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Improved residual mode separation for finite-dimensional control of PDEs:

Application to the Euler–Bernoulli beam
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Abstract

We consider a simply-supported Euler–Bernoulli beam with viscous and Kelvin–Voigt damping. Our objective is to attenuate the

effect of an unknown distributed disturbance using one piezoelectric actuator. We show how to design a state-feedback controller

based on a finite number of dominating modes that guarantees that the L2 gain is not greater than a given value. If the remaining

(infinitely many) modes are simply ignored, the calculated L2 gain is wrong. This happens because of the spillover phenomenon

that occurs when the effect of the control on truncated modes is not accounted for in the feedback design. We propose a simple

modification of the H∞ cost that prevents spillover. The key idea is to treat the control as a disturbance in the truncated modes and

find the corresponding L2 gains using the bounded real lemma. These L2 gains are added to the control weight in the H∞ cost for the

dominating modes, which prevents spillover. A numerical simulation of an aluminum beam with realistic parameters demonstrates

the effectiveness of the proposed method. The presented approach is applicable to other types of PDEs, such as the heat, wave, and

Kuramoto–Sivashinsky equations, as well as their semilinear versions. The proposed method gives a Lyapunov functional that can

also be used for guaranteed cost control, regional stability analysis, and input-to-state stability.

Keywords: Distributed parameter systems; Euler–Bernoulli beam; H∞ control; modal decomposition.

1. Introduction

The H∞ control theory enables the design of controllers

robust to modeling errors, measurement noise, and unknown

disturbances [1, 2]. Its extension to infinite-dimensional sys-

tems is challenging, especially if the controller is required to

be finite-dimensional. In particular, the direct extension of

the frequency-domain approach results in infinite-dimensional

controllers [3, 4], which are then approximated by finite-

dimensional ones [5, 6, 7]. The approximation leads to per-

formance degradation known as spillover, which can be char-

acterized via the H∞ norm of the approximation error [8].

The frequency-domain approach, which is very natural for

H∞ control, may be difficult to use in the infinite-dimensional

case since the transcendental transfer function of an infinite-

dimensional plant may be hard to find [9], its inner-outer fac-

torization required for the design is not straightforward [4], and

the MIMO case requires restrictive assumptions [3]. Further-

more, the frequency-domain approach is not applicable to guar-

anteed cost control, regional stability analysis, systems with

time-varying delays, and nonlinear systems.

The time-domain approach avoids these restrictions. Its

direct extension to infinite-dimensional systems leads to an

operator Riccati equation, which also results in an infinite-

dimensional controller [10, 11]. To obtain a finite-dimensional

controller, one can perform modal decomposition [12, 13]

and design a controller for a finite number of dominating

modes [14, 15, 16]. Similarly to the frequency-domain design,

this leads to spillover: neglected modes deteriorate the over-

all system performance [17, 18]. Nevertheless, stability under

spillover can be guaranteed using residual filters [19, 20, 21] or

spectral properties of linear operators representing the dynam-

ics [22, 23].

The time-domain performance analysis under spillover is

more challenging than the stability analysis and requires care-

ful treatment of the neglected modes. Such treatment has been

provided for parabolic PDEs in [24, 25, 26, 27] with subsequent

extensions to input/output delays [28, 29, 30], semilinear sys-

tems [31, 32], as well as the Kuramoto–Sivashinsky [33], wave

[34], and Euler–Bernoulli [35] equations.

This paper proposes a new way of dealing with spillover

in the time domain. Namely, we treat the control input as a

disturbance in the residue modes and explicitly solve the al-

gebraic Riccati equation for each neglected mode to find the

input-to-state L2 gains. These gains are added to the control

weight in the cost used to design a state-feedback controller that

guarantees that the L2 gain is not greater than a given value.

This idea leads to a simple yet efficient way of designing a

finite-dimensional controller that avoids spillover. The analy-

sis is based on the cost decomposition presented in Section 3.3.

We develop this idea to attenuate disturbances in the Euler–

Bernoulli beam with piezoelectric actuators, which is of great

importance for aerospace, civil, and mechanical engineering.

Using a numerical example of an aluminum beam, we demon-

strate a drastic improvement compared to our previous results

in [35]. Namely, spillover is avoided using just 8 modes instead

of 32, and we prove that the L2 gain can only decrease when

more modes are considered.

Preprint submitted to Systems & Control Letters February 21, 2025



The frequency-domain approach to the H∞ control of beams

was developed in [36, 37, 38], the controllability problem un-

der piezoelectric actuators was studied in [39, 40, 41], and ex-

perimental results (without spillover analysis) were reported in

[42, 43]. Here, we develop the time-domain method, which,

differently from the frequency-domain approach, can be ex-

tended to guaranteed cost control and regional stability analysis.

Furthermore, the proposed idea can significantly improve the

finite-dimensional controller design for other types of PDEs,

including the heat, wave, and Kuramoto–Sivashinky equations.

It also admits an extension to semilinear PDEs in a manner sim-

ilar to [31, 32].

