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Two-stage Adaptive Robust Model for AC Network-

Constrained Unit Commitment in Power Systems 

with Uncertain Wind Power 
Siqi Wang, Xin Zhang, Senior Member, IEEE, Min Du, Member, IEEE, Wei Pei, Member, IEEE 

Abstract— With wind power being extensively integrated 

into power systems, its inherent uncertainty and variability 

pose significant challenges to the power system operational 

security. Traditional robust optimization methods capture 

the worst-case scenario, which results in overly conservative 

decisions, with insufficient considerations on AC network 

constraints in power systems. To overcome this issue, this 

paper proposes a novel adaptive robust AC network-

constrained unit commitment (AC-NCUC) model that 

considers both the AC network security and the uncertainty 

of wind power output in power systems. More specifically, 

a convex polyhedral uncertainty set is constructed to 

characterize the uncertain wind power output. Here, the 

conservativeness of UC dispatch decisions can be adjusted 

by modifying the size of the convex polyhedral uncertainty 

set. Then, we combine Benders’ decomposition and 

Newton-Raphson methods to solve the AC-NCUC model for 

the optimal dispatch decisions. Simulation results on the 

modified IEEE 6-bus and IEEE RTS 79 systems validate the 

rationality and validity of our proposed approach. The 

proposed AC-NCUC model effectively maintains the system 

security while ensuring economic effectiveness. 

Index Terms—Adaptive robust optimization, convex 

polyhedral uncertainty set, AC network-constrained unit 

commitment, Benders’ decomposition, Newton-Raphson, 

uncertain wind power. 

NOMENCLATURE 

Constants and Parameters  𝑏, 𝑑, 𝑖, 𝑙 Index of buses/loads/units/lines. 𝑡 Index of time periods. 𝑤 Index of wind farms. d𝐏!,d𝐐! 
Initial active/reactive power mismatch 
vector. 𝐷𝑅" , 𝑈𝑅" Ramp-down/ -up rate limit for unit 𝑖. 

NB,ND, NG Number of buses/ loads/ units. NL, NT, NW Number of lines/ time periods/ wind farms. 𝐊𝐃,𝐊𝐋, 𝐊𝐏, 𝐊𝐖 
Bus-load/ -line/ -unit/ -wind farm incidence 
matrix. 𝑷# System demand vector. 𝑷$ Forecasted wind power output vector. 𝑃#% System demand of load 𝑑 at time 𝑡. 𝑃" , 𝑃" Minimum/Maximum active power output of 
unit 𝑖. 𝑃;$% Forecasted power output of wind farm 𝑤 at 
time 𝑡. 𝑃<$% Forecasted power output variation of wind 
farm 𝑤 at time 𝑡. 𝑄" , 𝑄" Minimum/Maximum reactive power output 
of unit 𝑖. 𝐒𝐅 Shift factor. 𝑆𝑈"% , 𝑆𝐷"% Startup/Shutdown cost of unit 𝑖 at time 𝑡. 𝑈"% Commitment cost of unit 𝑖 at time 𝑡. 𝑇"&', 𝑇"&(( Minimum up/down time of unit 𝑖. ƛ Wind power output fluctuation parameter. Δ Uncertainty budget. Λ 
Decimal part of uncertainty budget 
parameter Δ. ⌊Δ%⌋ Integer part of uncertainty budget parameter Δ at time 𝑡. 𝑻)*+, 𝑻),- 
Maximum/Minimum vector of transformer 
taps. 𝑽)*+, 𝑽),- 
Maximum/Minimum vector of voltage 
magnitude. Δ𝑸)*+, Δ𝑸),- 
Maximum/Minimum vector of unit reactive 
power output increment. 𝑋"(%/0)&' , 𝑋"(%/0)&((

 ON/OFF time of unit 𝑖 at time 𝑡. 𝓦 Uncertainty set of wind power output. 𝜸)*+, 𝜸),- 
Lower/Upper limit vector of phase shifter 
angle. 𝑭)*+ Maximum vector of active power flow. 𝑭! Initial active power flow vector. 𝑻! Initial transformer tap vector. 𝑽! Initial bus voltage vector. 𝜸𝟎 Initial phase shifter angle vector. 𝑯, 𝑳, 𝑬, 𝑮,𝑴, 𝑵,𝑹, 𝑺 
Jacobian matrix. 𝑼,𝑾,𝒀, 𝒁 Jacobian submatrices. 

Variables 𝑭, Δ𝑭 Active power flow vector and its increment. 𝑻, Δ𝑻 Transformer tap vector and its increment. 
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𝑽, Δ𝑽 Bus voltage vector and its increment. 𝑰 Unit state vector. 𝐼"% Binary variable to indicate if unit 𝑖 is on at 
time 𝑡. 𝑦"% Binary variable to indicate if unit 𝑖 is start-
up at time 𝑡. 𝑧"% Binary variable to indicate if the unit 𝑖  is 
shutdown at time 𝑡. 𝐿#,%45  Load shedding of load 𝑑 at time 𝑡. 

MP60,MP67 
Positive slack variables of active power 
mismatch at bus 𝑏. 

MQ
60
,MQ

67
 Positive slack variables of reactive power 

mismatch at bus 𝑏. 𝑷8 Active power output vector of unit. 𝑷"% Active power output of unit 𝑖 at time 𝑡. 𝑷$% Active power output of wind farm 𝑤 at time 𝑡. 𝜸, Δ𝜸 Phase shifter angle vector and its increment. Δ𝑷, Δ𝑸 Active/Reactive power increment vector. Δ𝜽 Bus phase angle increment vector. 𝝉, 𝜸, 𝜼 Dual variables. 𝝅,𝝍	, 𝝍	 Simplex multiplier vector. 𝜑
$%
, 𝜑$% , 𝜆$% , 𝜆$%Auxiliary continuous variables. 𝛼$% , 𝛼$% , 𝜇$% , 𝜇$%Auxiliary binary variables. 

I. INTRODUCTION 

IND power offers sustainability and zero-carbon emissions, 
making it a competitive alternative to traditional energy 

sources. According to the International Renewable Energy 
Agency report, the cumulative capacity of installed wind power 
worldwide reached 1,017 gigawatts (GW) by the end of 2023 
[1], representing a roughly 135-fold increase over the last three 
decades, up from 7.5 GW in 1997 [2]. Wind power’s share of 
worldwide electricity usage in 2023 reached 7.8%, more than 
doubling its 3.5% share in 2015 [3]. The rapid growth of wind 
power fosters sustainable energy development, but also poses 
considerable challenges to power system stability, security, and 
cost-effectiveness due to the inherent intermittency and 
uncertainty of wind power output [4-6]. 

