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Abstract 17 

Sub-Saharan Africa (SSA) has emerged as a prominent destination for mining 18 

activities due to its abundant mineral reserves. A key question is understanding the 19 

extent to which the establishment and expansion of mines contribute to off-site forest 20 

disruptions. We conducted a comparative analysis by examining deforestation within 21 

a 1 km to 12 km buffer from the boundary of mines (treatments) “i.e. 1-3 km, 3-6 km, 22 

6-9 km, 9-12 km”, and similar locations without mines (controls) but with comparable 23 

environmental characteristics. The rates of annual change were evaluated between 24 

treatments and controls, and before and after the establishment of mines from 2001 to 25 

2020. The sampled treatment grids had a total of 6,633,876 hectares of tree cover in 26 

year 2000, and lost 17.7% within 2 decades, this was 47.5% higher than the matched 27 

controls. Deforestation rates increased by 11,200 hectares annually for mines 28 

established between 2009 and 2011 (the median years), relative to pre-creation of 29 

mines Our findings emphasize the urgent need for the mining sector to consider their 30 

broader offsite environmental costs in their impact assessments, carbon accounting, 31 

and associated investments in conservation protection.  32 
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1.0 | Introduction 38 

Mining activities in sub-Saharan Africa (SSA) have witnessed substantial growth and 39 

investment since the early 2000s (Weng et al., 2014), transforming the region into a key player 40 

in the global mineral extraction industry. SSA has enormous volumes of high-grade minerals 41 

(Edwards et al., 2014a), making it a global epicentre of mine expansion. This financial 42 

injection, particularly post-2000, has spurred the establishment of new mines and substantial 43 

expansions of existing ones. This culminated in the production of minerals valued at 44 

approximately $350 billion in 2018 alone (Yontcheva et al., 2021) . However, the expansion 45 

of some of these mines into areas of high biodiversity value poses environmental risks and 46 

significant challenges for conservation, especially evident in artisanal gold mining practices 47 

(Ahmed et al., 2021; Edwards et al., 2014; Weng et al., 2014). Coupled with the global rise in 48 

demand for precious metals, gemstones, and industrial minerals, mining has become a major 49 

source of revenue for most countries worldwide and a means of livelihood for local populations 50 

(World Bank, 2016).  51 

Mining is not conventionally viewed as a primary cause of direct deforestation, due to its 52 

relatively small land footprint (Chakravarty et al., 2011; Ahmed et al, 2021). Mining-induced 53 

deforestation and associated habitat fragmentation have been underestimated in some regions 54 

(Alvarez-Berrios & Aide, 2015; Sonter et al., 2017), despite evidence from satellite images 55 

(Swenson et al., 2011; Asner et al., 2013). This oversight is particularly critical as mining 56 

contributes to the loss of intact terrestrial habitats that harbour a hyperdiversity of tropical 57 

species (Sonter et al., 2017; Curtis et., al. 2018; Tegegne et al., 2016). This study highlights the 58 

overlooked habitat disturbances caused by mining in the SSA region. 59 

The impact of mining extends beyond the immediate mine boundaries, encompassing 60 

environmental losses due to deforestation during the construction of mining support 61 

infrastructure (such as roads, rails, seaports, and worker settlements) (Edwards et., al. 2014; 62 

Haddaway et., al. 2019). These associated infrastructures have caused significant forest loss 63 

and fragmentation beyond the sites of mineral extraction (Siquera-Gay et al 2020). Subsequent 64 

deforestation near mining settlements for agricultural activities and within-forest impacts via 65 

selective logging for timber or fuelwood represent additional 'secondary' impacts of mining. 66 

Notably, these secondary impacts can occur in distant forests and intact habitats, as exemplified 67 

in the Brazilian Amazon, where mining caused around 1.2 million hectares of deforestation 68 

relative to matched controls at distances of 0-70 km away from the boundary of mining leases 69 
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(Sonter et al., 2017). Moreover, coal mines in Kalimantan, Indonesian Borneo, induced 70 

secondary deforestation up to 50 km from the centre of the mine (Sievernich et al., 2021). 71 

A key unknown is the severity of secondary impacts of mining on deforestation in Sub-Saharan 72 

Africa. In this study, the severity of mining-induced forest losses was assessed using a database 73 

of 196 mines created post-2000 and a subset of mines (n=45) created in 2009, 2010 and 2011 74 

(median years) in SSA as identified by Ahmed et al. (2021) (Table S2). We deployed a suite 75 

of geospatial environmental data and tools combined with statistical matching techniques to 76 

tackle two core objectives: (1) evaluate the amount of deforestation from 2001 to 2020 in 77 

locations with mines (treatments) compared to locations without mines (controls) at various 78 

buffer intervals; and (2) compare the annual rates of deforestation before and after mine 79 

creation (i.e., across time) with distance from mine (i.e., across space). 80 

This study underscores the critical need for informed and proactive approaches to address the 81 

multifaceted impacts of mining on forests and biodiversity. As governments, researchers, and 82 

stakeholders grapple with the intricate challenges posed by mining activities, this research 83 

provides valuable insights that can inform policy, conservation strategies, and sustainable 84 

development initiatives. The study prompts a re-evaluation of existing decision-making 85 

frameworks to ensure they comprehensively account for both primary and secondary impacts 86 

of mining, fostering a more holistic and environmentally conscious approach to mining 87 

practices in SSA and beyond. 88 

 89 

2.0 | Materials and Methods  90 

2.1 | Study Region 91 

This study covers sub-Saharan Africa (SSA), with prominence on the Afrotropic region which 92 

comprises four ecological zones (ecozones): the tropical rainforest , tropical moist deciduous 93 

forest , tropical dry forest , and tropical shrubland . These ecozones cover 64% of SSA’s land 94 

area (FAO, 2016) (Fig. 1). The region is endowed with the largest mineral reserves and deposits 95 

globally (Edwards et al., 2014a), such as bauxite, gold, copper, diamond, limestone, and iron-96 

ore. SSA has a population of ∼1.1 billion (World Bank, 2021), and is faced with political and 97 

socio-economic challenges including armed conflicts and environmental degradation, which 98 

has made it one of the most economically impoverished regions globally (IMF, 2021).  99 

                                                                           100 
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 101 

 102 

        103 

Figure 1. Map of the study area showing mines established between 2001- 2020 in red triangles 104 

and the subset of mines established in the median years between 2009-2011 in blue triangles 105 

(Ahmed et al 2021), and the ecological zones of sub-Saharan Africa; tropical rainforest, tropical 106 

moist deciduous forest, tropical dry forest and the tropical shrublands (FAO, 2016).  107 

      108 

2.2 | Forest and deforestation in sub-Saharan Africa 109 

Forest - The most common definition of forest used in many countries of SSA is an area of 110 

>0.5 ha with >30% canopy cover of trees at >5 m height, or trees with potential to grow to 111 

these thresholds (FAO, 2016). Forests may thus include natural primary habitats and 112 

secondary habitats consisting of newly planted trees, naturally regenerating forests, and 113 

forestry plantations.  114 

Deforestation - Hosonuma et al. (2012) depicted deforestation as the conversion from forest 115 

into other land uses, thereby assuming that the forest is not anticipated to regrow without 116 

artificial means. In this study, deforestation follows the definition of Hansen et al (2013): 117 
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‟Forest loss as a stand-replacement disturbance or the complete removal of tree cover canopy 118 

at the Landsat pixel scale”. 119 

2.3 | Data and Broad Approach 120 

To evaluate the effect of mining on environmental losses in the study area, the counterfactual 121 

scenario was assessed by comparing deforestation around locations with mines versus those 122 

without mines. We focused on mines utilizing open-pit and quarrying extraction methods. 123 