Notations: | · | is the Euclidean norm, ∥ · ∥ is the L2 norm,

⟨·, ·⟩ is the scalar product in L2, Hp(0, π) with p ∈ N are the

Sobolev spaces, H−p(0, π) are their dual spaces, H1
loc

(0,∞) are

the functions that belong to H1(K) for any compact K ⊂ (0,∞),

diag{ω1, . . . , ωN} is the diagonal matrix with diagonal elements

ωn, n = 1, . . . ,N. For a matrix P, the notation P < 0 im-

plies that P is square, symmetric, and negative-definite. Partial

derivatives are denoted by indices, e.g., zt = ∂z/∂t.

1.1. Preliminaries: H∞ control of finite-dimensional systems

Consider the LTI system

ẋ(t) = Ax(t) + Bu(t) + Ev(t), x(0) = 0,

y(t) = Cx(t) + Du(t)
(1)

with state x ∈ R
n, control input u ∈ R

m, disturbance v ∈ R
k,

controlled output y ∈ Rl, and constant matrices A, B, C, D, and

E. We say that u = −Kx with K ∈ Rm×n guarantees that the L2

gain from v to y is not greater than γ > 0 if the solutions of the

closed-loop system satisfy

∫ ∞
0

[

|y(t)|2 − γ2|v(t)|2
]

dt ≤ 0, ∀v ∈ L2([0,∞),Rk). (2)

That is, the H∞ norm of the closed-loop transfer function from

v to y is not greater than γ. The proofs of the following results

are given, e.g., in [2].

Proposition 1. Consider (1) such that D⊤C = 0 and R =

D⊤D > 0. Given γ > 0, let 0 < P ∈ Rn×n satisfy

PA + A⊤P − P(BR−1B⊤ − γ−2EE⊤)P +C⊤C = 0. (3)

Then u(t) = −R−1B⊤Px(t) guarantees (2).

Remark 1 (Solution existence). If (A, B) is stabilizable,

(A,C) is detectable, and γ is large enough, then (3) has a

solution. For this solution, the closed-loop matrix A−BR−1B⊤P

is stable.

Corollary 1 (Bounded Real Lemma). Consider (1) with B =

0 and D = 0 (i.e., without control). Given γ > 0, let 0 < P ∈
R

n×n satisfy

PA + A⊤P + γ−2PEE⊤P +C⊤C = 0. (4)

Then (2) holds without control.

2. Model description

2.1. Euler–Bernoulli beam with control and disturbance

We consider the Euler–Bernoulli beam described by

µz̃tt(x, t) + EIz̃xxxx(x, t) + cvz̃t(x, t) + ckIz̃xxxxt(x, t) =

ca[δ′(x − x̃L) − δ′(x − x̃R)]ũ(t) + w̃(x, t),

z̃(0, t) = z̃xx(0, t) = z̃(L, t) = z̃xx(L, t) = 0,

(5)

where z̃ : [0, L] × [0,∞) → R is the transverse deflection of a

beam of length L, linear density µ, Young’s modulus of elastic-

ity E, and moment of inertia I. The model accounts for the

viscous damping cvz̃t and structural (Kelvin–Voigt) damping

ckIz̃xxxxt [44, 45]. The external disturbance is represented by

w̃ : (0, L)× [0,∞)→ R. All the parameters are constant in time

and space. The boundary conditions correspond to the hinged

ends.

A piezoelectric actuator produces bending moment on

[x̃L, x̃R] ⊂ (0, L) proportional to the applied voltage

ũ : [0,∞)→ R. Namely, m(x, t) = ca[h(x− x̃L)− h(x− x̃R)]ũ(t),

where h(x) is the step function. Since m(x, t) contributes to the

beam’s moment-curvature relationship, it enters (5) through the

Laplace operator: mxx(x, t) = ca[δ′(x − x̃L) − δ′(x − x̃R)]ũ(t),

where δ′( · − x̃) ∈ H−2(0, L) is the derivative of the Dirac delta

function defined as

δ′(· − x̃) f =

∫ L

0

δ′(x − x̃) f (x) dx = − f ′(x̃) (6)

for any x̃ ∈ (0, L) and f ∈ H2(0, L). Note that it is natural for the

derivatives of δ to be of opposite signs since the piezoelectric

patch applies forces of opposite directions to its ends when it

contracts or expands. A more detailed study of piezoelectric

actuators is provided in [46, 47, 38].

Remark 2 (Damping model). The Kelvin–Voigt damping is

motivated by the experimental observation that damping rates

in beams increase with frequency [44]. This is also captured

by the “square root” model given by −cr z̃xxt [48]. Our analysis

can be extended to the “square root” model straightforwardly.

