
preschool was accessible to all. The control group and the intervention
group were well-matched in terms of age in months, sex, EYPP eligibility
and school readiness (see Table 3).

Fifty-eight settingswere approached to take part in this research on the
basis of geographical spread and feasibility of travel from Oxford, of which
20 (34.5%) consented to take part (see CONSORT diagram, Fig. 7). Four of
those services took part in an initial co-development phase of the research,
with the other 16 participating in this RCT evaluation of The ONE Pro-
gramme reportedhere. Settingswere randomised to either the control group
or the intervention group by a research team member who had not inter-
acted with any of the settings, stratifying on the basis of setting size (large/
small), setting type (private or not) and UK-based neighbourhood dis-
advantage metrics (the Indices of Multiple Deprivation (IMD) deciles and
Income Deprivation Affecting Children Index (IDACI) based on the
postcode of the preschool). The process allocated 8 settings to the inter-
vention and 7 to the control group (one control setting withdrew before the
pre-intervention baseline due to ongoing COVID-19 pressures), well-
matched on stratification variables (see Table 4).

In addition, prior to randomisation and to pre-intervention child
assessments, settings were observed via a half-day observation of the
interactional quality of the Early Years environment and interactions, using
the Sustained and Shared Thinking and Emotional Wellbeing Scale
(SSTEW51). The SSTEW scale was developed to assess the quality of inter-
actions between adults and children in early years childhood education
settings, and its overall score predicted early numeracy indices in a large
sample of Australian pre-schoolers51. We supplemented SSTEW with
bespoke mathematics observation items, capturing interactional quality in
the context of counting and cardinality, shape and spatial awareness, pat-
terning and ordering, and numerical knowledge. This observation schedule

Table 3 | Summary of demographic information for control and intervention children

Measure Control Intervention Difference

Number of participants (N) 90 103

Age pre-intervention (months, SD) 47.2 (0.36) 47.3 (0.37) n.s. (p = 841)

Sex (% female) 56.7 58.3 n.s (p = 824)

EYPP eligibility (% eligible) 21 28 n.s. (p = 406)

Special educational needs (SEND) (%) 6.7 4.9 n.s. (p = 497)

English spoken at home (%) 80 68 n.s. (p = 155)

Average BESSI score 1.16 1.19 n.s. (p = 329)

Forchildren forwhom informationwasnot returned, thedatawere treatedasunknown.Ethnicitywas reportedby (voluntary) completionof aparentquestionnaire. 87parents (45%) returned this information.

The Brief Early Skills and Support Index (BESSI, Hughes et al.,63) is a teacher-reported measure of school readiness, with higher scores representing lower school readiness. Items cover: (1) behavioural

adjustment, (2) languageandcognition, (3) daily living skills, and (4) family support. Each item isgivenascoreof 1 (strongly agreeor agree) or 2 (stronglydisagreeordisagree),with ahigher score representing

more problem behaviours.
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yielded a score per setting that allowed us to evaluate setting comparability
in the adult support that was already provided to children in each setting. In
addition, it allowed us tomodel the effects of our integrated intervention on
children while controlling for how children were nested in settings that
varied in terms of baseline interactional quality (see Analysis Plan). Settings
in the control and intervention groups were well-matched in terms of the
quality of Early Years interactions (Mintervention = 4.27, SD = 1.48;
Mcontrol = 4.01, SD = 1.85).

Procedure: intervention, control group, pre- and post-
intervention assessments
The intervention protocol was co-developed with early years practitioners
and consisted of: four weekly 30-min face-to-face interactive workshop-
style PD sessions with Early Years Practitioners followed by eight weeks
remaining weeks. The four sessions supported practitioners’ explicit
understanding of how earlymathematics and EF co-develop, introduced 25
Mathematics+ EF activities and explained how EF can be embedded into a

Fig. 7 | CONSORT diagram. CONSORT diagram

describing the flow of the study, from recruitment to

endline assessment.

Table 4 | Summary of characteristics for control and
intervention settings

Measure Control
settings

Intervention
settings

Difference

Number of settings 7 8

IMD (SD) 5.5 (2.62) 5.5 (2.14) n.s. (p = 1.0)

IDACI (SD) 5.0 (2.39) 5.0 (2.82) n.s. (p = 1.0)

Average number of

children per

setting (SD)

30.7 (25) 30.9 (21) n.s. (p = 725)

Setting type (%

private)

62.5 42.9 n.s. (p = 317)

Characteristics of settings volunteering into the study.

IMD Index ofMultipleDeprivations, IndicesofMultipleDeprivationdecile, IDACI IncomeDeprivation

AffectingChildren Index decile, with scores ranging from 1 to 10, with lower scores indexing greater

deprivation.
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range of routine early mathematics learning activities. All activity cards
described theirmathematical content and executive demands explicitly. The
activities ranged from EF-enhanced modifications of common early
childhood games (e.g., “What’s the Time Mr Wolf?”, with embedded
executive demands – e.g., “We do not walk if Mr Wolf says… ‘it’s 2
o’clock’”), to more novel activities introducing challenge in EF and
mathematics through play (e.g., “Number Robot”, a handmade cardboard
function machine requiring cognitive flexibility to apply mathematical
functions54). All activities started with mathematical content and EF chal-
lenge at a base level. Instructions and training were provided to scale
complexity as the activities became familiar to children.

