

This is a repository copy of *How much deforestation in sub-Saharan Africa has been caused by mining*?.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/223627/</u>

Version: Accepted Version

## Article:

Ahmed, A.I., Massam, M.R., Bryant, R.G. orcid.org/0000-0001-7943-4781 et al. (1 more author) (2025) How much deforestation in sub-Saharan Africa has been caused by mining? Biological Conservation, 304. 111040. ISSN 0006-3207

https://doi.org/10.1016/j.biocon.2025.111040

© 2025 The Authors. Except as otherwise noted, this author-accepted version of a journal article published in Biological Conservation is made available via the University of Sheffield Research Publications and Copyright Policy under the terms of the Creative Commons Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/

### Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/

### Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.



# 1 How much deforestation in sub-Saharan Africa has been caused

## 2 **by mining**?

| 3        |                                                                                                                   |
|----------|-------------------------------------------------------------------------------------------------------------------|
| 4        | Abdulkareem I. Ahmed <sup>1</sup>   Mike R. Massam  Robert G. Bryant <sup>2</sup>   David P. Edwards <sup>3</sup> |
| 5        |                                                                                                                   |
| 6        | <sup>1</sup> Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield,                    |
| 7        | Sheffield, UK                                                                                                     |
| 8        | <sup>2</sup> School of Geography and Planning, University of Sheffield, Sheffield, UK                             |
| 9        | <sup>3</sup> Department of Plant Sciences and Conservation Research Institute, University of                      |
| 10       | Cambridge, Cambridge, CB2 3EA, UK                                                                                 |
| 11       |                                                                                                                   |
| 12       | BIOLOGICAL CONSERVATION [ISSN 0006-3207]: Received at Editorial Office: 17 Oct                                    |
| 13       | 2023, Article revised: 13 Feb 2025, Article accepted for publication: 15 Feb 2025                                 |
| 14       |                                                                                                                   |
| 15       | Correspondence: abkdom@gmail.com, dpe29@cam.ac.uk                                                                 |
| 16<br>17 | Abstract                                                                                                          |
|          |                                                                                                                   |
| 18       | Sub-Saharan Africa (SSA) has emerged as a prominent destination for mining                                        |
| 19       | activities due to its abundant mineral reserves. A key question is understanding the                              |
| 20       | extent to which the establishment and expansion of mines contribute to off-site forest                            |
| 21       | disruptions. We conducted a comparative analysis by examining deforestation within                                |
| 22       | a 1 km to 12 km buffer from the boundary of mines (treatments) "i.e. 1-3 km, 3-6 km,                              |
| 23       | 6-9 km, 9-12 km", and similar locations without mines (controls) but with comparable                              |
| 24       | environmental characteristics. The rates of annual change were evaluated between                                  |
| 25       | treatments and controls, and before and after the establishment of mines from 2001 to                             |
| 26       | 2020. The sampled treatment grids had a total of 6,633,876 hectares of tree cover in                              |
| 27       | year 2000, and lost 17.7% within 2 decades, this was 47.5% higher than the matched                                |
| 28       | controls. Deforestation rates increased by 11,200 hectares annually for mines                                     |
| 29       | established between 2009 and 2011 (the median years), relative to pre-creation of                                 |
| 30       | mines Our findings emphasize the urgent need for the mining sector to consider their                              |
| 31       | broader offsite environmental costs in their impact assessments, carbon accounting,                               |

32 and associated investments in conservation protection.

| 34 | Keywords: Biodiversity conservation, Deforestation, Displacement, Leakage, Mining, sub- |
|----|-----------------------------------------------------------------------------------------|
| 35 | Saharan Africa.                                                                         |
|    |                                                                                         |

36

## 38 **1.0** | Introduction

Mining activities in sub-Saharan Africa (SSA) have witnessed substantial growth and 39 investment since the early 2000s (Weng et al., 2014), transforming the region into a key player 40 41 in the global mineral extraction industry. SSA has enormous volumes of high-grade minerals (Edwards et al., 2014a), making it a global epicentre of mine expansion. This financial 42 43 injection, particularly post-2000, has spurred the establishment of new mines and substantial expansions of existing ones. This culminated in the production of minerals valued at 44 45 approximately \$350 billion in 2018 alone (Yontcheva et al., 2021). However, the expansion of some of these mines into areas of high biodiversity value poses environmental risks and 46 47 significant challenges for conservation, especially evident in artisanal gold mining practices (Ahmed et al., 2021; Edwards et al., 2014; Weng et al., 2014). Coupled with the global rise in 48 49 demand for precious metals, gemstones, and industrial minerals, mining has become a major source of revenue for most countries worldwide and a means of livelihood for local populations 50 (World Bank, 2016). 51

Mining is not conventionally viewed as a primary cause of direct deforestation, due to its 52 relatively small land footprint (Chakravarty et al., 2011; Ahmed et al, 2021). Mining-induced 53 deforestation and associated habitat fragmentation have been underestimated in some regions 54 (Alvarez-Berrios & Aide, 2015; Sonter et al., 2017), despite evidence from satellite images 55 (Swenson et al., 2011; Asner et al., 2013). This oversight is particularly critical as mining 56 57 contributes to the loss of intact terrestrial habitats that harbour a hyperdiversity of tropical species (Sonter et al., 2017; Curtis et., al. 2018; Tegegne et al., 2016). This study highlights the 58 overlooked habitat disturbances caused by mining in the SSA region. 59

The impact of mining extends beyond the immediate mine boundaries, encompassing 60 environmental losses due to deforestation during the construction of mining support 61 infrastructure (such as roads, rails, seaports, and worker settlements) (Edwards et., al. 2014; 62 Haddaway et., al. 2019). These associated infrastructures have caused significant forest loss 63 64 and fragmentation beyond the sites of mineral extraction (Siquera-Gay et al 2020). Subsequent 65 deforestation near mining settlements for agricultural activities and within-forest impacts via selective logging for timber or fuelwood represent additional 'secondary' impacts of mining. 66 Notably, these secondary impacts can occur in distant forests and intact habitats, as exemplified 67 in the Brazilian Amazon, where mining caused around 1.2 million hectares of deforestation 68 relative to matched controls at distances of 0-70 km away from the boundary of mining leases 69

(Sonter et al., 2017). Moreover, coal mines in Kalimantan, Indonesian Borneo, induced
secondary deforestation up to 50 km from the centre of the mine (Sievernich et al., 2021).

72 A key unknown is the severity of secondary impacts of mining on deforestation in Sub-Saharan Africa. In this study, the severity of mining-induced forest losses was assessed using a database 73 of 196 mines created post-2000 and a subset of mines (n=45) created in 2009, 2010 and 2011 74 (median years) in SSA as identified by Ahmed et al. (2021) (Table S2). We deployed a suite 75 of geospatial environmental data and tools combined with statistical matching techniques to 76 77 tackle two core objectives: (1) evaluate the amount of deforestation from 2001 to 2020 in 78 locations with mines (treatments) compared to locations without mines (controls) at various 79 buffer intervals; and (2) compare the annual rates of deforestation before and after mine creation (i.e., across time) with distance from mine (i.e., across space). 80

81 This study underscores the critical need for informed and proactive approaches to address the 82 multifaceted impacts of mining on forests and biodiversity. As governments, researchers, and stakeholders grapple with the intricate challenges posed by mining activities, this research 83 provides valuable insights that can inform policy, conservation strategies, and sustainable 84 development initiatives. The study prompts a re-evaluation of existing decision-making 85 frameworks to ensure they comprehensively account for both primary and secondary impacts 86 of mining, fostering a more holistic and environmentally conscious approach to mining 87 practices in SSA and beyond. 88

89

## 90 **2.0** | Materials and Methods

#### 91 2.1 | Study Region

This study covers sub-Saharan Africa (SSA), with prominence on the Afrotropic region which 92 comprises four ecological zones (ecozones): the tropical rainforest, tropical moist deciduous 93 forest, tropical dry forest, and tropical shrubland. These ecozones cover 64% of SSA's land 94 95 area (FAO, 2016) (Fig. 1). The region is endowed with the largest mineral reserves and deposits globally (Edwards et al., 2014a), such as bauxite, gold, copper, diamond, limestone, and iron-96 97 ore. SSA has a population of ~1.1 billion (World Bank, 2021), and is faced with political and socio-economic challenges including armed conflicts and environmental degradation, which 98 has made it one of the most economically impoverished regions globally (IMF, 2021). 99



Figure 1. Map of the study area showing mines established between 2001- 2020 in red triangles
and the subset of mines established in the median years between 2009-2011 in blue triangles
(Ahmed et al 2021), and the ecological zones of sub-Saharan Africa; tropical rainforest, tropical
moist deciduous forest, tropical dry forest and the tropical shrublands (FAO, 2016).

108

## 109 2.2 | Forest and deforestation in sub-Saharan Africa

**Forest** - The most common definition of forest used in many countries of SSA is an area of

111 >0.5 ha with >30% canopy cover of trees at >5 m height, or trees with potential to grow to

these thresholds (FAO, 2016). Forests may thus include natural primary habitats and

secondary habitats consisting of newly planted trees, naturally regenerating forests, and

114 forestry plantations.

**Deforestation** - Hosonuma et al. (2012) depicted deforestation as the conversion from forest into other land uses, thereby assuming that the forest is not anticipated to regrow without artificial means. In this study, deforestation follows the definition of Hansen et al (2013): 118 "Forest loss as a stand-replacement disturbance or the complete removal of tree cover canopy119 at the Landsat pixel scale".

#### 120 2.3 | Data and Broad Approach

To evaluate the effect of mining on environmental losses in the study area, the counterfactual 121 scenario was assessed by comparing deforestation around locations with mines versus those 122 without mines. We focused on mines utilizing open-pit and quarrying extraction methods. 123 Therefore, we utilized the open-access, high-resolution 21st-Century Global Forest Change 124 125 (GFC) dataset (Hansen et al. 2013), which comprises various forest layers, i.e., tree cover 2000, 126 loss year, loss, and gain. The dataset was used to extract the tree cover statistics for the baseline year at 30% canopy threshold, the *loss* and *loss year* layers were also used to extract the annual 127 forest cover loss statistics from 2001 to 2020. The GFC is a product of the Landsat imageries 128 129 with medium spatial resolution (30 metres) and suitable temporal resolution, it is suitable for 130 measuring tropical deforestation (Galiatsatos et al., 2020).

Mines established post 2000 within the forested areas of SSA from Ahmed et al. (2021) were 131 used to generate four buffer zones of 3 km width around each mine, originating from 1 km 132 away from the mines' boundaries (i.e., 1-3 km, 3-6 km, 6-9 km, and 9-12 km). The choice for 133 multiple buffer zones was to capture the potential impacts of mining within the forested areas 134 at various distances. This approach allows for a more precise assessment of how the impact of 135 mining on deforestation varies with proximity to the mines. We generated a 2 by 2 km grid-136 squares covering the entire forested area of the study region, we defined the treatment squares 137 as grid-squares that are within 1-12 km from the boundary of the mines (n=196). We excluded 138 grid-squares that were within a distance of 12-30 km from the mines boundary, this was to 139 140 avoid overlapping and interference within treatments and controls. This resulted in a total of 38,500 square-grids for the 196 treatment locations within the 4 buffer zones covering the entire 141 142 study area.