Therefore, we utilized the open-access, high-resolution 21st-Century Global Forest Change 124 

(GFC) dataset (Hansen et al. 2013), which comprises various forest layers, i.e., tree cover 2000, 125 

loss year, loss, and gain. The dataset was used to extract the tree cover statistics for the baseline 126 

year at 30% canopy threshold, the loss and loss year layers were also used to extract the annual 127 

forest cover loss statistics from 2001 to 2020. The GFC is a product of the Landsat imageries 128 

with medium spatial resolution (30 metres) and suitable temporal resolution, it is suitable for 129 

measuring tropical deforestation (Galiatsatos et al., 2020). 130 

Mines established post 2000 within the forested areas of SSA from Ahmed et al. (2021) were 131 

used to generate four buffer zones of 3 km width around each mine, originating from 1 km 132 

away from the mines’ boundaries (i.e., 1-3 km, 3-6 km, 6-9 km, and 9-12 km). The choice for 133 

multiple buffer zones was to capture the potential impacts of mining within the forested areas 134 

at various distances. This approach allows for a more precise assessment of how the impact of 135 

mining on deforestation varies with proximity to the mines. We generated a 2 by 2 km grid-136 

squares covering the entire forested area of the study region, we defined the treatment squares 137 

as grid-squares that are within 1- 12 km from the boundary of the mines (n=196). We excluded 138 

grid-squares that were within a distance of 12-30 km from the mines boundary, this was to 139 

avoid overlapping and interference within treatments and controls. This resulted in a total of 140 

38,500 square-grids for the 196 treatment locations within the 4 buffer zones covering the entire 141 

study area.  142 

2.4 | Matching Analysis.  143 

Matching statistical techniques were employed to assess the impact of having a mine near to a 144 

forest on the extent and rate of deforestation. The main objective was to compare the amount 145 

of forest loss between the treatment locations and matched control locations. Matching was 146 

used because of its ability to eliminate bias in the selection and pairing of treatment and control 147 

units (Andam et al., 2008) and is suitable in balancing covariates (Ho et al., 2011). It is widely 148 

applied in the assessment of causal inference (Stuart, 2010) and in conservation studies 149 
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(Schleicher et al., 2019). The matching analysis was used to identify grid-squares within 150 

control buffers that closely resemble those within the treatment locations in terms of key 151 

environmental characteristics that could potentially affect deforestation. Matching studies of 152 

deforestation typically adopt this approach, as it allows for a more rigorous assessment of the 153 

causal effects of deforestation (Braber et. al., 2018; Sonter at al., 2017). To accomplish this, 154 

we carefully selected appropriate variables for use in the matching process from the known 155 

drivers of deforestation of relevance to this study (Table S1). By matching treatment and 156 

control locations based on these key variables, the study aims to create comparable groups that 157 

differ only in terms of the presence or absence of mines nearby. In controlling for key factors 158 

through the matching process, we were able to isolate and attribute any observed differences 159 

in forest loss to the presence of nearby mines. Previous studies have shown some of the 160 

variables that are likely to influence forest disruptions are categorised into the following: (i) 161 

Geographic Characteristics; (ii) Land Use and Land Cover; (iii) Socioeconomic Factors; (iv) 162 

Environmental Factors; and (v) Political and Institutional Factors (Curtis et al., 2018; Ferretti-163 

Gallon & Busch, 2014; Lievano-Latorre et al.2021).  164 

2.4.1  |  Matching Variables.  165 

Based on previous research, the variable selection process is done best without using the 166 

observed outcomes (Andam et al., 2008; Braber et. al., 2018; Sonter et al., 2017). Therefore, 167 

the following variables were selected based on their suitability in assessing the impact of 168 

mining on the forest: (a) elevation derived from the digital elevation data (DEM) at 225 m 169 

spatial resolution (GMTED2010); (b) vegetation cover from the vegetation continuous fields 170 

(VCF) for the year 2000 at 250 m spatial resolution from MODIS (DiMiceli et. al., 2015); (c) 171 

population density, using the 1 km Gridded Population of the world Density (CIESIN, 2018); 172 

(d) topographic positioning index (TPI) (Weiss 2001) and (e) topographic wetness index (TWI) 173 

(Kopecky et al 2021), both indices were derived from the digital elevation data using QGIS 174 

(QGIS 2022).  175 

Control locations - By carefully selecting control locations that are as similar as possible to 176 

treatment locations, we can better isolate the effects of mining on deforestation and draw more 177 

reliable inferences about its impact. To achieve this, we used the grid-squares of 2 x 2 km 178 

covering the entire ecological zones of SSA, similar to the method used by Lievano-Latorre et 179 

al. (2021). To prevent overlap between treatment and control locations and ensure a clear 180 

distinction, we excluded any grid-square whose boundaries were less than 30 km away from 181 
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the treatments. This step was crucial to avoid any potential spillover effects of mining activities 182 

that could affect nearby control locations (fig. 2).  183 

                                184 

Figure 2. Map of the study region showing mine in red and the grid-squares used in the 185 

matching of controls and treatments at various buffers (mint=1-3 km buffer, light yellow=3-6 186 

km buffer, purple= 6-9 km buffer and green = 9- 12 km buffer). The dark yellow grids far from 187 

the mines are the controls. 188 

 189 

This selection process followed the approach outlined by Devenish et al. (2022) and Lievano-190 

Latorre et al. (2021), ensuring that control locations were as similar as possible to treatment 191 

locations in terms of environmental and geographical characteristics. By doing so, we aimed 192 

to create a robust framework for assessing the specific impacts of mining on deforestation. A 193 

subset of control locations was created for each country, to ensure unbiased results and 194 

eliminate the possibility of incorrectly matching treatment and control locations across national 195 

boundaries. Country-specific matching was performed, by pairing the matched treatments and 196 

controls that fall within the same country, because mining and habitat protection laws and 197 

regulations vary between countries in SSA. 198 
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Several matching algorithms were applied using the Matchit package in R (Ho et al., 2011). 199 

Considering the skewness in the ratio of controls to treatments (>80:1) in the data, it became 200 

imperative to choose a matching method that maximizes the use of abundant control group 201 

while ensuring that matches are close in terms of covariates. Therefore, we adopted the Nearest 202 

Neighbour matching method which ensures that the best matched controls are utilized for each 203 

treatment unit and improves the balance between the groups. Matching without replacement 204 

yielded the best results and better covariate balances compared to other approaches (Stuart, 205 

2010; Ho et al., 2007). We matched treatments and controls grid-squares of similar biophysical 206 

and social characteristics (matching variables) (Table S1). The amount of deforestation over 207 

time was compared between the treatments and their corresponding matched controls. 208 

Propensity scores matching (PSM) was used to facilitate the construction of matched sets with 209 

similar distributions and summarised all the variables into one scalar grouping of individuals 210 

with similar scores (Rosenbaum and Rubin,1983; Stuart, 2010). 211 

    Propensity score: [P(X) = Pr (d=1|X)]                                                                      (1)  212 

Where P indicates the Propensity score, X is the covariate value, Pr is the probability and d is 213 

the unit in the treatment and control groups. 214 

Assessing the balance of matching - The quality of outputs from the matching analysis were 215 

checked using the covariate balance in the cobalt package in R (Greifer, 2021). We diagnosed 216 

the balance using the standardized mean differences (SMD) as suggested by Schleicher et al., 217 

