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Self-driving laboratory platform for many-
objective self-optimisation of polymer
nanoparticle synthesis with cloud-integrated
machine learning and orthogonal online analytics†

Stephen T. Knox, a,e Kai E. Wu, b Nazrul Islam,c Roisin O’Connell,a

Peter M. Pittaway,a Kudakwashe E. Chingono,a John Oyekan,c

George Panoutsos, b Thomas W. Chamberlain, d Richard A. Bourne a and

Nicholas J. Warren *a,e

The application of artificial intelligence and machine learning is revolutionising the chemical industry, with the

ability to automate and self-optimise reactions facilitating a step change in capability. Unlike small-molecules,

polymer nanoparticles require navigation of a more complex parameter space to access the desired perform-

ance. In addition to the chemical reaction, it is desirable to optimise the polymer molecular weight distribution,

particle size and polydispersity index. To solve this many-objective optimisation problem, a self-driving labora-

tory is constructed which synthesises and characterises polymer nanoparticles (incorporating NMR spec-

troscopy, gel permeation chromatography and dynamic light scattering). This facilitates the autonomous

exploration of parameter space with programmable screens or AI driven optimisation campaigns via a cloud-

based framework. The RAFT polymerisation of diacetone acrylamide mediated by a poly(dimethylacrylamide)

macro-CTA was optimised to maximise monomer conversion, minimise molar mass dispersity, and target

80 nm particles with minimised polydispersity index. A full-factorial screen between 6- and 30-minutes resi-

dence time, between 68 and 80 °C and between 100 and 600 for the [monomer] : [CTA] ratio enabled

mapping of the reaction space. This facilitated in-silico simulations using a range of algorithms – Thompson

sampling efficient multi-objective optimisation (TSEMO), radial basis function neural network/reference vector

evolutionary algorithm (RBFNN/RVEA) and multi objective particle swarm optimisation, hybridised with an

evolutionary algorithm (EA-MOPSO), which were then applied to in-lab optimisations. This approach accounts

for an unprecedented number of objectives for closed-loop optimisation of a synthetic polymerisation; and

enabled the use of algorithms operated from different geographical locations to the reactor platform.

Introduction

Optimising chemical processes is by no means a trivial endea-

vour, with complex responses to changes in inputs and a

whole host of possible (often competing) objectives. However,

with the rapid expansion of the capability in automated syn-

thesis and analysis, coupled with integrated machine learning

algorithms, there are a wide range of opportunities for

innovation.1–5 Automation increases the quality of data, frees

researchers from arduous and time-consuming tasks, and can

identify optima either missed entirely by humans or increase

efficiency in achieving such optima.6

Where automated synthesis, analysis and experimental

selection can be operated without the need for human inter-

vention, in a so-called “closed-loop” fashion, the impact of

such self-driving laboratories can be dramatic and extensive.

While there are a range of effective demonstrations for small

molecule chemistry, the landscape for polymer chemistry is

sparser, especially for more complex problems with greater

than two objectives.7,8 That said, there are some examples

demonstrating the combination of automated experimentation

and machine learning algorithms. Single objective closed-loop
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optimisation has been demonstrated by Junkers and

co-workers for both molecular weight9 and monomer

conversion,10 allowing the targeting of a singular property of

the polymer. Multi-objective problems offer the additional

complexity that instead of a single optimum there are usually

a set of non-dominated optima, where objectives trade-off

against one another. The generation of such a “Pareto front”