## 143 **2.4** | *Matching Analysis.*

Matching statistical techniques were employed to assess the impact of having a mine near to a forest on the extent and rate of deforestation. The main objective was to compare the amount of forest loss between the treatment locations and matched control locations. Matching was used because of its ability to eliminate bias in the selection and pairing of treatment and control units (Andam et al., 2008) and is suitable in balancing covariates (Ho et al., 2011). It is widely applied in the assessment of causal inference (Stuart, 2010) and in conservation studies

(Schleicher et al., 2019). The matching analysis was used to identify grid-squares within 150 control buffers that closely resemble those within the treatment locations in terms of key 151 environmental characteristics that could potentially affect deforestation. Matching studies of 152 deforestation typically adopt this approach, as it allows for a more rigorous assessment of the 153 causal effects of deforestation (Braber et. al., 2018; Sonter at al., 2017). To accomplish this, 154 we carefully selected appropriate variables for use in the matching process from the known 155 drivers of deforestation of relevance to this study (Table S1). By matching treatment and 156 control locations based on these key variables, the study aims to create comparable groups that 157 158 differ only in terms of the presence or absence of mines nearby. In controlling for key factors 159 through the matching process, we were able to isolate and attribute any observed differences in forest loss to the presence of nearby mines. Previous studies have shown some of the 160 161 variables that are likely to influence forest disruptions are categorised into the following: (i) Geographic Characteristics; (ii) Land Use and Land Cover; (iii) Socioeconomic Factors; (iv) 162 Environmental Factors; and (v) Political and Institutional Factors (Curtis et al., 2018; Ferretti-163 Gallon & Busch, 2014; Lievano-Latorre et al.2021). 164

#### 165 **2.4.1** | *Matching Variables*.

Based on previous research, the variable selection process is done best without using the 166 observed outcomes (Andam et al., 2008; Braber et. al., 2018; Sonter et al., 2017). Therefore, 167 the following variables were selected based on their suitability in assessing the impact of 168 169 mining on the forest: (a) *elevation* derived from the digital elevation data (DEM) at 225 m spatial resolution (GMTED2010); (b) *vegetation cover* from the vegetation continuous fields 170 (VCF) for the year 2000 at 250 m spatial resolution from MODIS (DiMiceli et. al., 2015); (c) 171 172 population density, using the 1 km Gridded Population of the world Density (CIESIN, 2018); (d) topographic positioning index (TPI) (Weiss 2001) and (e) topographic wetness index (TWI) 173 174 (Kopecky et al 2021), both indices were derived from the digital elevation data using QGIS (QGIS 2022). 175

176 **Control locations** - By carefully selecting control locations that are as similar as possible to 177 treatment locations, we can better isolate the effects of mining on deforestation and draw more 178 reliable inferences about its impact. To achieve this, we used the grid-squares of 2 x 2 km 179 covering the entire ecological zones of SSA, similar to the method used by Lievano-Latorre et 180 al. (2021). To prevent overlap between treatment and control locations and ensure a clear 181 distinction, we excluded any grid-square whose boundaries were less than 30 km away from

- the treatments. This step was crucial to avoid any potential spillover effects of mining activities
- that could affect nearby control locations (fig. 2).



Figure 2. Map of the study region showing mine in red and the grid-squares used in the
matching of controls and treatments at various buffers (mint=1-3 km buffer, light yellow=3-6
km buffer, purple= 6-9 km buffer and green = 9- 12 km buffer). The dark yellow grids far from
the mines are the controls.

189

This selection process followed the approach outlined by Devenish et al. (2022) and Lievano-190 Latorre et al. (2021), ensuring that control locations were as similar as possible to treatment 191 192 locations in terms of environmental and geographical characteristics. By doing so, we aimed to create a robust framework for assessing the specific impacts of mining on deforestation. A 193 subset of control locations was created for each country, to ensure unbiased results and 194 eliminate the possibility of incorrectly matching treatment and control locations across national 195 boundaries. Country-specific matching was performed, by pairing the matched treatments and 196 controls that fall within the same country, because mining and habitat protection laws and 197 regulations vary between countries in SSA. 198

Several matching algorithms were applied using the *Matchit* package in R (Ho et al., 2011). 199 Considering the skewness in the ratio of controls to treatments (>80:1) in the data, it became 200 imperative to choose a matching method that maximizes the use of abundant control group 201 while ensuring that matches are close in terms of covariates. Therefore, we adopted the *Nearest* 202 *Neighbour* matching method which ensures that the best matched controls are utilized for each 203 treatment unit and improves the balance between the groups. Matching without replacement 204 yielded the best results and better covariate balances compared to other approaches (Stuart, 205 2010; Ho et al., 2007). We matched treatments and controls grid-squares of similar biophysical 206 207 and social characteristics (matching variables) (Table S1). The amount of deforestation over 208 time was compared between the treatments and their corresponding matched controls. Propensity scores matching (PSM) was used to facilitate the construction of matched sets with 209 210 similar distributions and summarised all the variables into one scalar grouping of individuals with similar scores (Rosenbaum and Rubin, 1983; Stuart, 2010). 211

212 Propensity score: 
$$[P(X) = Pr(d=1|X)]$$
 (1)

Where *P* indicates the Propensity score, *X* is the covariate value, Pr is the probability and *d* is the unit in the *treatment and control* groups.

)

Assessing the balance of matching - The quality of outputs from the matching analysis were checked using the covariate balance in the *cobalt* package in R (Greifer, 2021). We diagnosed the balance using the standardized mean differences (SMD) as suggested by Schleicher et al., (2019) and Stuart (2010). A better balance with few large numbers will yield less bias in treatment effect estimates (Figure S1); SMD values of < 0.25 were used as acceptable balance for treatments and controls (Stuart et al., 2013).

222 Where  $\overline{X}_1$  and  $\overline{X}_2$  are sample means, while  $S_1^2$  and  $S_2^2$  are sample variance for both the 223 treatments and controls.

224

## 225 **2.4.1** | *Post Matching*

The matched treatment and control grid-squares (n=77000) were used to extract tree cover for the year 2000 and annual forest losses (2001-2020) at various buffer distances over time. In addition, we calculated the changes in the annual rates of deforestation after mine establishmentwithin the treatment areas.

## 230 2.5 | Comparative analysis of the influence of mining on cumulative deforestation in 231 treatment versus control locations across different time periods and within various buffers.

We assessed the cumulative deforestation within the treatment and control locations over time 232 using the grid-squares generated from the boundary of the buffers at intervals of 3km for 233 distances of 1 to 12 km, with the hypothesis that control locations are unaffected by mining 234 235 activities as indicated by Sonter et al (2017). The *Google Earth Engine* (GEE) open-source tool 236 was utilised to extract the data for both the tree cover for the baseline year  $[T_c(0)]$ , and the 237 annual forest loss  $[T_c(0) - T_c(n_{-vear})]$  from 2001 to 2020. This data extraction was performed for individual matched treatment and control cells within each buffer, The tree canopy cover 238 239 threshold of 30% was adopted as the average for the study area (FAO, 2010) to balance the disparity in national forest definitions by the various countries in the SSA region, and to 240 241 eliminate non-relevant grid-squares. We assessed the normality of the data and obtained a pvalue < 0.05 for both control and treatment locations, indicating that the data is not normally 242 distributed. Mann-Whitney U test was used to evaluate the difference in forest loss between 243 the control and the treatment locations. 244

Additionally, we performed a supplementary analysis using a subset of 45 mines established during the median years of the study (2009, 2010, and 2011) (Figure 1). The subset facilitated a comprehensive examination of the data covering approximately 10 years before and after mine creation. Furthermore, we delved into the spatial dynamics of the impact of mining by considering various buffers around the mining sites. This was aimed to elucidate patterns and variations in cumulative deforestation, providing valuable insights into the long-term environmental consequences of mining operations in distinct spatial contexts.

252

## 253 2.6 | Changes in the rate of deforestation before and after the establishment of the mine 254 (across time) in relation to distance from the mine (across space).

To evaluate how the rate of deforestation varied across both time and space, we examined the extent of deforestation in treatment locations compared to their matched control locations. Specifically, we focussed the analysis on designated buffer zones surrounding the mines (1-3 km, 3-6 km, 6-9 km, 9-12 km) and compared deforestation rates to matched control areas to determine the relative impacts. To make valid comparisons regarding deforestation over time in relation to the mine, yearly deforestation

- rates were normalised based on the number of years since mine creation. To account for differences in
- initial forest cover, we considered the deforestation rates as a proportion of initial forest cover. Mines
- that were less than 4 years old were excluded from the analysis due to inherent limitations associated
- with sparse data. To overcome this constraint, we performed a supplementary analysis using mines
- established during the median years of the study (2009, 2010, and 2011) resulting in a subset of 45
- 265 mines. The subset facilitated a comprehensive examination of the data covering approximately 10 years
- before and after mine creation; Mfc (-5, 0, +5,+10), thereby generating a better understanding of

whether deforestation rates experienced a significant increase after the creation of the mines. Statistical

- assessment of the observed differences between the two data groups (before and after mine creation)
- 269 was conducted using a Mann-Whitney U test, applying a significance threshold of p-value < 0.05.

#### 270 Regression model (Generalized additive model)

- As a response variable we analysed the proportion of initial forest cover that underwent deforestation relative to control areas ( $p_{m,t,b}^*$ ) which we define as;
- 273 If  $F_{m,t,b}$  and  $D_{m,t,b}$  are the area of forest (ha) and amount deforestation (ha) at mine m, at time t274 within buffer ring b, respectively. Then, the cumulative proportion deforested at time t can be 275 expressed as:

276 
$$P_{m,t,b} = \frac{\sum_{0}^{t} D_{m,t,b}}{F_{m,0,b}}$$
(3)

277 Where t=0 is the time at the start of the data (i.e. the year 2000)

To analyse how the proportion deforested varied between treatment and control at different 278 279 distances from the mine at different times since mine establishment, we fit GAM models to the proportion deforested relative to the control,  $p_{m,t,b}^* = p_{m,t,b} - p_{m,t,b}^c$ , where  $p^c$  is the 280 proportion deforested in the matched control cells. We included a thin plate spline smooth 281 function for years since mine creation as a predictor variable and to account for 282 pseudoreplication we also included Mine ID as a random effect. A model was fit for each 283 buffer zone (1-3 km, 3-6 km, 6-9 km, 9-12 km) and model fits were extracted at various time periods 284 before and after mine creation Mfc (-5, 0, +5,+10) to evaluate how deforestation rates progress through 285 286 the establishment of a mine and beyond.

287

## 288 **3.0 | Results**

## 289 3.1 | Impacts of mining on cumulative deforestation in treatment versus control locations.

Over the span of two decades, there was a cumulative forest cover loss of 2,401,777 hectares 290 291 within the sampled grid squares around the matched treatment and control locations (n=77,000). Specifically, within the treatment grid-squares, there was a cumulative 292 293 deforestation of 1,171,794 hectares, constituting 17.7% of the total tree cover within the sampled treatment grid-squares in year 2000 (Figure 3A). In contrast, the control grid-squares, 294 295 experienced a cumulative forest loss of 12% of the tree cover in 2000. The findings indicate a significant higher net deforestation in the treatment locations compared to their matched 296 297 controls (W = 22216, p-value < 0.01). The average rate of deforestation per grid-square in the treatment locations was 32 hectares and 31 hectares in the matched control locations (Figure 298 299 3A).

Considering the 45 mines established during the median years of our study, the average annual
deforestation rate per sampled treatment grid-square from year of mine creation until 2020 was
145 hectares (Figure 3B). In contrast, control locations exhibited an average deforestation of
142 hectares per year.



Figure 3. The impacts of mines on deforestation within treatments and controls in sub-Saharan Africa from 2001 to 2020. (A) Mean and median forest loss for all mines created between 2001- 2020 and their matched controls. (B) Mean and median forest loss for the subset analysis of mines created 2009-2011. Box plots show mean (crossed dot), median (bold line), upper and lower whiskers show the minimum and maximum values. To improve visualisation, outliers in the data are not shown.

311 **3.1.1** | **Proportion of initial forest cover deforested within buffers** (n=196). At five years 312 before mine creation [M<sub>fc</sub>(-5)], the proportion of initial forest cover deforested was -0.2%, 0%, 313 -0.1% and 0% at the 1-3 km, 3-6 km, 6-9 km and 9-12 km buffers, respectively (Figure 4A). 314 At mine creation [M<sub>fc</sub>(0)], the proportion of deforestation increased to 3.5 % at the 1-3 km 315 buffer, and gradually decreasing to -1% within the 9-12 km buffer (Figure 4B).

