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Abstract

A nut graph is a simple graph of order 2 or more for which the adjacency matrix has
a single zero eigenvalue such that all nonzero kernel eigenvectors have no zero entry
(i.e. are full). It is shown by construction that every finite group can be represented as
the group of automorphisms of infinitely many nut graphs. It is further shown that such
nut graphs exist even within the class of regular graphs; the cases where the degree is
8, 12, 16, 20 or 24 are realised explicitly.

Keywords Nut graph · Graph automorphism · Automorphism group · Nullity ·

Graph spectra · F-universal

Mathematics Subject Classification 05C25 · 05C50

1 Introduction

A problem posed in Kőnig’s 1936 book on Graph Theory [35, p. 5] asks when a given
abstract group can be represented as the group of automorphisms of a (finite) graph G,
and if this is the case, how the graph can be constructed1. In response, Frucht first solved
the problem in its original form [30]. Later, he showed that solution is still possible
under the extra requirement that G is a cubic graph [31]. In both cases he gave an
explicit construction. Sabidussi [41] refined the question and proved that every group
can be represented by a graph with additional properties such as: prescribed chromatic
number, prescribed vertex-connectivity, or regularity with prescribed degree. An early
survey paper by Babai [5] reviews this research direction and defines the term f-

1 “Wann kann eine gegebene abstrakte Gruppe als die Gruppe eines Graphen aufgefaßt werden und – ist
des der Fall – wie kann die entsprechende Graph konstruoert werden?”
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universal: a class of graphs C is f-universal if for every finite group G there exists a
graph G ∈ C such that Aut(G) ∼= G. Not all famous graph classes are f-universal; for
example, Babai has shown that there are infinitely many finite groups which cannot be
realised by a planar graph [2, 3]. Kőnig’s question has also been extended from graphs
to other combinatorial objects, such as tournaments [38], Steiner triple and quadruple
systems [37], and cycle systems [33, 36]. Here, we consider Kőnig’s original question,
but for nut graphs.

The nullity, η(G), of a graph G is the dimension of the kernel of its adjacency matrix
A(G), i.e. η(G) = dim ker A(G). A nut graph is a singular simple graph G with nullity
1, where in addition every non-trivial kernel eigenvector of the adjacency matrix A(G)

has only nonzero entries. Nut graphs occur in several chemical applications [43]: they
are connected, leafless and non-bipartite [47]. Catalogues have been constructed [11,
14–16]: nut graphs may be regular, vertex-transitive [7, 28] (including GRRs [39, 40]
and non-Cayley graphs), but are not edge-transitive [8]. Recently, a comprehensive
theory of circulant nut graphs has been developed [20–23]. The study of polycirculant
nut graphs [24] has also been initiated.

The graphs that can be used to model conjugated carbon frameworks in Hückel
theory and similar applications [48] are known as chemical graphs. A chemical graph

in this definition is connected and subcubic. Cubic chemical graphs form an impor-
tant subclass that includes the fullerene carbon cages [27]. Nut graphs can be found
among chemical graphs [29], including some cubic polyhedra [45] and, in particu-
lar, fullerenes [46]. Applications of nut graphs in theories of radical chemistry and
molecular conduction are described in [43].

Here, we prove a Sabidussi-type result for the class of nut graphs: we show that
the graph G that realises a given automorphism group can be chosen to satisfy the
requirements of the nut-graph definition; hence, nut graphs are f-universal (in the sense
of [5]). We prove that:

Theorem 1 For every finite group G there exist infinitely many finite nut graphs G,

such that Aut(G) ∼= G.

Furthermore, we can require that the graph G is also regular.

Theorem 2 For every finite group G and d ∈ {8, 12, 16, 20, 24} there exist infinitely

many finite d-regular nut graphs G, such that Aut(G) ∼= G.

2 Preliminaries

All graphs considered in this paper are finite, simple and connected. The adjacency
matrix of graph G is A(G) and the dimension of the nullspace of A(G) is the nullity,
η(G). An automorphism α of a graph G is a permutation α : V (G) → V (G) of the
vertices of G that maps edges to edges and non-edges to non-edges. The set of all
automorphisms of a graph G forms a group, the (full) automorphism group of G,
denoted by Aut(G). The image of a vertex v ∈ V (G) under automorphism α will be
denoted vα . We use the notation H ≤ G to indicate that group H is a subgroup of G

and H ⊂ G to indicate that graph H is a subgraph of G. We use Cn to denote the
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cyclic group of order n. For other standard definitions we refer the reader to one of the
many comprehensive treatments of the theory of graph spectra (e.g. [12, 13, 17–19])
and algebraic graph theory (e.g. [9, 26, 32]).