Activities were designed to use low-cost and readily available
materials. In consultation with pilot settings and early years specialists,
the activities were explicitly designed to be chosen flexibly each week by
teachers, rather than in a fixed order, to suit each setting’s context, given
the diversity of setting types (e.g., presence or absence of outdoor space,
preference for small or large group activities), thereby maximising
acceptability and feasibility. Preschool staff were asked to implement a
minimum of three of these activities per week with 3- to 4-year-old
children at their setting, for the 12-week duration of the programme. The
intervention was carried out at the whole-class level and was not targeted
towards specific groups of children.

Despite flexibility and choice, there were core demands made of all
educators, and these core demands reflected the theory of change of the
intervention that was explicitly explained to classroom educators. First, the
three activities undertakenwithin aweek should be chosen to target breadth
in mathematical content, by choosing one activity in each of the three key
areas of mathematics represented in the activity pack (numbers and
counting, patterns andordering, space and shapes). Practitionerswere asked
to play the activities in their basic form in weeks 1–8 of the programme, but
in Week 8 they were reminded to increment the executive challenge of
chosen activities as children became increasingly familiar with them. In
addition to the recording of activities on a poster provided to log adherence,
one representative per setting was contacted in the 8th and 12th weeks to
enable practitioners to reflect on how the programmewas going, to enable a
member of the delivery team to provide support, and, in Week 12, to
conduct an interview (establishing acceptability and barriers of the pro-
gramme) and an observation (to check fidelity of delivery).

We compared the group of children nested in settings receiving the
intervention to a practice-as-usual control group of children who received
standard early years education following the Early Years Foundation Stage
curriculum in the United Kingdom. We were specifically interested in
whether the programme improved children’smathematical skills above and
beyond teaching in mathematics that is already embedded in the curricu-
lum. As the intervention took place in early years settings, children and
educators in the practice-as-usual settings were not passive: children in this
group received instruction and teaching by their educators, following a
standard practice that aims to foster socio-emotional self-regulation and
mathematical skills as set out in the curriculum.We aimed to capture these
practices across all settings via structured observations while contrasting
explicit EF and mathematics integration to practice-as-usual levels of inte-
gration. Our trial design was in line with education trials, guided by policy-
makers and practitioners, who want to know whether a programme works
above and beyond usual practice.

All children were tested individually across two 30-min sessions,
counterbalanced across children, on two separate days, both before and after
the intervention period. Random assignment to either the intervention or
practice-as-usual arm occurred after completion of baseline data collection.
Post-intervention child-level assessments were carried out by researchers
who were blind to trial arm allocation, on average 5 months after the pre-
intervention assessments.

Mathematics. General numeracy - early years toolbox – numeracy55.
The early years toolbox numeracy (EYTN) task is a tablet-based measure
of general numeracy skills. Interspersed items on the task pertain to

various mathematical domains: number sense, cardinality and counting,
numerical operations, spatial and measurement constructs and pat-
terning. The total accuracy score was used for analysis, with one point
scored for each correct item.

Specific mathematical skills. Count High9. To assess children’s count-
ing skills, children were instructed to count as high as they could and the
highest number reached without having made any mistakes was recorded,
stopping at 100asmaximum.GiveN (adapted fromref. 56).Aversionof the
Give-N task was used as a measure of cardinality, following the adapted
procedure outlined by ref. 56. Children were asked to place a given number
of plastic fruit on a plate for 3 blocks of 5 trials, usingnumbers 3, 4, 6, 11 and
15. The final score was the number of correct trials out of a possible 15.
Number Comparison (adapted from ref. 57). This task is designed to
measure children’s digit comparison abilities. Two number digits (1–9)
were presented side by side on the screen of a tablet and the child was asked
to tap the larger of the two numbers. The final score was calculated as a
proportion of numbers correct out of all items answered within 1min.
Number naming57. As a measure of symbolic number knowledge, children
were presented with each digit from 1 to 9 twice on a screen in a random
order, resulting in 18 total digits. The researcher pointed at each digit in
turn, asking the child, “What number is this?”. The score used was the
number of correct items out of a possible 18. Order Processing56. Children
werepresentedwitha setof threenumber cards, eachcontainingoneArabic
numeral (1–9), which they were asked to place in order from smallest to
biggest. Following4practice trials, therewere 12main trials. The task ended
after six cumulative mistakes. A total score out of 12 was calculated for
analysis. British Ability Scale - Pattern Construction. The pattern con-
struction scale from the third editionof theBritishAbility Scale (BAS3),was
used as a measure of spatial ability. This scale requires children to copy
spatial patterns using wooden blocks, foam squares and plastic cubes with
different patterned and coloured sides. A standardised t-score based on the
child’s age in months was used for analysis.