Five years post-mine creation  $[M_{fc}(+5)]$ , deforestation rates were higher, with proportions of 13.5%, observed within 1-3 km, buffer. Subsequently, deforestation diminished, with a 1% rate within the 3-6 km buffer, and stabilized to below 1% up to the 9-12 km buffer (Figure 4C). At

319 10 years post-mine creation  $[M_{fc}(+10)]$ , the proportion of initial forest cover deforested was

15% within the 1-3 km buffer and 3% within the 3-6 km buffer. The deforestation rates
remained constant at <1% from the 6-9 km and 9-12 km buffer (Figure 4D).</li>



Figure 4. Proportion of initial forest cover deforested relative to control (%) (*n=196*). Plots from the GAM regression within the 1-3 km, 3-6 km, 6-3 km and 9-12 km buffer in SSA from 2001 to 2020. (A) 5 years pre-mine creation, (B) at the year of creation, (C) 5 years postmine creation, and (D) 10 years post-mine creation. The error bars represent the 95% confidence intervals of the estimated proportion of initial forest cover loss (derived from the

upper and lower CIs of the buffer), the black line marks the reference points, and the valuesbelow zero indicate a negative forest cover loss/ change (i.e., forest gain).

## 330 3.2 | Changes in deforestation rate before and after the mine creation (i.e., across time).

331 After the establishment of mines, there was a significant and statistically meaningful increase

- in deforestation rates. Before mines were created, the average annual deforestation rate was
- 1,665 hectares. However, following the creation of the mines, this rate more than doubled to
- 334 4,314 hectares (Figure 5A; p-value < 0.01).
- 335

336 The supplementary analysis conducted on the subset of mines created during the median

- 337 years of the study (n=45) indicated that the average annual deforestation in the treatment
- locations before mine creation was 1,572 hectares, whereas it increased significantly to an

average of 4,972 hectares after mine creation (Figure 5B; p-value < 0.01). Here, our results

340 show that the creation of mines led to a higher level of deforestation in the treatment

- 341 locations.
- 342



Figure 5. Change in rates of deforestation before and after the mine creation. Plots showing the difference in the annual mean rates of deforestation before and after the creation of mines in SSA from 2001 to 2020. The metrics calculated were the rates of deforestation before and after mine creation. (A) Analyses for all the mines (n=196), and (B) the subset of the mines (n=45) created at the median years of the study. Box plots show mean (crossed dot), Median (bold line), upper and lower whiskers show the minimum and maximum values. Outliers in data are not shown.

351

## 352 **4.0** | **Discussion**

The mining industry in sub-Saharan Africa (SSA) attracted huge investments since 2000 and 353 354 increased immensely after the 2008 global financial crisis (Alvarez-Berrios & Mitchell Aide, 2015), producing minerals worth \$350 billion in 2018 alone (Yontcheva et al., 2021). This 355 356 study compared the secondary effect of mining on deforestation in SSA by matching treatments versus controls and analysing the rates of loss before and after the creation of 357 358 mines within two decades. On average, there was at least 47.5% extra deforestation in the sampled treatment grid-squares compared to the matched control locations. This emphasizes 359 the imperative for the mining sector and policy makers to consider the broader environmental 360 implications of mineral extraction in licensing, impact assessments, carbon accounting, and 361 associated investments in conservation protection. 362

363

## **364 4.1** | *Impacts of mine expansion on forest conservation*

The annual average deforestation rate in the treatment locations increased by 160% to 4,314 ha post-mine creation from an average of 1,665-ha pre-mine creation. However, we also observed some significant differences in deforestation rates across our data. In summary, more than 20 mine locations recorded an increase of over 80% in their annual deforestation rates nine years after the creation of the mine, compared to the nine years before the mine's creation. This supports an analysis by the World Bank (Johnson & John, 2019) that revealed regional deforestation has increased significantly post mine creation in areas with mines.

Significant forest losses, and changes in forest cover throughout Central Africa mirrors the
levels and impacts of mining on forest loss observed by Sonter et al (2017) in the Amazon. The
proportion of forest loss 5 years pre-mine creation ranged between -2% to 0% across all buffers

similar to the trend recorded in the Democratic Republic of Congo (DRC) from 2005-2010 (Potapov et al., 2012). However, we found that these rates changed drastically after mine creation. Within the 1-3km km buffer, the proportion of loss was 13.5% and 17% at 5- and 10years post-mine creation, respectively, with the surge in deforestation especially severe for mines created after 2008, and the 2010 peak deforestation in the DRC (Turubanova et al., 2018). Deforestation dropped to about 3% at the 9-12 km buffer for post-mine creation years, an indication that forest loss declines with an increase in buffer distance.

382 More than half of the 469 mapped mines in sub-Saharan Africa, according to Ahmed et al. (2021), were established after 2000, with about 200 mines located within 10 kilometres of areas 383 384 of biodiversity value. This finding aligns with the results of Hund et al. (2017), which indicated that a quarter of operational mines worldwide are situated within a 10-kilometer radius of 385 protected or conservation areas. The expansion and establishment of mines pose severe 386 consequences for conservation and the ecological integrity of forests, involving the 387 encroachment of mining infrastructure into forested land. The construction of roads, railways, 388 389 and other supporting services further compounds the impact (Hund et al., 2013; Chakravarty et al., 2011; Davis et al., 2020). In SSA, a variety of roads and railways are currently under 390 construction to connect the mines to industries and seaports that are situated several to hundreds 391 of km away (Laurance et al., 2009; Weng et al., 2013). For instance, the Lobito Road corridor, 392 which is a significant transportation network in Central Africa, will connect the copper belt 393 region of the DRC and Zambia to the seaport in Lobito, Angola, cutting through tropical forest 394 (Weng et al., 2013). Addressing the challenges posed by secondary deforestation linked to 395 mining activities in the region necessitates a concerted effort from all stakeholders, including 396 397 governments, industry players, and local communities. Mine owners and operators need to recognize and assume responsibility for the indirect environmental impacts of their operations, 398 implementing measures to mitigate and offset these effects (Kemp and Owen, 2018). By 399 400 fostering a sense of shared responsibility and implementing sustainable practices, it is possible to mitigate the environmental threats posed by such activities and work towards a more resilient 401 402 and ecologically sustainable future (Sonter et al., 2018).

## 403 4.2 | Impact of Mining Infrastructure on Ecosystems

The construction and operation of mining infrastructure, such as roads, railways, electricity, and processing facilities, can have significant and often detrimental effects on the surrounding environment. These infrastructures often require clearing large areas of forest to make way for operations and may cause soil erosion, which impacts the integrity of land and soil quality
(Ahirwal & Maiti, 2016). This leads to the loss of biodiversity and intact habitat fragmentation
and deforestation, with over 1,047 plant and animal species in the International Union for
Conservation of Nature (IUCN) Red List impacted by various types of mining globally (Torres
et al 2022). Species may lose their natural habitats leading to population decline or even
extinction in some cases (Sonter, Ali, & Watson, 2018).

## 413 **4.3** | *The role of environmental legislation in controlling mining activities.*

Environmental legislation to restrict the negative impacts of mining and promote sustainable 414 practices faces multiple challenges in regulatory adherence and enforcement, with the 415 effectiveness of regulations varying across regions and countries and depending on its 416 stringency (Zulu et al., 2022; Luckeneder et al., 2021; Cabernard and Pfister, 2022). Monitoring 417 this evolving landscape of environmental legislation is essential. In some cases, regulations 418 may be robust, imposing strict requirements on mining companies to minimize environmental 419 impacts. In other cases, the legislation may be less stringent, allowing for more permissive 420 practices. Some countries struggle with regulatory enforcement due to factors such as limited 421 resources, corruption, or insufficient monitoring mechanisms (Edwards et al. 2014; Punam et 422 423 al. 2017). Other countries adhere to international environmental standards and agreements, which can influence the development and enforcement of domestic legislations related to 424 mining activities. 425

Environmental legislation of mining can undergo changes over time, influenced by political, 426 427 economic, and social factors. In some instances, there may be regulatory capture or a shift towards weaker regulations to promote economic development, as evidenced by the frequent 428 examples of protected area downgrading, downsizing, and degazettement (PADDD) to make 429 way for mining. Between 1892 and 2018, 62% of 3,749 PADDD events in 73 countries were 430 to enable industrial-scale resource extraction and development (Golden Kroner et al. 2019). 431 Public awareness, advocacy, and engagement are crucial in holding governments, mining 432 companies and other stakeholders accountable and promoting sustainable mining practices. 433 Advancements in technology and increased transparency can contribute to more effective 434 monitoring and enforcement of environmental regulations in the sector. 435

### 436 4.4 | Role of Monitoring and Research Limitations

437 This study underscores a vital role of applying geospatial techniques and utilisation of available data to explicitly quantify deforestation spatially in sub-Saharan Africa. This approach can 438 guide the monitoring, reporting, and verification of forest changes and carbon loss studies due 439 to mining activities. This study employed matching techniques to compare changes in the forest 440 landscape between treatments and controls (following Sonter et al. 2017), distinguishing it 441 from prior studies that likely overestimated the degree to which mining was a major 442 443 deforestation driver, by solely quantifying deforestation in the mining locations without comparing them to controls (Merem et., al 2017; Nzunda 2013). For instance, Merem et al. 444 (2017) suggested that 265 km<sup>2</sup> of deforestation in Bukuru, Nigeria, was driven by mining 445 between 1975 and 2005, but this area represents 9% of all deforestation (i.e. 2,992 km<sup>2</sup> more 446 deforestation in treatment than control) that we detected up to 10 km from mines across the 447 whole of sub-Saharan Africa. Unlike previous studies focused on a single commodity (e.g., 448 gold; Alvarez-Berrios & Mitchell Aide, 2015; Swenson et al., 2011; Sonter et al 2017), this 449 research covers mines for all types of commodities mined in sub-Saharan Africa (bauxite, 450 diamond, gold, iron, copper, and limestone, among others), enabling a more holistic assessment 451 of deforestation risks. A major remaining question is how the type of commodity mined alters 452 deforestation, which may be expected given that different commodity classes (e.g., low-value, 453 454 high-bulk vs high-value, low-bulk) require different infrastructures (Werner et al., 2019).

455 This research has four core limitations. First, there was a lack of comprehensive data on most artisanal and small-scale mines (ASM), yet these are major components of mining for some 456 commodities (including diamond and gold; Klubi et al., 2018; Lobo et al., 2016), potentially 457 458 influencing the overall understanding of deforestation patterns associated with mining. Second, challenges arose in utilizing proximity to roads as a covariate in the matching analysis. The 459 inadequacy of road data, considering the vast scale of the region under study, may have 460 impacted the precision of the analysis concerning the role of roads in influencing deforestation 461 patterns. Third, we recognize the limitation of satellite data in identifying mining operations 462 conducted beneath the Earth's surface. Consequently, the study concentrated its assessment on 463 primary and secondary deforestation resulting from open-cast mines, as these are more readily 464 distinguishable using satellite imagery. Fourth, external factors, such as changes in government 465 policies, economic conditions, or technological advancements, are potential influencers of 466 deforestation trends. However, these factors were not fully accounted for in the matching 467

468 analysis, introducing a limitation in comprehensively understanding the multifaceted drivers469 of deforestation associated with mining activities.