The core element for achieving a secure and cost-effective 
power system operation is the unit commitment (UC) dispatch 
decision. It provides a physically optimal solution to minimize 
the operation cost while ensuring the security and stability of 
power system operation [7]. However, the performance of UC 
dispatch decisions can be compromised when actual wind 
power output deviates from its forecasted values. To address 
this, a network-constrained unit commitment (NCUC) model 
considering uncertain wind power was proposed to determine 
resilient decisions. Stochastic programming (SP) [8-12] and 
robust optimization (RO) [13-18] are representative approaches 
that have been widely utilized to NCUC under various uncertain 
conditions. The SP method typically utilizes prior probability 
distribution functions (PDFs) to generate numerous scenarios 
presenting wind power uncertainty. It requested on substantial 
historical data, and the computational complexity of handling 
large scenario sets often renders SP intractable [19]. Although 
scenario selection techniques were used to reduce the huge 

computational burden, these methods were at risk of ignoring 
certain critical scenarios, which potentially resulted in a 
compromised power system performance against uncertainties 
[20, 21]. In contrast, RO eliminated the need for prior 
knowledge of PDFs, which made the RO method advantageous 
when historical information was limited [22]. However, it 
might yield excessively conservative UC dispatch decisions  as 
it only considered the worst-case scenario with a low-
probability occurrence [23]. To overcome these aforementioned 
issues, the adaptive robust optimization (ARO) method [24] 
was proposed. The ARO approach can effectively characterize 
the uncertain variables with limited information while allowing 
for the adjustment of the conservativeness of the UC dispatch 
decisions. Consequently, the ARO method was widely 
integrated into UC models to deal with uncertain wind power 
output. For example, the authors in [25, 26] utilized the ARO 
method to tackle the uncertainty of wind power output in the 
UC model to determine more appropriate dispatch decisions. 

However, the UC problem with uncertain variables usually 
incorporates DC network constraints (DC-UC) rather than AC 
network constraints (AC-UC) [27]. DC-UC models do not 
account for voltage magnitude and reactive power constraints, 
which cannot fully capture the physical properties of the 
network, leading to voltage instability and major blackouts [28]. 
As a result, the dispatch decisions derived from DC-UC models 
cannot ensure the AC network-related power system security. 
In practice, most real-world power systems are AC systems, 
where the AC network constraints (such as voltage and reactive 
power) are generally considered to determine more practical 
dispatch decisions. This indicates that it is especially critical to 
maintain voltage security and provide reactive power support 
for power systems. To address this issue, an AC-UC model was 
developed in [29] to incorporate voltage and reactive power 
constraints in order to deliver more practical dispatch decisions 
while ensuring power system security. However, this AC-UC 
model did not consider uncertain wind power output. With the 
growing penetration of wind power in modern power systems, 
the application of this AC-UC model is limited because its 
dispatch decisions may be insufficient to perform effectively in 
power systems due to the variability of wind power. In this 
context, a network-constrained AC-UC model was proposed in 
[30], which considered the uncertainty of wind power based on 
the stochastic robust approach. However, this model relies on 
numerous wind power scenarios, which results in a significant 
computational burden. In addition, solving this model in [30] 
remains challenging due to its mixed-integer nonlinear and non-
convex nature. Then, the authors in [31] introduced an ARO-
based AC-UC model to determine the UC dispatch decisions 
for power systems with uncertain wind power output, where an 
uncertainty set was designed to depict the wind power output 
uncertainty. Thus, this model eliminates the need to generate a 
large number of wind power output scenarios. However, the 
budget parameter in the uncertainty set, which is integer-
constrained, limits its ability to represent wind power output 
accurately. Moreover, the model’s nonlinear characteristics 
make it difficult to solve analytically. In addition, this ARO-
based AC-UC model is insufficient to completely capture the 
interactions among active and reactive power, power flows, 
phase shifts, bus voltages, and tap-changing transformers. 

To overcome the shortcomings of exiting approaches, this 
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paper presents a novel adaptive robust AC network constrained 
unit commitment (AC-NCUC) model to determine the most 
optimal UC dispatch decisions for power systems under wind 
power uncertainty. The AC-NCUC model can accurately reflect 
the physical properties of power systems. Especially for 
uncertain wind power output, a convex polyhedral uncertainty 
set is designed, allowing the uncertainty budget parameter to 
take decimal values, thereby better capturing the wind power 
output uncertainty. To solve the overall problem, the proposed 
AC-NCUC model is decomposed into an outer master problem 
with DC-UC and an AC subproblem. Then, Benders’ 
decomposition and Newton-Raphson methods are employed 
iteratively to solve them for the optimal solution. The key 
contributions are outlined as follows: 
1) This paper constructs a convex polyhedral uncertainty set 

to characterize uncertain wind power. The size of this 
uncertainty set can be adjusted to control the 
conservativeness of the dispatch scheme, providing a 
flexible and practical dispatch strategy for system 
operators. In addition, the budget parameter of the 
uncertainty set is extended to allow decimal values. 

2) This paper proposes a two-stage “min-max-min” model for 
the AC-UC problem to obtain a practical UC dispatch 
strategy under extreme wind power output scenarios within 
the convex polyhedral uncertainty set. To solve this model, 
this overall AC-UC problem is decomposed into an outer 
master problem and an AC subproblem, allowing for an 
effective solution. 

3) To determine the globally optimal dispatch decision, we 
integrate Benders’ decomposition with the full Newton-
Raphson method to search for the UC decisions. Extensive 
case studies on two modified IEEE systems validate the 
proposed approach, demonstrating its effectiveness in 
balancing system security and economic costs. 

The remaining part of this paper is structured as follows: 
Section II introduces the framework of the proposed AC-NCUC 
model and elaborates on its mathematical formulation. Section 
III introduces the solution algorithm, Section IV implements 
case studies, and Section V draws conclusions. 

II. ADAPTIVE ROBUST AC NETWORK CONSTRAINED UNIT 

COMMITMENT MODEL 

A. Overall Framework 

The proposed AC-NCUC model is a two-stage unit 
commitment problem, which aims to determine optimal 
dispatch decisions to minimize the total cost [32]. More 
specifically, the total cost is the sum of the here-and-now 
decision costs and the wait-and-see decision costs. In the first 
stage, here-and-now decisions, including on/off status, startup 
and shutdown of units are determined to ensure the secure 
power system operation. In the second stage, after the here-and-
now decisions are determined, power output of units, load 
shedding, as well as wind power curtailment are optimized 
considering extreme wind power output scenarios and AC 
network constraints, where these decisions in the second stage 
are defined as wait-and-see decisions. Thus, the overall 
framework of the proposed model is depicted in Fig. 1. 

 
Fig. 1. Overall framework of the proposed AC-NCUC model. 

B. Convex Polyhedral Uncertainty Set  

Traditional adaptive robust methods in [33, 34] characterize 
uncertain wind power output through an uncertainty set with an 
integer-valued uncertainty budget parameter. This approach 
restricts the representation of wind power output due to the 
inherent limitation of integer-only uncertainty budget 
parameters. To overcome this issue, we construct a convex 
polyhedral uncertainty set that allows the uncertainty budget 
parameter to take decimal values. This convex polyhedral 
uncertainty set can capture more precise representation of wind 
power variability and is formulated as follows: 

𝓦	 =
⎩⎪⎪
⎨⎪
⎪⎧𝑃$% ∈ ℝ9:, ∀𝑤, ∀𝑡∑ q;!"/;<!"

;=!"
q9:

$>0 ≤ Δ%

𝑃$% ∈ s𝑃t$% − 𝑃<$% , 𝑃t$% + 𝑃<$%w
Λ = Δ% − xΔ%y0 ≤ Δ% ≤ NW, 0 ≤ Λ ≤ 1						⎭⎪⎪

⎬⎪
⎪⎫

    (1) 

where 𝑃$% represents the actual wind power output, which lies 
within the range of s𝑃t$% − 𝑃<$% , 𝑃t$% + 𝑃<$%	w . Δ%  represents a 
uncertainty budget parameter of the uncertainty set at time 𝑡, 
which can effectively control the size of the convex polyhedral 
uncertainty, thereby adjusting the conservativeness of the 
proposed AC-NCUC model. ⌊Δ%⌋ is the integer and rounded 
down value of Δ%. Λ denotes the decimal difference between Δ% 
and xΔ%y, which is a decimal auxiliary parameter. As such, 𝓦 
is formulated as a convex polyhedral uncertainty set, capturing 
all possible wind power output scenarios at time 𝑡 . The 
introduced decimal auxiliary parameter Λ  can effectively 
improve the precision and adaptability of the wind power output 
uncertainty set.  

