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Abstract
Background  Findings from previous gastric cancer microbiome studies have been conflicting, potentially due to patient 
and/or tumor heterogeneity. The intratumoral gastric cancer microbiome and its relationship with clinicopathological vari-
ables have not yet been characterized in detail. We hypothesized that variation in gastric cancer microbial abundance, alpha 
diversity, and composition is related to clinicopathological characteristics.
Methods  Metagenomic analysis of 529 GC samples was performed, including whole exome sequencing data from The Can-
cer Genome Atlas (TCGA) and whole genome sequencing data from the 100,000 Genomes Project. Microbial abundance, 
alpha diversity, and composition were compared across patient age, sex, tumor location, geographic origin, pathological 
depth of invasion, pathological lymph node status, histological phenotype, microsatellite instability status, and TCGA 
molecular subtype.
Results  Gastric cancer microbiomes resembled previous results, with Prevotella, Selenomonas, Stomatobaculum, Strep-
tococcus, Lactobacillus, and Lachnospiraceae commonly seen across both cohorts. Within the TCGA cohort, microbial 
abundance and alpha diversity were greater in gastric cancers with microsatellite instability, lower pathological depth of 
invasion, intestinal-type histology, and those originating from Asia. Microsatellite instability status was associated with 
microbiome composition in both cohorts. Sex and pathological depth of invasion were associated with microbiome com-
position in the TCGA cohort.
Conclusion  The intratumoral gastric cancer microbiome appears to differ according to clinicopathological factors. Certain 
clinicopathological factors associated with favourable outcomes in gastric cancer were observed to be associated with greater 
microbial abundance and diversity. This highlights the need for further work to understand the underlying biological mecha-
nisms behind the observed microbiome differences and their potential clinical and therapeutic impact.
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Introduction

Gastric cancer (GC) is the fifth most common cancer glob-
ally and the fifth most common cause of cancer death world-
wide. In  2022, there were over 960,000 new cases and 
660,175 deaths attributable to GC [1]. Helicobacter pylori 
(H. pylori) infection is known to increase the risk of devel-
oping GC in some individuals and is the only bacterium 
identified as an International Agency for Research on Cancer 
(IARC) class one carcinogen [2, 3]. Increased availability 
and reduced cost of microbial sequencing has progressed 
GC microbiome research beyond focusing on single micro-
organisms towards analysis of whole microbiomes of GC 
patient cohorts.

Recent studies suggest a lower intratumoral microbial 
alpha (within sample) diversity in patients with GC, 
compared to the mucosa of patients with GC precancerous 
conditions [4–7] or healthy controls [8]. Comparisons 
of alpha diversity of matched tumor and adjacent tissue 
suggested increased diversity in GC relative to adjacent 
tissue, possibly related to the reduced abundance of H. pylori 
in established GC [9–11]. Several studies have compared 
the GC microbiome composition to the microbiome of 
normal mucosa or precursor lesions [4–6, 8, 12–14]. The 
overlap in taxa found more commonly in GC between 
studies is relatively small. There is, therefore, currently no 
consensus dysbiotic microbiome associated with GC. GC 
is a heterogenous disease, with variation in incidence and 
patient outcomes according to geographical origin, sex, 
histology, and molecular phenotype [1, 15–18]. However, 
the contribution of different patient and tumor characteristics 
to this variation is not known and microbiome research 
has largely considered GC as a single disease. A better 
understanding of the potential relationship between patient- 
and tumor-specific characteristics and the GC microbiome 
is needed.

In metagenomic approaches, non-human reads are aligned 
to microbial databases. This approach allows the analysis 
of large patient populations from sequencing databases, 
such as The Cancer Genome Atlas (TCGA) [19]. Whole 
metagenome analysis has the advantage of enabling higher 
level taxonomic identification to species or even subspecies 
level than 16S ribosomal RNA sequencing, and deeper 
microbial coverage than whole exome sequencing.

One rarely considered factor in microbiome analyses, 
including but not limited to metagenomic analyses, is 
contaminating microbial DNA related to the material 
sampling process or the laboratory environment [20–24]. 
Contamination may distort results and its effect has been 
shown to be exaggerated in studies of low microbial biomass 
[25, 26]. Most GC microbiome studies, so far, have not 
included an in silico decontamination processes; this may 

have contributed to the previously reported conflicting 
results.