Nut graphs [47] are graphs that have a one-dimensional nullspace (i.e., η(G) = 1),
where every non-trivial kernel eigenvector x = [x1 . . . xn]⊺ ∈ ker A(G) is full (i.e.,
|xi | > 0 for all i = 1, . . . , n). As the defining paper considered the isolated vertex
to be a trivial case [47], non-trivial nut graphs have seven or more vertices. If G is a
regular nut graph, then δ(G) = �(G) ≥ 3. Note that there are no nut graphs with
�(G) = 2, as no cycle has nullity 1.

In what follows, it will be useful to have constructions that are guaranteed to produce
a nut graph, when applied to a starting graph of specified type. For example, let G

be a nut graph and e ∈ E(G) an arbitrary edge. Then the graph obtained from G

by subdividing the edge e four times is again a nut graph; this is the subdivision

construction [47]. Two further constructions that will prove useful in what follows are
now described.

The first is the coalescence construction: Let G1 and G2 be graphs and let v1 ∈

V (G1) and v2 ∈ V (G2). The coalescence of (G1, v1) and (G2, v2), which we denote
here as (G1, v1) ⊙ (G2, v2), is the graph obtained from the disjoint union of G1 and
G2 by identifying root vertices v1 and v2. Sciriha obtained the following result [44,
Corollary 21].

Lemma 3 ( [44]) Let G1 and G2 be nut graphs. Then the coalescence (G1, v1) ⊙

(G2, v2) is a nut graph.

The coalescence construction must be provided with an initial collection of nut graphs.
The second construction is different in that it produces a nut graph from any (2t)-
regular graph.

Proposition 4 ( [8]) Let G be a connected (2t)-regular graph, where t ≥ 1. Let M3(G)

be the graph obtained from G by fusing a bouquet of t triangles to every vertex of G.

Then M3(G) is a nut graph.

The construction M3(G) is called the triangle-multiplier construction [8]. The choice
of name is justified by the fact that |V (M3(G))| = (2t + 1)|V (G)|. Its effect on the
automorphism group is described by the following proposition.

Proposition 5 ([8]) Let G be a connected (2t)-regular graph, where t ≥ 1. Then

Aut(G) ≤ Aut(M3(G)) and | Aut(M3(G))| = (2t t !)|V (G)|| Aut(G)|.

The group Aut(G) also acts onM3(G). The additional automorphisms in Aut(M3(G))

are well-understood. They arise from swapping the two degree-2 endvertices of the
attached triangles and from permuting the triangles attached to a given vertex of
graph G.

As mentioned above, Sabidussi showed for a range of properties that they can be
required of the graph that realises a given finite group. Theorem 3.7 in [41] is more
general than we need here; in a version tailored for our purposes, it is:

Theorem 6 ([41]) For every finite group G of order |G| > 1 and d ≥ 3 there exist

infinitely many connected d-regular graphs G, such that Aut(G) ∼= G.
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Fig. 1 The graph M3(H)

The theorem of Sabidussi requires the group G to be non-trivial. However, as Bollobás
has shown, a consequence of [10, Theorem 6] is that for d ≥ 3 almost every d-regular
graph is asymmetric. Thus it is easy to incorporate the trivial case into Theorem 6 and
the requirement |G| > 1 could be omitted. Theorem 6 is the jumping-off point for our
proofs.

3 Proof of Theorem 1

We are now ready to prove the main theorem. We will exploit a combination of the
triangle-multiplier and coalescence constructions.

Proof of Theorem 1 If |G| > 1, then by Theorem 6, there exists a 4-regular graph H ,
such that Aut(H) ∼= G. In the case |G| = 1, simply take H to be the graph from
Fig. 3a, i.e. an asymmetric 4-regular graph of the minimum order. By Proposition 4,
the graph M3(H) is a nut graph such that Aut(H) ≤ Aut(M3(H)). By Proposition 5,
| Aut(M3(H))| = 8|V (H)|| Aut(H)|.

Let us denote θ = |V (H)| and V (H) = {h1, h2, . . . , hθ }. By definition, H ⊂

M3(H). Let the extra vertices be denoted t
( j,k)

i for 1 ≤ i ≤ θ and j, k ∈ {1, 2} such

that the new neighbours of hi are t
(1,1)
i , t

(1,2)
i , t

(2,1)
i and t

(2,2)
i . Moreover, t

( j,1)

i and

t
( j,2)

i are adjacent; see Fig. 1.
The automorphisms ofM3(H) are well-understood. Everyα ∈ Aut(H) is extended

to an automorphism α̂ ∈ Aut(M3(H)) by the following natural definition:

vα̂ =

{
vα, if v ∈ V (H);

t
( j,k)

ℓ , if v = t
( j,k)

i and hℓ = hα
i .