C. Mathematical Formulation 

Thus, the mathematical formulation of the proposed AC-
NCUC model is presented as follows:  

The second-stage  

Maximise
Objective: Maximise the cost 
of wait-and-see decisions.

Maximise-minimise

Objective: Minimise the cost of wait-

and-see decisions under extreme wind 

power output scenarios.

Variables: Power output of unit, power 
flow, extreme wind power output, load 
shedding, wind power curtailment.
Constraints: AC network constraints, 
power balance, wind power output et al.

Variables: Power output of unit, power flow, 
load shedding, wind power curtailment et al.
Constraints: AC network constraints, power 
balance et al.

Minimise

Objective: Minimise the cost 

of wait-and-see decisions.

Variables: The extreme wind power 
output values.
Constraints: Limiting wind power 
output within the uncertainty set.

Minimise

Objective: Minimise the cost of here-

and-now decisions.

The first-stage  

Variables: On/off, start-up and 
shutdown states of units.
Constraints:  Up/down and start-up 
and shutdown constraints et al.

Here-and-now decisions



 

min
?#",@#",A#"

∑ ∑ (𝑈"%𝐼"% + 𝑆𝑈"%𝑦"% + 𝑆𝐷"%𝑧"%)9B
">0

9C
%>0 +maxmin

;!"∈𝓦∑ s∑ 𝐹F"(𝑃"%) + ∑ 𝐶G𝐿6%45 +∑ 𝐶H𝑃$%4;9:
$>0

9I
6>0

9B
">0 w9C

%>0

    

(2) 𝑦"% − 𝑧"% = 𝐼"% − 𝐼"(%/0)       ∀𝑖, ∀𝑡     (3) 𝑦"% + 𝑧"% ≤ 1           ∀𝑖, ∀𝑡     (4) s𝑋"(%/0)&' − 𝑇"&'w ∙ s𝐼"(%/0) − 𝐼"%w ≥ 0	  ∀𝑖, ∀𝑡     (5) 

�𝑋"(%/0)&(( − 𝑇"&((� ∙ s𝐼"% − 𝐼"(%/0)w ≥ 0  ∀𝑖, ∀𝑡     (6) ∑ 𝑃"% +∑ (𝑃$% − 𝑃$%4;)9:
$>0

9B
">0 +∑ 𝐿#%459I

#>0 = ∑ 𝑃#%9I
#>0    ∀𝑡      (7) 𝑃"𝐼"% ≤ 𝑃"% ≤ 𝑃"𝐼"%         ∀𝑖, ∀𝑡     (8) 𝑄"𝐼"% ≤ 𝑄"% ≤ 𝑄

"
𝐼"%         ∀𝑖, ∀𝑡     (9) 𝑃"% − 𝑃"(%/0) ≤ 𝑈𝑅"(1 − 𝑦"%) + 𝑃"𝑦"%  ∀𝑖, ∀𝑡   (10) 𝑃"(%/0) − 𝑃"% ≤ 𝐷𝑅"(1 − 𝑧"%) + 𝑃"𝑧"%  ∀𝑖, ∀𝑡   (11) 𝐒𝐅 ∙ (𝐊𝐖 ∙ (𝑷$ − ∆𝑷$) + 𝐊𝐏 ∙ 𝑷8 −𝐊𝐃 ∙ 𝑷#) = 	𝑭(12) |𝑭| ≤ 𝑭)*+                 (13) 𝑽),- ≤ 𝑽 ≤ 𝑽)*+              (14) 𝑻),- ≤ 𝑻 ≤ 𝑻)*+              (15) 𝜸),- ≤ 𝜸 ≤ 𝜸)*+              (16) 

where the objective function (2) minimizes the total cost, 
including unit commitment, power output, wind power 
curtailment and load shedding costs, under extreme wind power 
output scenarios over the entire time period NT. Constraints 
(3)-(4) indicate the start-up and shutdown limitations of all units. 
Constraints (5)-(6) indicate the minimum up-time and down-
time limitations for all units. Constraint (7) ensures power 
balance throughout the system. Constraints (8)-(9) represent the 
active and reactive power output capacity limitations for all 
units. Constraints (10)-(11) define ramping up and ramping 
down limits. Constraint (12) describes the power flow on lines, 
and constraint (13) limits the power flow capacity. Constraints 
(14)-(16) limit the voltage, tap-changing transformer and 
phase-shifting transformer capacities, respectively. Note that 
the ON/OFF cost of unit 𝑖 is set to 0. 

D. Compact Formulation  

To facilitate the developed solution algorithm in the next 
section, we reformulate the AC-NCUC model (2)-(16) to a 
compact form as follows: min

𝒙∈𝑿
𝒄C𝒙 +max

𝒘∈𝓦
min

𝒚∈N(𝒙,𝒘)
𝒃C𝒚         (17) 

s.t.				𝒀𝒙 ≤ 𝒇        ∀𝒙 ∈ 𝑿  (18) 𝑯𝒚(𝒘) ≤ 𝒉		    𝝉  ∀𝒘 ∈ 𝓦  (19) 𝑨𝒙 + 𝑩𝒚(𝒘) ≤ 𝒈		  𝝋  ∀𝒘 ∈ 𝓦  (20) 𝑰𝒖𝒚(𝒘) − 𝒘 = 𝒎		  𝜼  ∀𝒘 ∈ 𝓦  (21) 
where vector 𝒙 denotes the UC dispatch decision variables in 
the first stage, and vector 𝒚(𝒘) indicates the dispatch decisions 
in the second stage. The matrix 𝒀  and vector 𝒇  refer to the 
coefficient matrices and constant vectors in constraints (3)-(6), 

respectively. Similarly, matrices 𝑯, 𝑨, 𝑩, 𝑰𝒖 and vectors 𝒉, 𝒈, 𝒎  are equivalent to the coefficient matrices and constant 
vectors in constraints (7)-(16), respectively. Note that 𝒘 is the 
wind power output vector, which belongs to the convex 
polyhedral uncertainty set 𝓦 . Additionally, 𝝉 , 𝝋  and 	𝜼  are 
dual variable vectors of constraints (19)-(21). 

III. SOLUTION METHODOLOGY 

This section combines Benders’ decomposition and Newton-
Raphson methods to solve the proposed AC-NCUC model. 
Firstly, the Benders’ decomposition algorithm is applied to 
decompose the proposed AC-NCUC model into an outer master 
problem and an AC subproblem. Then, the AC subproblem is 
iteratively solved by the Newton-Raphson method. The 
proposed solution algorithm is detailed as follows: 

A. Outer Master Problem  

The outer master problem is a two-stage UC model with DC 
network constraints. This problem determines dispatch 
strategies, which are then used to check the AC network 
security subproblem. Here, the outer master problem is required 
to be decomposed into an inner master problem and a DC 
network security subproblem through the Benders’ 
decomposition algorithm. Based on the initial feasible values, 
the formulation of the inner master problem is as follows: min

𝒙∈𝑿
𝒄C𝒙 + 𝜶              (22) s.t.				𝒀𝒙 ≤ 𝒇     ∀𝒙 ∈ 𝑿      (23) 𝜶 ≥ max

𝒘∈𝓦	
min

𝒚∈N(𝒙,𝒘)
𝒃C𝒚         (24) 

where constraint (24) represents a Benders cut condition, which 
is usually categorized into two types according to the DC 
network security subproblem: 1) optimal cut, and 2) feasible cut.  

