
This is a repository copy of Can test generation and program repair inform automated 
assessment of programming projects?.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/223625/

Version: Accepted Version

Proceedings Paper:
Gu, R., Rojas, J.M. and Shin, D. orcid.org/0000-0002-0840-6449 (2025) Can test 
generation and program repair inform automated assessment of programming projects? 
In: 2025 IEEE Conference on Software Testing, Verification and Validation (ICST). 18th 
IEEE International Conference on Software Testing, Verification and Validation (ICST) 
2025, 31 Mar - 04 Apr 2025, Naples, Italy. Institute of Electrical and Electronics Engineers 
(IEEE) , pp. 699-710. ISBN 979-8-3315-0815-9

https://doi.org/10.1109/ICST62969.2025.10988955

© 2025 The Author(s). The Authors. Except as otherwise noted, this author-accepted 
version of a paper published in 2025 IEEE Conference on Software Testing, Verification 
and Validation (ICST) is made available via the University of Sheffield Research 
Publications and Copyright Policy under the terms of the Creative Commons Attribution 4.0
International License (CC-BY 4.0), which permits unrestricted use, distribution and 
reproduction in any medium, provided the original work is properly cited. To view a copy of 
this licence, visit http://creativecommons.org/licenses/by/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1109/ICST62969.2025.10988955
https://eprints.whiterose.ac.uk/id/eprint/223625/
https://eprints.whiterose.ac.uk/


Can Test Generation and Program Repair Inform

Automated Assessment of Programming Projects?

Ruizhen Gu

School of Computer Science

The University of Sheffield

Sheffield, UK

rgu10@sheffield.ac.uk

JosÂe Miguel Rojas

School of Computer Science

The University of Sheffield

Sheffield, UK

j.rojas@sheffield.ac.uk

Donghwan Shin

School of Computer Science

The University of Sheffield

Sheffield, UK

d.shin@sheffield.ac.uk

AbstractÐComputer Science educators assessing student pro-
gramming assignments are typically responsible for two challeng-
ing tasks: grading and providing feedback. Producing grades that
are fair and feedback that is useful to students is a goal common
to most educators. In this context, automated test generation and
program repair offer promising solutions for detecting bugs and
suggesting corrections in students’ code which could be leveraged
to inform grading and feedback generation. Previous research on
the applicability of these techniques to simple programming tasks
(e.g., single-method algorithms) has shown promising results,
but their effectiveness for more complex programming tasks
remains unexplored. To fill this gap, this paper investigates
the feasibility of applying existing test generation and program
repair tools for assessing complex programming assignment
projects. In a case study using a real-world Java programming
assignment project with 296 incorrect student submissions, we
found that generated tests were insufficient in detecting bugs in
over 50% of cases, while full repairs could only be automatically
generated for only 2.1% of submissions. Our findings indicate
significant limitations in current tools for detecting bugs and
repairing student submissions, highlighting the need for more
advanced techniques to support automated assessment of complex
assignment projects.

Index TermsÐAutomated Assessment, Test Generation, Pro-
gram Repair

I. INTRODUCTION

Learning computer programming is challenging, and effec-

tive assessment in higher education is key for helping students

track their progress and learn from mistakes. In modern Com-

puter Science education, assessing programming assignments

usually involves grading and providing feedback, both critical

for students to understand their progress, identify errors, and

enhance their skills [1]. Traditionally, educators manually

or semi-automatically evaluate each student submission to

determine correctness and provide personalized feedback [2].

However, this is a time-intensive task, particularly with large

classes with hundreds of students and tight academic sched-

ules. To alleviate manual efforts, educators seek automation for

various assessment tasks, e.g., automated grading [3], feedback

generation [4], and synthesis of code explanations [5].

Test-based grading is one of the primary approaches for

evaluating student submissions in a (semi-)automated way [1].

For open access, the authors have applied a Creative Commons Attribution
(CC BY) license to this Author Accepted Manuscript version.

Typically, as part of the assignment creation process or prior

to the submission deadline, educators manually craft a test

suite that embodies the assignment requirements to assess the

correctness of student submissions. These tests aim to capture

key functionalities that students are expected to implement

in their submissions. The outcome of executing this test suite

against each student submission can then be mapped to grades

given to students (e.g., top grades if all tests pass) and test

failure messages can be used as feedback.

While popular, the above test-based grading approach has

shortcomings, not least because manually creating a high-

quality test suite can be very costly for educators. Tests

with low granularity (i.e., those that only assess broad func-

tionalities) may fail to detect faults in student submissions,

potentially leading to incorrect judgments [3]. On the other

hand, writing tests with high granularity (i.e., covering all

possible test scenarios and corner cases) requires a lot of effort

and time not always available to educators.

To address the challenges of manual test creation, automated

test generation techniques have been proposed as a means

to reduce manual effort and increase test quality [6]. The

expectation is that test generation can enhance test granularity,

leading in turn to more accurate fault detection and fairer,

more precise evaluation of student submissions. Additionally,

useful feedback could be derived from the generated tests by

reporting the failing tests and error messages to students. Con-

sequently, automated test generation offers a valuable proxy

for both grading and feedback in programming assignments.

But even when high-quality (incl. automatically generated)

tests are available, the feedback provided by failing tests is

often insufficient for students, particularly novice program-

mers, who struggle to map failing test executions back to

specific errors in their code [4]. One approach to mitigate

this involves leveraging automated program repair (APR)

techniques. APR has seen rapid development in recent years,

showing applicability in industrial settings to repair real-world

faults [7] and also in educational contexts, offering more

meaningful feedback to students for introductory programming

assignments [8]. APR takes a buggy program with tests,

including failing ones, as input and attempts to change the

original program so that all the tests pass. In education,

program repair can provide students with more actionable



feedback by recommending potential corrections (i.e., repairs)

for mistakes in their code. This feedback is meant to offer

students insights on how to proceed, helping to address their

mistakes and guiding them toward a complete solution [1].

Although automated test generation and program repair

have potential applicability in grading and feedback generation

tasks to inform automated assessment, their effectiveness has

been evaluated primarily on introductory programming assign-

ments. These assignments typically require the implementation

of a single-method routine using basic control flow and

data structures (e.g., ªsort the elements in an input arrayº).

Common datasets used in these evaluations, such as those from

massive open online courses (MOOCs), the IITK dataset [9],

and a subset of the FalconCode dataset [10], fit this pro-

file [6, 8, 11]. To the best of our knowledge, the application of

test generation and program repair for automated assessment

in the context of more complex programming assignments has

not been investigated to date.

In this work, we seek to establish the feasibility of using ex-

isting test generation and program repair techniques to under-

pin automated assessment for more sophisticated programming

assignment projects [10, 12]. These projects represent a step up

in complexity from introductory assignments, often requiring

the application of more advanced programming concepts (e.g.,

object-oriented programming and design patterns), and the

implementation of multiple code files with interconnected

functionalities. Consequently, they present further challenges

for both grading and feedback generation. Can existing au-

tomated test generation and program repair techniques keep

up and support educators in detecting faults and repairing

incorrect submissions with this increased level of complexity?

We conduct and report on a case study using a dataset

from a real-world programming assignment project from a

Java Programming university course. The dataset contains 296

incorrect student submissions and includes a reference solution

and test suites manually created by the course educator. We

select the EvoSuite [13] state-of-the-art Java unit test genera-

tion tool as the representative of test generation tools. EvoSuite

is designed to create tests that maximize code coverage and

contain assertions capturing the behavior of the software under

test. We compare their ability to detect bugs in student sub-

missions against educator-written tests. As for program repair,

we evaluate the extent to which existing tools can successfully

repair incorrect student submissions. We chose ARJA-e [14],

an advanced tool that employs a diverse set of repair operations

and can handle various faults, making it well-suited to address

diverse errors that may be present in student submissions.

Furthermore, given the recent advent of large language models

(LLMs) and their capability in code-related tasks, we also

include the open-source Qwen2.5 LLM 1 in our evaluation.