requires more sophistication in terms of algorithm and often a

greater number of iterations of experiment to achieve

success.11

Whilst Houben et al. demonstrated the manual multi-objec-

tive AI-assisted optimisation of an emulsion polymerisation

formulation,12 significantly more automation was introduced

by Leibfarth and co-workers, in a human-in-the-loop approach

to optimising RAFT polymerisation.13 Fully closed-loop multi-

objective optimisation was first demonstrated by Warren and

co-workers, elucidating the trade-off between monomer con-

version (α) and molecular weight dispersity (Đ) for a range of

RAFT polymerisations.14

Additional complexity in polymer materials is introduced

by considering that chains are often comprised of multiple,

chemically different blocks, which each impart unique pro-

perties in solution due to spontaneous assembly into nano-

particles. As a result, their performance not only relies upon

the chemical structure of the individual polymer chains, but

the size and morphology of the particles. Aqueous polymeris-

ation induced self-assembly (PISA) is a highly precise and

rational method of controlling both the dimensions of the

polymer chains and the nanoparticle size and morphology.15

Several PISA formulations have been conducted in flow, and

a particularly attractive, widely studied formulation is based

on the block copolymer polydimethylacrylamide-poly(diace-

tone acrylamide) (PDMAm-PDAAm).16–20 This all-acrylamide

system facilitates an “ultrafast” approach to the polymer syn-

thesis, reducing reaction times to the order of 10 minutes.

Furthermore, the power of online analysis has previously

been exemplified for this system whereby benchtop NMR was

able to obtain high resolution kinetic data;18 and Guild et al.

used online small angle X-ray scattering (SAXS) to monitor

the evolution of particle size.21 In the case of the latter tech-

nique, access to such (typically facility based) instruments is

limited and expensive, and automated data processing

requires complex workflows within often access limited soft-

ware interfaces. As such, SAXS currently offers limited

utility for closed-loop optimisation. On the contrary, while

offering less comprehensive information (especially for

more complex morphologies), dynamic light scattering (DLS)

provides a much more convenient and accessible method of

characterising particles – with automated data processing,

and at a significantly more affordable cost. DLS has

been demonstrated in flow for a range of systems, either by

accounting for motion of particles during the

measurement22–27 or through a stopped-flow approach,28

including notably in a self-driving laboratory platform for

Fig. 1 Generalised structure of an optimisation experiment, with reference to specific features applied in this work (as found in dashed boxes).
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size targeting of polymer particles, applying a single objec-

tive optimisation algorithm.29

In bringing together analyses that characterise the polymeris-

ation, molecular weight distribution and particle properties, an

unprecedented number of objectives emerge for closed-loop

optimisation of polymer particle synthesis (i.e. Monomer conver-

sion, molar mass averages, molar mass dispersity, particle size,

particle size polydispersity index, DLS count rate. This is

increased further by considering calculable objectives such as

economic cost, environmental metrics such as E-factor.). This

increase in problem complexity requires careful consideration

from an algorithmic perspective, resulting in the need to evaluate

a range of potential machine learning algorithms. Collaboration

with experts in machine learning and artificial intelligence is

essential and can be facilitated by a cloud-based framework.30

The structure of an optimisation experiment relying upon a

machine learning algorithmic foundation (Fig. 1) is as follows:

(A) the inputs and limits of those inputs for the system are estab-

lished, and initialisation experiments selected within these

limits (usually based upon a framework (e.g. Latin Hypercube

Sampling (LHS), Design of Experiments (DoE)). (B) The selected

experiments are performed, followed by (C) analysis of those

experiments, to find the values for the objectives selected for the

experiment. (D) The input variable-objective pairs are given to

the algorithm which gives a new set of experimental conditions.

Steps (B)–(D) are then repeated in the so-called closed-loop until

certain criteria are fulfilled or user intervention halts the

process. There exists a wide landscape of possible algorithms,

with varying performance when applied to different chemical

optimisation problems.31,32 In this work, a range of multi-objec-

tive optimisation algorithms were investigated to give diversity of

behaviour, with Thompson sampling efficient multi-objective

optimisation (TSEMO),11 radial basis function neural network/

reference vector evolutionary algorithm (RBFNN/RVEA) and

multi objective particle swarm optimisation, hybridised with an

evolutionary algorithm (EA-MOPSO)33). The algorithms them-

selves operate with multiple steps (Fig. 1), beginning with (1) the

hitherto obtained data, (2) which are then used to construct a

surrogate model. (3) This can then be called by the optimisation

algorithm to identify the location of the predicted Pareto front,

and (4) an experiment selected using an evaluative methodology

from these candidates. Finally, (5) the success of the optimi-

sation process can be measured by a range of metrics, such as

hypervolume (HV).34

Herein, the implementation of a platform to perform auto-

nomous many-objective self-optimisation for particle synthesis

via PISA, using a range of cloud-based machine learning algor-

ithms is presented.