By scaling the space and time as follows

z(x, t) = z̃(a1x, a2t), a1 =
L

π
, a2 = a2

1

√

µ

EI
, (7)

we rewrite (5) as

ztt + zxxxx + c1zt + c2zxxxxt =
[

δ′L − δ
′
R

]

u + w,

z(0, t) = zxx(0, t) = z(π, t) = zxx(π, t) = 0,
(8)

where x ∈ [0, π], t ≥ 0,

c1 =
cva2

µ
, c2 =

ckIa2

µa4
1

, xL =
x̃L

a1

, xR =
x̃R

a1

,

δ′L = δ
′ (x − xL) , δ′R = δ

′ (x − xR) ,

u(t) =
caa2

2

µa2
1

ũ(a2t), w(x, t) =
a2

2

µ
w̃(a1x, a2t).
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Note that (6) implies δ′(a1x− x̃) = δ′(x− x̃/a1)/a2
1
. To simplify

further derivations, we assume that

c1 + c2 ≤
√

2. (9)

That is, the dynamics are dominated by the elasticity rather than

damping. The extension to c1 + c2 >
√

2 is straightforward.

2.2. Well-posedness

Let H2
BC

and H4
BC

be the closure in H2 and H4, respectively,

of all functions f ∈ C∞[0, π] satisfying f (2k)(0) = 0 = f (2k)(π)

for all k ≥ 0. The energy space of (8) is

X = H2
BC(0, π) × L2(0, π)

with the scalar product

⟨( f1, g1), ( f2, g2)⟩X = ⟨ f ′′1 , f ′′2 ⟩L2 + ⟨g1, g2⟩L2 .

Consider

A0 f = − f ′′, D(A0) = H2
BC(0, π) ⊂ L2(0, π). (10)

In the operator form, (8) is written as

˙̄z = Az̄ + f , (11)

where

z̄(t) =

[

z(·, t)
zt(·, t)

]

, A =
[

0 I

−A2
0
−(c1I + c2A2

0
)

]

,

f (t) =

[

0

[δ′
L
− δ′

R
]u(t) + w(·, t)

]

.

Since D(A2
0
) = H4

BC
(0, π), we have

D(A) = X1 = H4
BC(0, π) × H4

BC(0, π) ⊂ X.

The adjoint ofA with respect to the scalar product in X is

A∗ =
[

0 −I

A2
0
−(c1I + c2A2

0
)

]

, D(A∗) = X1 ⊂ X.

BothA andA∗ are dissipative. To see this, consider

⟨A( f , g), ( f , g)⟩X = ⟨(g,− f (4) − c1g − c2g(4)), ( f , g)⟩X
= ⟨g′′, f ′′⟩L2 − ⟨ f (4), g⟩L2 − c1⟨g, g⟩L2 − c2⟨g(4), g⟩L2 .

For f , g ∈ H4
BC

, integration by parts gives

⟨ f (4), g⟩L2 = ⟨ f ′′, g′′⟩L2 and ⟨g(4), g⟩L2 = ⟨g′′, g′′⟩L2 .

Substituting, we obtain

⟨A( f , g), ( f , g)⟩X = −c1∥g∥2L2 − c2∥g′′∥2L2 ≤ 0.

Similarly,

⟨A∗( f , g), ( f , g)⟩X = −c1∥g∥2L2 − c2∥g′′∥2L2 ≤ 0.

Since D(A) = X, A is closed, and A and A∗ are dissipative,

A generates a C0-semigroup of contractions on X [49, Corol-

lary 4.4].

The set D(A∗) with the norm ∥z∥D = ∥(β̄I −A∗)z∥X , where β

is any regular point of A and β̄ is its complex conjugate, is a

Hilbert space [50, Proposition 2.10.1]. Its dual with respect to

the pivot space X is X−1 = Y × H−4
BC

(0, π), where Y and H−4
BC

are

the dual spaces of H4
BC

with respect to H2 and L2, respectively.

We assume that

w ∈ H1
loc((0,∞),H−4

BC(0, π)) ∩ L2((0,∞), L2(0, π)). (12)

The control input that we design later satisfies u ∈
H1

loc
((0,∞),R). Since H4

BC
⊂ H2, we have δ′

L
, δ′

R
∈ H−4

BC
⊃ H−2.

Since δ′
L

and δ′
R

are constant in time, this implies

[δ′L − δ
′
R]u ∈ H1

loc((0,∞),H−4
BC(0, π)).

Therefore, f ∈ H1
loc

((0,∞), X−1). By [50, Theorem 4.1.6], for

z(·, 0) ∈ H2
BC

(0, π) and zt(·, 0) ∈ L2(0, π), there exists a unique

solution of (11) in X−1 that satisfies

z̄ ∈ C([0,∞), X) ∩C1([0,∞), X−1).

Since z̄ = (z, zt)
T , this implies

z ∈ C([0,∞),H2
BC(0, π)) and zt ∈ C([0,∞), L2(0, π)).

3. Robust state-feedback control of the beam

Given non-negative scalars ρx, ρu, and γ, our objective is to

find a state-feedback control law guaranteeing that the trajecto-

ries of (8) with z(·, 0) ≡ 0 ≡ zt(·, 0) satisfy (cf. (2))

J =

∫ ∞

0

[

∥z(·, t)∥2 + ρx∥zxx(·, t)∥2

+ ρuu2(t) − γ2∥w(·, t)∥2
]

dt ≤ 0 (13)

for all w satisfying (12). Such control guarantees that the L2

gain is not greater than γ. Using (7), one can rewrite (13) in

terms of the original state, input, and disturbance with ρ̃x =

ρxa4
1
, ρ̃u = ρu

c2
aa4

2

µ2a3
1

, and γ̃ = γ
a2

2

µ
.