470

## 471 **4.5** | *Conclusions*

This study emphasizes mining-induced deforestation as a significant and often underestimated 472 factor contributing to forest loss in SSA, representing a major conservation concern. 473 Strengthening environmental and mining regulations in sub-Saharan Africa is essential to 474 tackle the magnitude of this issue and effectively prevent or mitigate deforestation. In 475 particular, nations and (often international) mine financiers need a well-defined mitigation 476 477 hierarchy applied to environmental impact assessments that seeks to avoid, then minimize, and as a last alternative compensate (e.g. via offsets) the impacts on forests and biodiversity. Some 478 479 governments face challenges in delivering such regulation and oversight, in part due to their dependence on mining revenues. This points towards the needs for international funders and 480 481 consumers to ensure that mine sustainability is appropriately considered at all stages in mine lifecycles. This includes increased efforts for forest restoration, overseen by authorities upon 482 mine closure, to initiate the long-term process of forest regeneration and associated protection 483 of restored former mining areas from other anthropogenic activities. 484

Collaboration between governments and other stakeholders is vital for promoting sustainable 485 mining practices and forest conservation in SSA. Given the rapid mining expansion, especially 486 487 by major companies, and inadequate regulatory oversight, stakeholders must better consider biodiversity preservation, protection of Indigenous rights, sustainable land-use planning, and 488 effective environmental law enforcement. Addressing issues related to land tenure, 489 490 governance, transparency, and equitable benefit distribution are essential for achieving sustainable development and minimizing adverse impacts on local communities and 491 492 ecosystems in the context of mining-induced deforestation in SSA.

493

## 494 CONFLICT OF INTERESTS

The authors declare no conflict of interest, and no copyright issues with the data sources anddocuments cited.

## 497 **References**

Ahmed, A. I., Bryant, R. G., & Edwards, D. P. (2021). Where are mines located in sub-

Saharan Africa and how have they expanded overtime? Land Degradation & Development,
32, 112-122. <u>https://doi.org/10.1002/ldr.3706</u>

501 Ahirwal, J., & Maiti, S. K. (2016). Assessment of soil properties of different land uses

generated due to surface coal mining activities in tropical Sal (Shorea robusta) forest, India.
 CATENA, 140, 155–163. <u>https://doi.org/10.1016/J.CATENA.2016.01.028</u>.

Alvarez-Berrios, N. L., & Mitchell Aide, T. (2015). *Global demand for gold is another threat for tropical forests*. Environmental Research Letters, 10(1), 14006.
<u>https://doi.org/10.1088/1748-9326/10/1/014006</u>

Andam, K. S., Ferraro, P. J., Pfaff, A., Sanchez-Azofeifa, G. A., & Robalino, J. A. (2008).
Measuring the effectiveness of protected area networks in reducing deforestation. *105*(42),
16089–16094. <u>https://doi.org/10.1073/pnas.0800437105</u>

Asner, G. P., Llactayo, W., Tupayachi, R., & Luna, E. R. (2013). Elevated rates of gold mining

511 in the Amazon revealed through high-resolution monitoring. 110(46), 18454–18459.

512 <u>https://doi.org/10.1073/pnas.1318271110</u>

Austin K G, Schwantes A, Gu Y and Kasibhatla, Prasad S. (2019). *What causes deforestation in Indonesia? Environ. Res. Lett.* 14 24007a. <u>https://doi.org/10.1088/1748-9326/aaf6db</u>

den Braber B, Evans KL, Oldekop JA. Impact of protected areas on poverty, extreme poverty,
and inequality in Nepal. *Conservation Letters*. 2018; e12576.
<u>https://doi.org/10.1111/conl.12576</u>

Caballero Espejo, J.; Messinger, M.; Román-Dañobeytia, F.; Ascorra, C.; 518 Fernandez, L.E.; Silman, M. (2018). Deforestation and Forest Degradation Due to Gold Mining in the Peruvian 519 Amazon: 34-Year Perspective. Remote Sens. 2018, 1903. 520 А 10, https://doi.org/10.3390/rs1012190 521

522 Cabernard, L., & Pfister, S. (2022). Hotspots of Mining-Related Biodiversity Loss in Global
523 Supply Chains and the Potential for Reduction through Renewable Electricity. *Environmental*

524 Science & Technology. https://doi.org/10.1021/acs.est.2c04003

525 Centre for International Earth Science Information Network - CIESIN - Columbia University.
526 2018. Gridded Population of the World, Version 4 (GPWv4). Accessed: 02 February 2020.

- 527 Retrieved from; <u>https://doi.org/10.7927/H49C6VHW</u>
- 528 Chakravarty, S., Ghosh, S., & Suresh, C. (2011). Deforestation: Causes, Effects and Control
  529 Strategies. Cdn.Intechopen.Com, 3–29. <u>https://doi.org/10.5772/33342</u>
- 530 Chuhan-Pole, Punam, Andrew L. Dabalen, and Bryan Christopher Land. 2017. Mining in
- 531 Africa: Are Local Communities Better Off? Africa Development Forum series. Washington,
- 532 DC: World Bank. doi:10.1596/978-1-4648-0819-7. License: Creative Commons Attribution
- 533 CC BY 3.0 IGO

534 Creese, A., & Pokam, W. (2016). Central Africa's climate system. Africa's Climate Helping
535 Decision-makers Make Sense of Climate Information, (November), 4–10.

Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A., & Hansen, M. C. (2018). Classifying
drivers of global forest loss. Science, 361(6407), 1108–1111.
<u>https://doi.org/10.1126/science.aau3445</u>.

- Davis, K. F., Koo, H. I., Dell'Angelo, J., D'Odorico, P., Estes, L., Kehoe, L. J., ... Tatlhego,
  M. (2020). Tropical forest loss enhanced by large-scale land acquisitions. Nature Geoscience,
  13(7), 482–488. https://doi.org/10.1038/s41561-020-0592-3
- 542 Devenish, K., Desbureaux, S., Willcock, S. *et al.* On track to achieve no net loss of forest at
  543 Madagascar's biggest mine. *Nat Sustain* 5, 498–508 (2022). <u>https://doi.org/10.1038/s41893-</u>
  544 022-00850-7
- 545 Diamond, A. and Sekhon, J. S. (2006). Genetic matching for estimating causal effects: A
  546 general multivariate matching method for achieving balance in observational studies.
  547 <u>http://sekhon.berkeley.edu/papers/GenMatch.pdf</u>.
- 548 DiMiceli, C., Carroll, M., Sohlberg, R., Kim, D., Kelly, M., Townshend, J. (2015). MOD44B
  549 MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 250m. Accessed 12-03-2020
  550 from https://doi.org/10.5067/MODIS/MOD44B.006
- Edwards, D. P., Sloan, S., Weng, L., Dirks, P., Sayer, J., & Laurance, W. F. (2014). Mining
  and the African Environment, 7, 302–311. <u>https://doi.org/10.1111/conl.12076</u>
- 553 FAO. (2016). Global Forest Resources Assessment 2015. UN Food and Agriculture 554 Organisation, Rome. (<u>www.fao.org/forest-resources-assessment</u>).
- Ferretti-Gallon, K., & Busch, J. (2014). What Drives Deforestation and What Stops it? A MetaAnalysis of Spatially Explicit Econometric Studies. Ssrn, (April 2014).
  <u>https://doi.org/10.2139/ssrn.2458040</u>
- Forrest, J. L., Mascia, M. B., Pailler, S., Abidin, S. Z., Araujo, M. D., Krithivasan, R., &
  Riveros, J. C. (2015). Tropical deforestation and carbon emissions from Protected Area
  Downgrading, Downsizing, And Degazettement (PADDD). Conservation Letters, 8(3), 153–
  161. https://doi.org/10.1111/conl.12144
- Galiatsatos, N.; Donoghue, D.N.M.; Watt, P.; Bholanath, P.; Pickering, J.; Hansen, M.C.;
  Mahmood, A.R.J. An Assessment of Global Forest Change Datasets for National Forest
- 564 Monitoring and Reporting. *Remote Sens.* **2020**, *12*, 1790. <u>https://doi.org/10.3390/rs12111790</u>
- 565 Golden Kroner, R. E., Qin, S., Cook, C. N., Krithivasan, R., Pack, S. M., Bonilla, O. D., ...
- Mascia, M. B. (2019). The uncertain future of protected lands and waters. Science, 364(6443),
  881–886. <u>https://doi.org/10.1126/science.aau5525</u>
- 568 Haddaway, N.R., Cooke, S.J., Lesser, P. et al. Evidence of the impacts of metal mining and the
- <sup>569</sup> effectiveness of mining mitigation measures on social–ecological systems in Arctic and boreal
- regions: a systematic map protocol. *Environ Evid* **8**, 9 (2019). https://doi.org/10.1186/s13750-
- 571 019-0152-8

- Hamis Patrick Nzunda | Semantic Scholar. (n.d.). Retrieved June 15, 2022, from
   <u>https://www.semanticscholar.org/author/Hamis-Patrick-Nzunda/104761605</u>
- 574 Hansen, M. C., Potapov, P. V, Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., ...

Townshend, J. R. G. (2013). High-Resolution Global Maps of 21st-Century Forest Cover
Change. Science, 342(6160), 850 LP – 853. <u>https://doi.org/10.1126/science.1244693</u>.

- Hastie, T., & Tibshirani, R. (1986). Generalized Additive Models. *Statistical Science*, 1(3),
  297-310. Retrieved July 26, 2021, from http://www.jstor.org/stable/2245459
- Ho D, Imai K, King G, Stuart EA (2011) *MatchIt: nonparametric pre-processing for parametric causal inference*. Journal of Statistical Software, 42, 1–28.
- Ho, D., Imai, K., King, G., & Stuart, E. (2007). Matching as Nonparametric Pre-processing for
  Reducing Model Dependence in Parametric Causal Inference. *Political Analysis*, *15*(3), 199236. https://doi.org/10.1093/pan/mpl013.
- Hosonuma, N., Herold, M., De Sy, V., De Fries, R.S., Brockhaus, M., Verchot, L., Angelsen,
  A., Romijn, E., 2012. An assessment of deforestation and forest degradation drivers in
  developing countries. Environ. Res. Lett. <u>https://iopscience.iop.org/article/10.1088/1748-</u>
  <u>9326/7/4/044009/pdf</u>
- Hund, K., Schure, J., & Goes, A. Van Der. (2017). Extractive industries in forest landscapes :
  options for synergy with REDD + and development of standards in the Democratic Republic
  of Congo. Resources Policy, 54, 97–108. <u>https://doi.org/10.1016/j.resourpol.2017.09.011</u>
- Hund, K., Megevand, C., Pereira Gomes, E., Miranda, M., & Reed, E. (2013). Deforestation
- 592 trends in the Congo Basin: Mining Dynamics of deforestation in the Congo Basin: Reconciling
- 593 economic growth and forest protection. <u>https://ideas.repec.org/p/wbk/wboper/16617.html</u>.
- 594IMF Regional Economic Outlook for Sub-Saharan Africa, April 2021. (n.d.). Retrieved595October11,2021,from
- 596 <u>https://www.imf.org/en/Publications/REO/SSA/Issues/2021/04/15/regional-economic-</u>
- 597 <u>outlook-for-sub-saharan-africa-april-2021</u>
- IUCN. The IUCN Red List of Threatened Species. Summary Statistics. IUCN Red List of 726
   Threatened Species https://www.iucnredlist.org/resources/summary-statistics (2023) Accessed
- 600 20-12-2023 .
- J. Barlow\*†‡, T. A. Gardner\*, I. S. Araujo†, T. C. A' vila-Pires†, A. B. Bonaldo†, J. E. Costa†,
- 602 M. C. Esposito<sup>†</sup>, L. V. F., J. Hawes<sup>\*</sup>, M. I. M. Hernandez<sup>§</sup>, M. S. Hoogmoed<sup>†</sup>, R. N. Leite<sup>¶</sup>,
- N. F. Lo-Man-Hung<sup>†</sup>, J. R. Malcolm, M. B. M., L. A. M. Mestre<sup>\*\*</sup>, R. Miranda-Santos<sup>†</sup>, A.
- L. Nunes-Gutjahr<sup>†</sup>, W. L. Overal<sup>†</sup>, L. Parry<sup>\*</sup>, S. L. Peters<sup>†</sup><sup>†</sup>, M. A. R.-J., & M. N. F. da Silva<sup>§</sup>,
- 605 C. da Silva Motta§, and C. A. P. (2012). Quantifying the biodiversity value of tropical primary, 606 secondary, and plantation forests. Stubborn Roots: 104(47), 1–256.
- 607 <u>https://doi.org/cgi\_doi\_10.1073\_pnas.0703333104</u>
- Jianhua, L., & Jr, M. (2014). Analysis on the Causes of Deforestation and Forest Degradation
- 609 in Liberia: Application of the DPSIR Framework. Research Journal of Agriculture and Forestry
- 610 Sciences Res. J. Agriculture and Forestry Sci, 2(3), 2320–6063