We run Qwen2.5 locally and deliberately avoid more advanced

but closed-source LLMs like GPT-42 to prevent data privacy

issues; closed-source models carry a risk of prompt leakage,

1Qwen2.5-Coder-7B-Instruct: https://huggingface.co/collections/Qwen
2https://openai.com/index/gpt-4/

which could expose sensitive content, including assignment

details or student submissions [15, 16]. We use the LLM for

both test generation and program repair tasks and compare

its performance to resp. EvoSuite and ARJA-e, exploring the

potential of LLMs in informing automated assessment for

programming projects.

Our evaluation results show that, compared to the educator

tests, the tests generated by both EvoSuite and Qwen2.5 are

less effective in detecting bugs in over 50% of the 296 incor-

rect submissions. The generated tests perform equivalent to or

outperform the educator tests in terms of bug detection only

in 2% of the cases. For program repair, ARJA-e and Qwen2.5

demonstrated similar results, with ARJA-e fully and partially

repairing 2.3% and 7.3% of the incorrect submissions, while

Qwen2.5 repaired 0.6% and 8.5%, respectively. The results

indicate that while current test generation and program repair

tools can inform assessments for introductory programming

assignments, they are not yet adequate for more complex

programming assignment projects.

To better understand the limitations of existing tools, we

further explore the reasons behind these results. The findings

highlight several factors, mostly related to the nature of

assignment projects, such as code across multiple files and the

presence of nuanced functionalities. Based on the insights, we

produce practical guidelines for educators regarding using test

generation and program repair tools to support assessment in

assignment projects.

The main contributions of this paper are as follows:

(1) We conduct a case study on 296 incorrect student-

submitted programming projects to investigate the fea-

sibility of automated assessment. The results show that

existing test generation and program repair tools are

insufficient for effectively handling assignment projects.

(2) We investigate the reasons behind the insufficiency of

these tools and discuss practical implications for their use.

These insights aim to enhance educators’ understanding

of test generation and program repair techniques in more

complex programming assignments and to provide guide-

lines for effectively utilizing them in assignment projects.

This paper is structured as follows. Section II presents

the background of this work, including test generation and

program repair, different categories of programming assign-

ments, and LLMs. Section III describes the selection of tools

and the methodologies used for test generation and program

repair. Section IV presents the experimental results. Section V

discusses the implications and findings we derived from our

study, Section VI presents related work, and Section VII

concludes the paper and outlines future work directions.

II. BACKGROUND

A. Test Generation

Manually writing test cases can be labor-intensive, which

has prompted the development of various automated test gen-

eration techniques with a focus on efficiency in producing tests

that achieve high code coverage and are effective at detecting

https://huggingface.co/collections/Qwen
https://openai.com/index/gpt-4/


faults. In the Java domain, Randoop [17] is well-known as a

random unit test generation tool, and EvoSuite [13] is arguably

the state-of-the-art search-based unit test generation tool. Both

tools generate executable tests in JUnit 3 format, and both are

capable of generating tests that achieve high coverage [18],

but empirical evidence suggests EvoSuite is superior in terms

of fault effectiveness [19]. In a nutshell, given a Java class

under test, EvoSuite starts by creating a population of test

suites, each containing a random number of randomly created

tests, evolves them using customary genetic operators and

code coverage as optimization goal (fitness function) until the

coverage criterion is met (e.g., full branch coverage) or the

given budget (usually time) is exhausted. The result is the test

suite with the highest code coverage, with each individual test

enhanced with assertions for fault detection.

Writing unit tests to evaluate the functionality of student

submissions is common practice among educators. However,

this approach often leads to inaccurate grading and difficulties

for students in mapping the failing tests to specific errors

in their code [4]. Compared to manually checking the func-

tionality solely by the program’s outcome, unit testing offers

more granularity of evaluation by assessing classes, methods,

and statements within the program [1]. With many automated

assessment tools leveraging testing for grading and providing

feedback, test generation can assist educators in producing

more granular and reliable assessments [20].

B. Program Repair

1) General Purpose Program Repair: General purpose pro-

gram repair (hereafter, gPR) techniques aim to automatically

fix bugs in real-world software. A variety of gPR approaches

have been proposed over the years, including search-based,

semantic-based, and deep learning-based techniques. As one

of the most prominent gPR approaches, search-based repair,

also known as generate-and-validate, takes a program and a

test suite with at least one failing test as input (i.e., a test

revealing that a given program does not implement a certain

expected behavior). The approach first generates repairs by

exploring a search space consisting of repair ingredients (i.e.,

code that can be used to generate repairs) and then validates

the repairs against the given test suite. A valid repair should

pass all the tests in the suite.

Most search-based repair approaches are redundancy-based,

meaning they assume repair ingredients that could fulfill the

tests already exist within the program under repair [21].

Existing prime examples of this type of approach include

GenProg [22], ARJA [23], and PAR [24], which all leverage

heuristic algorithms, such as genetic programming [25].

2) Educational Program Repair: gPR techniques typically

assume the programs under repair are mostly correct, which

limits their suitability for programming assignments for two

primary reasons. First, compared to gPR defect benchmarks

(e.g., Defects4J [26]) student submissions for programming

assignments are relatively small, providing limited repair

3https://junit.org/

ingredients4. Second, student submissions often have high test

failure rates, with multiple errors requiring complex repairs,

which poses significant challenges for gPR [9]. While larger

programming assignment projects may offer more repair ingre-

dients, their complexity, especially with faults across multiple

files, introduces further repair challenges.

To address these limitations, program repair approaches spe-

cially tailored to the programming assignment repair problem

have been proposed; we refer to them as educational program

repair (hereafter, ePR). Unlike gPR, ePR techniques tend to

avoid solely relying on incorrect programs and test suites;

instead, they assume the availability of (possibly multiple)

reference solutions (e.g., educator-developed solutions or fully

correct student solutions with respect to given tests) and lever-

age them to repair incorrect student submissions [8, 11, 28].

Existing ePR approaches primarily focus on introductory as-

signments, which are relatively simple in terms of both the

programs themselves and their accompanying tests [11, 9].

C. Programming Assignments

Programming assignments vary in difficulty and can be

categorized into three groups [10, 12, 29]5: (1) Introductory:

requiring students to use basic coding skills to complete a

very specific task in a single file (e.g., find the maximum

value in an array), (2) Intermediate: requiring students to use

further coding skills, such as data structures and algorithms

implemented across multiple methods (e.g., depth-first search

using recursion), and (3) Advanced: requiring students to

implement larger, more complex projects across multiple files

(e.g., building an interactive Tic-tac-toe game).

Most existing ePR techniques focus on repairing introduc-

tory programming assignments, usually involving developing

a single function. These programs are evaluated using simple

input-output tests to assess correctness (e.g., ªin: [3, 4], out:

4º). Such assignments are found in the IITK dataset [9],

which is commonly used to evaluate ePR techniques, such

as Clara [8], Refactory [11], and Verifix[28].

Compared to introductory ones, intermediate assignments

involve problem-solving, algorithmic thinking, and optimiza-

tion techniques, allowing students to handle larger and more

complex code files [29]. Despite the increased complex-

ity, these assignments often maintain a single-file structure

with input-output testing, like the introductory ones. De-

fects4DS [29], a dataset comprising data structures and al-

gorithms assignments, belongs to the intermediate level.

Advanced assignments often require developing a software

project with multiple classes and methods, and tackling a set

of problems, each exercising some functionality within the

program. Taking the Tic-tac-toe game as an example, it may

include tasks such as implementing the game mechanism,

managing player interactions, and determining the winner.

4There is informal evidence from users of the Astor [27] program repair
library suggesting gPR tools may not directly apply to repairing programming
assignments: https://github.com/SpoonLabs/astor/issues/155.