Remark 3 (Performance index). Since the potential energy of

(5) due to bending is EI
2
∥z̃xx(·, t)∥2 [51, p. 317], we include

∥zxx(·, t)∥2 in (13). The kinetic energy of (5) is
µ

2
∥z̃t(·, t)∥2, and

it is natural to include ∥zt(·, t)∥2 in (13). To simplify the expo-

sition, we do not present this extension, which requires one to

consider multiple cases depending on the values of c1, c2, ρx,

and ρu.

3.1. Modal decomposition

The modes and natural frequencies of (8) are

ϕn(x) =
√

2/π sin nx, ωn = n2, n ∈ N.
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Figure 1: The eigenvalues of An given in (15) for n = 1, . . . , 50. Red dots —

no damping (c1 = 0 = c2); blue dots — viscous damping (c1 = 1.4 × 10−3,

c2 = 0); green dots — viscous and Kelvin–Voigt damping (c1 = 1.4 × 10−3,

c2 = 1.3 × 10−3).

These are the eigenfunctions and eigenvalues of A0 defined in

(10), which form a complete orthonormal system in L2(0, π).

Therefore,

z(·, t) L2

=

∞
∑

n=1

zn(t)ϕn, zn(t) = ⟨z(·, t), ϕn⟩.

Substituting this into (8), in view of

⟨δ′L, ϕn⟩
(6)
= −ϕ′n(xL) and ⟨δ′R, ϕn⟩

(6)
= −ϕ′n(xR),

we obtain the ODEs for the Fourier coefficients

z̈n(t) + 2ζnωnżn(t) + ω2
nzn(t) = bnu(t) + wn(t), n ∈ N,

where
ζn = (c1ω

−1
n + c2ωn)/2,

bn = n
√

2/π (cos nxR − cos nxL) ,

wn(t) = ⟨w(·, t), ϕn⟩ .
The ODEs can be written as

˙̄zn(t) = Anz̄n(t) + Bnu(t) + Enwn(t), n ∈ N, (14)

where

z̄n =

[

zn

żn

]

, An =

[

0 1

−ω 2
n −2ζnωn

]

, Bn =

[

0

bn

]

, En =

[

0

1

]

.

The eigenvalues of An are

λ∓n = −ωn(ζn ±
√

ζ2
n − 1). (15)

Without damping (ζn = 0), infinitely many imaginary roots

λ±n = ±iωn (see Fig. 1) give rise to free vibrations in (8) in

the absence of control and disturbance. Our approach does not

work in this case since it is not enough to deal only with a fi-

nite number of modes. Viscous damping (c1 , 0) ensures that

Re λ±n = −c1/2. Kelvin–Voigt damping (c2 , 0) improves the

stability further guaranteeing

Re λ−n → −∞ and Re λ+n → −1/c2.

We develop our approach for the case when c1 , 0 , c2.

Figure 2: The value of JN (t), defined in (16), for N = 5 (blue), N = 6 (green),

and N = 50 (red). The black line is JN (t) for N = 50 and u ≡ 0. A controller

designed for the first 5 modes cannot guarantee (13) for the original system

because of the spillover phenomenon.

3.2. The spillover phenomenon

It is common in engineering practice to design controllers

based on a few dominating modes while ignoring the residue.

This subsection demonstrates that such an approach may suffer

from the spillover phenomenon.

Consider the Euler–Bernoulli beam (8) with

c1 = 1.4 × 10−3, c2 = 1.3 × 10−3, xL = 0.91, xR = 0.97.

The choice of the parameters is explained in Section 4. Let

us try to design a controller guaranteeing (13) with ρx = 0.1

and ρu = 10−3 by considering only 5 modes in the modal de-

composition (14). Using Proposition 1 (see Section 3.5 for de-

tails), we find γ ≈ 6.97 and the corresponding controller gain

−R−1B⊤P ∈ R1×10.

Figure 2 shows the values of

JN(t) =
∫ t

0

[

∑N
n=1

[

(1 + ρxω
2
n)z2

n(t) − γ2w2
n(t)
]

+ ρuu2(t)
]

dt (16)

for different numbers of modes, N. Proposition 1 guarantees

J5(t) ≤ 0 (blue line). However, if we include one more mode

without adjusting γ and the controller, then

J6(t) = J5(t) +

∫ t

0

[

(1 + ρxω
2
6)z2

6(t) − γ2w2
6(t)
]

dt

becomes positive for t > 20 (green line). This happens because

the L2 gain for the additional mode with n = 6 is greater than γ

and the additional integral term is positive. The red line shows

J50(t) ≈ J∞(t), which is the cost when all the modes are con-

sidered. Clearly, the controller designed using only 5 modes

cannot guarantee (13) for the original system.