The relationship between the microbiome and selected 
clinicopathological factors has been explored in a small 
number of studies [11, 27–29]. These studies have 
predominantly focused on patients from Asia and have not 
included thorough decontamination processes.

We hypothesized that GC microbial abundance, 
alpha diversity, and composition vary according to 
clinicopathological characteristics. We aimed to characterize 
the microbiome of GC and explore relationships between 
the microbiome and clinicopathological features using 
sequencing data and accompanying clinicopathological data 
from GC from the 100,000 Genomes Project and TCGA, 
incorporating a custom in silico decontamination process. 
Through identification of patient- and tumor-specific factors 
associated with differences in the GC microbiome, we aimed 
to better understand the role of the microbiome in this 
heterogenous disease.

Methods

Genomes Project data acquisition

Whole genome sequencing data of fresh frozen primary 
gastric adenocarcinoma and matched blood samples, plus 
clinical metadata from the 100,000 Genomes Project 
were accessed within the Genomics England Research 
Environment [30]. All analyses of Genomics England data 
were performed within the Genomics England Research 
Environment.

TCGA data acquisition

Exome sequencing data of fresh frozen primary gastric 
adenocarcinoma and matched blood samples plus virtual 
slide images from the TCGA stomach adenocarcinoma 
project were obtained from the National Institute of Health 
National Cancer Institute Genomic Data Commons Data 
Portal [31]. Basic clinical characteristics were obtained 
from the University of California Xena TCGA hub, (https://​
tcga.​xenah​ubs.​net) and Liu et al. [32]. TCGA GC molecular 
subtype data were obtained from the TCGA Research 
Network [19]. For the majority of cases, Lauren histological 
classification was publicly available [33]; for cases where 
Lauren classification was not available, the classification 
was provided by a gastrointestinal histopathologist after 
reviewing the slide images. All CIBERSORT [34] immune 
cellular fraction estimates and immune subtypes were 
obtained from Thorsson [35]. Estimates of six pre-selected 
immune cells (lymphocytes, neutrophils, macrophages, 

https://tcga.xenahubs.net
https://tcga.xenahubs.net
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dendritic cells, eosinophils, and mast cells) and immune 
subtypes were analysed in exploratory analyses.

Microsatellite instability (MSI) status and TCGA 
molecular subtypes

For the TCGA cohort, MSI status was obtained from 
previously published data [36]. In the present study, MSI-
low cases were grouped with microsatellite stable (MSS) 
cases, since MSS and MSI-low were previously reported to 
be similar with respect to mutations per Mb (mut/Mb) [37]. 
The TCGA molecular subtype of the TCGA GC cohort was 
obtained from the TCGA Research Network classifications 
[19].

Since MSI status and TCGA molecular subtype data were 
not available for the 100,000 Genomes Project cohort, MSI 
status and TCGA molecular subtype were inferred. MSI 
status was inferred using the number of somatic coding 
variants (SCV) per sample. Epstein-Barr Virus (EBV) status 
was determined using sequencing count (virions per human 
cell), and DNA ploidy was obtained from metadata tables. 
The TCGA subtype was subsequently inferred, based upon 
Bass et al. [38]. See Online Resource data for flowchart and 
thresholds used to infer TCGA subtype.

Metagenomic profiling

Microbiome data were generated from sequencing data using 
the GATK PathSeq algorithm, aligned against the default 
PathSeq microbial databases [39]. The PathSeq ‘score’ 
output was used for microbial sequencing reads, except for 
the decontamination steps where unambiguously mapping 
reads were used.

Decontamination

A modified version of the methodology described by 
Dohlman [26] was used for in silico decontamination. 
Prevalence was defined as at least two unambiguously 
mapping reads per taxa per sample. For each species, blood 
prevalence was compared to tissue prevalence in both the 
100,000 Genomes Project and TCGA cohorts. One sided 
Fisher’s exact test was performed for each species-specific 
comparison, using a significance threshold of q<0·05. 
An include-list was created from species more prevalent 
in tissue than in blood (q<0·05) in the 100,000 Genomes 
Project or TCGA, where blood prevalence was <20% of 
samples in both cohorts. For all species with q values ≥0·05 
and <0·4 from the TCGA cohort, the literature was reviewed 
and species identified as inhabitants of the digestive or 
respiratory tracts were manually added to the include-list. 
In addition, EBV was manually added to the include-list. 