Results and discussion

The platform used in this work follows from previous work14

and consists of (in brief) a tubular flow reactor, at-line gel per-

meation chromatography (GPC), inline benchtop nuclear mag-

netic resonance (NMR) spectroscopy and at-line dynamic light

scattering (DLS) (Fig. 2; for a fuller description, see Fig. S1, in

the ESI†). Of note is the volume of data available for each experi-

Fig. 2 Overview of the chemistry and autonomous platform integrating a flow reactor and online gel permeation chromatography (GPC), 1H

nuclear magnetic resonance (NMR) spectroscopy and dynamic light scattering (DLS) used in this work.

Polymer Chemistry Paper

This journal is © The Royal Society of Chemistry 2025 Polym. Chem.

O
p
en

 A
cc

es
s 

A
rt

ic
le

. 
P

u
b
li

sh
ed

 o
n
 1

1
 F

eb
ru

ar
y
 2

0
2
5
. 
D

o
w

n
lo

ad
ed

 o
n
 2

/2
4
/2

0
2
5
 1

1
:2

2
:5

7
 A

M
. 

 T
h
is

 a
rt

ic
le

 i
s 

li
ce

n
se

d
 u

n
d
er

 a
 C

re
at

iv
e 

C
o
m

m
o
n
s 

A
tt

ri
b
u
ti

o
n
 3

.0
 U

n
p
o
rt

ed
 L

ic
en

ce
.

View Article Online



ment using this platform – with monomer conversion from

NMR spectroscopy, molecular weight information (number/

weight average molecular weights, dispersity) from GPC and par-

ticle size information (average size, polydispersity index (PDI),

count rate) from DLS, which gives unparalleled online infor-

mation for a closed-loop autonomous polymerisation platform.

High throughput screening

A programmed screen of the RAFT polymerisation of diacetone

acrylamide in the presence of a poly(dimethylacrylamide)75
(PDMAm75) macro-chain transfer agent (CTA) was performed,

yielding spherical particles via PISA ranging in size from 34 to

116 nm (Fig. 3). The temperature, residence time and ratio of

monomer to macro-chain transfer agent ratio ([M] : [CTA]) were

changed in a stepwise fashion to yield a 4 × 4 × 4 full factorial

screen.

In this screen, all 67 (64 + 3 repeat centre points) reactions

and analyses were completed in 4 days with no user interaction

besides the loading of reagents, and initial selection of experi-

mental structure following completion of each reaction, the

series of analyses are each triggered once the tubular reactor

reaches steady state (full analysis and details in Fig. S5–8 and

Table S2 – see ESI†).

The programmed screen provides a range of benefits for this

work. Firstly, it facilitated a test of reproducibility, where three

repeats of the centre-point of the explored input space were per-

formed. As is to be expected from flow chemistry, this is demon-

strated to be excellent, with variability across all measured

values to be extremely low, especially for monomer conversion,

molar mass dispersity (Đ) and particle size, with the standard

deviation being 2%, 2% and 1% of the found values respectively

(see Table S2 and Fig. S8 in the ESI†). The greatest variability

observed was for PDI, but this is due to the very low value for

PDI obtained for the given conditions (17.5 min, 74 °C, target

DP = 350), at an average of 0.035. At such low values, any small

error (in terms of magnitude, here, 0.030) will represent a signifi-

cant relative error – in this case, 85%.