Executive function. Corsi blocks task (following ref. 46). This is a
measure of children’s visuospatial short-term memory. Nine wooden
blockswere attached to awhite piece of cardboard in a random array. The
researcher tapped blocks in a pre-set random order and the child was
instructed to tap the same blocks. For each span level (e.g., 2 block-
sequences), the child completed 3 trials. If 2 or more trials were correct,
the child progressed onto the next span level (up to 6 block-sequences).
The variable used for analysis was the overall number of correct trials,
regardless of sequential order. Mr Ant58 is a visuospatial memory task
presented on a tablet in which the child is asked to remember the location
of colourful ‘stickers’ placed on different body parts of a cartoon ant. In
each trial, the stickers are presented one after the other. A blank ant then
reappears and the child is asked to indicate where the stickers had pre-
viously been, by tapping those locations. There are three trials in each
block, with the child progressing to the next block if they are correct on at
least one trial, regardless of sequential order. A score was calculated as
one point for each consecutive level, beginning from the first, with 2 or 3
items correct; then, from the first level with only 1 item correct, 0.33
points for each correct item. Rabbits & Boats58 is a tablet-based shifting
task, based on a traditional card sort task. Across three blocks, the child
must sort cards first according to colour (red/blue), then to shape (rabbit/
boat), and finally switching the rule depending on whether or not there is
a black border. Each block contains 6 trials and the child must get at least
5 trials correct on blocks 1 and 2 in order to progress to block 3. A switch
accuracy score, calculated as the sum of correct responses in blocks 2 and
3, was used for analysis. Fish-Shark Go/No-Go58 is a tablet-based task of
inhibitory control. Fish and sharks move across the screen, one by one in
pseudo-randomorder, and the child is instructed to tap the fish (go trials)
and not tap the sharks (no-go trials). There were 3 blocks of 25 trials, each
consisting of 20 go trials and 5 no-go trials. Proportional go and no-go
accuracy scores were multiplied to create an overall impulse control
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score, which was used for analysis. Information on reliability for these
measures is detailed in the Supplementary Online Materials, for brevity.

In addition, data reduction (via exploratory factor analysis) was
employed to calculate anoverall index of EF for this sample (in linewith the
existing literature in this age group3,9). A single factor with an Eigenvalue
greater than1was identified, accounting for 47%of the variance inEF scores,
and EF latent factor scores were produced. The goal of this factor analysis
was to provide an index for EF that would be comparable to our variable for
overall numeracy, EYTN.Ofnote,wehadnot set out to explicitly test against
each other the fit of single latent factor accounts of EF versus multiple latent
EF factors, as this has been done previously by other researchers by using a
much larger complement of EF tasks (e.g., at least two observed indices per
construct3,4). Of note, although most commonly employed in the literature
to date, computing latent factors is not the only approach that one could use
to calculate a multi-factorial EF index, with the calculation of EF composite
scores holding complementarymerits41. This was indeed such an interesting
question that we explored calculating a composite score (as the averaged
standardised performance scores for our four EF tasks). This composite
score correlated highly with the latent factor score (rho = 0.965, p < 0.001),
and therefore for brevity, we report findings using the latent factor score.

Data analysis plan: transparency and openness section
We pre-registered the trial design and measures on Open Science Frame-
work prospectively before data were collected [https://osf.io/8y5u6/]. As
recommended by the APA Journal Article Reporting Standards (JARS) for
quantitative, qualitative, and mixed methods research, we report how we
determined our sample size, all data exclusions (no data exclusions were
employed), all manipulations (no data transformations were employed),
and all measures in the study. Anonymized data and analysis code are
available at [https://osf.io/8y5u6/]. Our planned child-level efficacy out-
comes variables were early mathematics and EFs measures, as reported at
[https://osf.io/8y5u6/]. An intention-to-treat analytical approach (with all
children in settings that had been randomised to the intervention included
in the intervention arm) was employed, consistent with other educational
trials. The efficacy analysis was carried out using IBM SPSS v 29.0. The
network analyses were exploratory and were conducted in R statistical
software (version 4.2.2) using packages qgraph (version 1.9.359), bootnet
(version 1.560) and networktools (version 1.5.0).

Pre-registered intervention efficacy analyses. The target sample size
(N = 240 children) was determined a priori using G*Power 3.161 to afford
power greater than 80 to detect a small (f 2 = 0.10, as expected for edu-
cational intervention) interaction effect for intervention arm (integrated,
BAU) and time point (pre-intervention, post-intervention), with
alpha = 0.05, repeated measure correlation of 8, with up to 20% attrition.
Due to ongoing COVID-19 impact (e.g., nursery staff turnover, lower
time availability for settings), one setting withdrew from the study before
pre-intervention assessments and parents of one child withdrew data
from the study. The final N was N = 193. No data were excluded.
Deviations from pre-registration. We had planned to use two-way
mixed ANCOVAs, but missing data (average univariate missingness =
5.8%; maximum univariate missingness = 17.6%) and distributional
violations required approaches that deviated from the pre-registered
analyses.Multi-Level LinearModelling (MLM)with restrictedmaximum
likelihood estimation (REML) was employed to model main effects over
and above Time 1 individual differences, because this is robust to mod-
erate to small proportion of missing data and to distributional
violations62. As described by Eq. (1) below for one of our outcome vari-
ables (EYTN), MLMs modelled the effects of Time (Time 1, Time 2),
Intervention group (Control, Intervention), and Early Years Pupil Pre-
mium (EYPP) eligibility (EYPP; Yes, No, Unknown). Time and partici-
pant data were modelled as repeated effects. Setting-level differences in
baseline scores for interactional quality (SSTEW, Siraj et al., 2015) were
modelled as random effects. Nesting of children-level data within settings
was employed to model setting-level variables (baseline differences in

interactional quality as above, SSTEW) and child-level variables (EYPP
eligibility). We computed the effect size using Hedge’s g.