5These groups are alternatively termed as ªskillsº, ªlabsº, and ªprojectsº
by de Freitas et al. [10].

https://junit.org/
https://github.com/SpoonLabs/astor/issues/155


Unlike simpler assignments, these projects use dedicated

unit tests for assessing the program’s correctness [10], com-

monly developed by comprehensive testing frameworks (e.g.,

JUnit for Java6, unittest for Python7). Unit testing treats

the program as a white box, interacting with and evaluating

various program methods, asserting their expected behaviors.

D. Large Language Models

Large Language Models (LLMs) refer to a category of

advanced, large-scale models pre-trained on extensive datasets

and capable of generating human-like responses by predicting

the next token given some text prefix. This training approach

leverages the vast quantities of text available on the web,

equipping LLMs with strong capabilities in natural language

tasks such as conversation and reasoning [30]. Code language

models (CLMs) or large language models trained on code

(LLMCs), such as Codex from OpenAI8, are a specialized sub-

set of LLMs designed specifically for code-related tasks, such

as code summarization, generation, and program repair [31].

Despite their promising performance across various tasks,

LLMs are prone to two major problems: non-determinism

and hallucinations [32, 33]. Non-determinism refers to the

inconsistency in output when identical prompts yield different

responses across multiple requests. Inconsistent responses,

like generated code, can undermine reliability during the

software development process [32]. Meanwhile, hallucinations

describe LLMs’ tendency to produce outputs that deviate

from user intent, contain internal inconsistencies, or misalign

with factual knowledge. This makes the LLMs’ deployment

potentially risky in many domains [33], including education

where accuracy in grading and feedback is paramount.

III. METHODOLOGY

To explore the potential of automated test generation and

program repair in the automated assessment of programming

assignment projects, we conduct an empirical case study

using a real-world project following the software engineering

case study guideline [34]. Specifically, we aim to answer the

following research questions:

RQ1 To what extent can existing test generation techniques

inform automated assessment by detecting more buggy

behaviors in programming assignment projects?

RQ2 To what extent can existing program repair techniques

inform automated assessment by repairing more buggy

behaviors in programming assignment projects?

A. Dataset

Our dataset is based on a programming assignment project

from a Java Programming class for computer science under-

graduate students; it includes a reference solution and a test

suite both written by the educator as well as 299 student

submissions, only three of which are fully correct.

6https://junit.org/
7https://docs.python.org/3/library/unittest.html
8https://openai.com/index/openai-codex/

The assignment tasked students to implement a coffee maker

system, requiring features such as printing to console, con-

ditionals, loops, arrays, inheritance, and exception handling.

Students are provided with skeleton code containing fixed class

names and fixed method names and signatures. While they

are free to implement additional private methods, students are

asked not to change the signatures of public ones.

The reference solution consists of 13 classes and 32 meth-

ods, 11 of which are considered ªfocalº methods, i.e., methods

that students must implement in their submissions9.

The educator-written test suite consists of 7 test classes with

a total of 60 unit tests. Although not necessarily designed

to achieve 100% code coverage, we assume this test suite

adequately validates the expected behavior of the program

since it is carefully designed as the minimal requirement for

achieving a perfect grade (e.g., 100 out of 100). However, the

reference test suite may not sufficiently cover all test scenarios

and corner cases within the student submissions; therein lies

the opportunity to complement this educator-written test suite

with automatically generated tests.

B. Test Generation Tools

To investigate whether automated unit test generation can

inform a more fine-grained assessment of the functionality

implemented in programming assignments, we aim to select

a representative traditional test generation tool for Java and

a suitable LLM. As the representative for traditional test

generation tools for Java, between Randoop and EvoSuite we

choose EvoSuite due to its higher effectiveness in detecting

real faults [35, 19], which can potentially contribute to more

precise grading of programming assignment projects, and the

more manageable nature of the unit tests it produces (mini-

mized for coverage and usually shorter and more readable).

To identify an LLM suitable for test generation for program-

ming assignment projects, we consider both the complexity of

instructions involved, as described in §III-C, and the ethical

concerns of model selection. Closed-source LLMs, like GPT-

4, pose risks related to potential misuse, including the pos-

sibility of training on user prompts and inadvertently leaking

assignment content or solutions, where such risks could lead

to student plagiarism [16, 15]. To mitigate these risks, we

focus on selecting an open-source model with a relatively

small size (i.e. number of parameters) that is feasible to run a

consumer-grade personal computer. Based on benchmarks of

the code generation capabilities under complex instructions,

CodeQwen emerged as a strong candidate among models with

approximately 7B parameters [36]. Considering the LLM’s

rapid advancement, we choose an up-to-date version, namely

Qwen2.5-Coder-7B-Instruct (Qwen2.5 for short) 10.

C. Test Generation Methodology

The goal of using test generation is to create test suites

that effectively detect bugs in student submissions, thereby

9In the software testing literature, the term focal method is often used to
identify the target method of a unit test; we overload this term in this paper.

10https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct

https://junit.org/
https://docs.python.org/3/library/unittest.html
https://openai.com/index/openai-codex/


providing detailed test results for automated assessment [6].

To achieve this, we run the two aforementioned test generation

approaches (EvoSuite and LLM) using the educator’s reference

solution as input. The set of tests obtained as output (i.e.,

capturing the expected behavior) is then run against the

students’ submissions.

To evaluate whether test generation techniques can improve

automated assessment for programming assignment projects,

we examine if the tests generated by these techniques can

match or even exceed the educator-written test suite (hereafter,

educator tests) in identifying bugs within student submis-

sions. Specifically, we categorize each of the incorrect student

submissions into five cases: (1) Non-detection: the generated

tests fail to detect any of the buggy methods in a given

incorrect student submission that the educator tests do identify;

(2) Insufficient: the generated tests detect a non-empty subset

of the buggy methods that the educator tests identify; (3) Com-

plementary: generated and educator tests detect unique buggy

methods missed by the other; (4) Equivalent: generated and

educator tests detect the same buggy methods; (5) Outperform:

the generated tests detect a superset of the buggy methods the

educator tests identify.

When evaluating the bug detection ability of the generated

tests, we focus on the 11 focal methods directly related to

the tasks being assessed, i.e., those which contribute to stu-

dents’ grades. We isolate these methods from others, including

skeleton code or any custom methods students create. We

specifically consider the bug detection ability of generated

tests in detecting bugs within the set of focal methods. Given

the project’s complex nature, isolating the focal methods mini-

mizes cross-method interactions, easing the accurate detection

of buggy methods.

For test generation using EvoSuite, we applied the de-

fault settings to generate tests for all the methods within

the assignment project. Due to the inherent randomness in

EvoSuite’s evolutionary algorithms [13], we ran ten repetitions

and averaged the results to better reflect its performance.

For Qwen2.5, we follow the unit test generation strategy

proposed by SchÈafer et al. [37], where the prompts contain

(1) method signatures, (2) method documentation, (3) method

usage examples, and (4) method source code. We present

each class individually to the LLM, containing methods with

their signatures, and request that it generate a test suite.

Each method that comes with the skeleton code includes

educator-written JavaDoc to clarify its intended behavior. As

additional context, we provide the source code of another class

that frequently interacts with the class under test (e.g., via

object instantiation and method calls) as a usage example.

For classes with focal methods, we explicitly ask the LLM to

focus on achieving high coverage on them. Figure 1 illustrates

the complete prompt template. We use the default settings

of Qwen2.5. If LLM-generated tests fail to compile due to

missing library imports, we manually add them; otherwise,

those tests are commented out (discarded) [37]. We also ensure

the reference solution passes all the LLM-generated tests.

For our test generation using EvoSuite and LLM, as well as

Fig. 1: Test generation prompt for LLM

program repair with LLM (§III-E), we conducted experiments

on a MacBook Pro with Apple M3 Pro Chip, 36 GB memory,

and macOS Sequoia 15.0.1.