1) An optimal cut: If the DC network security subproblem is 
feasible at a certain iteration, an optimal cut is added to the inner 
master problem as an additional constraint, as described below:  𝛼 ≥ max

𝝋,𝝉,𝜼
	𝝋C(𝑨𝒙 − 𝒈) − 𝝉C𝒉 + 𝜼C(𝒘 +𝒎)  (25) 

2) A feasible cut: If the DC network security subproblem is 
infeasible at a certain iteration, a feasibility cut is proposed to 
be built in the previous iteration [35]. The feasibility cut adjusts 
the previous solution to ensure that the DC network security 
subproblem becomes feasible. To generate a feasibility cut, the 
coupling constraints of the DC network security subproblem 
(20) are slackened. The slackened problem is measured as 
either feasible or infeasible for the DC network security 
subproblem according to the duality theorem. The formulation 
is described as below:  min 	 𝟏C𝒔 = 𝐸𝑩𝒚 − 𝒔 ≤ 𝒈 − 𝑨𝒙¢	：𝝀𝒔 ≥ 𝟎; 𝒚 ≥ 𝟎 ⇒ max		𝛌T(𝒈 − 𝑨𝒙¢)𝑩T𝝀 ≤ 𝟎−𝑬𝝀 ≤ 𝟏𝝀 ≤ 𝟎   (26) 

When the solution vector of the inner master problem is 
transferred to the DC network security subproblem, the original 
subproblem becomes feasible. It can be equivalently considered 
that the corresponding slackened problem satisfies 𝐸∗ = 0 (or 𝐸∗ ≤ 0,𝟏C𝒔∗ = 𝐸∗), then the condition for the subproblem in 
the previous stage is expressed as:  



 

𝝀C∗(𝒈 − 𝑨𝒙) ≤ 0        (27) 

where the feasible cut (27) is incorporated into the inner master 
problem at the previous stage to generate a feasible solution 𝒙¢ 
for the subproblem.  

In addition, the DC network security subproblem is derived 
using the duality theory, transforming the max-min problem 
into the following equivalent maximization problem: 𝑺(𝒙,𝒘) = max

𝝋,𝝉,𝜼
	𝝋C(𝑨𝒙 − 𝒈) − 𝝉C𝒉 + 𝜼C(𝒘 +𝒎)  (28) 

−𝝋C𝑩− 𝝉C𝑯+ 𝜼C𝑰V = 𝒃      (29) 𝝉 ≥ 𝟎,𝝋 ≥ 𝟎, 𝜼:	free        (30) 

Here, 𝑺(𝒙,𝒘)  denotes the cost function after the dual 
transformation, where this function maximizes the dispatch cost 
subject to DC network constraints. Constraints (29)-(30) 
exclude the reactive power constraints (i.e., constraints (9)), bus 
voltage violation (i.e., constraints (14)), tap-changing 
transformer and phase-shifting transformer constraints (i.e., 
constraints (15-16)). The nonlinear part 𝜼C𝒘 in (28) can be 
linearized, which is detailed in the next subsection. As a result, 
the DC network security subproblem (28)-(30) can be 
formulated as a mixed-integer linear programming (MILP) 
problem.  

B. Inner Bilinear Decomposition 

After the dual transformation, the objective function (28) 
contains a nonlinear part as shown by (31): 𝜼C𝒘 = ∑ ∑ 𝑃$%𝜂$%9:

$>0
9C
%>0        (31) 

The DC network security subproblem is to find extreme wind 
power output scenarios, i.e., the extreme points within the 
designed convex polyhedral uncertainty set 𝓦. According to 
[36], the extreme wind power output 𝑃$%  is specifically 
described as follows: 𝑃$% = 𝑃;$% + 𝑃<$%(𝛼$% − 𝛼$%) +Λ𝑃<$%(𝜇$% − 𝜇$%) (32) ∑ (𝛼$% + 𝛼$%)9:

$>0 = ⌊Δ⌋            (33) ∑ (𝜇
$%
+ 𝜇$%)9:

$>0 = 1	            (34) 

Λ = Δ% − xΔ%y                (35) ∑ 𝛼$% + 𝛼$%®9:
$>0 = ⌊Δ⌋            (36) ∑ ¯𝜇

$%
+ 𝜇$%°9:

$>0 = 1	            (37) 𝛼$% + 𝛼$% + 𝜇$% + 𝜇$% ≤ 1          (38) 𝛼$% , 𝛼$% , 𝜇$% , 𝜇$% ∈ {0,1}           (39) ∀𝑤, ∀𝑡                   (40) 

Therefore, the nonlinear part (31) can be transformed into a 
linear term that includes bilinear parts 𝑎t$%𝜂$% , 𝑎$%𝜂$% , �̅�$%𝜂$% 
and 𝜇$%𝜂$% . Here, the bilinear part is expressed by a binary 

variable and a continuous variable, which can be linearized by 
the big-M method. By introducing auxiliary continuous 
variables 𝜑

$%
, 𝜑$	% , 𝜆$% and 𝜆$%, we can obtain: −𝑀𝛼$% ≤ 𝜑

$%
≤ 𝑀𝛼$%            (41) −𝑀(1 − 𝛼$%) ≤ 𝜂$% − 𝜑$% ≤ 𝑀(1 − 𝛼$%)    (42) −𝑀𝛼$% ≤ 𝜑$% ≤ 𝑀𝛼$%             (43) 

−𝑀1 − 𝛼$%® ≤ 𝜂$% − 𝜑$% ≤ 𝑀1 − 𝛼$%®     (44) −𝑀𝜇
$%
≤ 𝜆$,% ≤ 𝑀𝜇

$%
            (45) −𝑀1 − 𝜇

$%
® ≤ 𝜂$% − 𝜆$% ≤ 𝑀1 − 𝜇

$%
®     (46) −𝑀𝜇$% ≤ 𝜆$% ≤ 𝑀𝜇$%            (47) −𝑀(1 − 𝜇$%) ≤ 𝜂$% − 𝜆$% ≤ 𝑀(1 − 𝜇$%)    (48) ∀𝑤, ∀𝑡                   (49) 

where 𝑀  represents the large positive constant. Constraints 
(41)-(42) are the linearization of 𝑎t$%𝜂$%. Constraints (43)-(49) 
are the linearized formulations of 𝑎$%𝜂$% , �̅�$%𝜂$% and 𝜇$%𝜂$%, 
respectively. Finally, 𝜼C𝒘 is reformulated as follows:  ∑ ∑ ¶𝑃;$%𝜂$% + 𝑃<$%(𝜑$% − 𝜑$%)+(Δ− ⌊Δ⌋)𝑃<$%(𝜆$% − 𝜆$%)·9:

$>0
9C
%>0      (50) 

C. AC Network Security Subproblem 

Once the outer master problem has been addressed using the 
Benders’ decomposition algorithm, the obtained initial UC 
dispatch strategy is transferred to the AC network security 
subproblem. The AC subproblem is employed to check AC 
network constraints. These constraints can stabilize the voltage 
within a specific range to avoid the voltage drop in the remote 
bus through long lines. Based on the Newton–Raphson method 
in [29], the AC network security subproblem is solved as 
follows: Min	𝐿𝑰<, 𝑷¹8® =∑ (MP60 +MP67)NB

6>0 + ∑ MQ
60
+MQ

67
®NB

6>0

  (51) 