(2019) and Stuart (2010). A better balance with few large numbers will yield less bias in 218 

treatment effect estimates (Figure S1); SMD values of < 0.25 were used as acceptable balance 219 

for treatments and controls (Stuart et al., 2013). 220 

SMD =     
𝑋₁−   𝑋₂√(𝑆12+𝑆222 )/2                                                                                (2) 221 

Where X̅₁ and X̅₂ are sample means, while 𝑆12  and 𝑆22  are sample variance for both the 222 

treatments and controls. 223 

 224 

2.4.1  |  Post Matching 225 

The matched treatment and control grid-squares (n= 77000) were used to extract tree cover for 226 

the year 2000 and annual forest losses (2001-2020) at various buffer distances over time. In 227 
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addition, we calculated the changes in the annual rates of deforestation after mine establishment 228 

within the treatment areas. 229 

2.5 |  Comparative analysis of the influence of mining on cumulative deforestation in 230 

treatment versus control locations across different time periods and within various buffers.  231 

We assessed the cumulative deforestation within the treatment and control locations over time 232 

using the grid-squares generated from the boundary of the buffers at intervals of 3km for 233 

distances of 1 to 12 km, with the hypothesis that control locations are unaffected by mining 234 

activities as indicated by Sonter et al (2017). The Google Earth Engine (GEE) open-source tool 235 

was utilised to extract the data for both the tree cover for the baseline year [Tc(0)], and the 236 

annual forest loss [Tc(0) - Tc(n-year)] from 2001 to 2020. This data extraction was performed for 237 

individual matched treatment and control cells within each buffer, The tree canopy cover 238 

threshold of 30% was adopted as the average for the study area (FAO, 2010) to balance the 239 

disparity in national forest definitions by the various countries in the SSA region, and to 240 

eliminate non-relevant grid-squares. We assessed the normality of the data and obtained a p-241 

value < 0.05 for both control and treatment locations, indicating that the data is not normally 242 

distributed. Mann-Whitney U test was used to evaluate the difference in forest loss between 243 

the control and the treatment locations.  244 

Additionally, we performed a supplementary analysis using a subset of 45 mines established 245 

during the median years of the study (2009, 2010, and 2011) (Figure 1). The subset facilitated 246 

a comprehensive examination of the data covering approximately 10 years before and after 247 

mine creation. Furthermore, we delved into the spatial dynamics of the impact of mining by 248 

considering various buffers around the mining sites. This was aimed to elucidate patterns and 249 

variations in cumulative deforestation, providing valuable insights into the long-term 250 

environmental consequences of mining operations in distinct spatial contexts. 251 

 252 

2.6  |  Changes in the rate of deforestation before and after the establishment of the mine 253 

(across time) in relation to distance from the mine (across space). 254 

To evaluate how the rate of deforestation varied across both time and space, we examined the extent of 255 

deforestation in treatment locations compared to their matched control locations.  Specifically, we 256 

focussed the analysis on designated buffer zones surrounding the mines (1-3 km, 3-6 km, 6-9 km, 9-12 257 

km) and compared deforestation rates to matched control areas to determine the relative impacts.  To 258 

make valid comparisons regarding deforestation over time in relation to the mine, yearly deforestation 259 
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rates were normalised based on the number of years since mine creation. To account for differences in 260 

initial forest cover, we considered the deforestation rates as a proportion of initial forest cover. Mines 261 

that were less than 4 years old were excluded from the analysis due to inherent limitations associated 262 

with sparse data. To overcome this constraint, we performed a supplementary analysis using mines 263 

established during the median years of the study (2009, 2010, and 2011) resulting in a subset of 45 264 

mines. The subset facilitated a comprehensive examination of the data covering approximately 10 years 265 

before and after mine creation; Mfc (-5, 0, +5,+10), thereby generating a better understanding of 266 

whether deforestation rates experienced a significant increase after the creation of the mines. Statistical 267 

assessment of the observed differences between the two data groups (before and after mine creation) 268 

was conducted using a Mann-Whitney U test, applying a significance threshold of p-value < 0.05. 269 

Regression model (Generalized additive model)  270 

As a response variable we analysed the the proportion of initial forest cover that underwent 271 

deforestation relative to control areas (𝑝𝑚,𝑡,𝑏∗  ) which we define as; 272 

If Fm,t,b and Dm,t,b are the area of forest (ha) and amount deforestation (ha) at mine m, at time t 273 

within buffer ring b, respectively. Then, the cumulative proportion deforested at time t can be 274 

expressed as: 275 𝑃𝑚,𝑡,𝑏 = ∑ 𝐷𝑚,𝑡,𝑏𝑡0𝐹𝑚,0,𝑏                (3)    276 

Where t=0 is the time at the start of the data (i.e. the year 2000) 277 

To analyse how the proportion deforested varied between treatment and control at different 278 

distances from the mine at different times since mine establishment, we fit GAM models to the 279 

proportion deforested relative to the control, 𝑝𝑚,𝑡,𝑏∗ = 𝑝𝑚,𝑡,𝑏 − 𝑝𝑚,𝑡,𝑏𝑐  , where 𝑝𝑐  is the 280 

proportion deforested in the matched control cells.  We included a thin plate spline smooth 281 

function for years since mine creation as a predictor variable and to account for 282 

pseudoreplication we also included Mine ID as a random effect.  A model was fit for each 283 

buffer zone (1-3 km, 3-6 km, 6-9 km, 9-12 km) and model fits were extracted at various time periods 284 

before and after mine creation Mfc (-5, 0, +5,+10) to evaluate how deforestation rates progress through 285 

the establishment of a mine and beyond. 286 

 287 
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3.0 | Results 288 

3.1 | Impacts of mining on cumulative deforestation in treatment versus control locations. 289 

Over the span of two decades, there was a cumulative forest cover loss of 2,401,777 hectares 290 

within the sampled grid squares around the matched treatment and control locations 291 

(n=77,000). Specifically, within the treatment grid-squares, there was a cumulative 292 

deforestation of 1,171,794 hectares, constituting 17.7% of the total tree cover within the 293 

sampled treatment grid-squares in year 2000 (Figure 3A). In contrast, the control grid-squares, 294 

experienced a cumulative forest loss of 12% of the tree cover in 2000. The findings indicate a 295 

significant higher net deforestation in the treatment locations compared to their matched 296 

controls (W = 22216, p-value < 0.01). The average rate of deforestation per grid-square in the 297 

treatment locations was 32 hectares and 31 hectares in the matched control locations (Figure 298 

3A).  299 

Considering the 45 mines established during the median years of our study, the average annual 300 

deforestation rate per sampled treatment grid-square from year of mine creation until 2020 was 301 

145 hectares (Figure 3B). In contrast, control locations exhibited an average deforestation of 302 

142 hectares per year. 303 
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                                              304 

Figure 3. The impacts of mines on deforestation within treatments and controls in sub-305 

Saharan Africa from 2001 to 2020.  (A) Mean and median forest loss for all mines created 306 

between 2001- 2020 and their matched controls. (B) Mean and median forest loss for the 307 

subset analysis of mines created 2009-2011. Box plots show mean (crossed dot), median 308 

(bold line), upper and lower whiskers show the minimum and maximum values. To improve 309 

visualisation, outliers in the data are not shown. 310 

3.1.1 | Proportion of initial forest cover deforested within buffers (n=196). At five years 311 

before mine creation [Mfc(-5)], the proportion of initial forest cover deforested was -0.2%, 0%, 312 

-0.1% and 0% at the 1-3 km, 3-6 km, 6-9 km and 9-12 km buffers, respectively (Figure 4A). 313 