D. Program Repair Tools

Existing ePR tools, such as Clara [8], Refactory [11], and

Verifix[28], do not apply to programming assignment projects,

as discussed in §II-B2, and thus, we exclude them from

our study. Instead, we exhaustively consider the gPR tools

in the community-driven catalog at https://program-repair.org.

However, gPR tools need to be adapted to fit the context

of programming assignments. Inspired by ePR tools, we aim

to equip a gPR tool with the ability to leverage a reference

solution. As discussed in §II-B, redundancy-based repair tech-

niques are a primary category of search-based repair tools,

which can repair an incorrect program by rearranging and

transforming its existing code [21]. In this context, compo-

nents from a reference solution can be utilized as promising

repair ingredients if they are present in the incorrect program

(see §III-E for more details). Accordingly, we focused on

redundancy-based repair tools during the tool selection.

We applied the following inclusion criteria: (1) applicable

to Java programs, (2) publicly available, (3) not restricted to

specific fault types (e.g., concurrency), (4) not restricted to

specific repair scopes/operators (e.g., conditional statements),

(5) not exclusive for benchmarks (e.g., Defects4J), (6) use

a redundancy-based approach, (7) executable without compi-

lation errors (or errors solvable with reasonable efforts). By

adhering to these criteria, we ensure that the candidate tools

were broadly applicable for repairing programming assign-

ment projects. The shortlisted tools are ARJA [23], ARJA-

e [14], jGenProg [27], Cardumen [38], and kGenProg [39]11.

To validate our choices, we conducted a preliminary eval-

uation of the shortlisted tools using IntroClassJava [40], a

benchmark consisting of 297 student-written Java programs

from an introductory programming course [41]. Previous

studies indicate that ARJA outperforms both jGenProg and

Cardumen in terms of the number of repaired programs [42].

11Detailed inclusion process available at https://github.com/ruizhengu/
ICST-2025-Assignment-Projects.

https://program-repair.org
https://github.com/ruizhengu/ICST-2025-Assignment-Projects
https://github.com/ruizhengu/ICST-2025-Assignment-Projects


Building on top of this, we evaluated ARJA-e and kGenProg

on IntroClassJava, finding that ARJA-e surpassed the others

in terms of the number of repaired programs. In addition,

ARJA-e contains a rich collection of repair templates, such as

adjusting method parameters, which is particularly useful for

projects with frequent method calls. Given the time-consuming

nature of running traditional program repair tools against all

submissions from a programming assignment (experimental

setup and runtime are detailed in §III-E), we chose ARJA-e

as the representative tool.

Given the capabilities of LLMs across various code-related

tasks, including program repair [31], we continue using

Qwen2.5 as the LLM-based tool for the evaluation.

E. Program Repair Methodology

The objective of using program repair in our context is to

modify incorrect student submissions so they pass all tests.

We aim to mitigate some of the limitations of gPR and ePR

(cf. §II-B) while accommodating the unique characteristics of

programming assignment projects described in §II-B2.

We introduce valid repair ingredients from a reference

solution into incorrect student submissions (cf. §III-D) and em-

ploy a method-level incremental repair strategy. This approach

allows the repair of one buggy method at a time, minimizing

the number of failed tests and the need for complex, multi-file

repairs. The process takes an incorrect student submission and

a reference solution as input and attempts to repair each buggy

method so that it passes its associated tests.

1) Reference Solutions: Previous work highlights a trade-

off in program repair between expanding the search space

with likely valid repair ingredients and the ability to produce

accurate repairs [43]. Aiming for balance, we selectively

incorporate only key components (i.e., correct implementations

of specific buggy methods) from a reference solution rather

than the entire solution. This approach helps limit redundant

additions to the search space, optimizing repair efficiency.

2) Incremental Repair: Student submissions can be sub-

stantially incorrect, particularly in programming assignment

projects where incorrect assumptions and subsequent program-

ming mistakes may affect multiple classes and methods. In

such cases, program repair techniques may struggle to generate

complex fixes involving multiple code chunks and failing

tests [9]. To alleviate this, we employ a method-level incre-

mental repair strategy to repair one buggy method at a time.

This helps simplify the repair process by breaking it down into

smaller, manageable tasks. By confining repair generation to

individual buggy methods, we reduce the number of failed

tests and the search space size for potential repairs [43].

In the incremental repair process, we first identify a set

of buggy methods from an incorrect submission based on

the provided tests and the focal methods. We then isolate

one buggy method as the method under repair and create an

intermediate submission (hereafter referred to as intermediate)

as the target for repair generation. To create an intermediate,

we replace all buggy methods except the method under repair

with their correct implementations from a reference solution.

We also add the correct implementation of the method under

repair to the intermediate. This approach limits the repair

scope within the method under repair and introduces repair

ingredients specifically targeting that method. By identifying

all the buggy focal methods from 296 incorrect submissions,

we derive a total of 2126 intermediates.

3) Experiment Setup and Procedure: We first run ARJA-e

off-the-shelf (without reference solution or incremental repair)

on 296 incorrect student submissions, followed by execution

with the educator solution as reference and apply incremental

repair against 2126 intermediates. To manage this resource-

intensive task, we use a high-performance computing machine

equipped with 2x32-core Intel Xeon Platinum 8358 CPUs and

256 GB of RAM, assigning about 70 intermediates to each

of its 30 nodes. With a 10-minute time budget per ARJA-e

execution, the total task duration is approximately 30 hours.

As programming assignments grow in size and complex-

ity, the educator solution is not necessarily the only correct

implementation, i.e., multiple valid solutions may exist. Fur-

thermore, different correct student solutions can offer unique

patterns that serve as valuable repair ingredients [23]. As de-

veloping reference solutions is time-consuming for educators,

we also explore using correct student solutions as references.

To investigate how variations in reference solutions af-

fect program repair effectiveness, we additionally consider

three correct student solutions (CS1-3) as references, hence

repeating the experiment three times. We assess the repair

effectiveness of the traditional repair tool across three metrics:

the number of fully repaired submissions (where all buggy

methods are fixed), partially repaired submissions (at least

one buggy method is repaired), and the total number of

buggy methods repaired, using the educator solutions and three

correct student solutions as references. To ensure valid out-

comes, we excluded repairs generated by ARJA-e containing

System.exit(0); to prevent early program termination.

Given that longer instructions tend to generate more buggy

code by LLMs [32], we adopt a similar approach to augment-

ing LLM-based repair with reference solution and incremental

repair used for ARJA-e. To avoid overwhelming the LLM

with extensive prompts containing entire student programs

across multiple code files, we only provide relevant context.

For each intermediate, we provide the LLM with the class

containing the buggy method and ask it to repair it. We

combine the prompting strategies from Silva and Monperrus

[44] and Zhao et al. [29], structuring the prompt with the

following components: (1) task description, introducing the

program repair task, (2) problem description, including the

class with the buggy method, its dependencies with other class

methods or variables, and educator-written JavaDocs capturing

each method’s intended functionality, (3) failing tests, a list of

the tests the buggy method fails to pass, (4) failing tests’ error

message, detailed runtime error information to help identify

faults, (5) reference code, the correct implementation of the

buggy method from the reference solution, and (6) final task

description, instructions to avoid directly using the reference

code and return the corrected method. With both the reference



Fig. 2: Program repair prompt for LLM

solution and tests sourced from educators, this structured

prompt ensures that the LLM has sufficient contextual in-

formation while discouraging direct copying of the reference

solution. Figure 2 illustrates the complete prompt template.

There are often multiple ways to implement the required

functionalities, and similarly, various approaches can be taken

to repair incorrect submissions. To encourage the LLM to

generate creative and varied repairs that can better address

the diversity in student submissions, we allow for non-

deterministic outputs by setting Qwen2.5’s temperature to

0.8. The temperature between 0 and 2 controls the output’s

randomness, where higher values make the results more varied,

while lower values lead to more focused outputs [32].