EYTN ij ¼ αþ β1Treati þ β2EYPPi þ β3Timei þ β4Treati � EYPPi

þβ5Treati � Timei þ β6Timei � EYPPi

þβ7Treati � EYPPi � Timei þ pi þ sstewj þ εij

ð1Þ

Where i are children and j are preschool settings; EYTNij is the EYTNScore;
α is the overall intercept;β1Treati is thefixed effect of the treatment indicator
for child i; β2EYPPi is the fixed effect of the EYPP eligibility for child I;
β3Timei is the fixed effect of Time for student i; β4Treati * EYPPi is the
interaction effect between treatment andEYPPeligibility;β5Treati*Timei is
the interaction effect between treatment and Time; β6Timei * EYPPi is the
interaction effect between EYPP eligibility and Time; and β7Treati �
EYPPi � Timei is the interaction effect of treatment, EYPP eligibility and
time. pi is the random effect of child i, sstewj is the random effect of SSTEW
score per preschool setting j, and Ɛij is the residual error term. All other
models replaced EYTN for the other dependent measures but tested the
same main effects and interaction effects.

Exploratory network analyses. To explore the structure of the relation-
ships between all EF and mathematics variables at once, rather than focusing
on bivariate correlations or univariate changes frompre- to post-intervention,
we implemented Gaussian graphical network models based on a regularised
partial correlation network using Spearman correlations42. The EF and
mathematics tasks were represented as nodes in each network, while the
partial correlations between the tasks represented the network edges (i.e.,
connections between nodes). To test whether this integrated intervention led
to greater changes in the network structure than practice-as-usual, we tested
overall network change by calculating the correlation coefficients between all
edges of the network (i.e., the connections between the nodes) pre- and post-
intervention, in the interventionand the control group.To further characterise
the estimated networks, we tested the relative importance of each node in the
network by calculating centrality indices: strength, expected influence, close-
ness, and betweenness all characterise the connectedness of nodes in a net-
work. The Strength index refers to the absolute sum of all edges (i.e.,
correlations) to a particular node (e.g., all paths to a mathematics node). In
contrast, Expected Influence takes into account whether an edge (a correla-
tion) has a particular sign (positive or negative). Betweenness refers to how
often a node is on the shortest path between other nodes, andCloseness refers
to themeandistance fromanode to all other nodes in thenetwork.Additional
node and edge stability are reported in Supplementary Figs. 4 and 5. In
addition to interrogating the importance of individual nodes in the network,
we tested whether there are any prominent bridge nodes between EF and
mathematics nodes, i.e., nodes in one group that aremost strongly connected
to all nodes from the other group. The detection of bridge nodes enabled us to
determine the strongest links between domains, i.e., which EF node wasmost
stronglyconnected tomathematicsnodes, andvice versa. Finally, todetermine
whether there were clusters of nodes in the network and whether the cluster
structure changed with the intervention, we ran a cluster analysis. In graph-
based approaches, the presence of clusters shows that some nodes are more
strongly related than others and it is determined via a data-driven approach.

Data availability
Thedata necessary to reproduce the analyses presented here are available on
Open Science Framework [https://osf.io/8y5u6/]. A full description of the
baseline and endline assessment materials is also available on Open Science
Framework [https://osf.io/8y5u6/]. The intervention efficacy analyses were
pre-registered on theOpen Science Framework before data collection began
[https://osf.io/8y5u6/].

Code availability
The analytic code necessary to reproduce the analyses presented here is
available on Open Science Framework [https://osf.io/8y5u6/].

https://doi.org/10.1038/s41539-025-00302-9 Article

npj Science of Learning |            (2025) 10:8 13

https://osf.io/8y5u6/
https://osf.io/8y5u6/
https://osf.io/8y5u6/
https://osf.io/8y5u6/
https://osf.io/8y5u6/
https://osf.io/8y5u6/
https://osf.io/8y5u6/
www.nature.com/npjscilearn


Received: 27 May 2024; Accepted: 27 January 2025;

References
1. Friedman, N. P. & Miyake, A. Unity and diversity of executive

functions: individual differences as a window on cognitive structure.

Cortex 86, 186–204 (2017).

2. Miyake,A. et al. Theunity anddiversity of executive functionsand their

contributions to complex “frontal lobe” tasks: a latent variable

analysis. Cogn. Psychol. 41, 49–100 (2000).

3. Wiebe, S. A. et al. The structure of executive function in 3-year-olds. J.

Exp. Child Psychol. 108, 436–452 (2011).