Spillover occurs because the effect of the controller on the

truncated modes is ignored. In the remainder of the paper,

we provide a simple remedy to avoid spillover. Namely, we

show how to modify ρu in (16) so that a controller guaranteeing

JN(t) ≤ 0 for a given N will guarantee (13) with the original ρu.

3.3. Cost decomposition

We represent (14) as

żN = AzN + Bu + EwN , (17a)

˙̄zn = Anz̄n + Bnu + Enwn, n > N, (17b)

4



where N ∈ N,

zN =







































z1

...
zN

ż1

...
żN







































, wN =













w1

...
wN













, B =







































0

...
0
b1

...
bN







































, E =
[

0N

IN

]

,

A =
[

0N IN

−Ω2
N
−(c1IN+c2Ω

2
N)

]

, ΩN = diag{ω1, . . . , ωN},

(18)

and the remaining notations are from (14). We will design an

H∞ controller for (17a) with the cost, J0, that accounts for its ef-

fect on (17b). To find this cost, we decompose the original cost

J from (13). Namely, since z(·, t) ∈ H2(0, π) (see Section 2.2),

Parseval’s identity gives

∥z(·, t)∥2 =
∞
∑

n=1

z2
n(t), ∥zxx(·, t)∥2 =

∞
∑

n=1

ω2
nz2

n(t).

Our key idea is to represent J from (13) as

J = J0 +
∑∞

n=N+1 Jn, (19)

where

J0 =
∫ ∞

0

[

∑N
n=1(1 + ρxω

2
n)z2

n(t) +
(

ρu +
∑∞

n=N+1 ρn

)

u2(t)

− γ2
∑N

n=1 w2
n(t)
]

dt,

Jn =
∫ ∞

0

[

(1 + ρxω
2
n)z2

n(t) − ρnu2(t) − γ2w2
n(t)
]

dt.

The control, u(t), is treated as a disturbance in (17b). Using the

bounded real lemma (Corollary 1), we will find the minimum

ρn such that Jn ≤ 0 for the zero initial conditions and any wn ∈
L2([0,∞),R). Then, we will show that

∑∞
n=N+1 ρn < ∞ and

construct a controller for (17a) guaranteeing J0 ≤ 0.

3.4. Bounded real lemma for the residue

For a given n > N, (17b) can be represented as (1) with

x = z̄n, A = An, B = 02×1,

v =
[ √
ρnu/γ
wn

]

, E =
[

γ√
ρn

Bn En

]

.

Note that the control input, u, is considered as a part of the

disturbance, v, since the H∞ control will be designed based on

(17a). The cost in (2) coincides with Jn for

C =
[
√

1 + ρxω2
n 0
]

and D = 0.

Then, the algebraic Riccati equation (4) takes the form

PnAn + A⊤n Pn + γ
−2Pn

[

0 0
0 1+γ2b2

n/ρn

]

Pn +
[

1+ρxω
2
n 0

0 0

]

= 0. (20)

In Appendix A, we show that the smallest ρn guaranteeing the

feasibility of (20) is

ρn =



































b2
n(1 + ρxω

2
n)

4ω4
nζ

2
n (1 − ζ2

n ) − (1 + ρxω2
n)γ−2

if 2ζ2
n ≤ 1,

b2
n(1 + ρxω

2
n)

ω4
n − (1 + ρxω2

n)γ−2
if 2ζ2

n > 1.

The value of ρn is the L2 gain from u to z̄n. Corollary 1 guaran-

tees Jn ≤ 0 for these ρn. This can be used to obtain the L2 gain

of (8) without control.

Proposition 2 (L2 gain without control). The L2 gain of the

control-free (8) subject to (9) is not greater than

γ0 =
2
√

1 + ρx

(c1 + c2)
√

4 − (c1 + c2)2
.

Proof. Repeating the arguments of Appendix A with αn = γ
−2,

we obtain that (20) is feasible for any n ∈ N if

γ2 ≥
1 + ρxω

2
n

4ω4
nζ

2
n (1 − ζ2

n )
when 2ζ2

n ≤ 1, (21a)

γ2 ≥
1 + ρxω

2
n

ω4
n

when 2ζ2
n > 1. (21b)

The right-hand sides of (21) are decreasing in n. Moreover,

ω4
n − 4ω4

nζ
2
n (1 − ζ2

n ) = ω4
n(1 − 2ζ2

n )2 ≥ 0

implies that the bound in (21a) is not smaller than in (21b).

Since (9) guarantees 2ζ2
1
≤ 1, the lower bound on γ is obtained

from (21a) with n = 1, i.e., with ω1 = 1 and ζ1 = (c1 + c2)/2.

The feasibility of (20) implies Jn ≤ 0. Taking N = 0 and J0 = 0

in (19), we obtain J ≤ 0. □

In Appendix B, we show that

∞
∑

n=N+1

ρn ≤ ρ∞ =
M
∑

n=N+1

ρn +CM















|xR − xL| −
M
∑

n=1

b2
n

ω2
n















, (22)

where

CM =
ω2

M+1
(1 + ρxω

2
M+1

)

ω4
M+1
− (1 + ρxω

2
M+1

)γ−2
,

M = max



















N,























√

1 +
√

1 − 2c1c2√
2c2









































.