To evaluate the effectiveness and consistency of Qwen2.5

for repair, we compute the Pass@k metrics, commonly used to

evaluate LLM code generation [45, 12] For each intermediate,

we generate n = 5 repair attempts. For a given k (1 ≤ k ≤ n),
we assess all combinations of k repairs from the n attempts,

counting those with at least one successful repair (i.e., one that

passes all tests). For instance, in Pass@1, if the first repair

attempt is successful, it contributes to the total Pass@1 result.

We compute Pass@1, Pass@3, and Pass@5 metrics for

LLM-generated repairs, covering: (1) fully repaired submis-

sions: the number of incorrect submissions where all buggy

methods are fixed in at least one combination of 5 repair

attempts, (2) partially repaired submissions: the number of

submissions with at least one buggy method fixed in at least

one combination of 5 repair attempts, and (3) buggy meth-

ods repaired: the total number of individual buggy methods

repaired in at least one combination of 5 attempts.

To further validate LLM-generated repairs, we manually

TABLE I: Coverage from educator and generated tests

Coverage Metric Educator EvoSuite LLM

Instruction 73% 94% 70%
Branch 79% 91% 63%

Fig. 3: Test effectiveness compared to educator tests

examine whether the LLM genuinely repaired the incorrect

submissions or simply copied the reference solution provided

in the prompt. Cases where the generated repair is identical

to the reference solution are excluded from the results.

IV. RESULTS

In this section, we present the results of our study and

answer our research questions.

A. RQ1: Test Generation

Table I shows results for instruction and branch coverage.

On average, EvoSuite generated 99 tests per run, compared

to 60 educator-written tests (Edu for short) and 44 LLM-

generated tests. EvoSuite achieved the highest instruction and

branch coverage, followed by Edu , while the LLM exhibited

the lowest coverage in both areas.

Figure 3 shows the bug detection results for EvoSuite and

the LLM against Edu . Notably, the LLM failed to detect bugs

in 12 out of 296 incorrect submissions. Overall, both EvoSuite

and the LLM underperformed compared to Edu , with only

∼2% cases being equivalent or better. Although many cases

fell under the complementary category, Edu still demonstrated

superior performance regarding the number of buggy methods

detected. Specifically, EvoSuite was insufficient in 150 sub-

missions on average (with a Standard Deviation of 24 and a

Relative Standard Deviation of 16%) and complementary to

Edu in 137 submissions (SD=24 and RSD=18%).

These findings indicate that the generated tests are generally

insufficient in detecting bugs in student submissions compared

to educator tests. Even in complementary cases, educator

tests consistently detect significantly more bugs, demonstrating

the limited effectiveness of test generation for evaluating

programming assignment projects.

Answer to RQ1: Generated tests are insufficient in detect-

ing bugs in over 50% of cases compared to educator-written

tests, and only ∼2% of cases show them as equivalent

or superior. In complementary cases, educator tests detect

about 4 times more buggy methods than generated tests.



TABLE II: Traditional program repair results with different reference solu-
tions

Ref SFR (out of 296) SPR (out of 296) MR (out of 2126)

ES 7 (2.4%) 19 (6.4%) 32 (1.5%)
CS1 8 (2.7%) 19 (6.4%) 31 (1.5%)
CS2 6 (2.0%) 18 (6.1%) 28 (1.3%)
CS3 6 (2.0%) 18 (6.1%) 25 (1.2%)

AVG 6.8 (2.3%) 18.5 (6.3%) 29 (1.4%)

TABLE III: LLM-generated repair results

Metrics SFR (out of 296) SPR (out of 296) MR (out of 2126)

Pass@1 2 (0.6%) 25 (8.4%) 73 (3.4%)
Pass@3 2 (0.6%) 25 (8.4%) 82 (3.9%)
Pass@5 2 (0.6%) 26 (8.8%) 86 (4.0%)

AVG 2 (0.6%) 25.3 (8.5%) 80.3 (3.8%)

B. RQ2: Program Repair

When executing off-the-shelf ARJA-e, it only repairs 2

out of 296 incorrect student submissions. However, with the

educator solution as a reference and applying incremental re-

pair, ARJA-e fully repaired 7 submissions. Using three correct

student solutions as references shows consistent performance.

Table II summarizes the results, where SFR, SPR, and MR

denotes the number of fully repaired submissions (i.e., all

buggy focal methods in the incorrect submission are repaired),

partially repaired submissions (i.e., at least one buggy focal

method in the incorrect submission is repaired), and the num-

ber of repaired methods among 2126 buggy focal methods,

respectively. All four reference solutions yielded comparable

results, where they contribute approximately 2.3% SFR and

around 6.2% SPR out of 296 incorrect submissions, and about

1.4% MR for 2126 buggy focal methods.

Table III presents the results of LLM-generated repairs,

excluding 76 repair results identical to the reference solution

(e.g., minor changes in variable names) as discussed at the end

of §III-E. Pass@1, Pass@3, and Pass@5 metrics are computed

based on five repetitions of the LLM repair generation process.

Qwen2.5 demonstrated similar results to ARJA-e in terms of

SPR (partial repair), where it achieved 8.5 on average% and

ARJA-e at about 6.3% However, Qwen2.5 achieved a lower

SFR (full repair), reaching only 0.6%, compared to ARJA-

e’s 2.3%. Notably, Qwen2.5 outperforms ARJA in MR, with

approximately 3.8% compared to ARJA-e’s 1.4%. The results

suggest that while the LLM shows better results in repairing

individual buggy methods, it may struggle with fully repairing

student submissions.

For both traditional and LLM-based program repair, the

overall number of successful repairs remains low, indicating

that current program repair techniques are overall inadequate

for assessing programming assignment projects.

Answer to RQ2: Traditional and LLM-based repair fully

repaired about 2.3% and 0.6% of the 296 incorrect stu-

dent submissions and partially repaired around 6.3% and

1 public void test09() {

2 Recipe recipe0 = new Recipe("", 0);

3 Recipe recipe1 = new Recipe("", 0);

4 assertEquals(recipe0, recipe1);}

(a) EvoSuite-generated test

1 public void testRecipeDifferentIngredients() {

2 Recipe recipe0 = new Recipe("", 0);

3 recipe0.addIngredient(new Coffee());

4 Recipe recipe1 = new Recipe("", 0);

5 recipe1.addIngredient(new Milk());

6 assertEquals(recipe0, recipe1);}

(b) Educator test

Fig. 4: A case where EvoSuite is insufficient compared to the educator test

8.5%, respectively. For 2126 buggy methods, the traditional

approach repairs approximately 1.4%, whereas the LLM

achieves a higher repair rate of 3.8%.

C. Threats to Validity

The process of selecting, building, and executing the pro-

gram repair tools was mostly manual, which introduces a

potential threat to internal validity due to human errors. To

mitigate this threat, we follow a systematic approach to avoid

biases during the selection process (§III-D). Future work

should explore a broader range of program repair tools to

improve the generalizability of our findings, especially as

LLM-based repair is evolving rapidly.

ARJA-e has a technical limitation in that it cannot identify

faults in constructors. This limitation poses an internal threat to

validity as student submissions may have faults in constructors

that ARJA-e cannot resolve. Although this limitation may

impact the results of repair generation in our experiments, it

falls out of the scope of our research. To maintain fairness in

comparing ARJA-e with LLM, we did not instruct the LLM

to specifically consider faults in constructors.

The manual validation of LLM-generated repairs discussed

in §III-E has limitations. The student submissions that closely

resemble the reference solution may naturally result in repairs

identical to the reference solution, which can be difficult

to differentiate from genuine repairs. This remains an open

challenge and we leave for future work to explore system-

atic validation methods to better distinguish between genuine

repairs and reference-based solutions.

V. FINDINGS AND DISCUSSIONS

In this section, we discuss the findings and implications

derived from our experimental results to provide guidelines

for improving existing test generation and program repair

techniques for assessing programming assignment projects.

