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Abstract 15 

Co-firing ammonia with hydrocarbon fuel (such as methane) is an attractive 16 

method for reliable application of ammonia for power, and in this case the interaction 17 

of NOx (NO, N2O) and soot is possible. To reveal the interaction mechanism, the role 18 

of NO and N2O in adsorption and oxidation processes on soot surfaces was investigated 19 

in terms of the evolutions of functional groups by thermogravimetric analysis (TGA), 20 

X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy 21 

(FT-IR) technologies. During the adsorption and oxidation processes, the content of C-22 

O groups on soot surfaces at NO and N2O atmosphere is larger than that in air. C-O 23 

accumulated in the adsorption stage is prone to be converted into C=O and O=C-O in 24 

the oxidation stage. In addition, the N-O bonds on soot surfaces remained stable in air 25 

but underwent significant changes in the presence of NOx. O atoms arise from air and 26 

N2O may be more likely to replace the H atom on methyl or methylene on soot surfaces, 27 

while NO can not only attack C-H groups but also be prone to break C=C on aromatic 28 

rings. This study offers novel insights into the fuel-NOx interactions with soot and is 29 

helpful for co-reducing soot and NOx emissions from NH3/hydrocarbon fuel 30 

combustion. 31 

Keywords:  32 
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Nomenclature 34 

TGA         thermogravimetric analysis 35 

XPS         X-ray photoelectron spectroscopy 36 

FT-IR        Fourier transform infrared spectroscopy          37 

Re           Reynolds number 38 

Aali-C–H/AC=C   the concentration of aliphatic C–H groups relative to the aromatic C=C 39 

AC=O/AC=C       the concentration of C=O groups relative to the aromatic C=C 40 

AC-O/AC=C     the concentration of C-O groups relative to the aromatic C=C 41 

Ads phase      Adsorption-dominated phase 42 

Oxi phase      Oxidation-dominated phase. 43 

 44 

 45 

 46 

 47 

 48 

 49 

 50 

 51 
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1. Introduction 52 

Energy is an integral material guarantee for the development of the national 53 

economy, and the exploration of energy determines the future development destiny of 54 

the country [1]. Nevertheless, the majority of the energy consumption structures is still 55 

reliant on fossil fuels such as coal and oil at the present moment [2], leading to the 56 

serious CO2 emission of harmful pollutants that not only greatly impact human health 57 

but also aggravates the greenhouse effect. Intending to slash the carbon emissions, one 58 

of the key methods is to increase the usage of renewable, low-carbon or carbon-free 59 

fuels [3]. 60 

During the past few decades, ammonia (NH3) has emerged as a potential 61 

alternative fuel owing to the high hydrogen density and carbon-free structure [4, 5]. 62 

Considering the higher ignition temperature and unstable combustion of pure ammonia 63 

fuel, it is difficult to directly apply pure ammonia fuel on internal combustion engines 64 

[6]. Therefore, in order to convert the fuel into ammonia step-by-step, it is considered 65 

to partially replace hydrocarbon with NH3 [7]. At present, a large number of studies 66 

have shown that replacing part of hydrocarbon fuel with NH3 will obviously reduce the 67 

carbon emissions [8-10]. However, co-firing of ammonia and hydrocarbon fuels may 68 

lead to new problems: NH3 combustion could cause the most significant NOx emissions 69 
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on account of fuel-bounded nitrogen [11-13], and insufficient combustion of 70 

hydrocarbon fuels leads to soot formation [14-16]. Moreover, different from the 71 

hydrocarbon fuels, the fuel-NOx in ammonia flames is generated uniformly in the bulk 72 

combustion regions [17]. In this case, part of the fuel-NOx generation region may 73 

overlap with the regions of soot formation and oxidation, yielding interaction of soot 74 

and NOx. Possible interaction between NOx and soot offers an alternative route to 75 

control their emissions at the same time. Consequently, it is of great significance to 76 

study the reaction mechanism between NOx and soot.  77 

Co-firing NH3 with hydrocarbons will affect the emission of soot [7, 18]. As stated 78 

in Montgomery et al. [19], the concentration of soot in CH4 combustion could be 79 

diminished by 10 times when ammonia doping was 20%. Bennett et al. [20] found that 80 

adding NH3 into ethylene flames and reduce the soot concentration. Previous studies 81 

mainly focused on the soot and NOx formation or emission of co-firing NH3 with 82 

hydrocarbons [12, 20, 21], but the interaction between NOx and soot was rarely studied 83 

without catalyst. Fortunately, there still are some studies that showed that NOx could 84 

affect soot oxidation through chemical mechanisms. At a low temperature 85 

(250~400 ℃), Müller et al. [22] found that NO2 reduced the apparent activation of soot 86 

oxidation and promoted soot oxidation. According to Raj et al. [23], NO can eliminate 87 
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different types of reactive site present on soot and partial-oxidized soot. In addition, 88 