- Johnson, Sally, Howell, John. 2019. Forest-Smart Mining: Offset Case Studies. World Bank,
  Washington, DC. © World Bank. *https://openknowledge.worldbank.org/handle/10986/32027*.
- 613 Kemp, D., and J.R. Owen (2018). Social performance gaps in the global mining industry: A

position paper for executives. Centre for Social Responsibility in Mining, Sustainable Minerals
 Institute, The University of Queensland: Brisbane.
 <u>https://www.csrm.uq.edu.au/media/docs/1537/miningcompaniessocialperformancegaps.pdf</u>

- Klubi, E., Abril, J. M., Nyarko, E., & Delgado, A. (2018). Impact of gold-mining activity on
  trace elements enrichment in the West African estuaries: The case of Pra and Ankobra rivers
- trace elements enrichment in the West African estuaries: The case of Pra and Ankobra rivewith the Volta estuary (Ghana) as the reference. Journal of Geochemical Exploration,
- 620 190(February), 229–244. <u>https://doi.org/10.1016/j.gexplo.2018.03.014</u>
- Kopecky, M., Macek, M., Wild, J. Topographic Wetness Index calculation guidelines based on
   measured soil moisture and plant species composition, Sci. of total env. 2021. *Sci. Direct* (757).
- 623 <u>https://doi.org/10.1016/j.sciotenv.2020.143785</u>
- Laurance, W. F., Clements, G. R., Sloan, S., O'Connell, C. S., Mueller, N. D., Goosem, M., ...
- Arrea, I. B. (2014). A global strategy for road building. Nature, 513(7517), 229–232.
- 626 <u>https://doi.org/10.1038/nature13717</u>
- Laurance, W. F., Carolina Useche, D., Rendeiro, J., Kalka, M., Bradshaw, C. J. A., Sloan, S.
  P., ... Zamzani, F. (2012). Averting biodiversity collapse in tropical forest protected areas. *Nature*, 489(7415), 290–293. <u>https://doi.org/10.1038/nature11318</u>
- Laurance, W. F., Goosem, M., & Laurance, S. G. W. (2009). Impacts of roads and linear
  clearings on tropical forests. Trends in Ecology and Evolution, 24, 659–669.
  <u>https://doi.org/10.1016/j.tree.2009.06.009</u>
- Laurance, W. F. (1998). A crisis in the making: responses of Amazonian forests to land use
  and climate change. Trends in Ecology & Evolution, 13(10), 411–415.
  <u>https://doi.org/10.1016/S0169-5347(98)01433-5</u>
- Lobo, F., Costa, M., Novo, E., & Telmer, K. (2016). Distribution of Artisanal and Small-Scale
  Gold Mining in the Tapajós River Basin (Brazilian Amazon) over the Past 40 Years and
  Relationship with Water Siltation. Remote Sensing, 8(7), 579.
  https://doi.org/10.3390/rs8070579
- Luckeneder, S., Giljum, S., Schaffartzik, A., Maus, V., & Tost, M. (2021). Surge in global
  metal mining threatens vulnerable ecosystems. Global Environmental Change, 69, 102303.
  <u>https://doi.org/https://doi.org/10.1016/j.gloenvcha.2021.102303</u>
- Matricardi, E. A. T., Skole, D. L., Costa, O. B., Pedlowski, M. A., Samek, J. H., & Miguel, E.
  P. (2020). Long-term forest degradation surpasses deforestation in the Brazilian Amazon.
  Science, 369(6509), 1378–1382. <u>https://doi.org/10.1126/SCIENCE.ABB3021</u>
- Merem, E. C., Twumasi, Y., Wesley, J., Isokpehi, P., Shenge, M., Fageir, S., ... Nwagboso, E.
  (2017). Assessing the ecological effects of mining in West Africa: The case of Nigeria.
  International Journal of Mining Engineering and Mineral Processing, 6(1), 1–19.
  <u>https://doi.org/10.5923/j.mining.20170601.01</u>

Müller, R., Müller, D., Schierhorn, F., Gerold, G., & Pacheco, P. (2012). Proximate causes of
deforestation in the Bolivian lowlands: An analysis of spatial dynamics. Regional
Environmental Change, 12(3), 445–459. <u>https://doi.org/10.1007/s10113-011-0259-0</u>

Nepstad, D. C., Stickler, C. M., Soares-Filho, B., & Merry, F. (2008). Interactions among
Amazon land use, forests, and climate: Prospects for a near-term forest tipping point.
363(1498), 1737–1746. <u>https://doi.org/10.1098/rstb.2007.0036</u>

- Ng, L. S., Campos-Arceiz, A., Sloan, S., Hughes, A. C., Tiang, D. C. F., Li, B. V., & Lechner,
  A. M. (2020). The scale of biodiversity impacts of the Belt and Road Initiative in Southeast
  Asia. Biological Conservation, 248), 108691. https://doi.org/10.1016/j.biocon.2020.108691
- Philip G. Curtis, Christy M. Slay, Nancy L. Harris, Alexandra Tyukavina and Matthew C.
  Hansen. Classifying drivers of global forest loss. Science, 361 (2018), pp. 1108-1111
  <a href="https://doi.org/10.1126/science.aau3445">https://doi.org/10.1126/science.aau3445</a>
- 662 Potapov, P. V., Turubanova, S. A., Hansen, M. C., Adusei, B., Broich, M., Altstatt, A., ...
- Justice, C. O. (2012). Quantifying forest cover loss in Democratic Republic of Congo, 20002010. Remote Sensing of Environment, 122, 106–116.
  https://doi.org/10.1016/j.rse.2011.08.027
- QGIS.org. (2022). *QGIS Geographic Information System* (Version 3.26.1) [Buenos Aires].
   QGIS Association. <u>https://qgis.org</u>
- Rosenbaum, Paul R., and Donald B. Rubin. The Central Role of the Propensity Score in
  Observational Studies for Causal Effects. *Biometrika* 70.1 (1983): 41–55.
- Sar, W. L., Watanabe, M., Nagatani, I., & Shimada, M. (2018). Early-Stage Deforestation
  Detection in the Tropics, 1–7.
- 672 Schleicher, J., Eklund, J., D Barnes, M., Geldmann, J., Oldekop, J. A., & Jones, J. P. (2019).
- 673 Statistical matching for conservation science. Conservation biology: the journal of the Society
- 674 for Conservation Biology, 34 (3), 538-549. <u>https://doi.org/10.1111/cobi.13448</u>
- 675 Sievernich, J., Giljum, S., Luckeneder, S. 2021. Mining-induced deforestation in Indonesia:
- Identifying spatial patterns and synergies with other economic activities. FINEPRINT BriefNo. 13. Vienna University of Economics and Business (WU). Austria.
- 678 Siqueira-Gay, J., Sonter, L.J., Sánchez, L.E. (2020) Exploring potential impacts of mining on
- 679 forest loss and fragmentation within a biodiverse region of Brazil's northeastern Amazon.
- 680 Resources Policy, Volume 67, 101662, https://doi.org/10.1016/j.resourpol.2020.101662.
- Sonter, L., Herrera, D., Barrett, D., Galford, G., Moran, C., & Soares-Filho, B. (2017). Mining
  drives extensive deforestation in the Brazilian Amazon. *Nat Commun*, 8(1), 1013.
  <u>https://doi.org/10.1038/s41467-017-00557-w</u>
- 684 Sonter, L. J., Ali, S. H., & Watson, J. E. M. (2018). Mining and biodiversity : key issues and
- research needs in conservation science. Proceedings of the Royal Society B, 285 20181926.
   http://dx.doi.org/10.1098/rspb.2018.1926
- Stuart E.A. 2010. Matching methods for causal inference: a review and a look forward.
  Statistical Science 25:1–21.

689 Stuart, E. A., Lee, B. K., & Leacy, F. P. (2013). *Prognostic score-based balance measures can* 

be a useful diagnostic for propensity score methods in comparative effectiveness research.
Journal of clinical epidemiology, 66(8 Suppl), S84–S90.e1.
<u>https://doi.org/10.1016/j.jclinepi.2013.01.013</u>).

Swenson, J. J., Carter, C. E., Domec, J. C., & Delgado, C. I. (2011). Gold mining in the
Peruvian Amazon: Global prices, deforestation, and mercury imports. PLoS One, 6(4), e18875.
<u>https://doi.org/10.1371/journal.pone.0018875</u>

Tegegne, Y. T., Lindner, M., Fobissie, K., & Kanninen, M. (2016). Evolution of drivers of 696 deforestation and forest degradation in the Congo Basin forests: Exploring possible policy 697 to address forest loss. Land Use Policy. 312-324. 698 options 51. https://doi.org/10.1016/j.landusepol.2015.11.024 699

700 Thompson, I. D., Guariguata, M. R., Okabe, K., Bahamondez, C., Nasi, R., Heymell, V., &

Sabogal, C. (2013). An operational framework for defining and monitoring forest degradation. Eaclagy and Society 18(2) https://doi.org/10.5751/ac.05442.180220

- Figure 702
   Ecology and Society, 18(2). <a href="https://doi.org/10.5751/es-05443-180220">https://doi.org/10.5751/es-05443-180220</a>
- Torres, A. et al. "Unearthing the global impact of mining construction minerals on biodiversity" <u>https://doi.org/10.1101/2022.03.23.485272</u> (2022). preprint, Ecology.
- Turubanova, S., Potapov, P. V, Tyukavina, A., & Hansen, M. C. (2018). Environmental
  Research Letters Ongoing primary forest loss in Brazil, Democratic Republic of Congo, and
  Indonesia. <u>https://doi.org/10.1088/1748-9326/aacd1c</u>
- Weiss, A. (2001)Topographic Positioning and Landforms Analysis. Poster presentation
   ESRI User conference, San Diego, CA.
- 710

711 Weng Lingfei, Dominique Endamana, Agni Klintuni Boedhihartono, Patrice Levang, Chris R.

712 Margules, Jeffrey A. Sayer (2014), Asian investment at artisanal and small-scale mines in rural

Cameroon, The Extractive Industries and Society, Pages 64-72, ISSN 2214-790X,
https://doi.org/10.1016/j.exis.2014.07.011.