At mine creation [Mfc(0)], the proportion of deforestation increased to 3.5 % at the 1-3 km 314 

buffer, and gradually decreasing to -1% within the 9-12 km buffer (Figure 4B).  315 

Five years post-mine creation [Mfc(+5)], deforestation rates were higher, with proportions of 316 

13.5%, observed within 1-3 km, buffer. Subsequently, deforestation diminished, with a 1% rate 317 

within the 3-6 km buffer, and stabilized to below 1% up to the 9-12 km buffer (Figure 4C). At 318 

10 years post-mine creation [Mfc(+10)], the proportion of initial forest cover deforested was 319 



14 

 

15% within the 1-3 km buffer and 3% within the 3-6 km buffer. The deforestation rates 320 

remained constant at <1% from the 6-9 km and 9-12 km buffer (Figure 4D).  321 

   322 

Figure 4. Proportion of initial forest cover deforested relative to control (%) (n=196). 323 

Plots from the GAM regression within the 1-3 km, 3-6 km, 6-3 km and 9-12 km buffer in SSA 324 

from 2001 to 2020. (A) 5 years pre-mine creation, (B) at the year of creation, (C) 5 years post-325 

mine creation, and (D) 10 years post-mine creation. The error bars represent the 95% 326 

confidence intervals of the estimated proportion of initial forest cover loss (derived from the 327 

   

   

 

  
          

   

 

  

         

   
 
  
  

          

   
 
  
  

                 

           

  
  

  
   

 
  
   

   
  
   

  
  
  
  

  
  

  
  
  
  

  
  
  
  
  
  
  
  

  
  
  



15 

 

upper and lower CIs of the buffer), the black line marks the reference points, and the values 328 

below zero indicate a negative forest cover loss/ change (i.e., forest gain).  329 

3.2 | Changes in deforestation rate before and after the mine creation (i.e., across time). 330 

After the establishment of mines, there was a significant and statistically meaningful increase 331 

in deforestation rates. Before mines were created, the average annual deforestation rate was 332 

1,665 hectares. However, following the creation of the mines, this rate more than doubled to 333 

4,314 hectares (Figure 5A; p-value < 0.01).  334 

 335 

The supplementary analysis conducted on the subset of mines created during the median 336 

years of the study (n=45) indicated that the average annual deforestation in the treatment 337 

locations before mine creation was 1,572 hectares, whereas it increased significantly to an 338 

average of 4,972 hectares after mine creation (Figure 5B; p-value < 0.01). Here, our results 339 

show that the creation of mines led to a higher level of deforestation in the treatment 340 

locations.   341 

 342 

                           343 
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Figure 5. Change in rates of deforestation before and after the mine creation.                   344 

Plots showing the difference in the annual mean rates of deforestation before and after the 345 

creation of mines in SSA from 2001 to 2020. The metrics calculated were the rates of 346 

deforestation before and after mine creation. (A) Analyses for all the mines (n=196), and (B) 347 

the subset of the mines (n=45) created at the median years of the study. Box plots show mean 348 

(crossed dot), Median (bold line), upper and lower whiskers show the minimum and maximum 349 

values. Outliers in data are not shown. 350 

 351 

4.0 | Discussion 352 

The mining industry in sub-Saharan Africa (SSA) attracted huge investments since 2000 and 353 

increased immensely after the 2008 global financial crisis (Alvarez-Berrios & Mitchell Aide, 354 

2015), producing minerals worth $350 billion in 2018 alone (Yontcheva et al., 2021). This 355 

study compared the secondary effect of mining on deforestation in SSA by matching 356 

treatments versus controls and analysing the rates of loss before and after the creation of 357 

mines within two decades. On average, there was at least 47.5% extra deforestation in the 358 

sampled treatment grid-squares compared to the matched control locations. This emphasizes 359 

the imperative for the mining sector and policy makers to consider the broader environmental 360 

implications of mineral extraction in licensing, impact assessments, carbon accounting, and 361 

associated investments in conservation protection. 362 

 363 

4.1 | Impacts of mine expansion on forest conservation   364 

The annual average deforestation rate in the treatment locations increased by 160% to 4,314 365 

ha post-mine creation from an average of 1,665-ha pre-mine creation. However, we also 366 

observed some significant differences in deforestation rates across our data. In summary, 367 

more than 20 mine locations recorded an increase of over 80% in their annual deforestation 368 

rates nine years after the creation of the mine, compared to the nine years before the mine's 369 

creation. This supports an analysis by the World Bank (Johnson & John, 2019) that revealed 370 

regional deforestation has increased significantly post mine creation in areas with mines. 371 

Significant forest losses, and changes in forest cover throughout Central Africa mirrors the 372 

levels and impacts of mining on forest loss observed by Sonter et al (2017) in the Amazon. The 373 

proportion of forest loss 5 years pre-mine creation ranged between -2% to 0% across all buffers 374 
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similar to the trend recorded in the Democratic Republic of Congo (DRC) from 2005-2010 375 

(Potapov et al., 2012). However, we found that these rates changed drastically after mine 376 

creation. Within the 1-3km km buffer, the proportion of loss was 13.5% and 17% at 5- and 10-377 

years post-mine creation, respectively, with the surge in deforestation especially severe for 378 

mines created after 2008, and the 2010 peak deforestation in the DRC (Turubanova et al., 379 

2018). Deforestation dropped to about 3% at the 9-12 km buffer for post-mine creation years, 380 

an indication that forest loss declines with an increase in buffer distance. 381 

More than half of the 469 mapped mines in sub-Saharan Africa, according to Ahmed et al. 382 

(2021), were established after 2000, with about 200 mines located within 10 kilometres of areas 383 

of biodiversity value. This finding aligns with the results of Hund et al. (2017), which indicated 384 

that a quarter of operational mines worldwide are situated within a 10-kilometer radius of 385 

protected or conservation areas. The expansion and establishment of mines pose severe 386 

consequences for conservation and the ecological integrity of forests, involving the 387 

encroachment of mining infrastructure into forested land. The construction of roads, railways, 388 

and other supporting services further compounds the impact (Hund et al., 2013; Chakravarty 389 

et al., 2011; Davis et al., 2020). In SSA, a variety of roads and railways are currently under 390 

construction to connect the mines to industries and seaports that are situated several to hundreds 391 

of km away (Laurance et al., 2009; Weng et al., 2013). For instance, the Lobito Road corridor, 392 

which is a significant transportation network in Central Africa, will connect the copper belt 393 

region of the DRC and Zambia to the seaport in Lobito, Angola, cutting through tropical forest 394 

(Weng et al., 2013). Addressing the challenges posed by secondary deforestation linked to 395 

mining activities in the region necessitates a concerted effort from all stakeholders, including 396 

governments, industry players, and local communities. Mine owners and operators need to 397 

recognize and assume responsibility for the indirect environmental impacts of their operations, 398 

implementing measures to mitigate and offset these effects (Kemp and Owen, 2018). By 399 

fostering a sense of shared responsibility and implementing sustainable practices, it is possible 400 

to mitigate the environmental threats posed by such activities and work towards a more resilient 401 

and ecologically sustainable future (Sonter et al., 2018). 402 

4.2 | Impact of Mining Infrastructure on Ecosystems 403 

The construction and operation of mining infrastructure, such as roads, railways, electricity, 404 

and processing facilities, can have significant and often detrimental effects on the surrounding 405 

environment. These infrastructures often require clearing large areas of forest to make way for 406 
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operations and may cause soil erosion, which impacts the integrity of land and soil quality 407 