(1)

In addition to α̂ for α ∈ Aut(H), there are the following extra automorphisms in
Aut(M3(H)):

βi, j = (t
( j,1)

i t
( j,2)

i ), (2)

γi = (t
(1,1)
i t

(2,1)
i )(t

(1,2)
i t

(2,2)
i ), (3)

for i = 1, . . . , θ and j = 1, 2.
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Fig. 2 The gadget graph Q0.
The root vertices used in the first
and second attachment are
labelled q1 and q2, respectively

We will remove the extra automorphisms by attaching ‘gadgets’ to vertices t
(1,1)
i

and t
(2,1)
i for i = 1, . . . , θ .

Consider the graph Q0 in Fig. 2. It is easy to verify that Q0 is a nut graph of order 8
with | Aut(Q0)| = 2, and that vertices labelled q1 and q2 belong to different vertex
orbits. Moreover, the respective stabilisers Aut(Q0)q1 and Aut(Q0)q2 are trivial.

Let G be the graph obtained from M3(H) by a series of coalescence constructions.
Start with G0:=M3(H). For i = 1, . . . , θ define Gi :=(Gi−1, t

(1,1)
i )⊙(Q0, q1). (The

graph Gi is obtained from Gi−1 by adding a new copy of Q0 to Gi−1 and identifying
q1 with the vertex t

(1,1)
i .) For i = 1, . . . , θ define Gi+θ :=(Gi+θ−1, t

(2,1)
i )⊙ (Q0, q2).

By Lemma 3, G1, G2, . . . , G2θ are all nut graphs. Let G:=G2θ .
Next, observe that automorphisms α̂ can be extended naturally from M3(H) to

G. However, all automorphisms βi, j have been removed, since vertices t
( j,1)

i now

carry gadgets, while vertices t
( j,2)

i do not (they are still of degree 2). Similarly, all

automorphisms γi have been removed, since the gadget attached to t
(1,1)
i does not map

to the gadget attached to t
(1,2)
i , as vertices q1 and q2 are in different vertex orbits of Q0.

Moreover, no new automorphisms have been introduced, as vertices q1, q2 ∈ V (Q0)

have trivial stabilisers. Therefore, Aut(G) ∼= Aut(H) ∼= G.
We provided one nut graph G which realises the group G. To obtain an infinite

family, we can subdivide each edge from {hi t
(1,2)
i | i = 1, . . . , θ} with 4σ vertices

for any choice of σ ≥ 0, i.e. we use the subdivision construction on these edges. ⊓⊔

Note that there are many ‘degrees of freedom’ in the proof of Theorem 1. In our
construction, we could have taken H to be any 4-regular graph that realises the given
group G. In case |G| > 1, Theorem 6 already provides infinitely many starting graphs
H (which in turn produce infinitely many non-isomorphic nut graphs G). If |G| = 1,
by [10], there are also infinitely many starting graphs H . At the coalescence stage,
we could have picked different vertices as q1 and q2 in Q0 (so long as they are in
different vertex orbits). We could also have chosen a different gadget graph for Q0,
or taken two different gadget graphs. We could have decorated both triangles with the
same gadget and taken q1 = q2; that choice would have removed only elements βi, j ;
to further remove elements γi , we could have used the subdivision construction on
edges hi t

(1,2)
i .

The multiplier-coalescence construction is prodigal in terms of the number of ver-
tices of the nut graphs obtained. The order of graph G provided by the proof of
Theorem 1 is 19|V (H)|, where |V (H)| is the order of the graph H . For a given group
G, |G| > 3, with ν generators, the smallest 4-regular graph of the family constructed
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Fig. 3 Graphs that realise the minimum order among 4-regular graphs with automorphism groups C1, C2
and C3, respectively. These graphs are not uniquely determined; they are selected from sets of 4, 3 and 8
candidates, respectively

by Sabidussi in [41] is of order 4(ν +2)|G|. Therefore, the order of the smallest graph
obtained from Sabidussi’s starting graph is 76(ν + 2)|G|. Code to compute this graph
for any given finite group is supplied in [6].