Decontaminated datasets for both cohorts for downstream 
analysis were created by filtering the genus and species 
reads to include only species present on the include-list. All 
downstream analysis used only the decontaminated datasets.

Statistical analyses

Analyses were conducted in R [40] within RStudio [41], 
using stringr [42], dplyr[43], qvalue [44], and vegan [45] 
packages. Due to differences in sequencing methodologies 
and availability of metadata between the two cohorts, 
analyses were performed in either one or both cohorts 
depending on data availability and similarities across.

Clinicopathological variables used in analyses included: 
age, sex, tumor location, geographical origin, pathological 
depth of invasion (pT), pathological lymph node status (pN), 
histological phenotype, MSI status, and TCGA molecular 
subtype.

To evaluate abundance, total microbial count was 
calculated for each sample. Within the 100,000 Genomes 
Project cohort, microbial abundance was represented by 
microbes per human cell and was calculated using the 
following formula:

microbesperhumancell =
(microbialreads÷microbialgenomesize)

(humanreads÷humangenomesize)
  , 

after adjustment of the human genome size for DNA ploidy 
and tumor cell content. Within the TCGA cohort, microbial 
abundance represented the sum of microbial sequencing 
reads. No adjustment for human genome size was made 
using the TCGA data, since data were derived from exome 
reads and therefore human reads were not representative of 
the whole genome due to overrepresentation of exons 
(relative to intergenic regions).

Shannon index [46] was calculated for each sample as a 
measure of alpha diversity. Wilcoxon and Kruskal–Wallis 
tests were applied for comparisons of categorical variables. 
Spearman’s rank correlation coefficient was calculated for 
correlation analyses. Permutational multivariate analysis 
of variance (PERMANOVA, Adonis), using Bray-Curtis 
dissimilarity index, [47] was used to analyze beta diver-
sity in species between subgroups. The PERMANOVA 
analysis considered clinicopathological variables with over 
85% completeness. To avoid overlapping variables, TCGA 
molecular subtype was not included since it is a compos-
ite variable which includes MSI status, which was already 
included in PERMANOVA analysis. Samples with no taxa 
were removed prior to PERMANOVA analysis. Variables 
significant at beta diversity PERMANOVA analysis were 
included in analysis of differential abundance according to 
clinicopathological variables. Multivariable Association 
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Table 1   Clinicopathological 
characteristics of samples used 
within this study, from 100,000 
Genomes Project and TCGA 
cohorts

CIN, chromosomal instability; EBV, Epstein-Barr virus-positive; GS, genomically stable; MSI, 
microsatellite instability; MSS, microsatellite stabile; n, number
* Inferred as described in methods
† Immune subtype according to Thorsson et al. available for TCGA cohort only

Characteristic 100,000 Genomes Project – gastro-oesophageal 
cancer 
total n = 89
n (%)

TCGA – 
gastric cancer 
total n = 440
n (%)

Age, median (interquartile range) 69 (62-77) 67 (58-73)
Unknown 0 (0) 5 (1)
Sex
Male 69 (78) 283 (64)
Female 20 (23) 157 (36)
Tumor location
Cardia 27 (30) 90 (20)
Non-cardia 44 (49) 280 (64)
Unknown 18 (20) 70 (16)
Geographic origin
Asia 0 (0) 69 (15)
Not Asia 89 (100) 314 (71)
Unknown 0 (0) 57 (13)
Pathological depth of invasion (pT)
1 8 (9) 23 (5)
2 11 (12) 93 (21)
3 32 (36) 198 (45)
4 29 (33) 117 (27)
Unknown 9 (10) 9 (2)
Pathological lymph node status (pN)
0 20 (23) 131 (30)
1 25 (28) 117 (27)
2 22 (25) 86 (20)
3 13 (15) 88 (20)
Unknown 9 (10) 18 (4)
Histological phenotype
Diffuse 10 (11) 76 (17)
Intestinal 23 (26) 278 (63)
Mixed 2 (2) 21 (4)
Mucinous 0 (0) 19 (4)
Unknown 54 (61) 46 (10)
MSI status
MSS 81(91)* 308 (70)
MSI 8(9)* 75 (17)
Unknown 0 (0) 57 (13)
TCGA subgroup
EBV 3 (3)* 26 (6)
MSl 8 (9)* 64 (15)
CIN 35 (39)* 145 (33)
GS 43 (48)* 58 (13)
Unknown 0 (0)* 147 (33)
Immune subtype†