�𝐊𝐏 𝟎𝟎 𝐊𝐏� ºΔ𝑷Δ𝑸» − �𝐇 𝐋 𝐄 𝐆𝐌 𝐍 𝐑 𝐒� ⋅ Ã
Δ𝜽Δ𝑽Δ𝑻Δ𝜸Ä +º𝐌𝐏𝟏𝐌𝐐𝟏» − º𝐌𝐏𝟐𝐌𝐐𝟐» = Æ−𝐝𝐏𝟎−𝐝𝐐

𝟎

È																								
  (52) 

Δ𝑭 = [𝐔 𝐖 𝐘 𝐙] ÃΔ𝜽Δ𝑽Δ𝑻Δ𝜸Ä        (53) 

∆𝑷 = 𝟎          𝛑      (54) Δ𝑸),- ≤ ∆𝑸 ≤ ∆𝑸)*+    𝝍,𝝍     (55) 𝑻),- − 𝑻! ≤ ∆𝑻 ≤ 𝑻)*+ − 𝑻!       (56) 𝜸),- − 𝜸! ≤ ∆𝜸 ≤ 𝜸)*+ − 𝜸!       (57) 𝑽),- − 𝑽! ≤ ∆𝑽 ≤ 𝑽)*+ − 𝑽!       (58) −𝑭)*+ − 𝑭! ≤ ∆𝑭 ≤ 𝑭)*+ − 𝑭!      (59) 

where the objective function (51) aims to minimize mismatches 
in active and reactive power at the buses through the Newton–
Raphson method. The slack matrix 𝐌𝐏 and 𝐌𝐐 refer to active 
power and reactive power mismatches, with these slack values 
acting as virtual units introduced to eliminate mismatches. 
Constraint (52) represents the linearized active and reactive 
power balance equation. Here, d𝐏!and d𝐐! denote mismatches 
of active and reactive power at the buses. Constraints (53) 



 

represents the linearized active power flow equation. 
Constraints (54)-(59) define boundaries for active and reactive 
power output, phase shifter angle, transformer tap position, bus 
voltage and active power flow, respectively. In addition, the 
Jacobian matrix formulation with transformer model is 
presented in the Appendix. 

When the objective function 𝐿(𝑰<, 𝑷¹𝒈) exceeds the predefined 
threshold 𝑘, the outer master problem incorporates the formed 
Benders cut (60) to mitigate power flow and voltage violations 
in the subsequent iteration. 𝐿𝑰<, 𝑷¹® = 𝐿< + ∑ 𝜋"%'9B

">0 𝑃"%𝐼"% − 𝑃<"%𝐼Ñ"%® +∑ 𝜓t"%'𝑄",)*+𝐼"% − 𝐼Ñ"%®9B
">0 − ∑ 𝜓"%'𝑄",),-𝐼"% − 𝐼Ñ"%® ≤ 09B

">0

 (60) 

For simplicity and clarity, the detailed process of the solution 
algorithm is shown in Fig. 2. 

 
Fig. 2. Overall framework of the proposed solution algorithm. 

IV. COMPUTATIONAL EXPERIMENTS 

To verify the effectiveness of the proposed adaptive robust 
AC-NCUC model and the associated solution approach, case 
studies are conducted on the modified IEEE 6-bus system and 
RTS-79 system. All simulations are performed in MATLAB 
2014b using CPLEX 12.5 solver on a laptop equipped with a 
2.9GHz CPU and 8 GB of RAM. The predefined threshold 𝑘 =0.001 to meet the final NCUC results criteria. 

A. IEEE 6-bus System 

The modified IEEE 6-bus system consists of 3 generation 
units, 3 loads, 2 tap-changing transformers and 7 lines as shown 
in Fig. 3. In this study, we assume that this 6-bus system 
includes two wind farms, each with a generation capacity of 50 
MW, located at bus 3 and bus 5 respectively with a 47.8% wind 
penetration level. More detailed data of this modified system 
can be found in Appendix, including bus data, load demand data 
over the 24-hour horizon, line data, tap-changing and phase-
shifting transformers data, and generation unit data.  

 
Fig. 3. Topology diagram of the IEEE 6-bus system. 

The AC-NCUC model and the proposed solution approach 
are analysed by implementing four different cases on the 
modified 6-bus system. These cases are designed to represent 
different conditions, highlighting the impacts of integrating 
network constraints and considering uncertain wind power 
output on UC dispatch decisions in power systems. Each case 
builds upon the previous one, offering insights into how 
dispatch decisions evolve from simplified assumptions to fully 
adaptive robust AC-NCUC decision-making. The four cases are 
detailed as follows: 

l Case A: Base UC with the forecasted wind power output, 
no network constraints considered. This case provides a 
baseline for comparison. It obtains a simple and traditional 
UC dispatch decisions, where wind power output is 
forecasted, and no network constraints are imposed. Case 
A establishes a reference point to measure the impact of 
adding network constraints and considering uncertain 
wind power output. It allows us to observe the operational 
performance of power systems without the complexity of 
network constraints and provides insight into the basic 
operation of the power system.  

l Case B: This case considers DC network constraints 
based on Case A with the forecasted wind power output. 
Case B reflects a more realistic scenario, ensuring the 
power system security under DC network constraints. In 
practice, DC network constraints are crucial to the security 
operation of a power system, as these constraints can 
influence UC dispatch decisions. By comparing this case 
with Case A, we can analyze how the inclusion of DC 
network constraints affects the UC dispatch decisions. 

l Case C: This case continues to incorporate DC network 
constraints but also introduces uncertainty in wind power 
output. Through the comparison with B, we can better 
understand the impact of wind power output uncertainty 
on the UC dispatch decisions. As a result, this case enables 
the system operator to make more reliable and resilient 
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decisions in the presence of wind power output 
uncertainty, supporting the development of UC dispatch 
decisions to manage uncertainty and ensure system 
stability.  

l Case D: This case extends Case C to incorporate AC 
network constraints, offering more accurate and realistic 
AC-NCUC decisions for power systems. Compared to 
Case C, it shows how the inclusion of AC network 
constraints influences UC dispatch decisions. This means 
that Case D provides a framework for power system 
optimization under uncertain wind power and AC network 
constraints. Moreover, this case validates the importance 
of AC modelling in accurately representing power system 
dynamics, particularly under uncertain wind power output. 

Tables I-VI and Figs. 4-11 present the simulation results of 
the above cases, including the total cost and UC status of all 
generation units under different conditions. In particular, unlike 
other studies that use an integer uncertainty budget parameter, 
here the uncertainty budget parameter Δ%  can be both integer 
and decimal. The parameter ƛ represents the degree of wind 
power fluctuation within the uncertainty set. It directly defines 
the magnitude of deviations from the forecasted wind power 
output.  

Case A: This case determines the UC dispatch decisions 
based on a fundamental UC model using the forecasted wind 
power output. Table I shows the resulting UC dispatch 
decisions, with a total cost of $57,701. In this scenario, the least 
expensive Unit 1 remains in the ON status throughout the entire 
dispatch period, while the expensive Unit 2 remains OFF across 
all horizons. Unit 3 is selectively committed during peak load 
hours to minimize the total costs. These outcomes align with 
the objective of the UC model, which is to minimize the total 
cost, including the cost of UC dispatch decisions (i.e., the here-
and-now decision cost). 