Guo et al. [24] studied the effect of NOx oxidation of soot under different catalysts. 89 

Some studies have also found that NOx can be absorbed on soot surfaces and 90 

change the chemical bonds and functional groups. In a fixed-bed reactor, Klose et al. 91 

[25] studied the adsorption of NO on activated carbon at 100 ℃, 120 ℃ and 150 ℃, 92 

and found that there were four different NO adsorption species on activated carbon. As 93 

stated in Abián et al. [26], they observed that the surface of soot formed nitrogen-94 

containing substances and some nitrogen seems to be combined with soot structure. 95 

Specifically, Cao et al. [27] detected functional groups such as C-NO2, C-ONO and C-96 

NCO on the surface of soot exposed in NO and O2. The understanding of the functional 97 

group on soot could shed more light on the impact of the chemical interaction of NOx 98 

with soot. 99 

Compared to the amount of research carried out on NO, N2O has been largely 100 

disregarded, maybe for the reason that N2O accounts for a small proportion in the NOx 101 

emissions [28]. However, N2O is not only a greenhouse gas [29], but also its global 102 

warming potential is 298 times that of CO2 [30]. Carabineiro et al. [31] used N2O to 103 

oxidize commercial activated carbon under the condition of catalyst. The results of 104 

temperature programmed experiments showed that the reaction products were CO2 and 105 
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N2. According to Zhu et al. [32], the reaction rate of N2O with carbon is higher than that 106 

of NO, but much lower than that of O2. Most studies focus on the N2O reaction with 107 

carbon [28, 33], the reaction mechanism between N2O and soot has not well been 108 

understood.  109 

However, due to the unclear reaction pathways of NOx and soot, it remains 110 

challenging to elucidate the suppressive effect of NOx on soot. Therefore, this study 111 

aims to understand the interaction mechanism of NOx with soot particles in terms of 112 

soot functional groups that reflects the routine and kinetics of surface reactions. The 113 

evolution of functional groups on soot surfaces during adsorption and oxidation 114 

processes of air, NO and N2O were analyzed by TGA, XPS and FI-TR tests. The 115 

findings of this work may benefit the understanding of the interaction of fuel-NOx and 116 

soot, and enable co-reduction of NOx and soot emissions from ammonia/hydrocarbon 117 

combustion. 118 

2. Experimental 119 

2.1 Sample preparation 120 

In this study, particle samples were collected from a CH4/air laminar coflow 121 

diffusion flame on a Mckenna burner under controlled laboratory conditions. The 122 

experimental schematic diagram of soot sampling is shown in Fig. 1. To ensure the 123 
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acquisition of sufficient material, the sampling duration was maintained for at least 30 124 

minutes for each case. A quartz plate was positioned 50 mm above the burner. The flow 125 

rate of CH₄ was set at 400 mL/min, while that of air was maintained at 15 l/min. 126 

According to the method of [34], the Reynolds (Re) number under this experimental 127 

condition is 62.2, ensuring that the flame belongs to a laminar diffusion flame. The soot 128 

particles generated in the flame were deposited on the quartz glass. Then, the particles 129 

were scraped from the plate and crushed into the powder. The sampling methods used 130 

in the present work is based on the previous works by Yan et al. [35]. The soot particles 131 

were then placed in a thermogravimetric analyzer (TGA2, Mettler-Toledo, Switzerland) 132 

and were heated from the 30 ℃ to 900 ℃ to remove volatile compounds under N2 gas 133 

with the ramp rate of 25 ℃/min. After thermal treatment, each soot sample was heated 134 

from 30 ℃ to the preset reaction temperature (200, 400, 600, 800 and 1000 ℃, 135 

respectively) with the heating rate of 15 ℃/min in air (21% O2 and 79% N2), NO (1000 136 

ppm) and N2O (1000 ppm), respectively. After reaching the target temperature, the gas 137 

flow was immediately switched to N2 and cooled down to room temperature to obtain 138 

soot samples. Finally, the resulting soot samples were sealed in drying cans for further 139 

analysis. In the experiments, the gas flow rate was kept at 50 mL/min. In addition, the 140 

pre-treated soot samples were mixed with KBr powder at a weight ratio of 0.5% and 141 
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then was fully mixed in a mortar to make a sample tablet for the FT-IR test.   142 