- Weng, L., Boedhihartono, A. K., Dirks, P. H. G. M., Dixon, J., Lubis, M. I., & Sayer, J. A.
  (2013). Mineral industries, growth corridors and agricultural development in Africa. Global
- Food Security, 2(3), 195–202. <u>https://doi.org/10.1016/j.gfs.2013.07.003</u>
- Wood, S. (2021). Mgcv: Mixed gam computation vehicle with automatic smoothnessestimation. version 1.8-34
- World Bank Group. 2016. *Commodity Markets Outlook*, April. World Bank, Washington, DC.
  Retrieved from; <u>https://www.worldbank.org/en/research/commodity-markets</u>
- World Bank, World Development Indicators. (2021). Sub-Saharan Africa population.
   Retrieved from; <u>https://data.worldbank.org/indicator/SP.POP.TOTL?locations=ZG</u>
- WWF. (2021). Deforestation Fronts Drivers and Responses in a Changing World. WorldWildlife Fund for Nature INTERNATIONAL Switzerland

Yontcheva, Boriana, Giorgia Albertin, Marc Gerard, Vimal Thakoor, Sebastian Beer, Dan
Devlin, Hilary Devine, and Irena Suljagic. 2021. "Tax Avoidance in Sub-Saharan Africa's

| 728<br>729        | Mining Sector." <i>Departmental Paper</i> 2021. doi: 10.5089/9781513594361.087.<br>https://www.researchgate.net/publication/367393578                                                                                                                                         |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 730<br>731<br>732 | Zhang, Z., Kim, H. J., Lonjon, G., & Zhu, Y. (2019). written on behalf of AME Big-Data Clinical Trial Collaborative Group. Balance diagnostics after propensity score matching. Annals of Translational Medicine, 7(1), 16–16. <u>https://doi.org/10.21037/atm.2018.12.10</u> |
| 733               |                                                                                                                                                                                                                                                                               |
| 734               |                                                                                                                                                                                                                                                                               |
| 735               |                                                                                                                                                                                                                                                                               |
| 736               |                                                                                                                                                                                                                                                                               |
| 737               |                                                                                                                                                                                                                                                                               |
| 738               |                                                                                                                                                                                                                                                                               |
| 739               |                                                                                                                                                                                                                                                                               |
| 740               |                                                                                                                                                                                                                                                                               |
| 741               |                                                                                                                                                                                                                                                                               |
| 742               |                                                                                                                                                                                                                                                                               |
| 743               |                                                                                                                                                                                                                                                                               |
| 744               |                                                                                                                                                                                                                                                                               |
| 745               |                                                                                                                                                                                                                                                                               |
| 746               |                                                                                                                                                                                                                                                                               |
| 747               |                                                                                                                                                                                                                                                                               |
| 748               |                                                                                                                                                                                                                                                                               |
| 749               |                                                                                                                                                                                                                                                                               |
| 750               |                                                                                                                                                                                                                                                                               |
| 751               |                                                                                                                                                                                                                                                                               |
| 752               |                                                                                                                                                                                                                                                                               |
| 753               |                                                                                                                                                                                                                                                                               |
| 755               |                                                                                                                                                                                                                                                                               |
| 756               |                                                                                                                                                                                                                                                                               |
| 757               |                                                                                                                                                                                                                                                                               |
| 758               |                                                                                                                                                                                                                                                                               |
|                   |                                                                                                                                                                                                                                                                               |

## 759 <u>Table S1.</u>

- A summary of useful variables used in matching studies of deforestation and their relevance to
- 761 this study.
- 762

| Category        | Variables             | Impact on                   | Relevance to this study           |
|-----------------|-----------------------|-----------------------------|-----------------------------------|
|                 |                       | deforestation               |                                   |
|                 | Elevation             | Lowland is more suitable    | Derived TWI and TPI are two       |
|                 |                       | for Agriculture (Oakleaf et | factors that would determine the  |
| Geographic      |                       | al., 2019: Tegegne et al.,  | suitability of the area to        |
| Characteristics |                       | 2016; Laurance et al.,      | agriculture when mining was       |
|                 |                       | 2014).                      | established.                      |
|                 | Slope                 | Determinent for land        | The steeper the slope the lass    |
|                 | Slope                 | Determinant for fand        | suitable for eren production      |
|                 |                       | bousing and infrastructure, | similar to TDI                    |
|                 |                       | development (Bayaghar       | similar to TFI,                   |
|                 |                       | 2015: Ahmadi 2018:          |                                   |
|                 |                       | Kavet et al. 2021)          |                                   |
|                 |                       | Ruyet et ul., 2021).        |                                   |
|                 | Soil type             | Soil quality determines its | Not of much significance to this  |
|                 |                       | suitability for crop        | study.                            |
|                 |                       | production. This leads to   |                                   |
|                 |                       | forest loss. (Witcover et   |                                   |
|                 |                       | al., 2006; Ahmadi, 2018;    |                                   |
|                 |                       | Kayet et al., 2021).        |                                   |
|                 | Distance to roads     | Forests nearer to roads are | An important variable but was     |
|                 |                       | more susceptible to         | not used in this study due to the |
|                 |                       | deforestation (Bavaghar,    | scale of the study region and the |
|                 |                       | 2015; Laurance et al.,      | accuracy of data.                 |
|                 |                       | 2009; L.S. Ng et al., 2020; |                                   |
|                 |                       | Rosa et al., 2013)          |                                   |
|                 | Distance to waterways | Forests nearer to           | Not of much significance to this  |
|                 |                       | waterways are susceptible   | study                             |
|                 |                       | to degradation and          |                                   |
|                 |                       | deforestation (Aleman,      |                                   |
|                 |                       | Jarzyna, & Staver, 2018).   |                                   |
|                 | Forest type           | Primary and secondary       | An important variable for         |
|                 |                       | forest may have different   | comparing rates of forest loss in |

| Land Use and Land |                    | rates of distortion due to    | various locations, VCF data was    |
|-------------------|--------------------|-------------------------------|------------------------------------|
| Cover             |                    | their varied biodiversity     | used.                              |
|                   |                    | richness (J. Barlow et al.,   |                                    |
|                   |                    | 2012; Gardner et al., 2009;   |                                    |
|                   |                    | WWF, 2021).                   |                                    |
|                   | A                  | Equation douitable for        | As a loss driver of defense totion |
|                   | Agriculture        | Forestland suitable for       | As a key driver of deforestation,  |
|                   |                    | agriculture is most likely    | it is a significant variable       |
|                   |                    | to be converted (Müller et    |                                    |
|                   |                    | al., 2012; Laurance et al.,   |                                    |
|                   |                    | 2014).                        |                                    |
|                   | Urbanization       | Settlements often expand      | Settlements are most likely to     |
|                   |                    | into forests (Barbier, 2013;  | grow towards the forestlands,      |
|                   |                    | Chakravarty et al., 2011;     | making it an important variable    |
|                   |                    | Jianhua & Jr, 2014)           |                                    |
|                   |                    |                               |                                    |
|                   | Population density | The growth in population      | A key variable used in this        |
| Socioeconomic     |                    | may lead to expansion of      | study, an increase in population   |
| Factors           |                    | settlements into the forests  | density would lead to the          |
|                   |                    | (Potapov et al., 2012;        | expansion of settlements,          |
|                   |                    | Ferretti-Gallon & Busch,      | agriculture, and infrastructure.   |
|                   |                    | 2014; Morales-Hidalgo et      |                                    |
|                   |                    | al., 2015).                   |                                    |
|                   |                    |                               |                                    |
|                   | Poverty levels     | The income of people          | An important variable for          |
|                   |                    | around the forest may         | comparing how the inhabitants      |
|                   |                    | decide the fate of the forest | may destroy the forest to earn a   |
|                   |                    | as most may resolve to        | living.                            |
|                   |                    | cutting down the trees for    |                                    |
|                   |                    | economic gains (den           |                                    |
|                   |                    | Braber et al.,2018;           |                                    |
|                   |                    | Ferretti-Gallon & Busch,      |                                    |
|                   |                    | 2014; Lamb et al.,2005;       |                                    |
|                   |                    | Witcover et al., 2006).       |                                    |
|                   |                    |                               |                                    |

|               | Access to amenities and | Accessibility to alternative  | An important variable for         |
|---------------|-------------------------|-------------------------------|-----------------------------------|
|               | infrastructure          | sources of energy may         | comparing the standards of        |
|               |                         | save the forest from being    | living among settlements, and     |
|               |                         | used as a source of           | how it contributes to             |
|               |                         | fuelwood and charcoal for     | deforestation.                    |
|               |                         | domestic uses. (Hosonuma      |                                   |
|               |                         | et al., 2012; Sloan &         |                                   |
|               |                         | Sayer, 2015; Thompson et      |                                   |
|               |                         | al., 2013).                   |                                   |
|               | Climate                 | Continuous change in          | An important variable for         |
|               |                         | climate may lead to aridity   | comparing rates of forest loss in |
|               |                         | and subsequent forest loss    | different years                   |
|               |                         | (Laurance, 1998; Creese &     |                                   |
|               |                         | Pokam, 2016).                 |                                   |
|               |                         |                               |                                   |
|               | Rainfall                | Rainfall patterns may         | An important variable for         |
| Environmental |                         | cause drought, prolonged      | comparing rates of forest loss in |
| Factors       |                         | droughts can stress trees     | different years and at various    |
| i uctors      |                         | and increase their            | locations                         |
|               |                         | susceptibility to diseases    |                                   |
|               |                         | and insect infestations may   |                                   |
|               |                         | lead to degradation (Kayet    |                                   |
|               |                         | et al., 2021; Nepstad et al., |                                   |
|               |                         | 2008; Müller et al., 2012).   |                                   |
|               | Temperature             | Higher temperatures can       | An important variable for         |
|               |                         | increase the risk of forest   | comparing rates of forest loss in |
|               |                         | fires. (Kayet et al., 2021;   | different years and at various    |
|               |                         | Nepstad et al., 2008)         | locations                         |
|               |                         |                               |                                   |
|               |                         |                               |                                   |
|               |                         |                               |                                   |
|               |                         |                               |                                   |
|               |                         |                               |                                   |
|               | Natural disasters       | Earthquakes and landslides    | Not a relevant variable in this   |
|               |                         | can cause distortion in the   | study                             |
|               |                         | forests (Sar et al., 2018).   |                                   |
|               |                         |                               |                                   |

| Political and         | Land tenure         | Forest on lands with                                | Not a relevant variable in this |
|-----------------------|---------------------|-----------------------------------------------------|---------------------------------|
| Institutional Factors |                     | poorly defined tenure                               | study                           |
|                       |                     | rights may lead to                                  |                                 |
|                       |                     | deforestation (Laestadius                           |                                 |
|                       |                     | et al., 2015; Ferretti-                             |                                 |
|                       |                     | Gallon & Busch, 2014;                               |                                 |
|                       |                     | Forrest et al., 2015;                               |                                 |
|                       |                     | Tegegne et al., 2016; Geist                         |                                 |
|                       |                     | & Lambin, 2002)                                     |                                 |
|                       |                     | XX7 1                                               | A                               |
|                       | Government policies | Weak government policies                            | An important variable in        |
|                       |                     | will always lead to illegal measuring how certain p |                                 |
|                       |                     | activities which causes                             | can have impact over forests    |
|                       |                     | deforestation (Newman et                            |                                 |
|                       |                     | al., 2018; Hund et al.,                             |                                 |
|                       |                     | 2017)                                               |                                 |
|                       | Protected areas     | Forests within protected                            | An important variable in        |
|                       |                     | areas are less likely to be                         | measuring and comparing the     |
|                       |                     |                                                     | incasuring and comparing the    |
|                       |                     | depleted. (Forrest et al.,                          | impact of policies and controls |
|                       |                     | 2015; Mascia et al., 2014;                          | over forest                     |
|                       |                     | Andam et al., 2008)                                 |                                 |
|                       |                     |                                                     |                                 |

