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Abstract 

Introduction: The potential for multi-cancer early detection (MCED) tests to detect cancer at earlier 

stages is currently being evaluated in screening clinical trials. Once trial evidence becomes available, 

modelling will be necessary to predict impacts on final outcomes (benefits and harms), account for 

heterogeneity in determining clinical and cost-effectiveness, and explore alternative screening 

programme specifications. The natural history of disease (NHD) component of a MCED model will 

use statistical, mathematical or calibration methods.  

Methods: Modelling approaches for MCED screening that include an NHD component were 

identified from the literature, reviewed and critically appraised. Purposively selected (non-MCED) 

cancer screening models were also reviewed. The appraisal focussed on the scope, data sources, 

evaluation approaches and the structure and parameterisation of the models. 

Results: Five different MCED models incorporating an NHD component were identified and 

reviewed, alongside four additional (non-MCED) models. The critical appraisal highlighted several 

features of this literature. In the absence of trial evidence, MCED effects are based on predictions 

derived from test accuracy. These predictions rely on simplifying assumptions with unknown impacts, 

such as the stage-shift assumption used to estimate mortality impacts from predicted stage-shifts. 

None of the MCED models fully characterised uncertainty in the NHD or examined uncertainty in the 

stage-shift assumption.  

Conclusion: MCED technologies are developing rapidly, and large and costly clinical studies are 

being designed and implemented across the globe. Currently there is no modelling approach that can 

integrate clinical study evidence and therefore, in support of policy, it is important that similar efforts 

are made in the development of MCED models that make best use of the available data on benefits 

and harms.  
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1 Introduction 

Novel technologies have recently emerged that look for markers of cancer in blood, urine, saliva or 

stool and have the potential to detect signals from multiple cancer types from a single sample. These 

are termed multi-cancer early detection (MCED) tests. Their use in screening asymptomatic persons 

has the potential to detect cancer at an earlier stage, when treatment is likely to be more effective and 

perhaps less costly.[1, 2] However, policymakers have demanded evidence of mortality impacts, and a 

fuller examination of the potential harms and consequences of the test’s imperfect accuracy (including 

of diagnostic resolution pathways), of overdiagnosis, and of the impact on existing screening 

programmes.[3] The Galleri® test (GRAIL, Inc., Menlo Park, CA, USA) test is the blood multi-

cancer test that is most advanced in the stage of clinical research, with a randomised clinical trial 

currently underway in the UK, the NHS-Galleri trial (NCT05611632), aiming to demonstrate the 

clinical effectiveness of the test in stage-shifting advanced cancer in a population screening setting.[4]  

To inform policy decisions on screening programmes involving MCED tests, modelling will be 

required to i) link evidence and predict expected impacts over final outcomes (mortality , life 

expectancy and Quality Adjusted Life Years, or QALYs), ii) appropriately reflect heterogeneity in the 

value of stage shifts across different cancer types to allow estimation of cost-effectiveness, and iii) 

allow alternative specifications for a screening programme to be evaluated (e.g. different age and risk 

groups, alternative screening intervals, etc.). Modelling is therefore likely to underpin such policy 

evaluations of MCED tests. This may include statistical, mathematical or calibration modelling to 

integrate cancer screening data and infer the natural history of disease. It may also include decision 

modelling to predict results with alternative screening regimens and their longer term clinical and 

cost-effectiveness. 

Cancer screening models typically include a natural history of disease (NHD) component that 

describes the prevalence of preclinical cancer (undiagnosed but detectable) and allows for examining 

the impact of important policy options, such as alternative specifications for the screening program. 

The NHD model component describes cancer progression through its preclinical stages over time (in 

the absence of the proposed screening test) and may also consider cancer onset and the competing 

risks of clinical detection (both incidental findings and symptomatic presentation) and mortality. The 

challenge in evaluating these NHD models arises from the fact that preclinical progression is 

unobserved.  Empirical data, however, can still provide relevant information on preclinical cancer 

prevalence and progression supporting inference –where the data are used to infer the NHD model 

and help gain an understanding of the likely values of the NHD model parameters in the underlying 

population, using statistical and mathematical approaches[5] or calibration[6, 7]. Besides alternative 

evaluation approaches, models in the general cancer screening literature[8, 9] also use a variety of 
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data sources and analytical methodologies, vary the core elements of the NHD that are modelled (they 

may or may not model cancer onset, the likelihood of clinical detection and/or mortality), and vary 

whether and how within-tumour heterogeneity and overdiagnosis are modelled.  