Typically, much smaller examples can exist. Instead of the graph provided by the
construction in the proof by Sabidussi, we could take the starting graph H to be a
minimal 4-regular graph that realises G. For groups C1, C2 and C3, minimal graphs
H are shown in Fig. 3. These have orders 10, 9 and 14, respectively. Application of
the multiplier-coalescence construction gives rise to nut graphs of respective orders
190, 171 and 266.

4 Proof of Theorem 2

Proof of Theorem 2 The proof proceeds as for Theorem 1 to the point where gadgets
are attached to M3(H).

First, we prove the case d = 8. Consider the graphs P1, P2 and P3 in Fig. 4. They are
non-isomorphic graphs; each of them contains six degree-3 vertices and six degree-4
vertices. The gadget Qi , 1 ≤ i ≤ 3, is obtained from Pi by adding a new vertex wi to
its complement Pi and joining wi to all degree-7 vertices of Pi . Observe that Q1, Q2

and Q3 are non-isomorphic graphs of order 13. All vertices of Qi are of degree 8,
except for wi which is of degree 6. It is easy to verify that Q1, Q2 and Q3 are nut
graphs and that their automorphism groups are trivial.

As in the proof of Theorem 1, we obtain G by a series of coalescence con-
structions. Start with G0:=M3(H). For i = 1, . . . , θ define Gi :=(Gi−1, t

(1,1)
i ) ⊙

(Q1, w1). For i = 1, . . . , θ define Gi+θ :=(Gi+θ−1, t
(2,1)
i ) ⊙ (Q1, w1). For i =

1, . . . , θ define Gi+2θ :=(Gi+2θ−1, t
(1,2)
i ) ⊙ (Q2, w2). For i = 1, . . . , θ define

Gi+3θ :=(Gi+3θ−1, t
(2,2)
i ) ⊙ (Q3, w3). In other words, gadgets Q1, Q2 and Q3 are

attached to degree-2 vertices of the triangles as indicated schematically in Fig. 5a. By
Lemma 3, G1, G2, . . . , G4θ are all nut graphs. Let G:=G4θ .

By similar reasoning to that used in the proof of Theorem 1, we can see that
automorphisms α̂ can be extended naturally from M3(H) to G. Moreover, the gadgets
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Fig. 4 The proto-gadget graphs for the proof of Theorem 2 in the case d = 8

Fig. 5 Arrangements of gadgets
Qi on degree-2 vertices of a
bouquet of triangles that remove
unwanted automorphisms (for
the cases d = 8 and d = 12)

Q1, Q2 and Q3 were attached in a manner such that automorphisms βi, j and γi were
removed. Further, attachment has introduced no new automorphisms, as these gadgets
all have trivial symmetry. Hence, Aut(G) ∼= Aut(H) ∼= G. Finally, observe that all
vertices of G are of degree 8. This proves the case d = 8. For higher values of d

the proof is similar, but the search for the requisite number of proto-gadgets becomes
rapidly more tedious.

To prove the result for a given d, we start with a (d/2)-regular graph H that realises
the group G. If |G| > 1, Theorem 6 provides us with infinitely many such graphs H .
If |G| = 1, by [10], there are also infinitely many such graphs H . By Proposition 4,
M3(H) is a nut graph. In this graph, there are d/4 triangles attached at every vertex of
H . To remove the unwanted symmetries, every triangle is decorated by a different pair
of gadgets. (See Fig. 5.) With s gadgets, we can form

(
s
2

)
different pairs. We choose

the smallest s such that
(

s
2

)
≥ d/4.

Figure 6 tabulates a sufficient set of proto-gadgets for degrees 12, 16, 20 and 24.
The complement of P

(d)
i contains d − 2 vertices of degree d − 1, and the remaining

vertices are of degree d. To obtain Q
(d)
i , add a new vertex to the complement of P

(d)
i and

connect it to all vertices of degree d − 1. Graph Q
(d)
i has exactly one vertex of degree

d − 1, while the rest are of degree d. It is easy to verify that graphs Q
(d)
1 , Q

(d)
2 , . . . are

non-isomorphic and that they all have trivial symmetry. ⊓⊔

We note that there are other strategies for the choice of gadgets in the proof.
For example, one may prefer to find one gadget and then, to generate the others,
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Fig. 6 The proto-gadget graphs for the proof of Theorem 2 for cases d ∈ {12, 16, 20, 24}. The set P
(d)
i

is
used to construct the decorating gadgets Qi , as described in the proof

repeatedly apply a construction that preserves symmetry but does not produce ver-
tices of unwanted degree. One candidate is the so-called Fowler construction [8].
This approach would lead to a nut graph of yet larger order than the one generated
by the present proof. The order of graph G constructed in the proof of Theorem 2
is ω(d)|V (H)|, where ω(8) = 53, ω(12) = 99, ω(16) = 161, ω(20) = 241, and
ω(24) = 337. Recall that H denotes a (d/2)-regular starting graph that realises G.