(Ahirwal & Maiti, 2016). This leads to the loss of biodiversity and intact habitat fragmentation 408 

and deforestation, with over 1,047 plant and animal species in the International Union for 409 

Conservation of Nature (IUCN) Red List impacted by various types of mining globally (Torres 410 

et al 2022). Species may lose their natural habitats leading to population decline or even 411 

extinction in some cases (Sonter, Ali, & Watson, 2018). 412 

4.3 | The role of environmental legislation in controlling mining activities. 413 

Environmental legislation to restrict the negative impacts of mining and promote sustainable 414 

practices faces multiple challenges in regulatory adherence and enforcement, with the 415 

effectiveness of regulations varying across regions and countries and depending on its 416 

stringency (Zulu et al., 2022; Luckeneder et al., 2021; Cabernard and Pfister, 2022). Monitoring 417 

this evolving landscape of environmental legislation is essential. In some cases, regulations 418 

may be robust, imposing strict requirements on mining companies to minimize environmental 419 

impacts. In other cases, the legislation may be less stringent, allowing for more permissive 420 

practices. Some countries struggle with regulatory enforcement due to factors such as limited 421 

resources, corruption, or insufficient monitoring mechanisms (Edwards et al. 2014; Punam et 422 

al. 2017). Other countries adhere to international environmental standards and agreements, 423 

which can influence the development and enforcement of domestic legislations related to 424 

mining activities.  425 

Environmental legislation of mining can undergo changes over time, influenced by political, 426 

economic, and social factors. In some instances, there may be regulatory capture or a shift 427 

towards weaker regulations to promote economic development, as evidenced by the frequent 428 

examples of protected area downgrading, downsizing, and degazettement (PADDD) to make 429 

way for mining. Between 1892 and 2018, 62% of 3,749 PADDD events in 73 countries were 430 

to enable industrial-scale resource extraction and development (Golden Kroner et al. 2019). 431 

Public awareness, advocacy, and engagement are crucial in holding governments, mining 432 

companies and other stakeholders accountable and promoting sustainable mining practices. 433 

Advancements in technology and increased transparency can contribute to more effective 434 

monitoring and enforcement of environmental regulations in the sector. 435 
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4.4 | Role of Monitoring and Research Limitations 436 

This study underscores a vital role of applying geospatial techniques and utilisation of available 437 

data to explicitly quantify deforestation spatially in sub-Saharan Africa. This approach can 438 

guide the monitoring, reporting, and verification of forest changes and carbon loss studies due 439 

to mining activities. This study employed matching techniques to compare changes in the forest 440 

landscape between treatments and controls (following Sonter et al. 2017), distinguishing it 441 

from prior studies that likely overestimated the degree to which mining was a major 442 

deforestation driver, by solely quantifying deforestation in the mining locations without 443 

comparing them to controls (Merem et., al 2017; Nzunda 2013). For instance, Merem et al. 444 

(2017) suggested that 265 km2 of deforestation in Bukuru, Nigeria, was driven by mining 445 

between 1975 and 2005, but this area represents 9% of all deforestation (i.e. 2,992 km2 more 446 

deforestation in treatment than control) that we detected up to 10 km from mines across the 447 

whole of sub-Saharan Africa. Unlike previous studies focused on a single commodity (e.g., 448 

gold; Alvarez-Berrios & Mitchell Aide, 2015; Swenson et al., 2011; Sonter et al 2017), this 449 

research covers mines for all types of commodities mined in sub-Saharan Africa (bauxite, 450 

diamond, gold, iron, copper, and limestone, among others), enabling a more holistic assessment 451 

of deforestation risks. A major remaining question is how the type of commodity mined alters 452 

deforestation, which may be expected given that different commodity classes (e.g., low-value, 453 

high-bulk vs high-value, low-bulk) require different infrastructures (Werner et al., 2019). 454 

This research has four core limitations. First, there was a lack of comprehensive data on most 455 

artisanal and small-scale mines (ASM), yet these are major components of mining for some 456 

commodities (including diamond and gold; Klubi et al., 2018; Lobo et al., 2016), potentially 457 

influencing the overall understanding of deforestation patterns associated with mining. Second, 458 

challenges arose in utilizing proximity to roads as a covariate in the matching analysis. The 459 

inadequacy of road data, considering the vast scale of the region under study, may have 460 

impacted the precision of the analysis concerning the role of roads in influencing deforestation 461 

patterns. Third, we recognize the limitation of satellite data in identifying mining operations 462 

conducted beneath the Earth's surface. Consequently, the study concentrated its assessment on 463 

primary and secondary deforestation resulting from open-cast mines, as these are more readily 464 

distinguishable using satellite imagery. Fourth, external factors, such as changes in government 465 

policies, economic conditions, or technological advancements, are potential influencers of 466 

deforestation trends. However, these factors were not fully accounted for in the matching 467 
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analysis, introducing a limitation in comprehensively understanding the multifaceted drivers 468 

of deforestation associated with mining activities. 469 

 470 

4.5 | Conclusions 471 

This study emphasizes mining-induced deforestation as a significant and often underestimated 472 

factor contributing to forest loss in SSA, representing a major conservation concern. 473 

Strengthening environmental and mining regulations in sub-Saharan Africa is essential to 474 

tackle the magnitude of this issue and effectively prevent or mitigate deforestation. In 475 

particular, nations and (often international) mine financiers need a well-defined mitigation 476 

hierarchy applied to environmental impact assessments that seeks to avoid, then minimize, and 477 

as a last alternative compensate (e.g. via offsets) the impacts on forests and biodiversity. Some 478 

governments face challenges in delivering such regulation and oversight, in part due to their 479 

dependence on mining revenues. This points towards the needs for international funders and 480 

consumers to ensure that mine sustainability is appropriately considered at all stages in mine 481 

lifecycles. This includes increased efforts for forest restoration, overseen by authorities upon 482 

mine closure, to initiate the long-term process of forest regeneration and associated protection 483 

of restored former mining areas from other anthropogenic activities.  484 

Collaboration between governments and other stakeholders is vital for promoting sustainable 485 

mining practices and forest conservation in SSA. Given the rapid mining expansion, especially 486 

by major companies, and inadequate regulatory oversight, stakeholders must better consider 487 

biodiversity preservation, protection of Indigenous rights, sustainable land-use planning, and 488 

effective environmental law enforcement. Addressing issues related to land tenure, 489 

governance, transparency, and equitable benefit distribution are essential for achieving 490 

sustainable development and minimizing adverse impacts on local communities and 491 

ecosystems in the context of mining-induced deforestation in SSA. 492 
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Table  S1. 759 

A summary of useful variables used in matching studies of deforestation and their relevance to 760 

this study.  761 

 762 

Category Variables Impact on 

deforestation 

Relevance to this study 

 

Geographic 

Characteristics 

Elevation Lowland is more suitable 

for Agriculture (Oakleaf et 

al., 2019; Tegegne et al., 

2016; Laurance et al., 

2014). 

Derived TWI and TPI are two 

factors that would determine the 

suitability of the area to 

agriculture when mining was 

established. 

Slope Determinant for land 

suitability for agriculture, 

housing, and infrastructure 

development (Bavaghar, 

2015; Ahmadi, 2018; 

Kayet et al., 2021). 

The steeper the slope the less 

suitable for crop production, 

similar to TPI, 

Soil type Soil quality determines its 

suitability for crop 

production. This leads to 

forest loss. (Witcover et 

al., 2006; Ahmadi, 2018; 

Kayet et al., 2021). 