C1 0 (0) 129 (31)
C2 0 (0) 209 (51)
C3 0 (0) 35 (9)
C4 0 (0) 9 (2)
C5 0 (0) 0 (0)
C6 0 (0) 7 (2)
Unknown 89 (100) 51 (12)
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Discovery in Population-scale Meta-omics Studies (MaAs-
Lin2) [48] was used to perform differential abundance 
analyses.

Results

Eighty nine tumor samples from patients with gastric or 
gastro-oesophageal junction adenocarcinoma (GC) were 
identified in the 100,000 Genomes Project database. All 
89 GC samples had whole genome sequencing data for 
tumor and blood which were used to generate microbial 
sequencing data. TCGA microbial sequencing data were 
generated from whole exome sequencing data from 441 
tumor samples and 396 matched blood samples from 
the TCGA GC cohort. Histological review of available 
slides from the TCGA GC cohort identified one sample 
as squamous cell carcinoma, therefore, this case was 
removed from subsequent analysis. The distribution of 
clinicopathological features within both the 100,000 
Genomes Project and TCGA cohorts can be found in 
Table 1.

MSI status and TCGA molecular subtypes

MSI status was available for 383 (87%) TCGA GC from 
previously published data [36]. MSI data were not directly 
available for the 100,000 Genomes Project data and an 
inferred MSI status was used for analysis (Online Resource 
Figure 1): samples where SCV ≥20 mut/Mb were inferred 
as MSI; samples where SCV <20 mut/Mb were inferred 
as MSS.

TCGA molecular subtype status was available for 
293/440 (67%) GC from the TCGA cohort. Within the 
100,000 Genomes Project, thresholds used to determine 
inferred TCGA molecular subtype were: EBV count 
1x10−3 per human cell; SCV 20mut/Mb; and DNA ploidy 
2·5 (Online Resource Figure  1). The distribution of 
samples according to inferred MSI and TCGA molecular 
subtype is shown in Table 1.

Decontamination

Prior to decontamination, 5261 species from 946 genera 
were present across at least one sample from samples of 
the 100,000 Genomes Project cohort; 1491 species from 

Fig. 1   Overview of the decon-
tamination process. Flow chart 
to demonstrate categorisation of 
species into the study include- 
or exclude-lists, using both 
100,000 Genomes Project and 
TCGA species-level data. The 
numbers in the final include- 
and exclude-lists total less than 
the species upstream, as some 
species were prevalent within 
both datasets. EBV, Epstein-
Barr Virus; TCGA​, The Cancer 
Genome Atlas



	 M. E. Booth et al.



The relationship between the gastric cancer microbiome and clinicopathological factors:…

374 genera were prevalent across at least one sample from 
the TCGA cohort. 480 species were identified as tissue-
resident from the 100,000 Genomes Project cohort and 
106 species (comprising of 56 species where q<0·05 and 
additional 50 species where q<0·4 and identified as inhab-
itants of digestive or respiratory tracts) were identified as 
tissue-resident from TCGA cohort. None of the species 
identified as tissue-resident from only one cohort had a 
blood prevalence ≥20% in either cohort. EBV was not sta-
tistically assigned to either list due to its low prevalence 
in the 100,000 Genomes Project cohort (4/89 tumor sam-
ples; 0/89 blood samples) and absence within the TCGA 
cohort (0/441 tumor samples; 0/396 blood samples) and 
was manually added to the include-list. The final include-
list consisted of 496 species from 105 genera. Figure 1 
illustrates the decontamination process performed to gen-
erate the species include-list.

The decontaminated datasets represented 53 and 
78% of the original microbial content for the 100,000 
Genomes Project and TCGA, respectively. For the TCGA 
cohort, 135/440 (31%) of samples had no taxa after the 
decontamination process, whereas all 100,000 Genomes 
Project samples had taxa remaining after decontamination.