 143 

Fig. 1. Sampling device diagram. 144 

2.2 Soot characterization 145 

X-ray photoelectron spectroscopy (XPS) (Shimadzu/Kratos AXIS SUPRA+) with 146 

AlKa X-ray source was used to determine the oxygenated surface groups on the soot 147 

surfaces. The C1s and O1s peaks were calibrated around 284.6 eV and 532.4 eV, 148 

respectively. After extracting Sherley background with CasaXPS software package, the 149 

C1s and O1s peaks were deconvolved to qualitatively and quantitatively represent the 150 

binding state of carbon bonds and oxygenated surface groups, and the experimental 151 

error was less than 5%. 152 

A Fourier Transfer Inferred spectrometer (Bruker INVENIO-S) was employed to 153 

assess the bulk chemistry of soot samples. The FT-IR ran under a spectral range of 154 

400~4000 cm−1 with a resolution of 4 cm−1. After the measurement under the set test 155 

conditions, the baseline of FT-IR spectrum was corrected and smoothed by OMNIC 156 
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software (Thermo Nicolet). To ensure reproducibility, three FT-IR spectra are obtained 157 

for each soot sample, and these FT-IR spectra are averaged to reduce noise. The 158 

uncertainty of FT-IR results is less than 5%.  159 

3. Results and discussion 160 

3.1 Oxidation behavior of soot samples 161 

In the present study, to eliminate the influence of sample mass variations, the soot 162 

mass was normalized relative to the initial mass and presented as a percentage (%). Fig. 163 

2 shows the normalized weight versus time curves of soot samples in the atmospheres 164 

of air, NO and N2O, respectively. In air atmosphere, no obvious mass loss was observed 165 

in the range of 30~460 ℃, indicating that oxidation has not yet started. After 460 ℃, 166 

the mass shows abruptly decrease in the mass until the temperature reaches 700 ℃. 167 

Correspondingly, the initial oxidation temperature of soot in NO atmosphere is as 168 

high as 700 ℃. The oxidation progresses in a distinct lower rate during the ramp up 169 

profile from 700 to 1000 ℃. The soot burns out until the samples soaked for about 95 170 

min at 1000 ℃. The onset and terminated temperatures are slightly higher than those 171 

found by Xie et al. [36]. In the study of Xie, the lowest onset reaction temperature of 172 

natural gas soot was 615~675 °C in the conditions of 200~1500 ppm NO. For N2O 173 

atmosphere, soot oxidation didn't start until 900 ℃. After annealing at 1000 ℃ for 317 174 
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min, the soot sample burns out. 175 

Take the first derivative of the mass loss curve of soot in Fig. 2 to obtain Fig. 3. 176 

Fig. 3 shows separately the oxidation rates curve of soot samples in the atmospheres of 177 

air, NO and N2O. The maximum oxidation rates of soot in air, NO and N2O are 30, 1.4 178 

and 0.65 %/min, respectively. Comparable results were also reported by Esarte et al. 179 

[37] who compared the interaction of soot against O2 and NO at 1000 °C. The results 180 

showed that even if the initial concentration of oxygen (500 ppm) was lower than that 181 

of NO (2000 ppm), soot samples are more active towards O2 oxidation than towards 182 

NO oxidation. Combined with Fig. (2-3), it can be found that N2O not only has a low 183 

oxidation rate, but also takes longer to oxidize soot with the same quality. Therefore, 184 

the oxidation activity of soot in different atmospheres is air > NO > N2O, respectively. 185 