Not of much significance to this 

study. 

Distance to roads Forests nearer to roads are 

more susceptible to 

deforestation (Bavaghar, 

2015; Laurance et al., 

2009; L.S. Ng et al., 2020; 

Rosa et al., 2013) 

An important variable but was 

not used in this study due to the 

scale of the study region and the 

accuracy of data. 

Distance to waterways Forests nearer to 

waterways are susceptible 

to degradation and 

deforestation (Aleman, 

Jarzyna, & Staver, 2018). 

Not of much significance to this 

study 

Forest type Primary and secondary 

forest may have different 

An important variable for 

comparing rates of forest loss in 
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Land Use and Land 

Cover 

rates of distortion due to 

their varied biodiversity 

richness (J. Barlow et al., 

2012; Gardner et al., 2009; 

WWF, 2021). 

various locations, VCF data was 

used. 

Agriculture Forestland suitable for 

agriculture is most likely 

to be converted (Müller et 

al., 2012; Laurance et al., 

2014). 

As a key driver of deforestation, 

it is a significant variable  

Urbanization Settlements often expand 

into forests (Barbier, 2013; 

Chakravarty et al., 2011; 

Jianhua & Jr, 2014) 

Settlements are most likely to 

grow towards the forestlands, 

making it an important variable 

 

Socioeconomic 

Factors 

 

Population density The growth in population 

may lead to expansion of 

settlements into the forests 

(Potapov et al., 2012; 

Ferretti-Gallon & Busch, 

2014; Morales-Hidalgo et 

al., 2015). 

A key variable used in this 

study, an increase in population 

density would lead to the 

expansion of settlements, 

agriculture, and infrastructure. 

Poverty levels The income of people 

around the forest may 

decide the fate of the forest 

as most may resolve to 

cutting down the trees for 

economic gains (den 

Braber et al.,2018; 

Ferretti-Gallon & Busch, 

2014; Lamb et al.,2005; 

Witcover et al., 2006). 

An important variable for 

comparing how the inhabitants 

may destroy the forest to earn a 

living. 
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Access to amenities and 

infrastructure 

Accessibility to alternative 

sources of energy may 

save the forest from being 

used as a source of 

fuelwood and charcoal for 

domestic uses. (Hosonuma 

et al., 2012; Sloan & 

Sayer, 2015; Thompson et 

al., 2013). 

An important variable for 

comparing the standards of 

living among settlements, and 

how it contributes to 

deforestation. 

 

 

 

 

 

Environmental 

Factors 

Climate Continuous change in 

climate may lead to aridity 

and subsequent forest loss 

(Laurance, 1998; Creese & 

Pokam, 2016). 

An important variable for 

comparing rates of forest loss in 

different years 

Rainfall  Rainfall patterns may 

cause drought, prolonged 

droughts can stress trees 

and increase their 

susceptibility to diseases 

and insect infestations may 

lead to degradation (Kayet 

et al., 2021; Nepstad et al., 

2008; Müller et al., 2012). 

An important variable for 

comparing rates of forest loss in 

different years and at various 

locations 

Temperature Higher temperatures can 

increase the risk of forest 

fires. (Kayet et al., 2021; 

Nepstad et al., 2008) 

An important variable for 

comparing rates of forest loss in 

different years and at various 

locations 

Natural disasters Earthquakes and landslides 

can cause distortion in the 

forests (Sar et al., 2018). 

Not a relevant variable in this 

study 
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Political and 

Institutional Factors 

Land tenure Forest on lands with 

poorly defined tenure 

rights may lead to 

deforestation (Laestadius 

et al., 2015; Ferretti-

Gallon & Busch, 2014; 

Forrest et al., 2015; 

Tegegne et al., 2016; Geist 

& Lambin, 2002) 

Not a relevant variable in this 

study 

Government policies Weak government policies 

will always lead to illegal 

activities which causes 

deforestation (Newman et 

al., 2018; Hund et al., 

2017) 

An important variable in 

measuring how certain policies 

can have impact over forests 

Protected areas Forests within protected 

areas are less likely to be 

depleted. (Forrest et al., 

2015; Mascia et al., 2014; 

Andam et al., 2008) 

An important variable in 

measuring and comparing the 

impact of policies and controls 

over forest 

 763 

 764 

Table S2. 765 

Database of Mines created post-2000 in sub-Saharan Africa (Ahmed et al.2021) 766 

 767 

S.No. MINE_NAME YEAR_ESTD LONGITUDE LATITUDE COUNTRY 

1 Afema mine 2011 -2.9166 5.49213 Ivory Coast 

2 Agbaou 2012 -5.23197 6.10372 Ivory Coast 

3 Ahafo (Subika) Mine 2003 -2.36707 7.03104 Ghana 

4 Ahafo North Mine 2017 -2.28291 7.18676 Ghana 

5 Akyem Mines 2013 -1.02656 6.34342 Ghana 

6 Alto Cuilo Mine 2008 19.3782 -9.93112 Angola 

7 Bakoudou-Magnima 2011 13.1761 -1.94442 Gabon 

8 Bakouma 2011 22.8028 5.74765 Central Africa Rep. 

9 Balama Mine 2012 38.6597 -13.3099 Mozambique 

10 Baluba Mine 2009 28.3366 -13.0483 Zambia 

11 Bambari Passendro 2016 20.7278 6.03967 Central Africa Rep. 

12 Banfora Mine 2015 -5.37326 10.3825 Burkina_Faso 
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13 Baomahun Mine 2013 -11.6587 8.41178 Sierra_Leone 