4. Karr, J. E. et al. The unity and diversity of executive functions: a

systematic review and re-analysis of latent variable studies. Psychol.

Bull. 144, 1147–1185 (2018).

5. Cragg, L. & Gilmore, C. Skills underlying mathematics: the role of

executive function in the development of mathematics proficiency.

Trends Neurosci. Educ. 3, 63–68 (2014).

6. Zhang, H., Miller-Cotto, D. & Jordan, N. C. Estimating the co-

development of executive functions and math achievement

throughout the elementary grades using a cross-lagged panel model

with fixed effects.Contemp. Educ. Psychol. https://doi.org/10.1016/j.

cedpsych.2022.102126 (2023).

7. Spiegel, J. A., Goodrich, J. M., Morris, B. M., Osborne, C. M. &

Lonigan, C. J. Relations between executive functions and academic

outcomes in elementary school children: a meta-analysis. Psychol.

Bull. 147, 329–351 (2021).

8. Clark, C. A. C., Sheffield, T. D., Wiebe, S. A. & Espy, K. A. Longitudinal

associations between executive control and developing mathematical

competence in preschool boys and girls.Child Dev. 84, 662–677 (2013).

9. Coolen, I. et al. Domain-general and domain-specific influences on

emerging numerical cognition: Contrasting uni-and bidirectional

prediction models. Cognition https://doi.org/10.1016/j.cognition.

2021.104816 (2021).

10. Emslander, V. & Scherer, R. The relation between executive functions

and math intelligence in preschool children: a systematic review and

meta-analysis. Psychol. Bull. 148, 337–369 (2022).

11. Fuhs, M. W., Hornburg, C. B. & McNeil, N. M. Specific early number

skills mediate the association between executive functioning skills

and mathematics achievement. Dev. Psychol. 52, 1217–1235 (2016).

12. James-Brabham, E. et al. How do socioeconomic attainment gaps in

early mathematical ability arise? Child Dev. 94, 1550–1565 (2023).

13. Miller-Cotto,D. &Byrnes, J. P.What’s thebestway to characterize the

relationship between working memory and achievement?: An initial

examination of competing theories. J. Educ.Psychol.112, 1074–1084

(2020).

14. Mulder, H., Verhagen, J., Van der Ven, S. H. G., Slot, P. L. & Leseman,

P. P. M. Early executive function at age two predicts emergent

mathematics and literacy at age five. Front. Psychol. https://doi.org/

10.3389/fpsyg.2017.01706 (2017).

15. Ribner, A. D. (2020). Executive function facilitates learning from math

instruction in kindergarten: Evidence from the ECLS-K. Learning and

Instruction, 65, 101251.

16. Kassai, R., Futo, J., Demetrovics, Z. & Takacs, Z. K. A meta-analysis of

the experimental evidence on the near- and far-transfer effects among

children’s executive function skills. Psychol. Bull. 145, 165–188 (2019).

17. Melby-Lervag,M., Redick, T. S. &Hulme, C.Workingmemory training

does not improve performance on measures of intelligence or other

measures of “far transfer”: evidence from a meta-analytic review.

Perspect. Psychol. Sci. 11, 512–534 (2016).

18. Sala, G. & Gobet, F. Does far transfer exist? Negative evidence from

chess, music, and working memory training. Curr. Dir. Psychol. Sci.

26, 515–520 (2017).

19. Peng, P. & Swanson, H. L. The domain-specific approach of working

memory training.Dev.Rev.https://doi.org/10.1016/j.dr.2022.101035 (2022).

20. Scerif, G. et al. Making the executive ‘function’ for the foundations of

mathematics: theneedforexplicit theoriesofchangeforearly interventions.

Educ. Psychol. Rev. https://doi.org/10.1007/s10648-023-09824-3 (2023).

21. Kroesbergen, E. H., van ‘t Noordende, J. E. & Kolkman, M. E. Training

workingmemory in kindergarten children: effects onworkingmemory

and early numeracy. Child Neuropsychol. 20, 23–37 (2014).

22. McClelland, M. M. et al. Red light, purple light! results of an

intervention to promote school readiness for children from low-

income backgrounds. Front. Psychol. https://doi.org/10.3389/fpsyg.

2019.02365 (2019).

23. Schmitt, S. A., McClelland, M. M., Tominey, S. L. & Acock, A. C.

Strengthening school readiness for headstart children: evaluationof a

self-regulation intervention. Early Child. Res. Q. 30, 20–31 (2015).

24. Clements, D. H., Sarama, J., Layzer, C., Unlu, F. & Fesler, L. Effects on

mathematicsandexecutive functionofamathematicsandplay intervention

versus mathematics alone. J. Res. Math. Educ. 51, 301–333 (2020).

25. Prager, E. O., Ernst, J. R., Mazzocco, M. M. M. & Carlson, S. M.

Executive function and mathematics in preschool children: Training

and transfer effects. J. Exp. Child Psychol. https://doi.org/10.1016/j.

jecp.2023.105663 (2023).

26. Willoughby,M. T. et al. Testing the efficacy of the red-light purple-light

games in preprimary classrooms inKenya.Front. Psychol. https://doi.

org/10.3389/fpsyg.2021.633049 (2021).