During the soot oxidation, the generation and transformation of functional groups 186 

coinciding occurs on soot surfaces. Furthermore, their types and contributions are 187 

mainly dependent upon the oxidation conditions [38, 39], and further reflecting the 188 

oxidation degree [40, 41]. According to Azhagapillai et al. [42], they found that several 189 

kinds of oxygenated functional groups (C = O, C-OH and C-O) were produced on the 190 

surface of graphite after being oxidized by air. Besides ,Wang et al. [43] also found that 191 

the concentration of aliphatic C-H, C-OH, and C-O groups on the surfaces of diesel 192 
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soots was related to the reaction atmosphere and soot oxidation degree. Moreover, the 193 

functional groups attached to soot surfaces show highly reactive edges, which provide 194 

reactive sites for the subsequent oxidation of soot particles [39, 43, 44]. Therefore, the 195 

scrutinization on the evolution of functional groups is also necessary to reveal the soot 196 

oxidation mechanism [39]. 197 
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Fig. 2. The soot mass loss curves for TGA analysis. 199 
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Fig. 3. DTG curves of the oxidation of the soot. Ads phase- adsorption-dominated phase, Oxi 201 

phase-oxidation-dominated phase. 202 

3.2 Oxygenated functional groups on soot surface 203 

The X-ray photoelectron spectroscopy was used to determine the oxygenated 204 

surface groups and carbon bonding states on the soot surfaces in different oxidation 205 

atmospheres (Air, NO and N2O).  206 
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Fig. 4. Typical XPS survey scans of the original soot. 208 

The XPS broad spectrum of original soot particles is shown in Fig. 4. It mainly 209 

consists of two peaks: O1s peak at ~533 eV and C1s peak at ~285 eV. The area ratio of 210 

these two peaks indicates the ratio of O and C atoms in soot particles [43, 44]. The O/C 211 

atomic ratio of soot particles is displayed in Fig. 5.  212 
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Fig. 5. O/C atomic ratios of soot particles at (a) Air, (b) NO and (c) N2O atmospheres. Ads phase- 214 

adsorption-dominated phase, Oxi phase- Oxidation-dominated phase. The error bars indicate the 215 

standard error. 216 

Under the Air and NO atmospheres, the O/C atomic ratio of soot shows a 217 

consistent increase with the evolution of programmed oxidation from 200 to 600 ℃. 218 

However, in N2O atmosphere, the O/C atomic drops at 200~400 ℃ and rises at 219 
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400~600 ℃. For NO and N2O, the O/C atomic ratio shows a decrease from 600 ℃ to 220 

800 ℃ whereas reversely rises at 1000 ℃. The variation in O/C atomic ratios 221 

corresponds to the adsorption and oxidation processes. At the air atmosphere, the soot 222 

oxidation is not yet apparent under 200~460 ℃, while the O/C atomic ratio in Fig. 5 223 

increased continuously, indicating that the adsorption on the soot surfaces is prevalence. 224 

Under 460~600 ℃, the drastic increase of O/C atomic ratio is coordinated with the 225 

sharp increase of oxidation rate. That is, the oxidation reactions may dominantly 226 

contribute to the rise of O/C ratio. The oxidation-induced increase of O/C atomic ratios 227 

was also found by Jeong et al. [45] who further concluded that the higher O/C ratio 228 

corresponded to a higher degree of oxidation. At the NO atmosphere, the mass loss of 229 

soot presents no obvious change at 200~700 ℃, and thus the increase in O/C atomic 230 

ratios here is mainly assigned to the adsorption of O atoms in NO on the active sites of 231 

soot surfaces [46]. When the temperature rises from 700 ℃ to 800 ℃, the O/C atomic 232 

ratio decreases in accordance with the moderate loss of soot mass. The O/C atomic ratio 233 

increases with the abruptly loss of soot mass from 800 ℃ to 1000 ℃. The increase of 234 

O/C ratio agrees well with the study of Leistner et al. [47]. During the reactions between 235 

diesel soot and NO at above 200 ℃, NO first adsorbed on the soot surface to form 236 

C*(NO) ( the C* may represent different types of activated carbon sites), and then 237 
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decomposed into C*(N) and C*(O), subsequently C*(N) was decomposed into N2. As 238 

stated by Suzuki et al. [48], NO reacts with soot above 600 ℃, consuming C*(O) to 239 

produce COx. This may be the reason for the decrease of O/C ratio. Yang et al. [49] 240 

found that the surface C(O) complex formed by NO adsorption on carbon black will 241 

only decompose above 600℃. It is suggested that NO firstly reacts with carbon to form 242 