The objective of this paper is to identify, review and critically appraise the existing literature for 

alternative modelling approaches proposed for MCED that include an NHD component.  As the 

literature and approaches in this area continue to develop and evolve, it is important to critically 

examine the range of modelling approaches that have been proposed for MCEDs, and to assess the 

extent to which specific features of model structure and model evaluation can accommodate the 

complexity of multi-cancer modelling. While there has been extensive discussion and consideration of 

the appropriate study design to inform clinical utility[10], we are not aware of any publications that 

have attempted to systematically identify and critique existing modelling approaches and specifically 

the extent to which they will be able appropriately integrate the findings of these clinical utility 

studies. The paper is structured in the following way: the existing models are identified and described 

in Section 2, critically appraised in Section 3 and overall findings are discussed in Section 4. A 

glossary (Box 1) of definitions will be used throughout. 

<<insert Box 1 here>>  

 

2 Review of models 

2.1 Methods 

2.1.1 Literature search for MCED models 

A scoping literature review was developed and undertaken to identify published models of MCEDs in 

relation to a comparator. The review included models of NHD that incorporate both detection rates 

and predicted stage distribution (stage-shift), and which may also have extended these models to 

quantify impacts on mortality. The search methodology is reported in full in the Online Appendix.  

2.1.2 Additional selected models  

To further support the critical appraisal, additional selected models, including multi-disease (but non-

MCED) models and single disease models cited by relevant authors to support existing MCED 

models, were added purposively. For these additional models, the focus of the review was on the 

modelling mechanisms and related assumptions. These models provide background and context for 

the modelling assumptions made in MCED models, and for any changes/extensions made. 
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2.1.3 Extraction 

The review extracted information on the following aspects: i) model structure, including the number 

and types of cancer, NHD parameterisation and modelling of screening impact, ii) how data were used 

within the models, including key NHD assumptions, data requirements, and iii) uncertainties related 

to NHD and how these were considered. From the extracted information, we identified the following 

features of the models reviewed: 

● Scope: The population modelled (whether only individuals with clinically diagnosed cancer 

were modelled or the entire population eligible for screening, which would have allowed 

quantifications of overdiagnosis) and whether mortality impacts were considered.  

● Key data sources: Whether evidence on detection with screening was considered (e.g. clinical 

trial) or only evidence on cancer incidence under current care; whether external evidence on 

pre-clinical progression parameters (elicited or from the literature) was used . 

● Evaluation: Whether the model evaluation was based on prediction or on inference, and 

whether it is evaluated at the cohort or individual level. 

A predictive approach uses input evidence to directly describe model parameters and 

calculates expected cancer detection algebraically, with and without screening. NHD model 

parameters are pre-specified using values or distributions (using external sources like other 

evaluations or expert opinion), before running the model, which then outputs predictions. In 

contrast, inferential approaches use cancer diagnosis data from samples of individuals (for 

example, repeat screening data) to learn about NHD model parameters. Because sojourn time 

is not directly observable, the methods used differ from standard regressions and employ 

mathematical techniques such as deconvolution [11] or calibration [6, 7, 12].  

• Structure and parameterisation: whether a common structure across cancer types is used; what 

level of disaggregation of cancer stages was used (i.e. whether individual stages were 

considered or whether they were aggregated e.g. early vs. late cancer); whether the impact of 

screening is predicted from test accuracy; whether mortality impact is predicted by applying 

mortality in clinically detected cancer to the screening stage-distribution predicted by the 

model; what parameterisation, distributional assumptions, and assumptions about correlation 

between progression parameters were used; whether overdiagnosis (definition in Box 1) is 

quantified within the NHD model. 
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2.2 Results 

The review identified five different MCED models with an NHD component: four funded by GRAIL 

(hereafter termed ‘GRAIL models’) and specifically related to the Galleri test [13-16] and one based 

on a hypothetical MCED (although using some inputs derived from the Galleri test) [17]. Four 

additional models (non-MCED) were also reviewed: two multi-cancer models by Thomas 

(communication with author) and Mandrik [18], and two single-cancer models by Pinsky[11] and 

Skates [19]. The nine models were reviewed; these are described in Table 1.  

<<insert Table 1 here>>  

 

2.2.1 MCED models 

Table 2 describes the key features of the models reviewed. These models are referred to by the name 

of the first author in the publication. 

<<insert Table 2 here>> 

There are four GRAIL models: Hubbell, Sasieni, Tafazzoli and Dai [13-16]. These use a common 

approach, referred to as the ‘interception model’, to determine the NHD and stage-shift with the 

Galleri test, with the core methodology rooted in the Hubbell model. These also use a common set of 

evidence, including national cancer incidence statistics (by type, stage, age, and gender), expert or 

literature-derived pre-clinical progression evidence [13, 20] and test sensitivity from diagnostic 

studies.  