Taxonomic composition

Following decontamination, six genera (Prevotella, 
Selenomonas,  Stomatobaculum, Streptococcus, 
Lactobacillus, and Lachnospiraceae) were found to be in 
the 10 top abundant genera in both cohorts. Two species 
(Stomatobaculum longum and Lachnospiraceae bacterium 
oral taxon 082) were common to the 10 top abundant species 
within the two cohorts. Many samples from the TCGA 
cohort had no or very low microbial abundance following the 
decontamination process. There was considerable variation 
in microbial composition within both cohorts. Heatmaps for 
the most abundant genera and species are shown in Online 
Resource Figures 3 and 4.

Abundance and alpha diversity

Within the 100,000 Genomes Project cohort, no statistically 
significant relationships were identified between the 
analysed clinicopathological variables and either microbial 

abundance or Shannon index. However, when the inferred 
MSI status of the 100,000 Genomes Project GC cohort was 
examined in relation to microbial abundance, MSI samples 
tended to have greater microbial abundance than MSS 
samples (p = 0·061). However, no relationship was identified 
between MSI status and Shannon index.

In the TCGA cohort, MSI GC was associated with greater 
microbial abundance (p = 0·001) and Shannon index (p = 
0·001) than MSS GC (Fig. 2a). Within the TCGA cohort, 
TCGA molecular subtype was associated with microbial 
abundance (p < 0·001) and Shannon index (p < 0·001). The 
boxplots (Fig. 2b) demonstrate highest microbial abundance 
and Shannon index in the MSI subtype, and lowest abun-
dance and Shannon index in the genomically stable subtype. 
Within the TCGA cohort, lower pT category (pT1 and pT2) 
was associated with both, greater microbial abundance (p 
= 0·004), and greater Shannon index (p < 0·001) (Fig. 2c). 
GC from Asia had lower microbial abundance (p = 0·03) 
and lower Shannon index (p = 0·04) than samples not from 
Asia (Fig. 2d). Histological phenotype was associated with 
microbial abundance (p = 0·02) and Shannon index (p = 
0·04) whereby mucinous GC and intestinal-type GC had 
greater microbial abundance than diffuse-type GC (Fig. 2e).

Sex, age, tumor location (cardia versus non-cardia), and 
pN category were not related to microbial abundance or 
Shannon index in either cohort.

Immune cellular fraction estimates and immune subtypes 
data generated from CIBERSORT [34] were available for 
389/440 (88%) TCGA GC. Estimates of six immune cell 
types (lymphocytes, neutrophils, macrophages, dendritic 
cells, eosinophils, and mast cells) were plotted against 
both total microbial count and Shannon index. No notable 
relationships were identified between any of the six immune 
cell types and either abundance or Shannon index. Immune 
subtype (C1–C6, according to Thorsson et al.) [35], was 
associated with a statistically significant difference in both 
microbial abundance (p = 0·007) and Shannon index (p < 
0·001). The boxplots (Fig. 2f) demonstrate highest microbial 
abundance and Shannon index in samples belonging to the 
C4 and C6 subtype, although these only represented 4% of 
analyzed samples.

Beta diversity

The PERMANOVA analyses considered variables with over 
85% completeness, in a pre-defined order of: geographi-
cal origin (TCGA only), age, sex, histological phenotype 
(TCGA only), MSI status, pT category, and pN category. 
Removal of samples with missing variables (both cohorts) 
and no taxa (TCGA only), resulted in 80 samples from the 
100,000 Genomes Project and 240 samples from TCGA, 
available for PERMANOVA analysis. The analysis indicated 

Fig. 2   Boxplots of microbial abundance and Shannon index of TCGA 
samples according to a MSI status n = 383, b TCGA subtype, n = 
293, c pathological depth of invasion (pT), n = 431, d geography, n 
= 383, e histological subtype, and f immune subtype. CIN, chromo-
somal instability; EBV, Epstein-Barr virus-positive; GS, genomically 
stable; MSI, microsatellite instability; MSS, microsatellite stable. p 
values represent Wilcoxon and Kruskal–Wallis statistics for compari-
sons of two variables and more than two variables, respectively

◂
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an association between MSI status and microbial composi-
tion within both cohorts. In addition, sex and pT category 
were associated with differences in microbial composition 
within the TCGA cohort (Table 2).