C(O) and C(N) complexes. C(O) complexes decompose leading CO emission and 243 

traces amount of CO2. The statement may be a plausible factor for the reduction of O/C 244 

ratio during the Oxi phase. At the N2O atmosphere, during the heating process of 245 

200~900 ℃, the change of O/C atomic ratio is solely attributed to the adsorption 246 

processes, according to the insignificant mass loss of soot samples. The poor thermo-247 

dynamical stability of N2O adsorption [50] may be responsible for the non-monotonic 248 

evolution of O/C ratio at this Ads phase. The oxidation process began to occupy a 249 

dominant position at 900~1000 ℃, and the O/C atomic ratio increases rapidly at the 250 

same time. 251 

The higher the oxidation degree of soot, the more orderly the soot structure and 252 

less sites available for the further adsorption and/or oxidation reactions. The sp2 and sp3 253 

hybridized carbon atoms are integral to the overall soot nanostructure [39], and a large 254 

sp2/sp3 hybridization ratio corresponds to a more ordered structure [51]. In the process 255 
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of soot oxidation, the existence of oxygenated functional groups provides quantities of 256 

reactive sites for soot oxidation [39, 43, 44]. Moreover, surface functional groups are 257 

most likely to associate with sp2
 and sp3 carbon atoms located at the lamella edge and 258 

interstitial sites [52]. Therefore, in order to better understand the adsorption and 259 

oxidation mechanisms on soot surfaces, it is integral to gain insights into the sp2/sp3 260 

hybridization ratio of C atoms and functional groups [43].  261 

The sp2/sp3 hybridization ratio of C atom and the relative content of oxygenated 262 

functional groups are derived from the high-resolution narrow spectrum of C1s after 263 

deducting the background (Shirley). Due to the distinctly lower content of O than C 264 

elements, it may be not very precise for the quantification of oxygenated functional 265 

groups derived from C1s peaks. Fortunately, O1s peak can also provide important clues 266 

about the evolution of oxygenated functional groups after oxidation [53]. Therefore, the 267 

O1s peaks were also deconvolved to obtain the amount of these groups. The peak 268 

assignments for C1s and O1s peaks are respectively listed in Tabs. 1 and 2, and the 269 

fitting method is accordance with Fan et al. [53] and Simth et al. [54]. Typical C1s and 270 

O1s spectra of the original soot are shown in Fig. 6. 271 

Tab. 1 272 

Band assignment of XPS narrow scan for soot particle samples from C1s 273 

Peak BE(eV) FWHM(eV) References 

sp2 284.3-284.8 1.2-2 [53, 55] 
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sp3 285.0-285.6 1.2-2 [53, 55] 

C-O groups in epoxy and/or C-OH 

/or C-N 

286-286.6 1.2-2.2 [52, 55] 

C=O groups in carbonyls  287-288.5 1.2-2.2 [55, 56] 

O-C=O in carboxylic acid and ester 

groups 

289-289.2 1.2-2.2 [55, 56] 

Tab. 2 274 

Band assignment of XPS narrow scan for soot particle samples from O1s. 275 

Peak BE(eV) FWHM(eV) References 

C=O in quinone, carbonyl and/or 

carboxylic acid 

530-532 1.2-2 [56, 57] 

C-O in ether /C-OH  532.4-533.4 1.2-2.2 [56, 57] 

COOH in carboxyl  533.4-534 1.2-2.2 [56, 57] 

N-O 534-534.1 1.2-2.2 [56, 57] 

 276 
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Fig. 6. Typical C1s (a) and O1s (b) spectra of the original soot. 278 
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Fig. 7. Sp2/sp3 ratios of soot particles at (a) Air, (b) NO and (c) N2O atmospheres. Ads 280 

phase- adsorption-dominated phase, Oxi phase- Oxidation-dominated phase. The error bars 281 

indicate the standard error. 282 

Sp2 and sp3
 hybridization are the primary chemical state of carbon in soot, and the 283 

quantity and spatial relationship of carbon atoms in these two states are intimately 284 

associated with the oxidation of soot. Fig. 7 plots the sp2/sp3 hybridization ratios as 285 

functions of oxidation temperature. At the air, NO and N2O atmosphere, soot particles 286 