The NHD component of the GRAIL models focuses on individuals clinically diagnosed with cancer 

under standard care. The GRAIL models use a common NHD structure, assuming (Table 3): i) disease 

progression across four stages (stages 1, 2, 3, and 4) without regression, ii) progression is sequential, 

with cancers moving through each stage until clinically detected, iii) sojourn times are exponentially 

distributed, iv) sojourn times are independent between stages, v) there is no heterogeneity in sojourn 

times within-tumour types beyond that expected by chance (i.e. the expected value of the sojourn time 

is equal for all individuals in the model). The NHD does not include the probability of cancer onset 

nor of clinical detection. 

<< insert Table 3 here>> 

All four GRAIL models consider stage-shift as the main clinical benefit of screening. Stage-shift is 

evaluated predictively, using test sensitivity to determine the likelihood of earlier detection. Mortality 

effects are also predicted under the ‘stage-shift assumption’ and the ‘lead time assumption’ (Box 1), 

except in a scenario of the Tafazzoli model that considers mortality during lead time. 
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None of the GRAIL models reviewed evaluated uncertainty probabilistically. In the context of 

predictive modelling, this would have entailed describing uncertainty in the input parameters and 

running probabilistic analysis to evaluate uncertainty over models’ outputs. Also, models  only 

incorporate within-tumour heterogeneity from the distribution of cancer diagnosis by age and sex. 

Further consideration of these aspects are provided in the critical appraisal and discussion sections .  

Although the GRAIL models are underpinned by the same core methodology proposed in Hubbell, 

there are a number of specific differences in terms of their parameterisation and structural 

assumptions. The Sasieni model [15, 21] applies the Hubbell model to UK cancer incidence and 

mortality data and examines structural extensions allowing consideration of differential survival of 

cfDNA-detectable cancers, alternative cohorts and screening regimens, and the possibility of non-

sequential progression from stage I to IV only. Tafazzoli’s model [16] integrates Hubbell’s stage-shift 

matrices (i.e. the likelihood of a cancer clinically detected in a particular stage being detected by 

Galleri at each earlier cancer stage) within a cohort model of 50 year-old individuals tested annually 

with Galleri until the age of 79 years. In Tafazzoli’s model, stage shifted individuals in each model 

cycle are time-shifted (shifted back in time to earlier cycles to account for an earlier time of 

diagnosis), based on cancer-specific sojourn times. Tafazzoli is the only Galleri model which 

incorporates overdiagnosis (but not explicitly in the NHD model) by increasing detection by a 

proportion that is applied as an input to the model, and extends the evaluation to cost-effectiveness. 

Dai’s model [13] uses the core assumptions of Hubbell’s model but evaluates the model using 

individual patient simulation. It also describes sojourn times from empirically derived estimates 

sourced from other screening studies, rather than elicitation. 

Our review identified only one MCED model that was not funded by GRAIL: this is Lange’s model 

[17]. This model examines the impact of a hypothetical MCED (using the estimates for test sensitivity 

that are relevant to Galleri) on 12 cancer types. The model does not evaluate overdiagnosis or 

mortality (extensions to mortality have been further considered since publication, see 

https://cedarmodelingframework.shinyapps.io/mcedmodel/). It is based on the same type of evidence 

as the GRAIL models (age and stage-specific clinical incidence data under current care) but applies an 

alternative NHD model that is more comprehensive in that it, in addition to pre-clinical progression 

(for which it uses the more aggregate classification of early vs. late disease), also characterises 

probability of cancer onset, the age of cancer onset, and the likelihood of clinical detection. Lange 

evaluates the underlying NHD model parameters using an inferential approach to describe clinical 

incidence rate data using a Poisson distribution; however, not all parameters of the model are 

identifiable based on age and stage-specific incidence data.  Therefore, given these data, the authors 

assumed fixed values for overall and late-stage sojourn times (user-defined) allowing estimating all 

https://cedarmodelingframework.shinyapps.io/mcedmodel/


 

8 

 

unknown parameters. It is unclear how inference over the early-stage sojourn times is, however, 

reached. 