In the 100,000 Genomes Project cohort, MaAsLin2 anal-
ysis detected 12 species and six genera with statistically sig-
nificant differential abundance between inferred MSI and 
MSS inferred subtypes. Figure 3 shows such differential 
abundances at genus level.

In the TCGA cohort, MaAsLin2 analysis identified 45 
species and 12 genera differentially abundant across sex, 
MSI status and pT category. Differences at genus level are 
shown in Fig. 4. All differentially abundant taxa according 
to sex were found more commonly in males than in females. 

All differentially abundant taxa according to pT category 
were found more commonly in pT1/pT2 GC compared to 
pT3/pT4 GC, except for the Micrococcus genus and Mic-
rococcus aloeverae species, which were found in greater 
abundance in pT3/pT4 GC. All differentially abundant taxa 
according to MSI status were found more commonly in 
MSI GC compared to MSS GC, except for the Neisseria 
genus, which was found in greater abundance in MSS GC. 
Of note, none of the species or genera identified as differen-
tially abundant according to MSI status within the 100,000 
Genomes Project were differentially abundant according to 
MSI status on multivariate analysis in the TCGA cohort.

Discussion

We explored the relationship between patient- and tumor- 
specific factors and the GC microbiome. Here, we present 
the results from an exploratory study of the intratumoral 
GC microbiome in a total of 529 GC patients, analyzing 
whole genome sequencing data from the 100,000 Genomes 
Project and whole exome sequencing data from TCGA. 
This is the largest GC study to date to use whole genome 
and whole exome sequencing data to characterize the 
clinicopathological features associated with the GC 
microbiome. We identified associations of potential clinical 
importance through identifying relationships between 
clinicopathological features and microbial abundance, alpha 
diversity, and beta diversity.

Within the present study, we further developed the 
decontamination process as initially described by Dohlman 
[26], incorporating two separate databases to maximize the 
number of genuine tumor taxa and minimize contamination. 
Decontamination is infrequently performed in GC studies; 
however, the high proportion of the total signal and number 

Table 2   Permutational multivariate analysis of variance (PER-
MANOVA) for intratumoral species within 100,000 Genomes Project 
and TCGA​

R2, the proportion of the variance in the microbiome explained by 
each variable; MSI microsatellite instability-high versus non high; 
pT, pathological depth of invasion (pT1/pT2 versus pT3/pT4); pN, 
pathological lymph node status (pN0 versus >pN0)
* statistically significant (p < 0·05)
† Inferred MSI status for 100,000 Genomes Project cohort

100,000 Genomes Project 
(n = 80)

TCGA (n = 240)

R2 P value R2 P value

Geography – – 0·00592 0·1246
Sex 0·01415 0·2184 0·00845 0·0237*
Age 0·01383 0·2634 0·00716 0·0559
MSI † 0·01727 0·0360* 0·00740 0·0455*
Histology – – 0·01448 0·2042
pT 0·01391 0·386 0·00776 0·0363*
pN 0·01306 0·308 0·00337 0·6058
Residuals 0·92777 0·94546 –

Fig. 3   Association of specific 
genera within the 100,000 
Genomes Project samples, 
according to inferred MSI status 
by Multivariable Association 
Discovery in Population-scale 
Meta-omics Studies (MaAs-
Lin2) (n = 89). MaAsLin2 
coefficient (effect size) accord-
ing to MSI status. Red indicates 
genera enriched in MSI (versus 
MSS). MSI, microsatellite insta-
bility; MSS, microsatellite stable
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of taxa removed emphasize its importance in this setting. 
This has been previously demonstrated to be particularly 
important within other low-biomass studies [49, 50]. 