21 
 

present significant difference in the evolution of sp2/sp3 ratio, with the increase, 287 

increase-then-decrease, and decrease-then-increase trends, respectively, during the Ads 288 

phases. During the Oxi phase, the soot particles show consistently reduction in the 289 

sp2/sp3 ratio for the three atmospheres. The sp2 hybridized carbons refer to ordered 290 

carbon in the lamellae, and the sp3 hybridized carbons correspond to those at the defect 291 

sites that disturbs the sp2 hybrid network [44, 51]. As a result, a higher sp2/sp3 292 

hybridization ratio corresponds to the structure with less defects. A similar finding was 293 

reported by Gaddam et al. [58], who pointed out that the oxidation of the model carbon 294 

led to a slight decrease in the sp2/sp3 ratio from 460 ℃ to 600 ℃ .  295 

Most of the O atoms are found within oxygenated functional groups that are 296 

chemically bonded to the soot surface, and their migration is related to the adsorption 297 

and oxidation on soot surfaces [59, 60].  298 
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Fig. 8. The original spectral data of XPS measurements. 300 
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Fig. 9. Relative concentrations of oxygenated functional groups in C 1s for soot particles. 303 

The error bars indicate the standard error. 304 
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Fig. 10. Relative concentrations of oxygenated functional groups in O1s for soot particles. 306 

The error bars indicate the standard error. 307 

Fig. 8 plots the original spectral data of XPS measurements. The content of 308 

oxygenated functional groups, as deconvolved from the C1s and O1s peaks, are 309 

illustrated in Figs. 9 and 10. The content of C-O groups in NO and N2O is larger than 310 

that in air, meaning that C-O groups probably play a certain role in the reactions of NOx 311 

with soot. This mechanism has been enhanced by Yan et al. [60], they found that the 312 

enrichment of C-O species could promote the oxidation of coal char. During the Ads 313 

phases, the C-O (in epoxies) shows an increase for air atmosphere but consistent 314 

reduce-then-rise for the NO and N2O atmospheres. Due to the adsorption of O on the 315 

surface of soot, a large amount of C(O) is produced [60], causing the accumulation of 316 
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C-O in the air atmosphere. The equation is gained for as follows [47, 61]. 317 

C* + 1/2O2 → C*(O)         (1) 318 

C* + NO→ C*(N) + C*(O)     (2) 319 

C* + N2O → N2 + C(O)        (3) 320 

 The adsorption mechanism of NO on activated carbon had been studied by 321 

Wang et al. [62] , the C-O-NO was one of the products in the NO oxidation process[62]. 322 

The adsorption process of NOx is also accompanied by the cracking and desorption of 323 

NOx [63], O produced by NOx cracking consumes C-O that may cause the decrease of 324 

C-O groups in the initial period of Ads phase [47, 60, 61]. The enhancement of the NOx 325 

adsorption gradually increases the C-O groups as the adsorption process evolves at the 326 

NO and N2O atmospheres [47, 49, 64]. During the Oxi phases, the C-O (in epoxies) 327 

reduces for both air and NO conditions [47, 60], whereas increases under the N2O 328 

atmosphere [61, 64]. The increase of temperature accelerates the change of oxygenated 329 

functional groups, and C-O is gradually consumed in the oxidation process, while C=O 330 

and O=C-O are gradually increased as oxidation products in the air atmosphere [65]. It 331 

is obvious that in these three atmospheres, the change of C=O (in carbonyls) and O=C-332 

O (in carboxylic and esters) are synchronous, both of which are opposite to C-O groups 333 

as the Ads and Oxi phase proceeds for all the three atmospheres. This inconsistence may 334 
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be responsible from the oxidation reactions, according to the conclusion drawn in [66], 335 

epoxy groups are the dominant species at the low oxidation stage, and ethers and 336 

carbonyls form as oxidation proceeds. 337 

From O1s peaks, it is observed that at the air and NO conditions, the C-O bonds 338 

(in ethers) on soot surfaces show consistent decrease during the Ads phases for air and 339 

NO conditions, whereas decrease-then-increase for the N2O atmosphere. It is 340 

noteworthy that the N-O varies in the same trends with the C-O bonds (in ethers) during 341 

the Ads phases. This finding also proves the generation of C-O-N=O resulting from the 342 