Here, ⌊·⌋ stands for the integer part. Note that (9) implies

2c1c2 ≤ 1.

As explained in Appendix B,
∑∞

n=1 b2
n/ω

2
n = |xR− xL|. There-

fore, ρ∞ → 0 monotonically as N → ∞. That is, by considering

more modes in the control design, we reduce the L2 gain of the

residue associated with the spillover.

3.5. H∞ controller design without spillover

The system (17a) is in the form of (1) with x = zN , v = wN ,

and A, B, and E defined in (18). Taking

C =

[ √
IN+ρxΩ

2
N

0N×N

01×N 01×N

]

and D =
[

0N×1√
ρu+ρ∞

]

, (23)

we obtain that D⊤C = 0, R = D⊤D = ρu + ρ∞ > 0, and the left-

hand side of (2) coincides with J0 from (19). By Proposition 1,

if 0 < P ∈ R2N×2N satisfies (3), then

u(t) = −(ρu + ρ∞)−1B⊤PzN(t) (24)

guarantees J0 ≤ 0. Since ρn were chosen so that Jn ≤ 0, we

obtain that J ≤ 0.

Note that (12) implies wN ∈ L2(0,∞). Therefore, the solution

of the stable system (17a), (24) satisfies zN ∈ L2(0,∞). That
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is, the right-hand side of (17a) is from L2, meaning that żN ∈
L2(0,∞), and both zN ∈ H1(0,∞) and u ∈ H1(0,∞). This is the

property we used in the well-posedness analysis of Section 2.2.

Summarizing, we have the following result.

Theorem 1. Consider the Euler–Bernoulli beam (8) subject to

(9) and its modal decomposition (17) with some N ∈ N. Given

non-negative ρx, ρu, and γ, let ρ∞ be given by (22). If 0 < P ∈
R

2N×2N satisfies the algebraic Riccati equation (3) with A, B,

C, D, and E given in (18) and (23), then the state feedback (24)

guarantees that the L2 gain of (8) is not greater than γ, that is,

(13) holds for z(·, 0) ≡ 0 ≡ zt(·, 0) and any w satisfying (12).

Proof. Let M be as defined below (22). Consider

V = (zN)⊤PzN +
∑∞

n=N+1 z̄⊤n Pnz̄n

with Pn defined by (A.3) for N + 1 ≤ n ≤ M and by (A.4) for

n > M. The series converges since

Pn ∼ ρx

[

ω2
nc2 1

1 2c2

]

as n→ ∞ (25)

(we chose “+” for the right bottom element), while z(·, t) ∈
H2(0, π) and zt(·, t) ∈ L2(0, π) (see Section 2.2). Let J(t) be

J as defined in (13) but with ∞ replaced by t. Calculating the

derivative along the trajectories of (17) and using the relation

ρu +
∑∞

N+1 ρn ≤ ρu + ρ∞ = R, we obtain

V̇(t) + J̇(t) ≤ 2(zN)⊤P[AzN + Bu + EwN]

+ (zN)⊤C⊤CzN + Ru2 − γ2|wN |2

+ 2
∑∞

n=N+1 z̄⊤n Pn[Anz̄n + Bnu + Enwn]

+
∑∞

n=N+1[(1 + ρxω
2
n)z2

n − ρnu2 − γ2w2
n].

Completing the squares, we find

2(zN)⊤PBu + Ru2 = |R−
1
2 B⊤PzN + R

1
2 u|2 − (zN)⊤PBR−1B⊤PzN ,

2(zN)⊤PEwN − γ2|wN |2 = γ−2|E⊤PzN |2 − |γ−1E⊤PzN − γwN |2,

2z̄⊤n PnBnu − ρnu2 = ρ−1
n |B⊤n Pnz̄n|2 − |ρ

− 1
2

n B⊤n Pnz̄n − ρ
1
2
n u|2,

2z̄⊤n PnEnwn − γ2w2
n = γ

−2|E⊤n Pnz̄n|2 − |γ−1E⊤n Pnz̄n − γwn|2.
(26)

In view of (3) and (20), these lead to

V̇(t) + J̇(t) ≤ |R−
1
2 B⊤PzN + R

1
2 u|2 − |γ−1E⊤PzN − γwN |2

−
∞
∑

n=N+1

[

|ρ−
1
2

n B⊤n Pnz̄n − ρ
1
2
n u|2 + |γ−1E⊤n Pnz̄n − γwn|2

]

.

Substituting u from (24), we obtain

V̇(t) + J̇(t) ≤ 0. (27)

Integrating the above from 0 to t, we obtain

V(t) − V(0) + J(t) − J(0) ≤ 0.

Given that V(0) = 0 for the zero initial conditions, and J(0) = 0,

we have J(t) ≤ −V(t) ≤ 0, which implies (13). □

Remark 4 (Internal stability). The designed feedback (24)

renders (8) internally stable in the norm

∥z(·, t)∥2X = ∥zxx(·, t)∥2 + ∥zt(·, t)∥2.