2.2.2 Selected non-MCED models 

Selected multi-cancer screening models 

Mandrik’s model [18] examines the clinical- and cost-effectiveness of a urine dipstick test in 

screening for bladder and kidney cancers. The NHD model structure includes cancer onset, preclinical 

cancer progression through cancer stages (1 to 4), cancer detection and mortality . Heterogeneity is 

included by considering cancer onset to depend on age and smoking status and by considering a 

separate cancer pathway for non-fatal low risk bladder cancers. Mandrik’s model uses detection data 

for current care only (due to the absence of data for the screening test under evaluation) and summary 

evidence from the literature on the impact of risk factors, test sensitivity and other elements. The 

model is Markovian for all transitions except for progression of pre-clinical cancers which uses an 

individual patient time-to-event formulation. The NHD model was evaluated using Bayesian 

calibration (Metropolis-Hastings algorithm), an inferential calibration procedure which allows for 

uncertainty to be appropriately integrated. Due to the absence of screening data, and to ensure model 

identification, strong priors, assumptions and constraints over the NHD parameters were used. A 

predictive approach anchored on test accuracy was used to project screening outcomes from test 

accuracy, overdiagnosis and mortality impacts (from stage-shifts)  

Thomas’ model (unpublished) evaluates upper abdominal CT imaging for the screening of ten cancers 

(alongside other abdominal diseases). It adopts a common structure across all cancers, with 

progression across stages 1 to 4. The model uses clinical incidence data with screening, combined 

with elicited estimates of test sensitivity. Despite not considering probability of cancer onset, the 

model considers the age of onset in those that were screen-detected.  For the comparator arm, the 

model simulates what would have happened to the screen-detected individuals had they not been 

screened. In doing so, it considers the competing events of stage progression, clinical detection and 

mortality in its structure. The model is a multi-cohort Markov model, considering various age and sex 

cohorts. The model conducts inference using a simplified non-Bayesian calibration (or fitting 

process), which does not consider uncertainty over the NHD, to evaluate outcomes for a cohort of 

unscreened individuals from elicited values describing stage-specific pre-clinical progression. 

Mortality impacts were predicted from stage-shifts. By considering that those that would have been 

screen-detected were at risk of death if unscreened, the comparator arm considers individuals dying 

with undiagnosed cancer and predicts a lower number of cancer cases than in the screening arm. 



 

9 

 

Single-cancer models cited by authors of existing MCED models 

Skates’ model [19] is cited in the GRAIL models in support of the proposed interception model. 

Skates examines the impact of screening for ovarian cancer with a blood biomarker using a predictive 

approach combining ovarian cancer incidence with pre-clinical progression times across 4 cancer 

stages. The key difference between this NHD model and the GRAIL NHD models are that Skates uses 

patient-level simulation (all GRAIL models except for Dai), a different parameterisation of time to 

stage progression using log-normal distributions with fixed mean ratios between stages and a 

coefficient of variation, and accounts for correlation between stages. The impact of screening is 

predicted from biomarker levels, and the mortality impact is predicted using the ‘stage-shift 

assumption’ and the ‘lead time assumption’ while also assuming a proportion of patients are cured.  

Pinsky’s model [11] is the key reference cited by Lange. It uses the same structure as Lange but 

considers a range of distributions for the NHD parameters and imposes age dependency on time to 

cancer onset. Pinsky’s model, however, uses screening trial data to achieve inference on the NHD via 

maximum likelihood estimation. In doing so, it carefully considers parameter identifiability from the 

data.  

3 Critical appraisal  

In this section, we critically appraise the existing MCED models for their key features, including how 

these accommodate the multi-cancer context, and highlight key uncertainties. 

MCED effects are based on predictions rather than direct evidence.  

A critical feature of this evaluation problem is the current absence of data on cancer detection and 

mortality from screening with Galleri or other MCED. The NHD models therefore use similar data, 

namely on cancer incidence data under current care and expected sojourn times, to back-calculate or 

infer undiagnosed cancer prevalence. The lack of screening data means that the accuracy of 

predictions and inferences in MCED models will rely on the use of an appropriate NHD model and on 

the quality of the evidence underlying/supporting the NHD parameters.  

MCED models apply simplifying assumptions. It is unclear where adding complexity may be most 

important. 

Existing MCED models, despite the similarity in the data included, have proposed a wide variety of 

modelling approaches for the NHD—from predictive to inferential models, cohort to individual level 

simulation, more complex (or simpler) assumptions over the NHD. MCED models apply the most 

assumptions (see Table 3) despite many being shared with other models. This may be motivated by 

the multicancer context and the need to reduce parameterisation and employ simpler evaluation 
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approaches. There has been limited exploration of the impact of these simplifications, and it is unclear 

where additional complexity may add value. 

Some of the simplifying assumptions allow the NHD to be evaluated algebraically as with the GRAIL 

models (i.e. exponentially distributed pre-clinical progression times with a common mean and 

independent across stages). However, models run as individual patient level simulation, such as 

Skates and Mandrik, allow relaxing these assumptions and varying the level of variation 

(heterogeneity) in sojourn time, i.e. the proportion of cases with extreme sojourn times. Existing 

explorations are insufficient to identify the likely sources and key impacts of heterogeneity, but 

suggest important impacts (see, for example, Sasieni’s scenario considering a proportion of very fast 

progressing cancers).  