NOx adsorption [62]. During the Oxi phases, the C-O species (in ethers) exhibit general 343 

increase as the soot oxidation proceeds at the air and NO atmospheres but decrease at 344 

the N2O atmosphere. Wang et al. [62] found that NO adsorbed on the surface of carbon 345 

materials would react with C=O and COOH to form C-O and N-O [62]. In addition, it 346 

can be observed that N-O is relatively stable in air conditions, but it changes obviously 347 

in NO and N2O, suggesting that the N-O species may participate in the oxidation 348 

reactions between soot and NOx. Zhu et al. [50] studied the adsorption mode of NO and 349 

N2O, and found that they can react with the adsorption product C(N) and produce N2 350 

[49, 60, 61], but it was not observed that C(N) was consumed by O2.  351 

3.3 Soot bulk chemistry 352 
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As a surface analysis method, XPS provides the content and form of elements on 353 

the surface of the sample, rather than the overall composition of the sample [59]. It is 354 

quite different from that of the bulk phase, so there is often a difference between XPS 355 

and FT-IR, and the latter gives the information of bulk properties [67, 68]. In this study, 356 

the FT-IR spectra obtained at each case was normalized relative to the band intensity 357 

at~1620 cm-1 (aromatic C=C stretching vibration) to eliminate the influence of sample 358 

size on the band intensity [67, 69]. The peak assignments are demonstrated in Fig. 10. 359 

The FT-IR spectra of all soot particles possess similar contribution of peak positions, 360 

suggesting the similar functional group types within the soot samples [69]. Meanwhile, 361 

the samples show significant differences in peak intensity and profiles. Therefore, the 362 

FT-IR spectra were deconvoluted using Gaussian function for further quantity of the 363 

functional groups [67].  364 

The most intensive absorption is detected at 3300~3650 cm-1, corresponding to the 365 

stretching vibration of -OH groups [67, 69] that probably comes from carboxyls and 366 

phenols produced during soot oxidation [39, 43]. However, these peaks are easily 367 

interfered by the -OH within water molecules in lab atmosphere [39], so it is difficult 368 

to determine whether it arises from those bound by soot surfaces. Therefore, the peaks 369 

in this range are not analyzed in this paper. The peaks at 2975, 2925 and 2860 cm-1 are 370 
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assigned to aliphatic C-H functional groups [43, 44]. The band for C=O (coming from 371 

ketones, esters, anhydrides and lactones) is present near 1650~1860 cm−1 [39, 70]. The 372 

infrared absorption peak near ~1620cm-1 is the vibration peak of aromatic C=C [43, 44, 373 

71]. The region between 1000 and 1300 cm−1 is a complex part of the spectra, where 374 

signals corresponding to aromatic C–C and C–H plane deformation structures may be 375 

overlapped with the signal corresponding to the stretching of C–O bands for carboxylic, 376 

anhydrides, esters and ether-like groups [39, 54, 70].  377 
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Fig. 11. Deconvolution of the typical FT-IR spectra and the peak assignment. 379 

The peak area ratio (termed as Ax/AC=C) of functional groups to aromatic group 380 

C=C can represent the concentration of functional groups [72]. Hereby, Aali-C–H/AC=C 381 

represents the concentration of aliphatic C–H groups relative to the aromatic C=C 382 
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species. These aliphatic C-H functional groups are usually linked to the surface of 383 

aromatic rings of PAHs in the form of aliphatic chain structures or saturated rings or 384 

play a bridge role between different PAHs [73]. Nevertheless, aromatic C=C is on the 385 

benzene ring, and the benzene ring is relatively stable, so it is tough to be substituted 386 

and broken [71]. Hence, the dehydrogenation process of aliphatic C-H functional group 387 

requires lower activation energy [43], which will increase the surface active sites of 388 

soot particles and improve their oxidation activity [43, 53]. Evolutions of functional 389 

groups are involved in their adsorption and oxidation reactions on soot surfaces [49]. 390 

That is, the adsorption, migration, desorption and oxidation at different positions on the 391 

surface of soot [43, 74] may cause the transformation of aromatic C=C and aliphatic 392 