A. Test Generation

We first investigate why EvoSuite achieves higher code cov-

erage than educator tests yet remains less effective in detecting

student bugs. EvoSuite’s limited effectiveness likely stems

from lacking contextual knowledge about the assignments that

the educator possesses when crafting tests. This knowledge



allows educators to anticipate common student mistakes and

incorporate them into the tests.

Figure 4 shows an example of such a case. Both EvoSuite

and educator tests target the Recipe.equal method, which

compares two Recipe objects based on default properties

(name and size) and contained Ingredient objects. The

EvoSuite test (Figure 4a) does not add any ingredients to

the recipes, whereas the educator test does account for this

by adding ingredients to the recipes to aid determining their

equality (highlighted lines in Figure 4b). This exemplifies the

complex nature of programming assignment projects, where

dependencies exist within programs, compared to introduc-

tory and intermediate assignments. With assignment-specific

insights, educators can design tests that cover these interde-

pendencies, thus detecting student mistakes more effectively.

These findings suggest that current test generation tech-

niques are not yet able to replace educator-written tests.

However, research shows potential in using these tools to

augment existing tests, rather than generating new ones from

scratch [46]. To explore this in an educational setting, we

augmented the educator tests with Qwen2.5.

By using the LLM to augment the existing educator tests, we

expanded the test suite from 60 to 100 cases. The augmented

tests slightly increased the coverage: instruction coverage rose

from 73% to 74%, and branch coverage from 79% to 80%.

More importantly, the LLM-augmented tests demonstrated a

notable improvement in bug detection. Compared to the tests

generated by EvoSuite or LLM (Figure 3), the augmented tests

performed equivalently to the educator tests on 131 out of 296

incorrect student submissions and outperformed them on 29

submissions. These findings suggest that augmenting educa-

tor tests can enhance bug detection, supporting finer-grained

assessments. However, this remains a preliminary exploration,

underscoring the need for more systematic methodologies and

rigorous evaluation to fully realize its potential.

B. Program Repair

To investigate the likely reasons behind the low repair rate,

we first analyze the number of buggy methods and failed

tests among the repaired and unrepaired student submissions

from ARJA-e. Figure 5a shows no significant difference in

the number of buggy methods between these two categories,

with submissions from both repaired and unrepaired groups

having between 1 and 11 buggy methods. However, as shown

in Figure 5b, with 60 tests in total, the repaired submissions

had significantly fewer failed tests, ranging from 1 to 18 (6

on average). The unrepaired group has failing tests ranging

from 4 to 49 (15 on average), which is approximately 2.5x

higher than the repaired ones. These findings align with prior

research [9], suggesting that a high test failure rate stems from

the significant incorrectness in student submissions, which is

a primary reason for no repair generation. This highlights

the need for new techniques that can effectively handle the

complexity of repairing programming assignment projects.

To further draw insights from the unrepaired buggy meth-

ods, we manually investigated them. Due to the high number of

(a) Number of buggy methods

(b) Number of failed tests

Fig. 5: Comparison of repaired and unrepaired submissions

such buggy methods, we randomly selected ten buggy methods

having less than 8.25 failed tests, which is the third quartile

of the number of failed tests from the repaired submissions.

One major cause of no repair generation is limited program

context, as program repair techniques may fail to generate

repairs due to insufficient analysis of the program context

(e.g., the surrounding code), a common challenge faced by

program repair tools [14, 47]. Although ARJA-e mitigates

this to some extent by considering broader program context

beyond just variables within the buggy methods [14], we

observed that it still struggles when repairing buggy meth-

ods involving expressions related to field variables updated

elsewhere in the program. This also helps explain why LLM

repaired more buggy methods and achieved more partially

repaired submissions than ARJA-e, yet produced fewer fully

repaired submissions. Despite isolating the buggy methods by

creating intermediate programs, ARJA-e still received an entire

program as input. In contrast, while the prompts for LLM

included relevant information, they only covered one or a few

classes, offering less program context than ARJA-e. This limi-

tation of LLM-based approaches is particularly relevant to the

nature of programming assignment projects, which typically

involve multiple code files and significantly longer contextual

information compared to simpler introductory assignments.

To ensure reliable results from LLM, only a portion of the

program and related information could be used as input. This

hinders the LLM’s ability to generate fully repaired submis-

sions across the entire program, despite its effectiveness in

repairing single methods. Although JavaDocs of the methods

were provided in the prompts to clarify functionalities, other

contexts, such as the assignment’s brief or additional program

structure, could serve as useful supplementary information.

Future work should explore these possibilities.



C. Implications for educators

Based on the experiments and findings derived from this

study, we offer several implications for educators regarding

the use of test generation and program repair tools to support

assessment in programming assignment projects.

It remains necessary for educators to write tests that suf-

ficiently cover the intended scenarios of the assignments,

as the current test generation techniques are not advanced

enough to fully account for the complex dependencies and

scenarios present in assignment projects. These tools often

miss important cases that educators can better anticipate due

to their deep understanding of the assignments’ goals.

While emerging techniques like LLMs show potential to

augment existing tests and enhance bug detection, research

into the systematic evaluation of this approach is needed. Our

preliminary findings suggest that LLM-augmented tests can

improve bug detection to an extent and educators could explore

this as a viable way to enhance their tests.

Educators can also leverage correct student solutions to

drive program repair tools for repairing other incorrect student

submissions. This approach reduces the need for manually

developing reference solutions without significantly impacting

the effectiveness of program repair tools.

While program repair tools can address bugs within method

bodies at the statement level, they often struggle with repairs

requiring changes to class members, such as method signa-

tures, annotations, and constructors. To mitigate this issue,

educators typically provide skeleton code with predefined

class members when releasing assignments. However, there

is a trade-off between the applicability of program repair

techniques and students’ learning experience, as providing too

much supporting information may hinder students’ learning

and creativity. Therefore, it is recommended that educators

carefully design assignments to balance adequate support

for program repair techniques with encouraging students to

develop problem-solving skills independently.

VI. RELATED WORK

Paiva et al. [1] conducted a systematic review on automated

assessment in programming education, analyzing 778 primary

studies on topics including testing techniques and feedback

types for automated assessment. The study identified output

comparison and unit testing as the primary methods to assess

student programs’ functionality, highlighting that testing tech-

niques are essential for automated assessment. It also discussed

program repair as a promising method for generating feedback

that suggests corrections for students’ code.

Tang et al. [6] proposed FEAT (Feedback and Evaluation

via Auto-generated Tests), a toolchain that generates high-

quality tests for automated assessment systems. By inputting

the problem specification, the tool combines exhaustive and

random testing approaches to create tests that detect every

erroneous solution identified by a larger test set. The generated

tests achieved higher coverage and identified 1.3-64.6% more

incorrect solutions than expert-created tests for eight program-

ming problems from online courses. While the source of the

evaluated program was not specified, an informal online search

suggests the problems are likely at the introductory level12.

Yi et al. [9] investigated the feasibility of using existing pro-

gram repair tools for introductory programming assignments.

They evaluated four program repair tools on the IITK dataset

and successfully repaired 208 out of 661 C programs. The

study identified two key reasons for the relatively low repair

rate: high test failure rate, where 60% of the programs failed

more than half of the tests, and complex repair, in which most

successful repairs only involved one-line changes.

Zhao et al. [29] introduced PaR, an LLM-powered frame-

work for repairing programming assignments that involve

complex data structures and algorithms. They also created

Defects4DS, a dataset of 682 incorrect solutions for such

assignments. While the solutions are still single-file programs,

they pose unique repair challenges due to larger codebases

and complex syntax compared to introductory ones. PaR

utilizes prompts that include relevant peer solutions, program

descriptions, input/output formats, and the buggy code. Results

show that PaR outperforms LLM baselines (e.g., GPT-3.5) and

traditional program repair tools (e.g., Verifix [28]) on both the

Defects4DS and IITK [9] datasets, indicating its effectiveness

in repairing both introductory and intermediate assignments.