14 Baoule Kimberlite Mine 2000 -9.27805 9.14896 Guinea 

15 Batouri Mine 2009 14.4143 4.4557 Cameroon 

16 Bea Mountain 2011 -11.0926 7.13631 Liberia 

17 Bel_Air 2015 -14.3864 10.321 Guinea 

18 Belinga Mine 2006 13.2985 1.21134 Gabon 

19 Benga Coal Mine 2012 33.6701 -16.1643 Mozambique 

20 Benso Gold Mine 2008 -1.89424 5.19746 Ghana 

21 Bibemi Mine 2013 14.0464 9.50464 Cameroon 

22 Big Hill STL 2000 27.4721 -11.6823 Congo DRC 

23 Bimbo Cement Plant 2010 18.5117 4.30974 Central Africa Rep. 

24 Bombore Mine 2016 -0.900163 12.22 Burkina_Faso 

25 Bondoukou Mine 2008 -2.96816 8.06404 Ivory Coast 

26 Bonikro Mine 2008 -5.36823 6.22467 Ivory Coast 

27 Boto mine 2015 -11.3747 12.4668 Senegal 

28 Bouroubourou 2011 -11.9292 13.2594 Senegal 

29 Bulyanhulu Gold Mine 2001 32.4855 -3.22827 Tanzania 

30 Buzwagi Gold Mine 2001 32.6717 -3.86167 Tanzania 

31 Calonda Mine 2013 20.5033 -8.37413 Angola 

32 Camafuca Mine 2014 20.5548 -8.58777 Angola 

33 Cassanguidi Mine 2009 21.3117 -7.49738 Angola 

34 Chancho Cement Plant 2008 38.724 9.30997 Ethiopia 

35 Chirano Mine 2005 -2.37349 6.30599 Ghana 

36 Chiri Mine 2008 20.2894 -9.39374 Angola 

37 Chirodzi Coal Mine 2011 33.021 -15.9092 Mozambique 

38 Dala Mine 2017 20.4108 -9.67211 Angola 

39 Dalafin 2015 -11.6366 12.8693 Senegal 

40 Damang mine 2011 -1.8422 5.51245 Ghana 

41 Dangote - Ndola Cement 2015 28.7779 -13.0251 Zambia 

42 Dejen Cement Plant 2008 38.1415 10.1835 Ethiopia 

43 Deziwa Mines 2016 25.9339 -10.9734 Congo DRC 

44 Dian_Dian 2016 -13.9938 11.1008 Guinea 

45 Dikulushi Mine 2006 28.2706 -8.8926 Congo DRC 

46 Dikuluwe mine 2007 25.3323 -10.7675 Congo DRC 

47 Dire Dawa New Cement  2012 41.847 9.57343 Ethiopia 

48 Disele Mine 2009 26.2536 -10.7532 Congo DRC 

49 Droujba Diamond Mine 2011 -9.05295 8.57629 Guinea 

50 Dugbe Mine 2012 -8.50071 5.09957 Liberia 

51 Dukem Cement Plant 2008 38.9199 8.77198 Ethiopia 

52 Edikan Ayanfuri MIne 2011 -1.93206 5.95918 Ghana 

53 Emmanuel Manganese  2010 28.5456 -14.4532 Zambia 

54 Enterprise Mine 2013 25.2372 -12.2409 Zambia 

55 Epanko Mine 2013 36.6788 -8.70356 Tanzania 

56 Esaase Mine 2017 -1.79335 6.56804 Ghana 
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57 Etoile ( Nzako, Bangana) 2018 22.7332 4.65604 Central Africa Rep. 

58 Farim Mine 2017 -15.244 12.465 Guinea-Bissau 

59 Fekola mine 2015 -11.3714 12.5343 Mali 

60 Fitwaola Mine 2005 27.883 -12.4065 Zambia 

61 Forecariah Mine 2012 -12.7031 9.42866 Guinea 

62 Fria mine 2002 -13.5882 10.4363 Guinea 

63 Frontier Mine 2007 28.4686 -12.7239 Congo DRC 

64 Fucauma Mine 2005 21.2002 -7.36975 Angola 

65 Gamina Mine 2011 -6.67605 6.96892 Ivory Coast 

66 Gangama Mine 2015 -12.3544 7.73077 Sierra Leone 

67 Gbaran Gas Plant 2010 6.29771 5.01764 Nigeria 

68 Geita Gold Mine 2000 32.1785 -2.87659 Tanzania 

69 Gonka Mine 2016 -8.80884 11.1734 Mali 

70 Gora Mine 2014 -11.9328 13.3018 Senegal 

71 Gounkoto Mine 2011 -11.1963 12.7311 Mali 

72 Gourma Mine 2014 0.940687 12.5564 Burkina Faso 

73 Grumesa Mine 2017 -1.58079 5.94567 Ghana 

74 Hire Mine 2013 -5.26794 6.18812 Ivory Coast 

75 Homase Mine 2001 -1.03579 6.16425 Ghana 

76 Hounde Mine 2016 -3.49338 11.4736 Burkina Faso 

77 Hwini-Butre Mine 2007 -1.88273 4.97066 Ghana 

78 Ibese Cement 2012 3.0377 6.99576 Nigeria 

79 ITY_Bakatouo Mine 2008 -8.1116 6.87415 Ivory Coast 

80 Judeira Mine 2016 27.0646 -11.2238 Congo DRC 

81 Kabanga Mine 2013 30.5614 -2.86545 Tanzania 

82 Kabolela 2009 26.4792 -10.8452 Congo DRC 

83 Kakanda 2009 26.4022 -10.7358 Congo DRC 

84 Kalana Main mine 2016 -8.20014 10.7913 Mali 

85 Kalia Mine 2016 -11.0239 10.136 Guinea 

86 Kaloleni Cement Plant 2007 39.6342 -3.84562 Kenya 

87 Kalukundi Mine 2006 25.8896 -10.6612 Congo DRC 

88 Kalumbila Mine 2012 25.3051 -12.1886 Zambia 

89 Kalus Mine 2003 27.2685 -11.5968 Congo DRC 

90 Kamatanda Mine 2014 26.7477 -10.857 Congo DRC 

91 Kamoa Mine 2014 25.0945 -10.6278 Congo DRC 

92 Kango Nort mine 2014 10.185 0.52492 Gabon 

93 Kansanshi Mine 2004 26.4302 -12.1045 Zambia 

94 Kansuki Mine 2011 25.9217 -10.7991 Congo DRC 

95 Kapulo Mine 2016 29.2308 -8.29836 Congo DRC 

96 Kariba Amethyst Mine 2009 26.8868 -17.7014 Zambia 

97 Kasala Mine 2017 27.4552 -11.163 Congo DRC 

98 Kayelekera Uranium Mine 2009 33.7076 -10.0037 Malawi 

99 Kibali Mine 2013 29.6028 3.12273 Congo DRC 

100 Kileba Mine 2014 27.1256 -11.2844 Congo DRC 
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101 Kiniero 2002 -9.80408 10.4258 Guinea 

102 Kinsenda Mine 2002 27.9676 -12.2557 Congo DRC 

103 Kinsevere 2002 27.5691 -11.3636 Congo DRC 

104 Kipoi mine 2014 27.1019 -11.2504 Congo DRC 

105 Kitotolo mine 2016 27.3945 -7.32194 Congo DRC 

106 Koba Mine 2014 -13.4153 11.3017 Guinea 

107 Kobada Mine 2015 -8.59469 11.6283 Mali 

108 Kodieran mine 2013 -8.22432 10.8429 Mali 

109 Koidu Mines 2003 -10.9707 8.62714 Sierra_Leone 

110 Kokoya mine 2006 -9.27344 6.63204 Liberia 

111 Koumba Mine 2007 11.9797 -1.81765 Gabon 

112 Kouroussa 2009 -9.85753 10.678 Guinea 

113 Krakama Oil Field 2017 6.89713 4.55079 Nigeria 

114 Kribi Mine 2009 9.8947 2.78065 Cameroon 

115 Kubi (Betanase) Mine 2016 -1.72677 6.00772 Ghana 

116 Kwale Mine 2011 39.4453 -4.3914 Kenya 

117 Laurica Diamond Mine 2003 21.0472 -8.28691 Angola 

118 Lauzoua Mine 2006 -5.39034 5.32117 Ivory Coast 

119 Lero_fayala 2015 -10.0492 11.7444 Guinea 

120 Longatshimo River Mine 2007 20.9544 -6.87647 Congo DRC 

121 Lonshi Mine 2001 28.9403 -13.1753 Congo DRC 

122 Loulo Mine 2009 -11.4036 13.0577 Mali 

123 Lubambe  Mine 2012 27.7634 -12.3185 Zambia 

124 Lufukwe Mine 2012 27.9796 -9.55009 Congo DRC 

125 Luilu Mine 2006 25.3828 -10.6921 Congo DRC 

126 Luita mine 2009 26.313 -10.7601 Congo DRC 

127 Lukenya Cement Plant 2010 37.0478 -1.49694 Kenya 

128 Lulo Mine 2003 18.8411 -9.57044 Angola 

129 Lumwana Mine 2011 25.8627 -12.2812 Zambia 

130 Luo Camatchia Camagico Mine 2005 20.4664 -8.96978 Angola 

131 Maamba Coal Mine 2009 27.1935 -17.3499 Zambia 

132 Magna_Egoli mine 2001 -11.2119 8.69714 Sierra Leone 

133 Mambere River Mine 2008 15.4268 5.12877 Central Africa Rep. 

134 
Mana (Wona Kona, Siou, Fofina) 
Mine 2008 -3.42239 11.9919 Burkina Faso 

135 Mandala Diamond Mine 2009 -9.32881 8.79955 Guinea 

136 Manica Mine 2002 32.9351 -18.9139 Mozambique 

137 Mankranho Mine 2017 -2.13597 7.88257 Ghana 

138 Marampa Mine 2011 -12.5079 8.68259 Sierra_Leone 

139 Marropino Tantalum Mine 2012 37.9052 -16.5092 Mozambique 

140 Mashamba West 2007 25.3913 -10.7465 Congo DRC 

141 Massawa 2018 -12.0365 12.9645 Senegal 

142 Mbakaou Mine 2014 12.9411 6.9215 Cameroon 

143 Mbalam-Nabeba Mine 2007 13.9504 2.22339 Cameroon 

144 Mbeya Cement Plant 2007 33.2271 -8.92976 Tanzania 
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145 Melka Jebdu Cement Plant 2011 41.7841 9.6061 Ethiopia 