TABLE I.  
DISPATCH DECISIONS OF BASE UC WITHOUT NETWORK CONSTRAINTS (CASE 

A) 

U Hours (0-24)/$57,701 

1   1   1   1   1   1   1   1   1   1   1   1   1  1   1   1   1   1   1   1   1   1  1  1  1 

2   0   0   0   0   0   0   0   0   0   0   0   0  0   0   0   0   0   0   0   0   0  0  0  0 

3   0   0   0   0   0   0   0   0   0   0   0   0  0    1  1   1   1   0   0   0   0  0  0  0 

Case B: This case investigates the influence of DC network 
constraints on UC dispatch decisions in power systems, while 
excluding the uncertainty of wind power output. Table II 
indicates that the total cost of Case B reaches up to $61,593 
after incorporating DC network constraints, increases by $3,892 
compared with Case A. In terms of dispatch decisions, Unit 1 
remains ON status throughout the entire period given its low 
cost, while Unit 2 stays OFF status due to its higher cost, 
consistent with the results from Case A. However, to satisfy the 
DC network constraints, Unit 3 is additionally committed 
during hours 8-13 and 18-24, differing from the UC dispatch 
decisions determined in Case A. 

The additional commitment of Unit 3 provides more power 
to reduce the load shedding caused by the redistribution of the 
power flow across the network. This adjustment is essential to 
ensure that the system not only meets the demand, but also 
satisfies various network constraints, such as power flow limits 

and line capacity restrictions. As a result, incorporating DC 
constraints often requires dispatching additional units to 
maintain the secure operation of power systems, which leads to 
an increase in total costs. Thus, the total costs are different 
between Case A and Case B, where the additional commitment 
of unit significantly increases the Case B’s total cost compared 
to Case A. This also highlights the critical influence of DC 
network constraints on UC dispatch decisions and their 
associated costs. 

TABLE II.  
DISPATCH DECISIONS OF BASE UC WITH DC NETWORK CONSTRAINTS (CASE 

B) 

U Hours (0-24)/$61,593 

1   1   1   1   1   1   1   1   1   1   1   1   1  1   1   1   1   1   1   1   1   1  1  1  1 

2   0   0   0   0   0   0   0   0   0   0   0   0  0   0   0   0   0   0   0   0   0  0  0  0 

3   0   0   0   0   0   0   0   1   1   1   1   1  1   1   1   1   1   1   1   1   1  1  1  1 

Case C: This case examines the impact of DC network 
constraints and uncertain wind power output on UC dispatch 
decisions in power systems. Table III and Fig. 4 present the total 
costs of Case C when xΔ%y=1, under different values of Λ and ƛ. 
The parameter Λ  adjusts the size of the convex polyhedral 
uncertainty set to control the conservativeness of the dispatch 
decisions based on the AC-NCUC model. In this case, Λ is set 
to vary from 0.1 to 1, which can provide more reasonable 
dispatch strategies for the system operator based on the cost 
budget. In addition, the parameter ƛ  indicates wind power 
output fluctuations, which is set to vary from 0.1 to 0.5. When 
ƛ=0.5, it indicates that the maximum wind power fluctuation is 
assumed to be 50% of the forecasted output.  

Table III shows that the total cost increases as Λ becomes 
larger. This is because a larger Λ encompasses more extreme 
wind power output scenarios in the designed convex polyhedral 
uncertainty set. Moreover, the total costs of Λ ranging from 0.1 
to 0.9 are consistently lower than that of ref. [37], where only 
the worst-case wind power output scenario is considered. 
Notably, the model can equivalently be transformed into the 
worst-case scenario by setting Λ=1. By varying Λ from 0.1 to 1, 
it can be observed that adjusting the uncertainty set’s size 
impacts the total costs, providing insights into the trade-offs 
between system security and economic costs for the system 
operator. Similarly, the total cost increases with higher values 
of ƛ. As ƛ increases, more significant wind power variability 
with higher power output fluctuation, resulting in a more robust 
dispatch decision and higher total costs. In summary, this 
outcome aligns with the function of the proposed model, in 
which the conservativeness of the dispatch strategy can be 
adjusted by modifying the size of the wind power output 
uncertainty set. This enables the system operator to make more 
appropriate UC dispatch decisions in line with the available cost 
budget.  

Additionally, Fig. 4 presents the difference of total costs of 
Case C when ⌊Δ%⌋ = 0	and ⌊Δ%⌋ = 1, where the total costs in the 
two sets of results are stacked together to clearly illustrate the 
difference. It can be observed that under the identical values of Λ	and ƛ, the total cost for ⌊Δ%⌋ = 0 is consistently lower than the 
that for ⌊Δ%⌋ = 1 . This is because ⌊Δ%⌋ = 1  leads to more 
conservative solutions, and it considers more extreme wind 
power output scenarios. In addition, the cost difference between 



 

⌊Δ%⌋ = 0	and ⌊Δ%⌋ = 1 increases with higher values of Λ and ƛ. 
This result shows that a more robust and conservative strategy 
is determined as the uncertainty increases. To further illustrate 
this, Fig. 5 shows the specific UC dispatch results under Λ=0.2 
and ƛ=0.5. The total cost is $62,885 when xΔ%y=0, while it rises 
to $63,831 whenxΔ%y=1. This increase in cost is primarily due 
to Unit 3 being additionally committed at hour 7 to account for 
the worst-case scenario. 

TABLE III.  
TOTAL COST ($) OF ADAPTIVE ROBUST UC WITH DC NETWORK 

CONSTRAINTS AND UNCERTAIN WIND (CASE C) WITH !Δ!" = 1 

Λ									ƛ 0.1 0.2 0.3 0.4 0.5 

0.1 62,944 63,697 64,460 65,196 65,977 

0.2 63,003 63,831 64,637 65,433 66,276 

0.3 63,062 63,964 64,808 65,669 67,105 

0.4 63,121 64,093 64,990 65,944 67,486 

0.5 63,179 64,229 65,167 66,183 67,939 

0.6 63,238 64,312 65,344 66,422 68,439 

0.7 63,297 64,429 65,521 67,189 68,767 

0.8 63,356 64,547 65,696 67,497 69,427 

0.9 63,415 64,665 65,911 67,833 69,838 

Ref [37] 63,474 64,764 66,090 68,210 70,250 

 

Fig. 4. Comparison of total costs between !Δ!" = 0 and !Δ!" = 1. 

 
Fig. 5. Commitment status of units based on different scenarios in Case C. 

Case D: This case examines the impact of AC network 
constraints and uncertain wind power on UC dispatch decisions 
in power systems. Compared to DC network constraints, AC 
network constraints additionally involve active power 
constraint (8), reactive power constraint (9), voltage constraint 
(14), tap-changing transformer constraint (15), and phase-
shifting transformer capacities constraint (16). In this case, xΔ%y 

is set to 1. Table IV and Fig. 6 present the corresponding total 
costs for varying values of Λ and ƛ. As expected, the total cost 
increases as the parameters ƛ  and Λ  increase, thus the AC-
NCUC dispatch decisions become more robust. This also 
highlights the flexibility of the proposed model, which allows 
the system operators to adjust the conservativeness of the 
dispatch decisions according to their cost budget, enabling a 
balance between system security and economic costs. In 
addition, the total costs increase from Case A to Case D, 
because additional AC constraints are considered to represent a 
more realistic power system operating environment. For 
example, comparing Table III to Table IV, it is evident that the 
total cost in case D is higher than that in case C due to the 
additional AC constraints. 

TABLE IV.  