## **Table S2.**

```
766 Database of Mines created post-2000 in sub-Saharan Africa (Ahmed et al.2021)
```

| S.No. | MINE_NAME           | YEAR_ESTD | LONGITUDE | LATITUDE | COUNTRY             |
|-------|---------------------|-----------|-----------|----------|---------------------|
| 1     | Afema mine          | 2011      | -2.9166   | 5.49213  | Ivory Coast         |
| 2     | Agbaou              | 2012      | -5.23197  | 6.10372  | Ivory Coast         |
| 3     | Ahafo (Subika) Mine | 2003      | -2.36707  | 7.03104  | Ghana               |
| 4     | Ahafo North Mine    | 2017      | -2.28291  | 7.18676  | Ghana               |
| 5     | Akyem Mines         | 2013      | -1.02656  | 6.34342  | Ghana               |
| 6     | Alto Cuilo Mine     | 2008      | 19.3782   | -9.93112 | Angola              |
| 7     | Bakoudou-Magnima    | 2011      | 13.1761   | -1.94442 | Gabon               |
| 8     | Bakouma             | 2011      | 22.8028   | 5.74765  | Central Africa Rep. |
| 9     | Balama Mine         | 2012      | 38.6597   | -13.3099 | Mozambique          |
| 10    | Baluba Mine         | 2009      | 28.3366   | -13.0483 | Zambia              |
| 11    | Bambari Passendro   | 2016      | 20.7278   | 6.03967  | Central Africa Rep. |
| 12    | Banfora Mine        | 2015      | -5.37326  | 10.3825  | Burkina_Faso        |

| 13 | Baomahun Mine          | 2013 | -11.6587  | 8.41178  | Sierra_Leone        |
|----|------------------------|------|-----------|----------|---------------------|
| 14 | Baoule Kimberlite Mine | 2000 | -9.27805  | 9.14896  | Guinea              |
| 15 | Batouri Mine           | 2009 | 14.4143   | 4.4557   | Cameroon            |
| 16 | Bea Mountain           | 2011 | -11.0926  | 7.13631  | Liberia             |
| 17 | Bel_Air                | 2015 | -14.3864  | 10.321   | Guinea              |
| 18 | Belinga Mine           | 2006 | 13.2985   | 1.21134  | Gabon               |
| 19 | Benga Coal Mine        | 2012 | 33.6701   | -16.1643 | Mozambique          |
| 20 | Benso Gold Mine        | 2008 | -1.89424  | 5.19746  | Ghana               |
| 21 | Bibemi Mine            | 2013 | 14.0464   | 9.50464  | Cameroon            |
| 22 | Big Hill STL           | 2000 | 27.4721   | -11.6823 | Congo DRC           |
| 23 | Bimbo Cement Plant     | 2010 | 18.5117   | 4.30974  | Central Africa Rep. |
| 24 | Bombore Mine           | 2016 | -0.900163 | 12.22    | Burkina_Faso        |
| 25 | Bondoukou Mine         | 2008 | -2.96816  | 8.06404  | Ivory Coast         |
| 26 | Bonikro Mine           | 2008 | -5.36823  | 6.22467  | Ivory Coast         |
| 27 | Boto mine              | 2015 | -11.3747  | 12.4668  | Senegal             |
| 28 | Bouroubourou           | 2011 | -11.9292  | 13.2594  | Senegal             |
| 29 | Bulyanhulu Gold Mine   | 2001 | 32.4855   | -3.22827 | Tanzania            |
| 30 | Buzwagi Gold Mine      | 2001 | 32.6717   | -3.86167 | Tanzania            |
| 31 | Calonda Mine           | 2013 | 20.5033   | -8.37413 | Angola              |
| 32 | Camafuca Mine          | 2014 | 20.5548   | -8.58777 | Angola              |
| 33 | Cassanguidi Mine       | 2009 | 21.3117   | -7.49738 | Angola              |
| 34 | Chancho Cement Plant   | 2008 | 38.724    | 9.30997  | Ethiopia            |
| 35 | Chirano Mine           | 2005 | -2.37349  | 6.30599  | Ghana               |
| 36 | Chiri Mine             | 2008 | 20.2894   | -9.39374 | Angola              |
| 37 | Chirodzi Coal Mine     | 2011 | 33.021    | -15.9092 | Mozambique          |
| 38 | Dala Mine              | 2017 | 20.4108   | -9.67211 | Angola              |
| 39 | Dalafin                | 2015 | -11.6366  | 12.8693  | Senegal             |
| 40 | Damang mine            | 2011 | -1.8422   | 5.51245  | Ghana               |
| 41 | Dangote - Ndola Cement | 2015 | 28.7779   | -13.0251 | Zambia              |
| 42 | Dejen Cement Plant     | 2008 | 38.1415   | 10.1835  | Ethiopia            |
| 43 | Deziwa Mines           | 2016 | 25.9339   | -10.9734 | Congo DRC           |
| 44 | Dian_Dian              | 2016 | -13.9938  | 11.1008  | Guinea              |
| 45 | Dikulushi Mine         | 2006 | 28.2706   | -8.8926  | Congo DRC           |
| 46 | Dikuluwe mine          | 2007 | 25.3323   | -10.7675 | Congo DRC           |
| 47 | Dire Dawa New Cement   | 2012 | 41.847    | 9.57343  | Ethiopia            |
| 48 | Disele Mine            | 2009 | 26.2536   | -10.7532 | Congo DRC           |
| 49 | Droujba Diamond Mine   | 2011 | -9.05295  | 8.57629  | Guinea              |
| 50 | Dugbe Mine             | 2012 | -8.50071  | 5.09957  | Liberia             |
| 51 | Dukem Cement Plant     | 2008 | 38.9199   | 8.77198  | Ethiopia            |
| 52 | Edikan Ayanfuri MIne   | 2011 | -1.93206  | 5.95918  | Ghana               |
| 53 | Emmanuel Manganese     | 2010 | 28.5456   | -14.4532 | Zambia              |
| 54 | Enterprise Mine        | 2013 | 25.2372   | -12.2409 | Zambia              |
| 55 | Epanko Mine            | 2013 | 36.6788   | -8.70356 | Tanzania            |
| 56 | Esaase Mine            | 2017 | -1.79335  | 6.56804  | Ghana               |

| 57  | Etoile (Nzako, Bangana) | 2018 | 22.7332  | 4.65604  | Central Africa Rep. |
|-----|-------------------------|------|----------|----------|---------------------|
| 58  | Farim Mine              | 2017 | -15.244  | 12.465   | Guinea-Bissau       |
| 59  | Fekola mine             | 2015 | -11.3714 | 12.5343  | Mali                |
| 60  | Fitwaola Mine           | 2005 | 27.883   | -12.4065 | Zambia              |
| 61  | Forecariah Mine         | 2012 | -12.7031 | 9.42866  | Guinea              |
| 62  | Fria mine               | 2002 | -13.5882 | 10.4363  | Guinea              |
| 63  | Frontier Mine           | 2007 | 28.4686  | -12.7239 | Congo DRC           |
| 64  | Fucauma Mine            | 2005 | 21.2002  | -7.36975 | Angola              |
| 65  | Gamina Mine             | 2011 | -6.67605 | 6.96892  | Ivory Coast         |
| 66  | Gangama Mine            | 2015 | -12.3544 | 7.73077  | Sierra Leone        |
| 67  | Gbaran Gas Plant        | 2010 | 6.29771  | 5.01764  | Nigeria             |
| 68  | Geita Gold Mine         | 2000 | 32.1785  | -2.87659 | Tanzania            |
| 69  | Gonka Mine              | 2016 | -8.80884 | 11.1734  | Mali                |
| 70  | Gora Mine               | 2014 | -11.9328 | 13.3018  | Senegal             |
| 71  | Gounkoto Mine           | 2011 | -11.1963 | 12.7311  | Mali                |
| 72  | Gourma Mine             | 2014 | 0.940687 | 12.5564  | Burkina Faso        |
| 73  | Grumesa Mine            | 2017 | -1.58079 | 5.94567  | Ghana               |
| 74  | Hire Mine               | 2013 | -5.26794 | 6.18812  | Ivory Coast         |
| 75  | Homase Mine             | 2001 | -1.03579 | 6.16425  | Ghana               |
| 76  | Hounde Mine             | 2016 | -3.49338 | 11.4736  | Burkina Faso        |
| 77  | Hwini-Butre Mine        | 2007 | -1.88273 | 4.97066  | Ghana               |
| 78  | Ibese Cement            | 2012 | 3.0377   | 6.99576  | Nigeria             |
| 79  | ITY_Bakatouo Mine       | 2008 | -8.1116  | 6.87415  | Ivory Coast         |
| 80  | Judeira Mine            | 2016 | 27.0646  | -11.2238 | Congo DRC           |
| 81  | Kabanga Mine            | 2013 | 30.5614  | -2.86545 | Tanzania            |
| 82  | Kabolela                | 2009 | 26.4792  | -10.8452 | Congo DRC           |
| 83  | Kakanda                 | 2009 | 26.4022  | -10.7358 | Congo DRC           |
| 84  | Kalana Main mine        | 2016 | -8.20014 | 10.7913  | Mali                |
| 85  | Kalia Mine              | 2016 | -11.0239 | 10.136   | Guinea              |
| 86  | Kaloleni Cement Plant   | 2007 | 39.6342  | -3.84562 | Kenya               |
| 87  | Kalukundi Mine          | 2006 | 25.8896  | -10.6612 | Congo DRC           |
| 88  | Kalumbila Mine          | 2012 | 25.3051  | -12.1886 | Zambia              |
| 89  | Kalus Mine              | 2003 | 27.2685  | -11.5968 | Congo DRC           |
| 90  | Kamatanda Mine          | 2014 | 26.7477  | -10.857  | Congo DRC           |
| 91  | Kamoa Mine              | 2014 | 25.0945  | -10.6278 | Congo DRC           |
| 92  | Kango Nort mine         | 2014 | 10.185   | 0.52492  | Gabon               |
| 93  | Kansanshi Mine          | 2004 | 26.4302  | -12.1045 | Zambia              |
| 94  | Kansuki Mine            | 2011 | 25.9217  | -10.7991 | Congo DRC           |
| 95  | Kapulo Mine             | 2016 | 29.2308  | -8.29836 | Congo DRC           |
| 96  | Kariba Amethyst Mine    | 2009 | 26.8868  | -17.7014 | Zambia              |
| 97  | Kasala Mine             | 2017 | 27.4552  | -11.163  | Congo DRC           |
| 98  | Kayelekera Uranium Mine | 2009 | 33.7076  | -10.0037 | Malawi              |
| 99  | Kibali Mine             | 2013 | 29.6028  | 3.12273  | Congo DRC           |
| 100 | Kileba Mine             | 2014 | 27.1256  | -11.2844 | Congo DRC           |