Secondly, it provides macro-level understanding of the

system probed, where the generalised responses for the outputs

in terms of the decision variables (i.e. the conditions changed)

can be observed. Briefly, conversion is shown to be primarily

reliant upon temperature and to a lesser extent residence time.

Đ is shown to primarily increase with higher [M] : [CTA], repre-

senting the targeting of longer polymer chains. It is worth

noting that the GPC setup used a rapid column, and the poly-

merisation performed “through” oxygen, both combining to

give a higher measured Đ than might be expected for a typical

RAFT system, though the trend is as expected. In any case, the

particles formed are well-defined throughout – as is clear from

the PDI which is low wherever conversion is greater than 50%.

Finally, as is to be expected, particle size is shown to be primar-

ily dependent on the target degree of polymerisation (quanti-

fied in [M] : [CTA]) for the DAAm block, with larger particles

made where longer hydrophobic polymer chains were targeted.

Finally, the rich dataset created as part of this enabled the

construction of a response surface upon which a series of in-

silico optimisation experiments could be performed, as has

been demonstrated elsewhere.35–37 The response surface was

Fig. 3 Results from the three-input full factorial DoE screen (temperature, residence time (RT) and monomer to CTA ratio ([M]:[CTA])), comprising

64 experiments, for (a) conversion, (b) molar mass dispersity, (c) particle size (nm) and (d) particle size PDI.
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Fig. 4 In-silico multi-objective optimisation for the RAFT dispersion polymerisation of DAAm in pH 2.5 water, using PDMAm74 as the macro-chain

transfer agent and VA-044 as the initiator, in terms of (i) decision space (inputs explored) and (ii) objective space (generated data) using (a) TSEMO,

(b) RBFNN/RVEA and (c) EA-MOPSO as the optimisation algorithm. The objectives were a target particle size of 80 nm, to maximise conversion and

to minimise Đ and PDI. 20 optimisation campaigns were performed, each consisting of 15 initial LHS screening experiments (omitted for clarity) and

15 iterative algorithmically selected experiments. Each transparent datapoint represents a single selection across 300 experiments (duplicates are

possible through repeated selection in each campaign).

Fig. 5 Summary of the optimisation strategies employed: Thompson sampling efficient multi-objective optimisation (TSEMO),11 radial basis function

neural network/reference vector evolutionary algorithm (RBFNN/RVEA) and multi objective particle swarm optimisation, hybridised with an evol-

utionary algorithm (EA-MOPSO).33
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fitted using modified Akima interpolation as part of the

MATLAB fitting toolbox (for more details see ESI†). The

primary purpose of this stage of the work was to evaluate the

general performance of the algorithms and to act as a guide

for future in-lab experiments. The relative economy of per-

forming simulated experiments for a more statistically signifi-

cant comparison of the approaches applied to the system is

the critical feature.

In-silico self-optimisation

The differences between the algorithms investigated here

(Thompson-sampling efficient multi-objective optimisation

(TSEMO),11 radial basis function neural network/reference

vector evolutionary algorithm (RBFNN/RVEA) and a hybridised

evolutionary algorithm/multi objective particle swarm optimi-

sation (EA-MOPSO)), are outlined in Fig. 5. The key differences

lie in steps 2 and 3, with the model and optimisation algor-

ithms used. The algorithms selected use models which can

handle the relatively small datasets and uncertainty associated

with chemical process optimisation, based on either Gaussian

process (GP)38 or RBFNN.39 A range of multi-objective optimi-

sation algorithms were investigated to give diversity of behav-

iour, from the bio-inspired, heuristic particle swarm optimi-

sation,33 to more conventional approaches with RVEA40 and

non-dominated sorting genetic algorithm-II (NSGA-II).41 This

diverse set of algorithms was able to be accessed by the plat-

form via a cloud-based framework – that is the algorithms

could be operated remotely from a different geographical

location to the experiment. This approach allows more appro-

priate hardware to perform the (potentially) computationally

complex algorithmic processes, and in cases where there is

intellectual property sensitivity in the case of either data or

algorithm, facilitates optimisations that might otherwise not

be possible.