TOTAL COST ($) OF AC-NCUC (CASE D) WITH !Δ!" = 1 

Λ									ƛ 0.1 0.2 0.3 0.4 0.5 

0.1 63,234 63,987 64,835 65,686 66,599 

0.2 63,293 64,121 65,037 65,956 66,979 

0.3 63,351 64,255 65,239 66,227 67,358 

0.4 63,410 64,388 65,441 66,531 67,741 

0.5 63,469 64,518 65,643 66,835 68,187 

0.6 63,528 64,657 65,845 67,139 68,713 

0.7 63,587 64,790 66,047 67,442 69,258 

0.8 63,646 64,926 66,249 67,750 69,754 

0.9 63,705 65,061 66,463 68,089 70,332 

Ref [37] 63,764 65,196 66,691 68,492 70,832 

 
Fig. 6. Total costs under different scenarios based on Case D. 

To further analyse AC-NCUC dispatch decisions in different 
scenarios, Fig.7 shows the commitment status of all units over 
a 24-hour period. In the scenario with Λ=0.2 and ƛ=0.5, Unit 2 
is not committed, and the detailed active power output of three 
units is shown in Fig.8, where the Wind* represents the wind 
power output with considerations of load shedding and wind 
power curtailment. In contrast, for the scenario with	Λ=0.8 and 
ƛ=0.5, Unit 2 is committed from hours 21 to 24. This indicates 
that Unit 2 is additionally committed to respond to more 



 

extreme wind power output scenarios. Similarly, when the wind 
power output deviation ƛ increases to be 0.6 in the scenario with Λ=0.8, Unit 2 is committed for additional hours 6-20 compared 
to the scenario with Λ=0.8 and ƛ=0.5. This additional unit 
commitment is necessary to cover the higher variability of wind 
power output, leading to an increase in total cost. By 
dispatching the more expensive Unit 2 during additional hours, 
the system ensures the security of operations under extreme 
wind power conditions.  

Furthermore, the differences between Case C and Case D 
reflect the impact of DC and AC network constraints on UC 
decisions and the total costs. DC network constraints focus 
solely on active power flows, whereas AC network constraints 
incorporate additional requirements such as voltage regulation, 
reactive power management, and transformer operation. These 
additional constraints significantly influence the UC dispatch 
decisions in Case D, resulting in higher total costs compared to 
Case C. For example, Unit 2 is committed more extensively to 
meet the voltage and reactive power demand, leading to higher 
unit commitment costs compared to Fig. 5 in Case C. This 
means that the proposed AC-NCUC model determines more 
practical dispatch decisions, requiring additional unit 
commitments to maintain the AC network stability of the power 
system. The comparison also directly reflects the trade-off 
between system security and economic costs when making UC 
dispatch decisions. 

 
Fig. 7. Commitment status of units based on different scenarios in Case D. 

 
Fig. 8. Active power output of three units in Case D.  

B. IEEE RTS-79 System 

In this section, additional case studies are carried out on the 
modified IEEE-79 system to further demonstrate the 
effectiveness of our proposed AC-NCUC approach. The 
topology of this system is shown in Fig. 9. It consists of 24 
nodes, 32 generation units, 38 lines, 5 tap-changing 
transformers, and 17 load buses. In these case studies, we 
assume the presence of three wind farms at bus 3, 13 and 23 
respectively. Each wind farm has a generation capacity of 200 
MW, with an overall penetration level of 35%. 

 
Fig. 9. Topology diagram of the IEEE RTS-79 system. 

Tables V-VI present the total costs for various scenarios 
applied to the IEEE RTS 79 system. It can be seen that the total 
cost in Case D is relatively higher than that of Case C. For 
instance, when wind fluctuation and uncertainty budget are 
ƛ=0.1 and Λ=0.2 in Table V, the total cost in Case C is $452,561, 
while in Case D it is $493,582, showing a cost difference of 
$41,021. This increase is attributed to the additional AC 
network constraints enforced by Case D. The incorporation of 
AC constraints results in more practical dispatch decisions, as 
it accounts for factors like voltage regulation, reactive power 
management, and transformer operation to maintain the 
security and stability of the power system under AC network-
constrained conditions. Meanwhile, as expected, the total cost 
increases as Λ grows, indicating that more extreme wind power 
output scenarios lead to higher total costs. Similarly, a pattern 
that emerges is that as ƛ increases from 0.2 to 0.8 to simulate 
wind variability with higher power output fluctuation, the costs 
in both cases show an overall upward trend, although the 
increase is not always in a strictly linear manner. Fortunately, 
the system operators can flexibly determine more reasonable 
UC dispatch decisions based on the uncertainty considerations 
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of budget cost, which validates the superiority of our proposed 
AC-NCUC model. In addition, Fig. 9 marks the ON status of 
all units when xΔ%y = 1. Next, we will analyse the commitment 
status of all units under different uncertainty budget scenarios. 

TABLE V.  

TOTAL COST ($) OF AC-NCUC (CASE D) WITH !Δ!" = 2 IN RTS-79 SYSTEM  

ƛ 

Λ 

0.1 0.3 0.5 

Case C Case D Case C Case D Case C Case D 

0.2 452,561 493,582 455,335 495,931 457,962 494,244 

0.4 452,566 495,129 455,660 495,841 458,471 498,283 

0.6 452,854 495,703 456,096 496,152 459,178 501,126 

0.8 452,960 495,767 454,475 498,798 459,724 503,322 

Ref [37] 452,988 496,081 454,702 501,810 460,130 505,368 

TABLE VI.  	 

TOTAL COSTS ($) OF AC-NCUC (CASE D) WITH ⌊Δ!⌋ = 1 IN RTS-79 SYSTEM 

ƛ 

Λ 

0.1 0.3 0.5 

Case C Case D Case C Case D Case C Case D 

0.2 451,798 491,988 453,463 494,074 455,037 493,621 

0.4 451,908 492,311 453,797 494,703 455,605 494,798 

0.6 450,823 494,657 453,946 495,816 456,532 498,851 

0.8 450,974 493,041 454,489 496,622 456,738 500,065 

Ref [37] 452,463 495,183 455,113 498,657 457,516 501,024 

To analyse the AC-NCUC dispatch decisions, Fig. 10-11 
show the commitment status of units for Case C and Case D 
when wind fluctuation and decimal part of uncertainty budget 
are ƛ = 0.4, Λ = 0.5, but the integer part of uncertainty budget 
varies between xΔ%y = 1 and xΔ%y = 2, respectively.  Fig. 11 
takes xΔ%y = 2  as an example, certain expensive units are 
committed during specific hours. Specifically, the commitment 
status of units 1, 2, 3, 5, and 9 differs between Case C and Case 
D during hours 5 to 24. This is primarily due to the additional 
AC constraints modelled in Case D, such as reactive power 
constraints and voltage magnitude constraints, which are not 
considered in Case C. As a result, some expensive units are 
committed to mitigate the AC network violations, such as 
reactive power flow and voltage violations. Comparing Fig. 10 
and Fig. 11, the in-service hours and quantities of expensive 
committed units increase from xΔ%y = 1  to xΔ%y = 2 . This 
reflects the need for additional units to be committed to handle 
extreme wind scenarios effectively. As xΔ%y  increases, the 
system operator dispatches more units and extends these units’ 
operating hours to manage the higher wind power output 
fluctuation, resulting in the greater impact on system stability 
and operational costs. In addition, it should be noted that the 
solution time of the AC-NCUC model increases as the system 
scale grows, but the solution time remains less than 15 minutes 
in the IEEE RTS-79 System. This indicates that our solution 
algorithm has sufficient computational efficiency when 
handling large-scale system, enabling it to meet the dispatch 
requirement of the system operator. 