| 101  | Kiniero                                | 2002 | -9.80408 | 10.4258  | Guinea              |
|------|----------------------------------------|------|----------|----------|---------------------|
| 102  | Kinsenda Mine                          | 2002 | 27.9676  | -12.2557 | Congo DRC           |
| 103  | Kinsevere                              | 2002 | 27.5691  | -11.3636 | Congo DRC           |
| 104  | Kipoi mine                             | 2014 | 27.1019  | -11.2504 | Congo DRC           |
| 105  | Kitotolo mine                          | 2016 | 27.3945  | -7.32194 | Congo DRC           |
| 106  | Koba Mine                              | 2014 | -13.4153 | 11.3017  | Guinea              |
| 107  | Kobada Mine                            | 2015 | -8.59469 | 11.6283  | Mali                |
| 108  | Kodieran mine                          | 2013 | -8.22432 | 10.8429  | Mali                |
| 109  | Koidu Mines                            | 2003 | -10.9707 | 8.62714  | Sierra_Leone        |
| 110  | Kokoya mine                            | 2006 | -9.27344 | 6.63204  | Liberia             |
| 111  | Koumba Mine                            | 2007 | 11.9797  | -1.81765 | Gabon               |
| 112  | Kouroussa                              | 2009 | -9.85753 | 10.678   | Guinea              |
| 113  | Krakama Oil Field                      | 2017 | 6.89713  | 4.55079  | Nigeria             |
| 114  | Kribi Mine                             | 2009 | 9.8947   | 2.78065  | Cameroon            |
| 115  | Kubi (Betanase) Mine                   | 2016 | -1.72677 | 6.00772  | Ghana               |
| 116  | Kwale Mine                             | 2011 | 39.4453  | -4.3914  | Kenya               |
| 117  | Laurica Diamond Mine                   | 2003 | 21.0472  | -8.28691 | Angola              |
| 118  | Lauzoua Mine                           | 2006 | -5.39034 | 5.32117  | Ivory Coast         |
| 119  | Lero_fayala                            | 2015 | -10.0492 | 11.7444  | Guinea              |
| 120  | Longatshimo River Mine                 | 2007 | 20.9544  | -6.87647 | Congo DRC           |
| 121  | Lonshi Mine                            | 2001 | 28.9403  | -13.1753 | Congo DRC           |
| 122  | Loulo Mine                             | 2009 | -11.4036 | 13.0577  | Mali                |
| 123  | Lubambe Mine                           | 2012 | 27.7634  | -12.3185 | Zambia              |
| 124  | Lufukwe Mine                           | 2012 | 27.9796  | -9.55009 | Congo DRC           |
| 125  | Luilu Mine                             | 2006 | 25.3828  | -10.6921 | Congo DRC           |
| 126  | Luita mine                             | 2009 | 26.313   | -10.7601 | Congo DRC           |
| 127  | Lukenya Cement Plant                   | 2010 | 37.0478  | -1.49694 | Kenya               |
| 128  | Lulo Mine                              | 2003 | 18.8411  | -9.57044 | Angola              |
| 129  | Lumwana Mine                           | 2011 | 25.8627  | -12.2812 | Zambia              |
| 130  | Luo Camatchia Camagico Mine            | 2005 | 20.4664  | -8.96978 | Angola              |
| 131  | Maamba Coal Mine                       | 2009 | 27.1935  | -17.3499 | Zambia              |
| 132  | Magna_Egoli mine                       | 2001 | -11.2119 | 8.69714  | Sierra Leone        |
| 133  | Mambere River Mine                     | 2008 | 15.4268  | 5.12877  | Central Africa Rep. |
| 134  | Mana (Wona Kona, Siou, Fofina)<br>Mine | 2008 | -3 42239 | 11 9919  | Burkina Faso        |
| 135  | Mandala Diamond Mine                   | 2009 | -9 32881 | 8 79955  | Guinea              |
| 136  | Manica Mine                            | 2002 | 32 9351  | -18 9139 | Mozambique          |
| 137  | Mankranho Mine                         | 2017 | -2 13597 | 7 88257  | Ghana               |
| 138  | Marampa Mine                           | 2011 | -12 5079 | 8 68259  | Sierra Leone        |
| 130  | Marropino Tantalum Mine                | 2011 | 37 9052  | -16 5092 | Mozambique          |
| 140  | Mashamba West                          | 2012 | 25 3913  | -10 7465 | Congo DRC           |
| 141  | Massawa                                | 2007 | -12 0365 | 12 9645  | Senegal             |
| 142  | Mbakaou Mine                           | 2018 | 12.0303  | 6 9215   | Cameroon            |
| 1/13 | Mbalam-Nabeba Mine                     | 2014 | 13 0504  | 2 2225   | Cameroon            |
| 143  | Mbeya Cement Plant                     | 2007 | 32 2271  | _8 02076 | Tanzania            |
| 144  | moeya Cement I fain                    | 2007 | 55.2271  | -0.92970 | 1 anzania           |

| 145 | Melka Jebdu Cement Plant  | 2011 | 41.7841   | 9.6061   | Ethiopia     |
|-----|---------------------------|------|-----------|----------|--------------|
| 146 | Melut Oil Field           | 2003 | 32.34     | 10.5571  | South Sudan  |
| 147 | Mfamosing Cement Plant    | 2009 | 8.51492   | 5.06375  | Nigeria      |
| 148 | MIBA Mine                 | 2002 | 20.6641   | -6.17384 | Congo DRC    |
| 149 | Misisi Mine               | 2014 | 28.7265   | -4.76552 | Congo DRC    |
| 150 | Mkushi Copper Mine        | 2010 | 29.1403   | -13.9459 | Zambia       |
| 151 | Moatize Coal Mine         | 2011 | 33.7849   | -16.1662 | Mozambique   |
| 152 | Mobilong Mine             | 2013 | 15.3096   | 3.32925  | Cameroon     |
| 153 | Mofe Creek                | 2017 | -11.1415  | 6.88645  | Liberia      |
| 154 | Mojo Cement Plant         | 2010 | 39.0997   | 8.55033  | Ethiopia     |
| 155 | Moma Titanium Mine        | 2007 | 39.6403   | -16.5299 | Mozambique   |
| 156 | Mombasa Cement Plant      | 2007 | 39.7156   | -4.01041 | Kenya        |
| 157 | Monts de Cristal Mine     | 2007 | 10.281    | 0.449778 | Gabon        |
| 158 | Morila mine               | 2000 | -6.84488  | 11.686   | Mali         |
| 159 | Morrua Tantalum Mine      | 2000 | 37.8699   | -16.2756 | Mozambique   |
| 160 | Mount Nimba               | 2012 | -8.37082  | 7.6613   | Guinea       |
| 161 | Mtwara Cement Plant       | 2015 | 40.0445   | -10.2586 | Tanzania     |
| 162 | Mufulira (Mopani) Mine    | 2000 | 28.2234   | -12.4941 | Zambia       |
| 163 | Mugher Cement Plant       | 2015 | 38.3419   | 9.42459  | Ethiopia     |
| 164 | MUKONDO MINE              | 2009 | 26.3522   | -10.7247 | Congo DRC    |
| 165 | Muliashi Mine             | 2012 | 28.3164   | -13.0644 | Zambia       |
| 166 | Murowa Diamond Mine       | 2004 | 29.9158   | -20.5354 | Zimbabwe     |
| 167 | Musonoi Mine              | 2007 | 25.4417   | -10.7188 | Congo DRC    |
| 168 | Musoshi Mine              | 2009 | 27.7256   | -12.269  | Congo DRC    |
| 169 | Mutanda Mine              | 2010 | 25.8364   | -10.7842 | Congo DRC    |
| 170 | Namoya Mine               | 2012 | 27.5445   | -4.02971 | Congo DRC    |
| 171 | Nampala mine              | 2014 | -6.21831  | 11.1546  | Mali         |
| 172 | Natougou Mine             | 2016 | 1.4057    | 12.004   | Burkina Faso |
| 173 | Nayega Mine               | 2017 | 0.433602  | 10.7437  | Togo         |
| 174 | New Liberty Mine          | 2015 | -11.136   | 7.00473  | Liberia      |
| 175 | Ngovayang Mine            | 2010 | 10.7294   | 3.49384  | Cameroon     |
| 176 | Nhamucuarara Chua         | 2008 | 32.7905   | -18.904  | Mozambique   |
| 177 | Nkamouna Mine             | 2014 | 13.839    | 3.28225  | Cameroon     |
| 178 | North Mara Mine           | 2002 | 34.5031   | -1.47516 | Tanzania     |
| 179 | Ntotoroso Mine            | 2016 | -0.394551 | 5.78073  | Ghana        |
| 180 | Nzema Mine                | 2011 | -2.24558  | 5.00675  | Ghana        |
| 181 | Obajana Cement            | 2007 | 6.43598   | 7.99519  | Nigeria      |
| 182 | Obu/ Okpella Cement Plant | 2017 | 6.40097   | 7.35631  | Nigeria      |
| 183 | OJVG Sabodala             | 2010 | -12.0927  | 13.1298  | Senegal      |
| 184 | Owere Gold Mine           | 2011 | -1.16905  | 6.6849   | Ghana        |
| 185 | Pagala Mine               | 2000 | 0.851337  | 8.21863  | Тодо         |
| 186 | Palouge Oil Field         | 2003 | 32.4813   | 10.4429  | South Sudan  |
| 187 | Pampe Mine                | 2006 | -2.12914  | 5.64812  | Ghana        |
| 188 | Pepel Mines               | 2001 | -13.0635  | 8.58657  | Sierra Leone |

| 189 | Port_Loko Mine           | 2016 | -12.8152  | 8.78     | Sierra Leone        |
|-----|--------------------------|------|-----------|----------|---------------------|
| 190 | Putu Mine                | 2014 | -8.23234  | 5.71445  | Liberia             |
| 191 | Rwinkwavu Mine           | 2008 | 30.594    | -1.97518 | Rwanda              |
| 192 | Sabodala Mine            | 2008 | -12.1217  | 13.1977  | Senegal             |
| 193 | Salamanga Cement Plant ( | 2012 | 32.6529   | -26.3946 | Mozambique          |
| 194 | Scantogo Mines           | 2014 | 1.54785   | 6.5948   | Togo                |
| 195 | Simandou                 | 2013 | -8.88697  | 8.49024  | Guinea              |
| 196 | Siribaya Mine            | 2016 | -11.2163  | 12.4011  | Mali                |
| 197 | Sissingue Mine           | 2017 | -6.19895  | 10.4321  | Ivory Coast         |
| 198 | Somiluana Mine           | 2006 | 21.1675   | -8.20428 | Angola              |
| 199 | Southern Togo            | 2015 | 1.52172   | 6.47679  | Togo                |
| 200 | Syama Mine               | 2009 | -6.06088  | 10.8022  | Mali                |
| 201 | Synclinorium Mine        | 2018 | 28.2055   | -12.8451 | Zambia              |
| 202 | Tabakoto Mine            | 2006 | -11.19    | 12.9459  | Mali                |
| 203 | Tazua Mine               | 2009 | 18.1349   | -9.27058 | Angola              |
| 204 | Tchibanga Mine           | 2015 | 11.3876   | -3.39495 | Gabon               |
| 205 | Tchiuzo                  | 2014 | 20.3398   | -9.20777 | Angola              |
| 206 | Teberebie Mine           | 2000 | -2.03792  | 5.26561  | Ghana               |
| 207 | Telimele Mine            | 2017 | -13.271   | 10.8207  | Guinea              |
| 208 | Tenke-Fungurume          | 2009 | 26.1787   | -10.5816 | Congo DRC           |
| 209 | Thar Jath Oil Field      | 2002 | 30.1328   | 8.72051  | South Sudan         |
| 210 | Tongo Mine               | 2006 | -10.9936  | 8.24782  | Sierra_Leone        |
| 211 | Tongon Mine              | 2010 | -5.70736  | 9.93293  | Ivory Coast         |
| 212 | Tonguma Mine             | 2015 | -11.0544  | 8.22963  | Sierra Leone        |
| 213 | Tonkolili mine           | 2013 | -11.6816  | 8.98851  | Sierra_Leone        |
| 214 | Topa Mine                | 2016 | 20.6462   | 6.04471  | Central Africa Rep. |
| 215 | Tshikapa River Mine      | 2015 | 20.7567   | -6.48528 | Congo DRC           |
| 216 | Tulawaka Gold Mine       | 2005 | 31.5411   | -3.20994 | Tanzania            |
| 217 | Twangiza Mine            | 2011 | 28.7418   | -2.87097 | Congo DRC           |
| 218 | Unity Oil Field          | 2002 | 29.6776   | 9.46028  | South Sudan         |
| 219 | Yanfolila mine Gonka     | 2016 | -8.40587  | 11.2118  | Mali                |
| 220 | Yaramoko                 | 2014 | -3.27469  | 11.7553  | Burkina Faso        |
| 221 | Yatela Mine              | 2001 | -11.75    | 14.0879  | Mali                |
| 222 | Yekepa Mine              | 2012 | -8.50878  | 7.5239   | Liberia             |
| 223 | Youga Mine               | 2008 | -0.465288 | 11.1012  | Burkina Faso        |
| 224 | Zambezi - Ndola Cement   | 2009 | 28.7187   | -12.9725 | Zambia              |
| 225 | Zogota                   | 2012 | -9.09678  | 7,98129  | Guinea              |

#### Figure S1.

Love-plots from standardized mean difference output for countries used in the Nearest neighbor matching by country.