For the evaluation of the algorithms in this in-silico testing,

the approach to optimisation selected was a direct simulation

of the proposed in-lab approach in terms of methodology. The

objectives for this optimisation were to maximise conversion,

to minimise dispersity and PDI and to target a particle size of

80 nm. As such, this problem can be classified as a many-

objective optimisation problem (MaOP). A single optimisation

campaign consisted of an initial screening of 15 points using

Latin Hypercube sampling (LHS) within the input space for

which the responses were obtained (here, from the response

surface based on the experimental data). This dataset was then

provided to the selected algorithm which in turn generated a

new set of inputs for the next experiment. This closed-loop

methodology then proceeded iteratively until a selected end-

point was reached, after a total of 30 experiments were per-

formed. 20 optimisation campaigns were conducted in this

manner, for each of the three algorithms. A limitation of our

implementation of TSEMO was that it would only accept as

many objectives as there were input variables. Therefore, PDI

was omitted as an objective for the running of the optimis-

ations, since the response surface from the screen showed this

was a featureless surface, as generally the particles formed

were monomodal and well-defined. The exception to this was

at low conversions, but this would be punished by the algor-

ithm aiming to maximise the conversion. However, PDI was

maintained as an objective in any evaluation metrics of the

optimisation to allow direct comparison of plausible

approaches.

The data from these optimisation runs qualitatively shows

variations between the three algorithms in both the decision

space (Fig. 4(i)) and, in turn, the resultant mapped Pareto

front (Fig. 4(ii)). In particular, RBFNN/RVEA (Fig. 4b) clearly

places emphasis on exploiting higher temperature experiments

for lower [M] : [CTA], yielding a more detailed Pareto front

where molar mass dispersity and PDI are low and conversion

high, at the expense of the desired particle size (between 30

and 40 nm from the optimum).

TSEMO is more generalised (i.e. balancing exploitation with

exploration) in its approach, which is illustrated by greater

diversity in the decision space explored (Fig. 4a). There

remains discrimination of experimental selection (e.g.

[M] : [CTA] > 500 is almost completely dismissed by the algor-

ithm), but a more even distribution of inputs results in a more

evenly explored decision space and thus Pareto front. The

Fig. 6 Mean evolution of hypervolume and inverse ratio of net aver-

tence angle (IRNA) for the 20 optimisation campaigns for TSEMO,

RBFNN/RVEA and EA-MOPSO. For hypervolume, the mean for 20 cam-

paigns of 30 experiment Latin Hypercube sampling (LHS) of the decision

space is also shown. The shaded area represents one standard deviation.
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EA-MOPSO results (Fig. 4c) show greater exploration in terms

of the [M] : [CTA] input but is more exploitative in terms of

temperature. Performance metrics are employed to assess the

effectiveness of MaOP algorithms and assist decision-makers

in evaluating the efficiency of optimization algorithms.42

Despite performance indicators potentially leading to infor-

mation loss by condensing data to evaluate candidate solu-

tions, their primary objective is to reliably and accurately

capture essential information, which is crucial for MaOP pro-

blems as the number of objectives increases.

One such measure is the hypervolume, which is an essen-

tial metric in multi-objective optimisation that assesses the

performance of a set of solutions by quantifying the volume of

the objective space that is dominated by these solutions, rela-

tive to a reference point.34,43 More specifically, in this case, it

measures the volume dominated between the utopian point

(in this case, conversion = 100%, Đ = 1, particle size = 80 nm,

PDI = 0) and an anti-utopian point at the opposite end of these

scales (conversion = 0%, Đ = 3, PDI = 1 and where the loss

function used for the size objective = 2; for more details see

eqn (S1) (ESI)†). The hypervolume metric quantifies the quality

and diversity of the Pareto front by producing a single scalar

number. A higher hypervolume score indicates a more accurate

approximation of optimal solutions. The calculation of this

metric can be computationally costly, particularly in higher

dimensions. However, it is crucial for comparing various

optimisation strategies and promoting a wide range of

solutions.