 
Fig. 10. Commitment status of all units (!Δ!" = 1) 

 
Fig. 11. Commitment status of all units (!Δ!" = 2) 

V. CONCLUSION 

This paper proposes a novel two-stage adaptive robust AC-
NCUC model for power systems with high wind power 
penetration. The proposed model can be structured as a min-
max-min problem, of which the first stage determines UC 
dispatch decisions, and the second stage minimizes the total 
operational costs under uncertain wind power output scenarios. 
By incorporating AC power flow and voltage constraints, the 
model effectively addresses the interaction between active and 
reactive power under high levels of wind power fluctuation. A 
novel feature of this model is its integration of a convex 
polyhedral uncertainty set to capture the uncertainty of wind 
power output. This approach accounts for extreme wind power 
scenarios, ensuring robust UC dispatch decisions. To obtain an 
optimal dispatch strategy, the Benders’ decomposition and 
Newton-Raphson methods are combined to decompose the 
origin problem into an outer master problem of DC-UC with 
inner bilinear decomposition, and hourly AC network security 
subproblems. This algorithm utilizes Benders cuts derived from 
the max-min subproblem, as well as the cut of mismatch from 
AC network violations. Numerical results demonstrate the AC-
NCUC model’s high effectiveness in making dispatch decisions 
under extreme wind power output scenarios, as well as its 
robustness in securing voltage stability by considering AC 
network constraints under uncertain wind power output 
conditions. 

APPENDIX 

A. Jacobian Matrix Formulation with Transformer Model 

This section provides the control transformer model for the 
NCUC problem. The control transformer incorporates tap-
changing and phase-shifting capabilities, which can accurately 
represent the electrical behavior of a transformer and to be used 
in the computation of the Jacobian matrix elements. According 
to ref. [29], the configuration is illustrated in Fig. A1, and it 



 

connects two buses–tap side 𝑗  and non-tap side 𝑚 . The 
complex off-nominal ratio of the phase shifting transformer 𝑘T 
captures both tap ratio 𝑇XY  and phase angle shift 𝛾XY . More 
details are given in [29].  

 
Fig. A1 Configuration of tap-changing and phase-shifting transformers [29].  

According to ref. [29], real bus injections 𝑃X and reactive bus 
injections 𝑄X at bus 𝑗 can be formulated as follows: 𝑃X = 𝑉X7𝐺XX + 𝑉X ∑ 𝑉Y Æ 𝐺XY cos𝛿X − 𝛿Y®+𝐵XYsin	(𝛿X − 𝛿Y)ÈY∈4$,XZY

  (A1) 

𝑄X = −𝑉X7𝐵XX + 𝑉X ∑ 𝑉Y Æ 𝐺XY sin𝛿X − 𝛿Y®−𝐵XYcos	(𝛿X − 𝛿Y)ÈY∈4$,XZY
 (A2) 

where 𝑉X and 𝛿X are the voltage magnitude and the voltage angle 
at bus 𝑗, respectively. 𝐺XY and 𝐵XY are the conductance and the 
susceptance between buses 𝑗 and 𝑚, respectively. 𝐺XX  and 𝐵XX 
are the self-conductance and self-susceptance at bus 𝑗 , 
respectively. In addition, 𝑆XY  represents the branches linking 
buses 𝑗 and 𝑚. The partial derivative of (A1) and (A2) with 
respect to 𝜹, 𝑽, 𝑻, and 𝛄 are defined as follows: 𝐇 = 𝜕𝐏𝜕𝜹 				𝐋 = 𝜕𝐏𝜕𝑽 				𝐄 = 𝜕𝐏𝜕𝑻 				𝐆 = 𝜕𝐏𝜕𝜸 

(A3) 𝐌 = 𝜕𝐏𝜕𝜹 				𝐉 = 𝜕𝐏𝜕𝑽 				𝐑 = 𝜕𝐏𝜕𝑻 				𝐒 = 𝜕𝐏𝜕𝜸 

The above Jacobian submatrices (𝐇, 𝐋, 𝐄, 𝐆,𝐌,𝐍, 𝐑 and 𝐒) 
represent the linearized relationship between small variations in 
the system state and control variables (∆𝜹, ∆𝑽, ∆𝑻 and ∆𝜸) and 
corresponding small variations in real and reactive power 
mismatches. 

Then, we can obtain the complex power flow on line 𝑗 − 𝑚: 𝑆�̇�XY = 𝑉X7(𝐺𝐿XX − 𝑗𝐵XX) + 𝑉X𝑉Y(cos	(𝛿X − 𝛿Y)+𝑗sin	(𝛿X − 𝛿Y))(𝐺𝐿XY − 𝑗𝐵𝐿XY)    (A4) 

As well as the real and reactive power flow from bus 𝑗 to 𝑚: PLXY = 𝑉X7𝐺𝐿XX + 𝑉X𝑉Y Æ 𝐺𝐿XYcos	(𝛿X − 𝛿Y)+𝐵𝐿XYsin	(𝛿X − 𝛿Y)È   (A5) 

𝑄𝐿XY = −𝑉X7𝐵𝐿XX + 𝑉X𝑉Y Æ 𝐺𝐿XYsin(𝛿X − 𝛿Y)−𝐵𝐿XYcos	(𝛿X − 𝛿Y)È  (A6) 

We can define Jacobian submatrices (𝐔,𝐖, 𝐘  and 𝐙 ) to 
present the linearized relationship between ∆𝜹, ∆𝑽, ∆𝑻 and ∆𝜸 
in relation to small variations in real power flows.  𝐔 = 𝜕𝐏𝐋𝜕𝜹 				𝐖 = 𝜕𝐏𝐋𝜕𝑽 				𝐘 = 𝜕𝐏𝐋𝜕𝑻 				𝐙 = 𝜕𝐏𝐋𝜕𝜸  (A7) 

Based on these derivations, we can obtain the Jacobian 
matrix for the linearized power flow equations. 

B. Data in the modified IEEE 6-bus System 

TABLE AI 

BUS DATA  

Bus. 𝑽"#$ 𝑽"%& Initial-vol Initial angle 

1 1.10 0.95 1.00 0 

2 1.15 0.90 1.00 0 

3 1.15 0.90 1.00 0 

4 1.15 0.90 1.00 0 

5 1.15 0.90 1.00 0 

6 1.15 0.90 1.00 0 

TABLE AII 

TRANSMISSION LINE DATA 

Line From To Resistance Reactance 𝑭"#$ 

1 1 2 0.0050 0.170 150 

2 1 4 0.0030 0.258 75 

3 2 3 0.0000 0.037 100 

4 2 4 0.0070 0.197 100 

5 3 6 0.0005 0.018 90 

6 4 5 0.0000 0.037 90 

7 5 6 0.0020 0.140 90 

TABLE AIII 

TAP-CHANGING AND PHASE-SHIFTING TRANSFORMERS DATA 

Tap From To Reactance 𝑻"%& 𝑻"#$ 𝜸𝒎𝒂𝒙 𝜸𝒎𝒊𝒏 

T1 2 3 0.037 0.90 1.10 60° -30° 

T2 4 5 0.037 0.90 1.10 60° -30° 

TABLE AIV 

GENERATION UNIT DATA 

U Bus  

Unit Cost Coefficients 

𝑷0 𝑷 𝑸0  𝑷 𝑻,-- 𝑻,. DR/UR SU/SD Constant 

term 

Linear 

term 

Quadratic 

term 

1 1 176.9 13.5 0.0004 220 100 1000 -100 4 4 55 180 

2 2 129.9 32.6 0.0001 100 10 1000 -100 2 3 50 360 

3 6 137.4 17.6 0.005 100 10 1000 -100 1 1 20 60 
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