C–H groups. Fig. 12 displays the variation in the ratio of AX/AC=C of soot obtained under 393 

different reaction conditions. At the air, NO and N2O atmosphere, soot particles present 394 

significant difference in the evolution of Aali C–H/AC=C ratio, with the respectively 395 

decrease, increase-then-decrease, and decrease trends, respectively, during the Ads 396 

phases. During the Oxi phases, the Aali C–H/AC=C reduces for both air and N2O conditions, 397 

whereas increases under the NO atmosphere. Specifically, it can be observed that the 398 

Aali C–H/AC=C of air and N2O is decreased in the whole adsorption and oxidation stage, 399 

which may indicate that O in air and N2O are more likely to replace H atoms on methyl 400 
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or methylene groups. Similar to the work of Zheng et al. [75], some functional groups, 401 

such as -CH3/-CH2, were consumed during the reaction between coal samples and 402 

oxygen molecules, which increased the concentration of functional groups such as C-403 

O and C-C. Additionally, Xin et al. [76] found that the ratio of C-H/C=C showed a 404 

downward trend in the process of soot oxidation by air. This shows that during the 405 

oxidation process, aliphatic C-H is constantly bound by oxidants to ensure 406 

dehydrogenation and carbonization on the surface of soot. However, the Aali-C–H /AC=C 407 

increased in NO atmosphere, which may be related to the breakage of C=C owing to 408 

the active site on benzene ring replaced by NO. This phenomenon has also been 409 

described in detail by Raj et al. [23], who found that the adsorption of NO would cause 410 

the C=C fracture of benzene ring on soot using density functional theory and transition 411 

state theory.  412 

The content of C=O (in carbonyls) shows a decrease for air and N2O atmosphere, 413 

during the Ads and Oxi phases. However, it shows rise-then-reduce during the Ads phases 414 

and rise during the Oxi phases under NO atmosphere. This evolution is inconsistent with 415 

that for C=O in carbonyls obtained by XPS, which may mean that internal and surface 416 

oxidation may exist simultaneously. During the Ads phases for air, NO and N2O 417 

conditions, the content of C-O (in carboxylic) shows increase, decrease and increase-418 
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then-decrease, respectively. On the counterpart, the content of C-O (in carboxylic) all 419 

shows increase during the Oxi phases. Although the variation of O=C-O groups (in 420 

carboxylic and esters) is also observed from the XPS results, the prevalent role of C-O 421 

(in carboxylic) in FT-IR results probably indicate that the contribution of C-O from 422 

carboxyl group is dominating rather than esters in the adsorption and oxidation 423 

processes of O2, NO and N2O. 424 
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Fig. 12 Peak area ratio of aliphatic C-H, C=O and C-O groups to aromatic C=C group 426 
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derived from FT-IR spectrum of soot samples in air, NO and N2O atmospheres. The error bars 427 

indicate the standard error. 428 

4. Conclusion 429 

To figure out the adsorption and oxidation mechanism of NOx on soot, the surface 430 

chemical properties of soot before and after exposure to air, NO and N2O were studied 431 

by TGA, XPS and FT-IR. The main findings are summarized as follows:  432 

(1) The soot oxidation in air condition possesses highest activity, followed by NO 433 

and N2O.  434 

(2) During the adsorption and oxidation processes, the increase of C=O and O=C-435 

O is accompanied by the decrease of C-O. Among them, the content of C-O groups in 436 

NOx is higher. Meanwhile, the N-O decreases with the adsorption of NO and N2O but 437 

increases during the oxidation phases. Conversely, the content of N-O groups keeps 438 

stable in air during both adsorption and oxidation processes.  439 

(3) According to the different evolutions of aliphatic C-H/aromatic C=C, O atoms 440 

in air and N2O may be more likely to replace H atom on methyl or methylene, while 441 

NO can not only attack C-H but also be prone to break C=C on benzene ring.  442 

Investigating the interaction between NOx and soot not only enhances the 443 

understanding of NH3/hydrocarbon co-combustion mechanisms but also offers a 444 

comprehensive theoretical foundation for the simultaneous control of soot and NOx 445 
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emissions from NH3/hydrocarbon combustion systems. Future research should focus 446 

on exploring how this interaction influences the conversion processes of soot and NOx 447 

in aftertreatment devices, such as selective catalytic reduction (SCR) and diesel 448 

particulate filter (DPF) systems. Such studies are essential for effectively managing the 449 

final emissions from commercial NH3/hydrocarbon-powered engines.  450 
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