Indeed, (25) implies the existence of positive ε1 and ε2 such

that ε1∥z(·, t)∥2
X
≤ V ≤ ε2∥z(·, t)∥2

X
, and (27) implies V̇ ≤ 0 for

w(·, t) ≡ 0.

Remark 5 (Solution existence). Since A, defined in (18), is

Hurwitz, (A, B) is stabilizable. It is easy to check that (A,C) is

observable, hence detectable. As mentioned in Remark 1, this

guarantees that (3) has a solution for a large enough γ. That

is, the conditions of Theorem 1 hold for any N ∈ N and large

enough γ.

Remark 6 (Number of modes and the L2 gain). When

N grows, γ can only decrease. Indeed, we know that

JN+1(t) ≤ 0 and (24) guarantees J0(t) ≤ 0 with JN+1(t) and

J0(t) defined below (19). Taking K1,K2 ∈ R
1×N such that

[K1 K2] = (ρu + ρ∞)−1B⊤P, we have that

u = −
[

K1 0 K2 0
]

zN+1

guarantees J̄0(t) = J0(t) + JN+1(t) ≤ 0. Note that J̄0(t) is J0(t)

with N replaced by N + 1. By [2, Theorem 6.3.6], (3) has a

solution for the matrices defined in (18) and (23) with N re-

placed by N + 1. That is, the same γ is achievable with N + 1

modes. When considering N + 1 modes, we are making the sum

J0(t) + JN+1(t) negative instead of each term, J0(t) and JN+1(t),

independently. This gives more flexibility and may reduce γ, as

demonstrated in Fig. 3.

4. Numerical simulations

As an example, we consider an aluminum rectangular beam

of dimensions 1 m × 0.1 m × 0.01 m with hinged ends and a

piezoelectric actuator of length 2 cm placed at 30 cm from the

left edge. This system can be modeled by (5) with the parame-

ters given in the following table:

Linear density µ 2.71 kg/m

Young’s modulus E 70 × 109 N/m2

Moment of inertia I 8.3 × 10−8 m4

Viscous damping cv 1.76 kg/(m · s)

Structural damping ck 2.05 × 105 kg/(m · s)

Left actuator position x̃L 0.29 m

Right actuator position x̃R 0.31 m

The linear density is calculated as µ = ρA, where ρ =

2710 kg/m3 is the density of aluminum, and A = 0.1 × 0.01 =

10−3 m2 is the cross-section area of the beam. The damping

coefficients, cv and ck, are taken from [52]. The value of ca

depends on the type of the piezoelectric patch; it does not af-

fect the performance analysis since the control can be scaled as

ũ′ = caũ. After the change of variables (7), we obtain (8) with

c1 = 1.4 × 10−3, c2 = 1.3 × 10−3, xL = 0.91, xR = 0.97.
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Figure 3: The L2 gain of the Euler–Bernoulli beam (8) for different numbers of

controlled modes N.

Our objective is to design a state-feedback control law of the

form (24) guaranteeing that the solution of (8) with z(·, 0) ≡
0 ≡ zt(·, 0) satisfies (13) with ρu = 10−3, ρx = 0.1, and small-

est possible γ > 0. To decide on how many modes to consider

in the controller design, we calculate the minimum γ for dif-

ferent numbers of controlled modes, N. Proposition 2 gives

γ0 ≈ 380 as the smallest L2 gain without control. For each

integer N ∈ [1, 40], we found the minimum γ satisfying the

conditions of Theorem 1. The results are shown in Fig. 3. As

explained in Remark 6, the L2 gain decreases when more modes

are considered. The limit value is γ ≈ 18. Since γ does not im-

prove significantly for N > 8, we consider N = 8 modes. In

this case, γ ≈ 20.2 and ρ∞ ≈ 8 × 10−3, which we found using

(22). To find the controller gain in (24), we solve (3) for P > 0

with A, B, C, D, and E defined in (18) and (23). Note that, for

this example, the first condition in (15) of [35] requires N ≥ 32

and the resulting LMIs are not feasible for any γ > 0.

The results of numerical simulations without and with con-

trol for the same disturbance are shown in Fig. 4. To generate

the disturbance, we calculated P > 0 satisfying (4) with A, E,

and C given in (18) and (23), found zN
d

(t) as the solution of

(17a) with N = 30, u ≡ 0, and zN
d

(0) = [1, . . . , 1]⊤ ∈ R
60,

substituted wN(t) = γ−2E⊤PzN
d

(t) into (18), and took w(x, t) =
∑N

n=1 wn(t)ϕn(x). The value of wN was selected to maximizes

the related negative term in (26). Clearly, the proposed control

strategy attenuates the effect of the disturbance. This is also

evident from Fig. 5, which shows

∥z(·, t)∥J =
√

∥z(·, t)∥2 + ρx∥zxx(·, t)∥2 (28)

without (black) and with (blue) control.

The value of J(t), obtained by replacing ∞ with t in (13),

is shown in Fig. 6. As guaranteed by Theorem 1, the control

ensures that J = limt→∞ J(t) < 0 for γ ≈ 20.2 (blue line).

Without control (black line), J(t) becomes positive for t ≈ 70.