146 Melut Oil Field 2003 32.34 10.5571 South Sudan 

147 Mfamosing Cement Plant 2009 8.51492 5.06375 Nigeria 

148 MIBA Mine 2002 20.6641 -6.17384 Congo DRC 

149 Misisi Mine 2014 28.7265 -4.76552 Congo DRC 

150 Mkushi Copper Mine 2010 29.1403 -13.9459 Zambia 

151 Moatize Coal Mine 2011 33.7849 -16.1662 Mozambique 

152 Mobilong Mine 2013 15.3096 3.32925 Cameroon 

153 Mofe Creek 2017 -11.1415 6.88645 Liberia 

154 Mojo Cement Plant 2010 39.0997 8.55033 Ethiopia 

155 Moma Titanium Mine 2007 39.6403 -16.5299 Mozambique 

156 Mombasa Cement Plant 2007 39.7156 -4.01041 Kenya 

157 Monts de Cristal Mine 2007 10.281 0.449778 Gabon 

158 Morila mine 2000 -6.84488 11.686 Mali 

159 Morrua Tantalum Mine 2000 37.8699 -16.2756 Mozambique 

160 Mount Nimba 2012 -8.37082 7.6613 Guinea 

161 Mtwara Cement Plant 2015 40.0445 -10.2586 Tanzania 

162 Mufulira (Mopani) Mine 2000 28.2234 -12.4941 Zambia 

163 Mugher Cement Plant 2015 38.3419 9.42459 Ethiopia 

164 MUKONDO MINE 2009 26.3522 -10.7247 Congo DRC 

165 Muliashi Mine 2012 28.3164 -13.0644 Zambia 

166 Murowa Diamond Mine 2004 29.9158 -20.5354 Zimbabwe 

167 Musonoi Mine 2007 25.4417 -10.7188 Congo DRC 

168 Musoshi Mine 2009 27.7256 -12.269 Congo DRC 

169 Mutanda Mine 2010 25.8364 -10.7842 Congo DRC 

170 Namoya Mine 2012 27.5445 -4.02971 Congo DRC 

171 Nampala mine 2014 -6.21831 11.1546 Mali 

172 Natougou Mine 2016 1.4057 12.004 Burkina Faso 

173 Nayega Mine 2017 0.433602 10.7437 Togo 

174 New Liberty Mine 2015 -11.136 7.00473 Liberia 

175 Ngovayang Mine 2010 10.7294 3.49384 Cameroon 

176 Nhamucuarara Chua 2008 32.7905 -18.904 Mozambique 

177 Nkamouna Mine 2014 13.839 3.28225 Cameroon 

178 North Mara Mine 2002 34.5031 -1.47516 Tanzania 

179 Ntotoroso Mine 2016 -0.394551 5.78073 Ghana 

180 Nzema Mine 2011 -2.24558 5.00675 Ghana 

181 Obajana Cement 2007 6.43598 7.99519 Nigeria 

182 Obu/ Okpella Cement Plant 2017 6.40097 7.35631 Nigeria 

183 OJVG Sabodala 2010 -12.0927 13.1298 Senegal 

184 Owere Gold Mine 2011 -1.16905 6.6849 Ghana 

185 Pagala Mine 2000 0.851337 8.21863 Togo 

186 Palouge Oil Field 2003 32.4813 10.4429 South Sudan 

187 Pampe Mine 2006 -2.12914 5.64812 Ghana 

188 Pepel Mines 2001 -13.0635 8.58657 Sierra Leone 
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189 Port_Loko Mine 2016 -12.8152 8.78 Sierra Leone 

190 Putu Mine 2014 -8.23234 5.71445 Liberia 

191 Rwinkwavu Mine 2008 30.594 -1.97518 Rwanda 

192 Sabodala Mine 2008 -12.1217 13.1977 Senegal 

193 Salamanga Cement Plant ( 2012 32.6529 -26.3946 Mozambique 

194 Scantogo Mines 2014 1.54785 6.5948 Togo 

195 Simandou 2013 -8.88697 8.49024 Guinea 

196 Siribaya Mine 2016 -11.2163 12.4011 Mali 

197 Sissingue Mine 2017 -6.19895 10.4321 Ivory Coast 

198 Somiluana Mine 2006 21.1675 -8.20428 Angola 

199 Southern Togo 2015 1.52172 6.47679 Togo 

200 Syama Mine 2009 -6.06088 10.8022 Mali 

201 Synclinorium Mine 2018 28.2055 -12.8451 Zambia 

202 Tabakoto Mine 2006 -11.19 12.9459 Mali 

203 Tazua Mine 2009 18.1349 -9.27058 Angola 

204 Tchibanga Mine 2015 11.3876 -3.39495 Gabon 

205 Tchiuzo 2014 20.3398 -9.20777 Angola 

206 Teberebie Mine 2000 -2.03792 5.26561 Ghana 

207 Telimele Mine 2017 -13.271 10.8207 Guinea 

208 Tenke-Fungurume 2009 26.1787 -10.5816 Congo DRC 

209 Thar Jath Oil Field 2002 30.1328 8.72051 South Sudan 

210 Tongo Mine 2006 -10.9936 8.24782 Sierra_Leone 

211 Tongon Mine 2010 -5.70736 9.93293 Ivory Coast 

212 Tonguma Mine 2015 -11.0544 8.22963 Sierra Leone 

213 Tonkolili mine 2013 -11.6816 8.98851 Sierra_Leone 

214 Topa Mine 2016 20.6462 6.04471 Central Africa Rep. 

215 Tshikapa River Mine 2015 20.7567 -6.48528 Congo DRC 

216 Tulawaka Gold Mine 2005 31.5411 -3.20994 Tanzania 

217 Twangiza Mine 2011 28.7418 -2.87097 Congo DRC 

218 Unity Oil Field 2002 29.6776 9.46028 South Sudan 

219 Yanfolila mine Gonka 2016 -8.40587 11.2118 Mali 

220 Yaramoko 2014 -3.27469 11.7553 Burkina Faso 

221 Yatela Mine 2001 -11.75 14.0879 Mali 

222 Yekepa Mine 2012 -8.50878 7.5239 Liberia 

223 Youga Mine 2008 -0.465288 11.1012 Burkina Faso 

224 Zambezi - Ndola Cement 2009 28.7187 -12.9725 Zambia 

225 Zogota 2012 -9.09678 7.98129 Guinea 
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 773 

Figure  S1. 774 

Love-plots from standardized mean difference output for countries used in the Nearest 775 

neighbor matching by country. 776 
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