Furthermore, it has been demonstrated that upstream errors 
in decontamination processes can have large downstream 
effect on study results [51]. Eisenhofer et al. [49] and 

Fig. 4   Association of specific genera within TCGA samples, accord-
ing to pT category, MSI status, and sex by Multivariable Associa-
tion Discovery in Population-scale Meta-omics Studies (MaAsLin2) 
(n = 375). a MaAsLin2 coefficient (relative effect size) according to 
pT category. Red indicates genera enriched in pT1/pT2; green indi-
cates genera enriched in pT3/pT4. b MaAsLin2 coefficient according 

to MSI status. Red indicates genera enriched in MSI; green indicates 
genera enriched in MSS. c MaAsLin2 coefficient according to sex. 
Red indicates genera enriched in females (versus males). MSI, micro-
satellite instability; MSS, microsatellite stable; pT, pathological depth 
of invasion
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Salter et al. [50] suggested an exclude-list approach to 
decontamination, however, this may result in contaminants 
being missed (and subsequently being analysed within the 
dataset). The include-list approach suggested by Dohlman 
et al. was validated by comparing against 16S rRNA 
amplicon sequencing of matched fresh colorectal cancer 
tissue, resulting in the absence of putative contaminants; this 
method has subsequently been used in an analysis of over 
2000 colorectal cancers [52]. The include-list approach by 
Dohlman et al. may still result in the exclusion of important 
taxa, as demonstrated by Escherichia coli which did not 
initially meet the criteria for tissue-resident bacterium in The 
Cancer Microbiome Atlas analysis, resulting in some further 
manual curation [26]. These studies collectively guided the 
two-step decontamination approach taken in the present 
study of low biomass tissue; first a statistical algorithm was 
applied to exclude known and unknown contaminants, then 
borderline taxa were reviewed and added to the include-list 
where biological evidence was sufficient. This is the first 
study to systematically analyse the relationship between GC 
clinicopathological characteristics and the GC microbiome 
using data from patients across the globe using an in silico 
decontamination process.

We found that microbiome abundance, diversity, and 
composition differ in GC in relation to MSI status of the 
tumor. Consistent with our findings in GC, MSI status has 
also been associated with microbial changes in colorectal 
cancer [53–57]. A recent study by Byrd et al. has also 
investigated the relationship between MSI status and the 
microbiome within the TCGA cohort [29]. In line with 
our findings, this study also found an association between 
intratumoral microbes and MSI status across stomach, 
colorectal, and endometrial cancers. The methodology 
used to generate the microbiome abundance data from 
whole transcriptome and whole genome sequencing data in 
this study has since been identified as flawed, although to 
what extent that affects the validity of this paper by Byrd 
et al. is unclear [51, 58]. Whilst the extent to which the 
relationship between MSI status and the microbiome is 
associative or causative is uncertain, it is possible that the 
local tumor environment of MSI GC somehow facilitates a 
more abundant, more diverse microbiome.

In addition to MSI status, our results from the TCGA 
analysis suggest greater microbial abundance and alpha 
diversity in lower pT category GC, as well as a difference in 
microbial composition between pT1/pT2 and pT3/pT4 GC. 
These findings may reflect a difference in host environment 
in that fewer taxa, or only certain specific taxa, are able to 
invade beyond the muscle wall. These findings are consistent 
with those of a study investigating only Asian patients [27], 
where the microbial composition differed according to 
stage. This study did not identify alpha diversity differences 
according to stage, which may indicate that changes are 

more related to the pT classification than overall staging, 
which incorporates pT and pN classification, as well as 
the presence or absence of distant metastasis. Molecular 
differences according to tumor depth have previously 
been reported in GC [59, 60]; thus, when considering this 
in the context of our findings, one could speculate that 
spatial differences in tumor microenvironment influence 
the local microbiome. Alternatively, a more abundant, 
more diverse microbiome may be protective against greater 
tumor invasion, potentially through increased local immune 
surveillance.

The increased microbial abundance and alpha diversity 
seen in intestinal-type GC compared to diffuse-type GC may 
result from differences in the tumor microenvironment. In 
line with our findings, lower alpha diversity was observed 
in patients with diffuse-type GC relative to intestinal-type 
GC, in a study of 64 GC samples from Lithuanian patients 
[28]. Previous studies in GC have demonstrated evidence 
of molecular differences [19, 33], as well as differences in 
the ratio of tumor to stroma [61], according to histological 
phenotype. Existing data from a single-cell RNA sequencing 
analysis of GC is suggestive of differences in the proportions 
of plasma cells and KLF2-expressing epithelial cells 
between diffuse- and intestinal-type GC [62]. It is possible 
that molecular variability between diffuse-type and 
intestinal-type GC could result in differences in microbial 
abundance and alpha diversity.