VII. CONCLUSIONS AND FUTURE WORK

This paper evaluates the feasibility of applying existing

test generation and program repair approaches for the auto-

mated assessment of programming assignment projects. We

employed EvoSuite and the Qwen2.5 LLM for test generation,

and ARJA-e and the same LLM for program repair. Our

evaluation reveals noticeable limitations for both bug detection

and the repair of incorrect student solutions in complex

programming projects.

We discuss common challenges in generating tests and

repairing programming assignment projects, suggesting poten-

tial improvements. Our findings highlight the need for more

advanced test generation and program repair techniques, or

alternative methods to better inform automated assessments ac-

counting for the complex nature of programming projects. We

identified several future research directions. First, automated

augmentation of educator tests to improve bug detection,

leading to more accurate assessments and fine-grained grading.

Second, exploring supplementary information to guide LLMs

to effectively repair student solutions that spread multiple

files and interdependencies. This could involve extracting

minimal, useful information from assignment requirements or

runtime data for more comprehensive repairs. Third, in line

with previous efforts [48, 49], further explore integrating test

generation into program repair, as robust tests are essential for

effective bug detection and enhancing the quality and diversity

of generated tests would better support repair techniques to

improve overall performance. Exploring these directions could

advance both test generation and program repair, making

automated assessment systems applicable to more complex

programming assignments beyond the introductory level.

12https://linzifan.github.io/python courses/PoC-Project4

https://linzifan.github.io/python_courses/PoC-Project4


REFERENCES

[1] J. C. Paiva, J. P. Leal, and A. Figueira, ªAutomated

assessment in computer science education: A state-of-

the-art review,º ACM Trans. Comput. Educ., vol. 22,

no. 3, jun 2022.

[2] B. Clegg, M.-C. Villa-Uriol, P. McMinn, and G. Fraser,

ªGradeer: An open-source modular hybrid grader,º 2021.

[Online]. Available: https://arxiv.org/abs/2102.09400

[3] X. Liu, S. Wang, P. Wang, and D. Wu, ªAutomatic grad-

ing of programming assignments: An approach based

on formal semantics,º in IEEE/ACM 41st Intl. Conf. on

Software Engineering: Software Engineering Education

and Training (ICSE-SEET), 2019, pp. 126±137.

[4] R. Singh, S. Gulwani, and A. Solar-Lezama, ªAutomated

feedback generation for introductory programming as-

signments,º SIGPLAN Not., vol. 48, no. 6, p. 15±26,

2013.

[5] S. Sarsa, P. Denny, A. Hellas, and J. Leinonen, ªAu-

tomatic generation of programming exercises and code

explanations using large language models,º in ACM Conf.

on Intl. Computing Education Research - Volume 1

(ICER). ACM, 2022, p. 27±43.

[6] T. Tang, R. Smith, S. Rixner, and J. Warren, ªData-

driven test case generation for automated programming

assessment,º in Conf. on Innovation and Technology in

Computer Science Education (ITiCSE). ACM, 2016, p.

260±265.

[7] X. B. D. Le, D. Lo, and C. Le Goues, ªHistory driven

program repair,º in 2016 IEEE 23rd Intl. Conf. on Soft-

ware Analysis, Evolution, and Reengineering (SANER),

vol. 1, 2016, pp. 213±224.

[8] S. Gulwani, I. Radiček, and F. Zuleger, ªAutomated clus-

tering and program repair for introductory programming

assignments,º in ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation (PLDI).

ACM, 2018, p. 465±480.

[9] J. Yi, U. Z. Ahmed, A. Karkare, S. H. Tan, and A. Roy-

choudhury, ªA feasibility study of using automated pro-

gram repair for introductory programming assignments,º

in 11th Joint Meeting on Foundations of Software Engi-

neering (ESEC/FSE). ACM, 2017, p. 740±751.

[10] A. de Freitas, J. Coffman, M. de Freitas, J. Wilson, and

T. Weingart, ªFalconcode: A multiyear dataset of python

code samples from an introductory computer science

course,º in ACM Technical Symposium on Computer

Science Education (SIGCSE). ACM, 2023, p. 938±944.

[11] Y. Hu, U. Z. Ahmed, S. Mechtaev, B. Leong, and A. Roy-

choudhury, ªRe-factoring based program repair applied

to programming assignments,º in 2019 34th IEEE/ACM

Intl. Conf. on Automated Software Engineering (ASE).

IEEE Computer Society, nov 2019, pp. 388±398.

[12] C. Koutcheme, N. Dainese, S. Sarsa, J. Leinonen,

A. Hellas, and P. Denny, ªBenchmarking educational

program repair,º 2024. [Online]. Available: https:

//arxiv.org/abs/2405.05347

[13] G. Fraser and A. Arcuri, ªEvosuite: automatic test suite

generation for object-oriented software,º in 19th ACM

SIGSOFT Symposium and the 13th European Conf.

on Foundations of Software Engineering (ESEC/FSE).

ACM, 2011, p. 416±419.

[14] Y. Yuan and W. Banzhaf, ªToward better evolutionary

program repair: An integrated approach,º ACM Trans.

Softw. Eng. Methodol., vol. 29, no. 1, jan 2020.

[15] S. Kim, S. Yun, H. Lee, M. Gubri, S. Yoon, and S. J.

Oh, ªPropile: Probing privacy leakage in large language

models,º in Advances in Neural Information Processing

Systems, vol. 36. Curran Associates, Inc., 2023, pp.

20 750±20 762.

[16] X. Wu, R. Duan, and J. Ni, ªUnveiling security, privacy,

and ethical concerns of chatgpt,º Journal of Information

and Intelligence, vol. 2, no. 2, pp. 102±115, 2024.

[17] C. Pacheco and M. D. Ernst, ªRandoop: feedback-

directed random testing for java,º in Companion to the

22nd ACM SIGPLAN Conf. on Object-Oriented Pro-

gramming Systems and Applications (OOPSLA). ACM,

2007, p. 815±816.

[18] S. Shamshiri, J. M. Rojas, L. Gazzola, G. Fraser,

P. McMinn, L. Mariani, and A. Arcuri, ªRandom or

evolutionary search for object-oriented test suite genera-

tion?º STVR, vol. 28, no. 4, p. e1660, 2018.

[19] S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn,

and A. Arcuri, ªDo automatically generated unit tests

find real faults? an empirical study of effectiveness and

challenges,º in 30th IEEE/ACM Intl. Conf. on Automated

Software Engineering (ASE), 2015, pp. 201±211.

[20] S. Nayak, R. Agarwal, and S. K. Khatri, ªAutomated as-

sessment tools for grading of programming assignments:

A review,º in Intl. Conf. on Computer Communication

and Informatics (ICCCI), 2022, pp. 1±4.

[21] M. Martinez, W. Weimer, and M. Monperrus, ªDo the fix

ingredients already exist? an empirical inquiry into the

redundancy assumptions of program repair approaches,º

in Companion Proc. of the 36th Intl. Conf. on Software

Engineering (ICSE). ACM, 2014, p. 492±495.

[22] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, ªAu-

tomatically finding patches using genetic programming,º

in 31st Intl. Conf. on Software Engineering (ICSE).

IEEE, 2009, pp. 364±374.

[23] Y. Yuan and W. Banzhaf, ªArja: Automated repair of

java programs via multi-objective genetic programming,º

IEEE Transactions on Software Engineering, vol. 46,

no. 10, pp. 1040±1067, oct 2020.

[24] D. Kim, J. Nam, J. Song, and S. Kim, ªAutomatic patch

generation learned from human-written patches,º in Intl.

Conf. on Software Engineering (ICSE). IEEE, 2013, pp.

802±811.

[25] J. R. Koza, Genetic programming: on the programming

of computers by means of natural selection. Cambridge,

MA, USA: MIT Press, 1992.