27. Johnson, M. H. Interactive specialization: a domain-general

framework for human functional brain development? Dev. Cogn.

Neurosci. 1, 7–21 (2011).

28. Kievit, R. A., Hofman, A. D. & Nation, K. Mutualistic coupling between

vocabulary and reasoning in young children: a replication and extension

of the study by Kievit et al. (2017). Psychol. Sci. 30, 1245–1252 (2019).

29. Schmitt, S. A., Geldhof, G. J., Purpura, D. J., Duncan,R. &McClelland,

M. M. Examining the relations between executive function, math, and

literacy during the transition to kindergarten: a multi-analytic

approach. J. Educ. Psychol. 109, 1120–1140 (2017).

30. Joswick,C.,Clements,D.H., Sarama, J., Banse,H.W.&Day-Hess,C.

A. Double impact: mathematics and executive function. Teach. Child.

Math. 25, 416–426 (2019).

31. Ramani, G. B. & Scalise, N. R. It’smore than just fun and games: play-

based mathematics activities for head start families. Early Child. Res.

Q. 50, 78–89 (2020).

32. Borsboom, D. et al. Network analysis of multivariate data in

psychological science.Nat. Rev. Methods Primers https://doi.org/10.

1038/s43586-021-00055-w (2021).

33. Przulj, N. &Malod-Dognin, N. Network analytics in the age of big data.

Science 353, 123–124 (2016).

34. Menu, I., Rezende, G., Le Stanc, L., Borst, G. & Cachia, A. A network

analysis of executive functions before and after computerized

cognitive training in children and adolescents. Sci. Rep. https://doi.

org/10.1038/s41598-022-17695-x (2022).

35. Karr, J. E., Rodriguez, J. E., Goh, P. K., Martel, M. M. & Rast, P. The

unity and diversity of executive functions: a network approach to life

span development. Dev. Psychol. 58, 751–767 (2022).

36. Menu, I., Borst, G. & Cachia, A. Latent network analysis of executive

functions across development. J. Cogn. 7, 31–31 (2024).

37. Howard, S. J., Vasseleu, E., Batterham, M. & Neilsen-Hewett, C.

Everyday practices and activities to improve pre-school self-

regulation: cluster RCT evaluation of the PRSIST program. Front.

Psychol. https://doi.org/10.3389/fpsyg.2020.00137 (2020).

38. Ribner, A. et al. Cognitive abilities andmathematical competencies at

school entry.Mind Brain Educ. 12, 175–185 (2018).

39. Clements, D. H., Sarama, J. & Germeroth, C. Learning executive

function and early mathematics: directions of causal relations. Early

Child. Res. Q. 36, 79–90 (2016).

40. Wilkey, E. D. & Price, G. R. Attention to number: the convergence of

numerical magnitude processing, attention, and mathematics in the

inferior frontal gyrus. Hum. Brain Mapp. 40, 928–943 (2019).

https://doi.org/10.1038/s41539-025-00302-9 Article

npj Science of Learning |            (2025) 10:8 14

https://doi.org/10.1016/j.cedpsych.2022.102126
https://doi.org/10.1016/j.cedpsych.2022.102126
https://doi.org/10.1016/j.cedpsych.2022.102126
https://doi.org/10.1016/j.cognition.2021.104816
https://doi.org/10.1016/j.cognition.2021.104816
https://doi.org/10.1016/j.cognition.2021.104816
https://doi.org/10.3389/fpsyg.2017.01706
https://doi.org/10.3389/fpsyg.2017.01706
https://doi.org/10.3389/fpsyg.2017.01706
https://doi.org/10.1016/j.dr.2022.101035
https://doi.org/10.1016/j.dr.2022.101035
https://doi.org/10.1007/s10648-023-09824-3
https://doi.org/10.1007/s10648-023-09824-3
https://doi.org/10.3389/fpsyg.2019.02365
https://doi.org/10.3389/fpsyg.2019.02365
https://doi.org/10.3389/fpsyg.2019.02365
https://doi.org/10.1016/j.jecp.2023.105663
https://doi.org/10.1016/j.jecp.2023.105663
https://doi.org/10.1016/j.jecp.2023.105663
https://doi.org/10.3389/fpsyg.2021.633049
https://doi.org/10.3389/fpsyg.2021.633049
https://doi.org/10.3389/fpsyg.2021.633049
https://doi.org/10.1038/s43586-021-00055-w
https://doi.org/10.1038/s43586-021-00055-w
https://doi.org/10.1038/s43586-021-00055-w
https://doi.org/10.1038/s41598-022-17695-x
https://doi.org/10.1038/s41598-022-17695-x
https://doi.org/10.1038/s41598-022-17695-x
https://doi.org/10.3389/fpsyg.2020.00137
https://doi.org/10.3389/fpsyg.2020.00137
www.nature.com/npjscilearn


41. Camerota, M., Willoughby, M. T. & Blair, C. B. Measurement models

for studying child executive functioning: questioning the status quo.

Dev. Psychol. 56, 2236–2245 (2020).