The average evolution of hypervolume across the 20 runs

for each algorithm (Fig. 6) shows similar performance across

each of the algorithms, i.e. all (as expected) improve on a 30

experiment Latin Hypercube sampling (LHS) of the decision

space. TSEMO was found to slightly underperform in terms of

hypervolume, but the performance is shown to be similar

when accounting for uncertainty, with overlapping uncertain-

ties (which show standard deviation). Furthermore, caution

must be applied in interpretation here, not least because of

the four-dimensional nature of the data, meaning hypervo-

lume is not trivially visualised. In addition, the measurement

does not tell the whole story, as in higher dimensions the dis-

criminative power of HV is significantly reduced.44

Another aspect in measuring the effectiveness of each algor-

ithm is the diversity of the Pareto front generated. Inverse ratio

of net avertence angle (IRNA) is a metric of purely this diver-

sity.44 It is important to use more than one metric to measure

the success of optimisations when considering four or more

Fig. 7 Comparison of the three optimisation algorithms selected for this work in targeting 80 nm particles (a) TSEMO, (b) RBFNN/RVEA and (c)

EA-MOPSO, while maximising conversion and minimising dispersity and PDI. The initial 15 experiments are identical in each of the cases, generated

by Latin Hypercube Sampling (shown as empty squares), with the algorithmically selected experiments shown as filled triangles. Row (i) shows the

experiments in terms of decision space (i.e. conditions used), with those of the Pareto set circled and row (ii) shows the data in terms of objective

space (i.e. measured properties). In row (ii), dominated solutions are shown only as small dots, with only those points on the Pareto front shown as

squares/triangles.
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objectives, as hypervolume may be misleading in these

cases.44 Here, IRNA gives a similar trend to that seen for hyper-

volume, supporting the conclusions already drawn. It is worth

noting the high level of error across the range of experiments

for IRNA, which is intrinsic to the relatively data-poor nature

of a 30-experiment optimisation, where a relatively small

number of experiments may make up the Pareto front.

In light of the above, it is important to consider the visual-

ised data and available metrics (HV, IRNA) in concert to

provide a well-rounded characterisation of each optimisation

campaign.

In-lab self-optimisation

In any case, the data in its entirety shows promise for each of

the algorithms which outperform the pure LHS and exhibit

qualitatively observable diversity of behaviour, making all

three suitable candidates to be taken forward for application

in-lab. A new batch of PDMAm macro-CTA was synthesised,

and successful exploration of the Pareto front using closed-

loop optimisation demonstrated across the three examples

(Fig. 7). It is worth noting that since a new starting material

was used, the results are expected to be comparable to those

from the screen, but not identical.

There were again notable variations in algorithmic behav-

iour across the three optimisations. For example, the distri-

bution of the experiments with regards to input space is

shown to be more focussed on a narrower search space for the

EA-MOPSO optimisation, with increasing diversity for TSEMO

and even more so for the RBFNN/RVEA. The results in terms

of objective space qualitatively reflect this input diversity –

where the more clustered search by the EA-MOPSO algorithm

yields a larger number of non-dominated solutions in a

smaller space.

The metrics from the in-lab testing show a different trend

in hypervolume compared to the initial in-silico testing (Fig. 8).

TSEMO in this case outperforms both the other two algor-

ithms, largely due to a single experiment at iteration 20

(28 min, 78 °C, [M] : [CTA] = 135). RBFNN/RVEA particularly

gave a lesser improvement in hypervolume than might be

expected given the prior mean in-silico data, but at least a

partial justification is found in the magnitude of the uncer-

tainty in those in-silico plots. The number of runs permissible

from a cost perspective in-lab is clearly much lower than that

with an emulated approach; and so, the possibility of finding

one of the less successful pathways for a single run remains.