If the residue is ignored (ρ∞ = 0), a smaller γ ≈ 7.16 is obtained

following the steps detailed in Section 3.2. In this case, the

spillover phenomenon causes J(t) > 0 for t > 7 (red line).

This vividly demonstrates why the residue, i.e., the modes with

n > N, must not be ignored. Theorem 1 provides a simple way

of designing a controller avoiding the spillover phenomenon.

Remark 7 (N vs γ with spillover). If the residue is ignored

(ρ∞ = 0), then γ ≈ 6.97 for N = 5 (see Section 3.2) and

γ ≈ 7.16 for N = 8 (as explained above). That is, the L2 gain

Figure 4: Euler–Bernoulli beam without and with control. The red dashed lines

show the ends of the piezoelectric actuator.

Figure 5: The value of ∥z(·, t)∥J , defined in (28), without (black) and with (blue)

control.

Figure 6: The value of J(t) (given by (13) with∞ replaced by t) without control

(black) and with control (blue) for γ ≈ 20.2. The red line shows the spillover

phenomenon occurring when the modes with n > 8 are ignored.
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may increase when more modes are considered. This happens

because, by increasing N, one obtains a more accurate estimate

of the actual L2 gain, which is larger than that obtained using

the truncated modal decomposition. If the residue is accounted

for, larger N will never lead to a larger γ (see Remark 6).

5. Conclusions

We studied the H∞ control of the Euler–Bernoulli beam with

viscous and Kelvin–Voigt damping using piezoelectric actua-

tors. We showed that spillover occurs when a finite number of

modes are considered in the H∞ design. Then we proposed a

simple modification of the cost guaranteeing that the controller

designed based on a finite number of modes does not lead to

spillover. Using a realistic model of the beam, we demonstrated

how to find the number of modes required to design a controller,

i.e., such that a further increase of the number of considered

modes does not improve the L2 gain significantly.
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Appendix A. Solution of (20)

Let Pn =
[ p1 p2

p2 p3

]

. Then (20) is equivalent to

αn p2
2 − 2ω2

n p2 + (1 + ρxω
2
n) = 0,

p1 − 2ζnωn p2 − p3ω
2
n + αn p2 p3 = 0,

αn p2
3 − 4ζnωn p3 + 2p2 = 0

with αn = b2
n/ρn + γ

−2. These are equivalent to

p2 = α
−1
n

[

ω2
n ±
√

ω4
n − αn(1 + ρxω2

n)

]

,

p3 = α
−1
n

[

2ζnωn ±
√

4ζ2
nω

2
n − 2αn p2

]

,

p1 = 2ζnωn p2 + p3ω
2
n − αn p2 p3.

(A.1)

These values are real if and only if

ω4
n ≥ αn(1 + ρxω

2
n) and (A.2a)

2ζ2
nω

2
n ≥ αn p2 = ω

2
n−
√

ω4
n−αn(1+ρxω2

n). (A.2b)

We took p2 with “−” since 2ζ2
n can be smaller than 1.

To minimize ρn, we maximize αn. If 2ζ2
n < 1, then (A.2b)

gives the maximum αn = 4ω4
nζ

2
n (1 − ζ2

n )/(1 + ρxω
2
n), which sat-

isfies (A.2a) since ω4
n − αn(1 + ρxω

2
n) = ω4

n(1 − 2ζ2
n )2 > 0.

Substituting this into (A.1), we obtain

Pn =
2ζnωn

αn

[

ω2
n ζnωn

ζnωn 1

]

> 0. (A.3)

If 2ζ2
n ≥ 1, then (A.2b) is true subject to (A.2a), which gives

αn = ω
4
n/(1 + ρxω

2
n). Substituting this into (A.1), we obtain

Pn =
ωn

αn

[

2ζnω
2
n ωn

ωn 2ζn±
√

4ζ2
n−2

]

> 0. (A.4)

The minimum values of ρn are calculated from αn = b2
n/ρn+γ

−2

with the corresponding αn.

Appendix B. Upper bound on the L
2 gain for the residue

For n > M, we have ζn ≥ 1/
√

2. Then

ρn =
b2

n(1+ρxω
2
n)

ω4
n−(1+ρxω

2
n)γ−2 =

ω−2
n +ρx

1−(ω−2
n +ρx)ω−2

n γ
−2

b2
n

ω2
n

≤ ω−2
M+1
+ρx

1−(ω−2
M+1
+ρx)ω−2

M+1
γ−2

b2
n

ω2
n
= CM

b2
n

ω2
n
.

Note that bn/ωn are the Fourier coefficients of

χ[xL,xR](x) =











1, x ∈ [xL, xR],

0, x < [xL, xR].

By Parseval’s identity,

∑∞
n=1

b2
n

ω2
n
= ∥χ[xL,xR]∥2 = |xR − xL|.

Therefore,

∞
∑

n=M+1

ρn ≤ CM

∞
∑

n=M+1

b2
n

ω2
n

= CM















|xR − xL| −
M
∑

n=1

b2
n

ω2
n















,

which implies (22).
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