[26] R. Just, D. Jalali, and M. D. Ernst, ªDefects4j: a database

of existing faults to enable controlled testing studies for

https://arxiv.org/abs/2102.09400
https://arxiv.org/abs/2405.05347
https://arxiv.org/abs/2405.05347


java programs,º in Intl. Symposium on Software Testing

and Analysis (ISSTA). ACM, 2014, p. 437±440.

[27] M. Martinez and M. Monperrus, ªAstor: a program repair

library for java (demo),º in Intl. Symposium on Software

Testing and Analysis (ISSTA). ACM, 2016, p. 441±444.

[28] U. Z. Ahmed, Z. Fan, J. Yi, O. I. Al-Bataineh, and

A. Roychoudhury, ªVerifix: Verified repair of program-

ming assignments,º ACM Trans. Softw. Eng. Methodol.,

vol. 31, no. 4, jul 2022.

[29] Q. Zhao, F. Liu, L. Zhang, Y. Liu, Z. Yan,

Z. Chen, Y. Zhou, J. Jiang, and G. Li, ªPeer-

aided repairer: Empowering large language models to

repair advanced student assignments,º 2024. [Online].

Available: https://arxiv.org/abs/2404.01754

[30] W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou,

Y. Min, B. Zhang, J. Zhang, Z. Dong, Y. Du, C. Yang,

Y. Chen, Z. Chen, J. Jiang, R. Ren, Y. Li, X. Tang,

Z. Liu, P. Liu, J.-Y. Nie, and J.-R. Wen, ªA survey

of large language models,º 2024. [Online]. Available:

https://arxiv.org/abs/2303.18223

[31] A. Fan, B. Gokkaya, M. Harman, M. Lyubarskiy, S. Sen-

gupta, S. Yoo, and J. M. Zhang, ª Large Language

Models for Software Engineering: Survey and Open

Problems ,º in 2023 IEEE/ACM International Conference

on Software Engineering: Future of Software Engineer-

ing (ICSE-FoSE). IEEE Computer Society, 2023, pp.

31±53.

[32] S. Ouyang, J. M. Zhang, M. Harman, and M. Wang, ªAn

Empirical Study of the Non-determinism of ChatGPT in

Code Generation,º ACM Trans. Softw. Eng. Methodol.,

Sep. 2024.

[33] F. Liu, Y. Liu, L. Shi, H. Huang, R. Wang, Z. Yang,

L. Zhang, Z. Li, and Y. Ma, ªExploring and evaluating

hallucinations in llm-powered code generation,º 2024.

[Online]. Available: https://arxiv.org/abs/2404.00971

[34] P. Runeson and M. HÈost, ªGuidelines for conducting and

reporting case study research in software engineering,º

Empirical Softw. Engg., vol. 14, no. 2, p. 131±164, 2009.

[35] M. M. Almasi, H. Hemmati, G. Fraser, A. Arcuri, and

J. Benefelds, ªAn industrial evaluation of unit test gen-

eration: Finding real faults in a financial application,º

in IEEE/ACM 39th Intl. Conf. on Software Engineering:

Software Engineering in Practice Track (ICSE-SEIP),

2017, pp. 263±272.

[36] T. Y. Zhuo, M. C. Vu, J. Chim, H. Hu, W. Yu,

R. Widyasari, I. N. B. Yusuf, H. Zhan, J. He,

I. Paul, S. Brunner, C. Gong, T. Hoang, A. R.

Zebaze, X. Hong, W.-D. Li, J. Kaddour, M. Xu,

Z. Zhang, P. Yadav, N. Jain, A. Gu, Z. Cheng, J. Liu,

Q. Liu, Z. Wang, D. Lo, B. Hui, N. Muennighoff,

D. Fried, X. Du, H. de Vries, and L. V. Werra,

ªBigCodeBench: Benchmarking code generation with

diverse function calls and complex instructions,º 2024.

[Online]. Available: https://arxiv.org/abs/2406.15877

[37] M. SchÈafer, S. Nadi, A. Eghbali, and F. Tip, ªAn em-

pirical evaluation of using large language models for

automated unit test generation,º IEEE Transactions on

Software Engineering, vol. 50, no. 1, pp. 85±105, 2024.

[38] M. Martinez and M. Martin, ªUltra-large repair search

space with automatically mined templates: The cardumen

mode of astor,º in Intl. Symposium on Search Based

Software Engineering (SSBSE). Springer, 2017.

[39] Y. Higo, S. Matsumoto, R. Arima, A. Tanikado,

K. Naitou, J. Matsumoto, Y. Tomida, and S. Kusumoto,

ªkgenprog: A high-performance, high-extensibility and

high-portability apr system,º in Asia-Pacific Software

Engineering Conference (APSEC), 2018, pp. 697±698.

[40] T. Durieux and M. Monperrus, ªIntroClassJava: A

Benchmark of 297 Small and Buggy Java Programs,º

Universite Lille 1, Research Report hal-01272126, 2016.

[41] C. Le Goues, N. Holtschulte, E. K. Smith, Y. Brun,

P. Devanbu, S. Forrest, and W. Weimer, ªThe manybugs

and introclass benchmarks for automated repair of c

programs,º IEEE Transactions on Software Engineering,

vol. 41, no. 12, pp. 1236±1256, 2015.

[42] T. Durieux, F. Madeiral, M. Martinez, and R. Abreu,

ªEmpirical review of java program repair tools: a large-

scale experiment on 2,141 bugs and 23,551 repair at-

tempts,º in ACM Joint Meeting on European Software

Engineering Conf. and Symposium on the Foundations

of Software Engineering (ESEC/FSE). ACM, 2019, p.

302±313.

[43] F. Long and M. Rinard, ªAn analysis of the search spaces

for generate and validate patch generation systems,º in

Intl. Conf. on Software Engineering (ICSE). ACM, 2016,

p. 702±713.

[44] A. Silva and M. Monperrus, ªRepairbench: Leaderboard

of frontier models for program repair,º 2024. [Online].

Available: https://arxiv.org/abs/2409.18952

[45] M. Chen et al., ªEvaluating large language models

trained on code,º 2021. [Online]. Available: https:

//arxiv.org/abs/2107.03374

[46] M. F. Roslan, J. M. Rojas, and P. McMinn, ªAn em-

pirical comparison of evosuite and dspot for improving

developer-written test suites with respect to mutation

score,º in Symposium on Search-Based Software Engi-

neering (SSBSE). Springer, 2022, pp. 19±34.

[47] M. Wen, J. Chen, R. Wu, D. Hao, and S.-C. Cheung,

ªContext-aware patch generation for better automated

program repair,º in 40th Intl. Conf. on Software Engi-

neering (ICSE). ACM, 2018, p. 1±11.

[48] J. Yang, A. Zhikhartsev, Y. Liu, and L. Tan, ªBetter

test cases for better automated program repair,º in Pro-

ceedings of the 2017 11th Joint Meeting on Foundations

of Software Engineering, ser. ESEC/FSE 2017. ACM,

2017, p. 831±841.

[49] Z. Yu, M. Martinez, B. Danglot, T. Durieux, and

M. Monperrus, ªTest case generation for program repair:

A study of feasibility and effectiveness,º 2017. [Online].

Available: https://arxiv.org/abs/1703.00198

https://arxiv.org/abs/2404.01754
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2404.00971
https://arxiv.org/abs/2406.15877
https://arxiv.org/abs/2409.18952
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/1703.00198

	Introduction
	Background
	Test Generation
	Program Repair
	General Purpose Program Repair
	Educational Program Repair

	Programming Assignments
	Large Language Models

	Methodology
	Dataset
	Test Generation Tools
	Test Generation Methodology
	Program Repair Tools
	Program Repair Methodology
	Reference Solutions
	Incremental Repair
	Experiment Setup and Procedure


	Results
	RQ1: Test Generation
	RQ2: Program Repair
	Threats to Validity

	Findings and Discussions
	Test Generation
	Program Repair
	Implications for educators

	Related Work
	Conclusions and Future Work