5 Discussion

Constructive methods used to answer Kőnig’s question typically do not provide mini-
mal examples. Let α(G) be the smallest order of the graphs representing the group G.
Sabidussi [42] opened the question by studying the relationship between the values
α(G) and |G|. The value α(G) has been determined for various families of groups (see
[1] for abelian groups and a survey in [50]). Babai [4] gave α(G) ≤ 2|G| provided
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Fig. 7 a The smallest 4-regular graph, and b the smallest nut graph, that respectively represent the group
G288

that G /∈ {C3, C4, C5}; Deligeorgaki [25] improved this to α(G) ≤ |G|, with a longer
list of exceptions that includes some infinite families. Planar graphs have also been
considered from this point of view (for a survey see [34]).

Nut graphs raise analogous questions. It is clear that the constructions used in
proving Theorems 1 and 2 are far from minimal. As an example, consider the group
G288 of order 288, defined by its permutation representation

G288 = 〈(1, 2, 3)(4, 5)(6, 7, 8), (1, 8)(2, 7)(3, 6)(4, 9)(5, 10), (7, 8)〉.

In GAP [49], this group can be obtained by calling SmallGroup(288, 889). The
smallest 4-regular graph representing this group that is given by Sabidussi’s construc-
tion (Theorem 6) is of order 5760. Expansion to a nut graph by the construction used
in the proof of Theorem 1 gives order 109440. A much smaller 4-regular parent graph
could have been used as the basis for that construction, since the smallest 4-regular
graph representing G288 is of order 11; see Fig. 7a, leading to a nut graph of order 209.
However, the database obtained by nutgen [14] reveals that the smallest nut graph
that represents G288 has only 10 vertices; see Fig. 7b.

Let β(G) be the smallest order of the nut graphs representing the group G. It is
evident that β(G) ≥ α(G). For groups up to order 6, the values are

α(C1) = 1, β(C1) = 9; α(C2) = 2, β(C2) = 8;

α(C3) = 9, β(C3) = 11; α(C4) = 10, β(C4) = 11;

α(C2 × C2) = 4, β(C2 × C2) = 7; α(C5) = 15, β(C5) = 15;

α(C3 × C2) = 11, β(C3 × C2) = 11; α(C3 ⋊ C2) = 3, β(C3 ⋊ C2) = 7.

These numbers were found by computer search of the available censuses of nut graphs
[11, 16]. For C5, [1, Lemma 5.2] gives us α(C5) = 15 ≤ β(C5). The equality
β(C5) = 15 was established by finding an example.

Problem 7 Given any finite group G, find a nut graph G of minimum order, such that
Aut(G) ∼= G. Find an upper bound on β(G) in terms of |G|.

Another question relates to the degrees of regular nut graphs that represent groups
G.

Problem 8 Given a finite group G and an integer d ≥ 3, find a d-regular nut graph G,
such that Aut(G) ∼= G.
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Theorem 2 supplies the answer for small cases d ≡ 0 (mod 4), and the same
technique could be used to extend the list of degrees obeying that restriction. As the
proto-gadget graphs in Fig. 6 were obtained by computer search, this task becomes
increasingly onerous with higher degree. But the present strategy, based on the
triangle-multiplier construction, still leaves unresolved all cases with d �≡ 0 (mod 4).
Extension to an arbitrary degree will need a different approach.

A missing case of particular interest for the chemical applications mentioned in the
introduction is d = 3. Interestingly, the eponymous Frucht graph, introduced in [31]
as a small graph that has trivial symmetry, is both cubic (in fact polyhedral) and a nut
graph. It has order 12 and is the smallest cubic nut graph of trivial symmetry. Frucht
also treated the group C2 separately; his graph that realises this group (see [31, Fig.
2]) is not a nut graph. It is straightforward to show that his general constructions [31]
for groups of order greater than 2 do not yield nut graphs. The repeated motifs devised
by Frucht (the ‘corners’ [31]) give rise to at least one non-trivial kernel eigenvector
with some zero entries in the constructed graph. Hence, it would be interesting to find
a construction that yields cubic nut graphs directly.
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20. Damnjanović, I.: On the nullities of quartic circulant graphs and their extremal null spaces, (2022).

arXiv:2212.12959 [math.CO]
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22. Damnjanović, I.: Two families of circulant nut graphs. Filomat 37, 8331–8360 (2023)
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