Furthermore, from post-experiment analysis, this can be attrib-

uted to poor performance in modelling on the real-life data,

and as such, in-lab, the algorithm selected experiments from

across the reaction space rather than giving the same exploita-

tive performance observed in-silico.

Another important consideration is to weigh the merit of

solely evaluating the success of a given optimisation in terms

of hypervolume. In terms of the objectives of the experiment,

each of the optimisation campaigns here are successful in

giving a skilled user much of the necessary information to

select conditions which provide them with a polymer particle

with a set of desired properties. There are subtle differences,

and to an extent we see an algorithm with more emphasis

placed upon exploitation in EA-MOPSO compared to algor-

ithms which appear to show more exploration in TSEMO and

in the in-lab example, RBFNN/RVEA – though for the land-

scape provided by the in-silico model, this is not demonstrated

for RBFNN/RVEA. This then enables the user to select an algor-

ithm based on their needs. For example, the balance between

exploration and exploitation achieved by TSEMO may make

this algorithm more suited to manufacturing applications,

since its exploration gives a greater idea of the size of regions

of stable output. Where exploitation is of more interest to the

user than the balanced approach described, the application of

EA-MOPSO over TSEMO in-lab may be of more interest.

Despite struggling in-lab, the successful exploitative perform-

ance of RBFNN/RVEA on the smoother, continuous in-silico

surfaces suggests that this algorithm is suitable for optimi-

sation on models generated by full-factorial screens, or indeed

other such datasets – such as those from computational flow

dynamics (CFD) simulations.

Given this diversity of algorithmic behaviour, we would

emphasise the opportunity that the platform technology pro-

vides in terms of the diversity of possible approaches and the

understanding that the different approaches might offer. For

Fig. 8 Hypervolume and IRNA evolution for the three in-lab optimi-

sation approaches selected for this work in targeting 80 nm particles (a)

TSEMO( ), (b) RBFNN/RVEA( ) and (c) EA-MOPSO( ),

while maximising conversion and minimising dispersity and PDI.
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example, a 67-experiment screen would in many cases be a too

time-consuming affair; but given that the user time to produce

the data here was less than a single day’s work, the compre-

hensive nature of the data would well be attractive in cases

where the feedstock chemicals were relatively affordable.

Conversely, were the raw materials more expensive, an algorith-

mic approach may be more desirable, with much of the infor-

mation available after a campaign of fewer than half the

number of experiments. This is not to say these two extremes

are the only viable approaches – a less detailed screen, or a

hybridised approach, using a screen as the basis for further

self-optimisation offer additional plausible strategies.

Conclusions

In this work we have demonstrated a range of approaches to

explore and optimise the complexities of a particle-forming

polymerisation system. The platform gave unprecedented

diversity of information for automated polymer synthesis, facil-

itating days-long unsupervised experiments with accompany-

ing 1H NMR spectroscopy, GPC and DLS data. A screen of 67

experiments gave a rich dataset in just four working days.

From the resultant dataset, in-silico optimisation studies were

performed, confirming the validity of AI-guided optimisation.

Machine learning algorithms (TSEMO, RBFNN/RVEA and

EA-MOPSO) were accessed via a cloud-based framework, and

used to target a particle size, while maximising conversion and

minimising both molar mass dispersity and particle PDI, both

in-silico and in-lab – providing elucidation of the Pareto front.

A range of algorithmic behaviour was observed, and example

applications for each algorithm identified. As such, a signifi-

cant step towards particles-on-demand is taken, which could

find application across polymerisation techniques.

This work highlights key challenges faced by the chemists

engaging with automation, AI-guided optimisation, and

further, the complications that are introduced for many-objec-

tive problems. It is imperative that we engage with effective

characterisation of the optimisation process, using appropriate

performance indicators in conjunction with clear visualisation

of the experimental data. Furthermore, we must be careful to

consider the range of approaches which are made possible by

autonomous platforms, comparing the relative merits of auto-

mated screens, AI-guided optimisation, and hybridised

methodologies.
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