42. Epskamp, S. & Fried, E. I. A tutorial on regularized partial correlation

networks. Psychol. Methods 23, 617–634 (2018).

43. Hackman, D. A., Farah, M. J. & Meaney, M. J. Socioeconomic status

and the brain: mechanistic insights from human and animal research.

Nat. Rev. Neurosci. 11, 651–659 (2010).

44. Hanner, E., Braham, E. J., Elliott, L. & Libertus, M. E. Promoting math

talk in adult-child interactions through grocery store signs.MindBrain

Educ. 13, 110–118 (2019).

45. Raver,C.C.,Blair,C.,Willoughby,M.&Family LifeProjectKey, I. Poverty

as a predictor of 4-year-olds’ executive function: new perspectives on

models of differential susceptibility. Dev. Psychol. 49, 292–304 (2013).

46. Blakey, E. et al. The role of executive functions in socioeconomic

attainment gaps: results froma randomized controlled trial.ChildDev.

91, 1594–1614 (2020).

47. Miller-Cotto, D., Smith, L. V.,Wang, A. H. &Ribner, A. D. Changing the

conversation: a culturally responsive perspective on executive

functions, minoritized children and their families. Infant Child Dev.

https://doi.org/10.1002/icd.2286 (2022).

48. Ku, S. & Blair, C. Profiles of early family environments and the growth

of executive function: maternal sensitivity as a protective factor. Dev.

Psychopathol. 35, 314–331 (2023).

49. Hall, J. et al. Can preschool protect young children’s cognitive and

social development? Variation by center quality and duration of

attendance. Sch. Eff. Sch. Improv. 24, 155–176 (2013).

50. Blair, C. & Raver, C. C. Closing the achievement gap through

modification of neurocognitive and neuroendocrine function: results

fromacluster randomizedcontrolled trial of an innovative approach to

the education of children in kindergarten. PLoS ONE https://doi.org/

10.1371/journal.pone.0112393 (2014).

51. Howard, S. J. et al. Measuring interactional quality in pre-school

settings: introduction and validation of theSustainedSharedThinking

and Emotional Wellbeing (SSTEW) scale. Early Child Dev. Care 190,

1017–1030 (2020).

52. Duncan, G. J. & Magnuson, K. Socioeconomic status and cognitive

functioning: moving from correlation to causation.Wiley Interdiscip.

Rev. Cogn. Sci. 3, 377–386 (2012).

53. Bray, I. et al. A randomised controlled trial comparing opt-in and opt-

out home visits for tracing lost participants in a prospective birth

cohort study. BMC Med. Res. Methodol. https://doi.org/10.1186/

s12874-015-0041-y (2015).

54. Moss, J., Bruce, C. D., Caswell, B., Flynn, T., & Hawes, Z. (2016).

Taking shape: Activities to develop geometric and spatial thinking.

Grades K-2. Pearson Canada Incorporated.

55. Howard, S. J., Neilsen-Hewett, C., de Rosnay, M., Melhuish, E. C. &

Buckley-Walker, K. Validity, reliability and viability of pre-school

educators’ use of early years toolbox early numeracy. Australas. J.

Early Child. 47, 92–106 (2022).

56. Cahoon, A.,Gilmore,C. &Simms, V.Developmental pathwaysof early

numerical skills during the preschool to school transition. Learn. Instr.

https://doi.org/10.1016/j.learninstruc.2021.101484 (2021).

57. Nosworthy, N., Bugden,S., Archibald, L., Evans,B. &Ansari, D. A two-

minute paper-and-pencil test of symbolic and nonsymbolic numerical

magnitude processing explains variability in primary school children’s

arithmetic competence. PLoS ONE https://doi.org/10.1371/journal.

pone.0067918 (2013).

58. Howard, S. J. &Melhuish, E. An early years toolbox for assessingearly

executive function, language, self-regulation, and social

development: validity, reliability, and preliminary norms. J.

Psychoeduc. Assess. 35, 255–275 (2017).

59. Epskamp, S., Cramer, A. O., Waldorp, L. J., Schmittmann, V. D. &

Borsboom, D. qgraph: network visualizations of relationships in

psychometric data. J. Stat. Softw. 48, 1–18 (2012).

60. Epskamp,S. &Fried, E. I. Package ‘bootnet’. InBootstrapMethods for

Various Network Estimation Routines 5, 0.1 (2015).

61. Faul, F., Erdfelder, E., Buchner, A. & Lang, A.-G. Statistical power

analyses using G*Power 3.1: Tests for correlation and regression

analyses. Behav. Res. Methods 41, 1149–1160 (2009).

62. Snijders, T. & Bosker, R. Multilevel analysis: an introduction to basic

and advanced multilevel modeling. http://lst-iiep.iiep-unesco.org/

cgi-bin/wwwi32.exe/[in=epidoc1.in]/?t2000=013777/(100) (1999).

63. Hughes, C., Daly, I., Foley, S., White, N. & Devine, R. T. Measuring the

foundations of school readiness: Introducing a new questionnaire for

teachers-TheBrief Early Skills andSupport Index (BESSI).Br. J. Educ.

Psychol 85, 332–356 (2015).