We decided to further explore a potential relationship 
between the GC microbiome and immune cells in the tumor 
microenvironment, using CIBERSORT data from TCGA, to 
try to further understand the observed relationships between 
the microbiome and clinicopathological characteristics 
including MSI status, pT category, and histological 
phenotype. The immune subtypes associated with greater 
microbial abundance and Shannon diversity (C4 and C6) 
represented the lymphocyte depleted and TGF-b dominant 
subtypes, respectively, although only representing 4% of 
analyzed samples. Our investigation of immune cells with 
microbial abundance and alpha diversity was not able to 
provide further insight on this, possibly due to the reliance 
on whole tumor immune data, which was not spatially 
orientated. Further investigation of the relationship between 
the GC microbiome and local immune cells is warranted 
and spatial techniques should be considered in such 
investigations.

Notably, MSI (versus MSS) GC, low (versus high) 
pT category, and intestinal (versus diffuse) histological 
phenotype—all of which have been observed to have 
greater microbial diversity and abundance within the present 
study—are generally recognized to be good prognostic 
factors in GC [63–66]. In general, higher microbial diversity 
is thought to be associated with improved health outcomes, 
including in [67], but not limited to [68], patients with 
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cancer. Considered in this context, our own observations 
of increased microbial diversity in such “good prognosis” 
subgroups (MSI, low pT and intestinal histology) warrants 
further investigation of the role of microbial abundance 
and diversity in GC behaviour—in particular, whether and 
through what mechanisms increased microbial diversity 
may contribute to the improved outcomes observed 
in these good prognosis groups. If results from future 
studies support the hypothesis that greater GC microbial 
abundance and diversity results in superior outcomes, this 
may inform development of therapeutic investigations to 
increase microbial abundance and diversity, with the aim of 
improving GC outcomes.

Our study had some limitations. The 100,000 Genomes 
Project Cohort had small sample numbers (89) whilst 
the TCGA cohort was based on exome data, which has a 
limited ability to facilitate detection of microbiome data 
in the original sample. Recent work [51] has demonstrated 
that microbiome data from low biomass exome data can 
be challenging and easy to over-interpret. While gastric 
samples do not have the extremely low (or absent) non-
human content of other tissue types, care should be 
taken in analysing samples such as the TCGA cohort. 
In addition, the geographical and racial composition 
of the two cohorts differed, with the 100,000 Genomes 
Project including only individuals from England and 
TCGA including individuals from across the world, 
including at least 15% from Asia. Whilst no association 
was detected within the present study between geography 
and microbial abundance, alpha diversity, or composition, 
geography may still account for some of the differences 
in microbiome composition between the two cohorts. H. 
pylori prevalence varies considerably with geographic 
location, with higher rates of infection in Asian countries 
than in Western Europe and the United States [69]. H. 
pylori may influence the gastric mucosal microbiome in 
both neoplastic [70–72] and non-neoplastic [70, 72, 73] 
stomachs. Therefore, it is possible that the differences 
in microbial composition detected between cohorts are 
related to the geographical heterogeneity that may not 
have been captured by PERMANOVA analysis due to the 
over-simplification of geography (i.e., Asia versus not-
Asia). Furthermore, the availability of metadata differed 
between the two cohorts, limiting the investigation to a 
purely exploratory analysis.

In conclusion, using two separate sequencing databases, 
we identified microbiome differences in relation to depth 
of tumor invasion, histological phenotype, and molecular 
characteristics such as presence of MSI. Our findings 
further reinforce the notion that the relationship between 
the GC microbiome and clinicopathological variables is 
multifactorial and, as such, should be considered when 

planning, conducting, and interpreting the results from 
investigational clinical studies. Future work should focus 
on 1) further functional studies to increase the level of 
understanding regarding how the local microenvironment 
may affect and be affected by the tumor microbiome, 
2) how the microbiome may affect GC phenotype, and 
3) whether ultimately microbiome manipulation could 
affect outcomes of patients with GC and/or response to 
specific therapeutic interventions. This study collated 
529 GC microbiomes; using this large sample size, we 
were able to consolidate the findings of previous studies 
[26, 74, 75] and conduct an evaluation of the relationship 
between microbial differences and patient and tumor 
characteristics. The findings of this study underline the 
potential clinical importance of the GC microbiome and 
provide a strong rationale for further investigations to 
improve the depth of understanding in this area.
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