Acknowledgements
A Project Grant by the Nuffield Foundation (to Gaia Scerif, Zachary Hawes,

Steven Howard, and Rebecca Merkley, “Fostering resilience by injecting

executive challenge intoearlymathematics”, FR-000022619) supported this

study.We are very grateful to all remaining Advisory Boardmembers for the

Project Grant, and for their intellectual contributions during advisory board

meetings and beyond: in alphabetical order, Jennie Challender, Aleisha

Clarke, Keely Cook, Katy Jeary, Ruth Maisey, Gill Mason, Joanne Mason,

Edward Melhuish, Kathy Sylva, and Ellen Wright. We are also heavily

indebted to Angelina Bogdanova, Abigail Heath, and Francesca Plaskett for

contributing to post-intervention data collection and data curation. Finally,

none of this work could have been achieved without the huge support and

effort of children, early years educators and parents in our volunteering

settings.

Author contributions
G.S. – Conceptualisation; Data curation; Formal Analysis; Funding

Acquisition; Investigation; Methodology; Project Administration;

Supervision;Writing –Original Draft Preparation;Writing –Review & Editing.

J.S. – Data curation; Formal Analysis; Writing – Original Draft Preparation;

Writing – Review & Editing. H.A. – Data curation; Investigation; Writing –

Review & Editing. E.B. –Conceptualisation; Methodology; Writing – Review

& Editing. S.G. – Conceptualisation; Data curation; Investigation; Formal

Analysis; Methodology; Project Administration; Writing – Original Draft

Preparation; Writing – Review & Editing. A.G. – Data curation; Investigation;

Writing – Original Draft Preparation; Writing – Review & Editing. Z.H. –

Conceptualisation; Funding Acquisition; Methodology; Writing – Review &

Editing. S.H. – Conceptualisation; Funding Acquisition; Methodology;

Writing – Review & Editing. L.K. – Data curation; Investigation; Writing –

Review & Editing. R.M. – Conceptualisation; Funding Acquisition;

Methodology; Writing – Review & Editing. R.O.C. – Data curation;

Investigation; Methodology; Project Administration; Supervision; Writing –

Original Draft Preparation; Writing – Review & Editing. F.O.R. –

Conceptualisation; Methodology; Writing – Review & Editing. V.S. –

Conceptualisation; Methodology; Writing – Review & Editing.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains

supplementary material available at

https://doi.org/10.1038/s41539-025-00302-9.

Correspondence and requests for materials should be addressed to

Gaia Scerif.

Reprints and permissions information is available at

http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1038/s41539-025-00302-9 Article

npj Science of Learning |            (2025) 10:8 15

https://doi.org/10.1002/icd.2286
https://doi.org/10.1002/icd.2286
https://doi.org/10.1371/journal.pone.0112393
https://doi.org/10.1371/journal.pone.0112393
https://doi.org/10.1371/journal.pone.0112393
https://doi.org/10.1186/s12874-015-0041-y
https://doi.org/10.1186/s12874-015-0041-y
https://doi.org/10.1186/s12874-015-0041-y
https://doi.org/10.1016/j.learninstruc.2021.101484
https://doi.org/10.1016/j.learninstruc.2021.101484
https://doi.org/10.1371/journal.pone.0067918
https://doi.org/10.1371/journal.pone.0067918
https://doi.org/10.1371/journal.pone.0067918
http://lst-iiep.iiep-unesco.org/cgi-bin/wwwi32.exe/%5bin=epidoc1.in%5d/?t2000=013777/(100)
http://lst-iiep.iiep-unesco.org/cgi-bin/wwwi32.exe/%5bin=epidoc1.in%5d/?t2000=013777/(100)
http://lst-iiep.iiep-unesco.org/cgi-bin/wwwi32.exe/%5bin=epidoc1.in%5d/?t2000=013777/(100)
https://doi.org/10.1038/s41539-025-00302-9
http://www.nature.com/reprints
www.nature.com/npjscilearn


Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long

as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons licence, and indicate if changes

were made. The images or other third party material in this article are

included in the article’s Creative Commons licence, unless indicated

otherwise in a credit line to the material. If material is not included in the

article’sCreative Commons licence and your intended use is not permitted

by statutory regulation or exceeds the permitted use, you will need to

obtain permission directly from the copyright holder. To view a copy of this

licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025

https://doi.org/10.1038/s41539-025-00302-9 Article

npj Science of Learning |            (2025) 10:8 16

http://creativecommons.org/licenses/by/4.0/
www.nature.com/npjscilearn

	Enhancing children&#x02019;s numeracy and executive functions via their explicit integration
	Results
	Intervention efficacy
	Mathematics
	Executive functions

	Intervention mechanisms: network analyses

	Discussion
	Methods
	Ethics approval statement
	Participants: children and settings
	Procedure: intervention, control group, pre- and post-intervention assessments
	Mathematics. General numeracy - early years toolbox – numeracy55
	Specific mathematical skills. Count High9
	Executive function. Corsi blocks task (following ref. 46)

	Data analysis plan: transparency and openness section
	Pre-registered intervention efficacy analyses
	Exploratory network analyses


	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information