Overdiagnosis is not explicitly modelled in MCED models and adding this may add complexity to 

modelling. 

One important potential harm of screening is overdiagnosis. Overdiagnosis has the potential to be 

explicitly estimated/predicted within an NHD model with a fuller structure that characterises 

heterogeneity and includes cancer onset and mortality alongside preclinical progression and clinical 

detection. None of the MCED models have estimated/predicted overdiagnosis within the NHD model, 

presumably because of the reliance on a restricted structure and scope to allow evaluation from cancer 

incidence data, e.g. Hubbell only characterised cancer progression and Lange also included cancer 

onset but not mortality. Of the broader models reviewed, those including a full NHD structure, such as 

Mandrik, included overdiagnosis, but none explicitly examined whether and how heterogeneity may 

affect overdiagnosis estimates.  

Current MCED models do not appropriately characterise uncertainty in the NHD  

Decisions in health are often made under uncertainty, and explicit descriptions of uncertainty help 

determine appropriate funding and research decisions. Uncertainty in model inputs can be described 

and propagated in prediction modelling, however, none of the predictive MCED models reviewed 

have done so. Since our review was conducted GRAIL published an extension of the Tafazzoli model 

that includes probabilistic analysis [22], although, in this analysis, none of the NHD parameters were 

assumed uncertain (e.g. sojourn times, mortality). Of the MCED models, only Lange considers 

uncertainty in the NHD by implementing an inferential procedure describing the cancer incidence data 

as uncertain. However, other important sources of uncertainty were not formally included in Lange’s 
model, such as uncertainty over sojourn times, but can be examined by varying the choice of sojourn 

time inputs.  
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All models predict mortality impacts using the stage-shift assumption 

The ‘stage-shift assumption’ is only plausible if cancers detected by a screening test do not differ 

systematically in their characteristics from clinically detected cancers. For example, if the higher 

ctDNA shedding expected in cancers detected by Galleri is associated with worse prognosis, the 

capacity of stage-shifted cancers to benefit may be smaller than expected. The Sasieni model 

examined hypothetical reductions in the capacity to benefit of stage-shifted cancers and showed that 

impact can be significant. A number of publications have explored the accumulation of evidence , 

across screening trials, in support of the stage-shift assumption [13, 23, 24]. However, the validity of 

this assumption for particular multi-cancer tests is unknown until well designed clinical research 

reports on the mortality impacts. The NHS-Galleri trial, at the time its primary endpoint reports, may 

not provide sufficient mortality evidence and this is therefore likely to remain a key uncertainty for 

decision making.  

4 Discussion  

We identified, summarised and critically appraised the NHD components of models of the clinical 

and/or economic impact of using MCED tests in a screening programme. We have systematised and 

categorised elements of the modelling approach, evaluation strategy and structure in a way that is 

novel and relevant for the broader screening modelling literature. We found that MCED models are 

characterised by the absence of screening data, by the limited use of inference and by the limited 

characterisation of uncertainty, heterogeneity and overdiagnosis within the NHD. Our critical 

appraisal identified limitations of current MCED models and highlighted the limited exploration of 

the impact of modelling assumptions.   

Our findings have important implications for future models of the clinical and cost-effectiveness of 

MCED screening programmes, which will need to incorporate clinical utility study evidence in 

support of decision making. This requires an inferential approach but, to date, no such approach has 

been developed to include screening data in the multi-cancer context. There is an extensive literature 

on inferential approaches used in the single disease context, which include: a) mathematical/statistical 

models that typically using a single main source of evidence and a clear specification of the model 

(NHD) with lower dimensionality (e.g. typically aggregating cancer stages for example), and b) 

calibration models, typically using multiple sources of evidence (as calibration targets) and, perhaps 

for this reason, a higher dimensionality. In this paper we did not review this broader literature, but the 

future development of an inferential approach for MCEDs should draw on it.  

MCED trials, like the NHS-Galleri trial, are likely to be powered on stage-shift outcomes aggregated 

over multiple cancer types and estimates for each cancer type will need to be strengthened using 

modelling alongside additional external evidence. Model identifiability will need to carefully consider 
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higher parameterisations (e.g. more detailed descriptions of between- and within-tumour 

heterogeneity) and the support of the evidence for structural simplifications in such descriptions and 

in the potential aggregation across cancer stages. GRAIL models disaggregate across the four cancer 

stages, but most mathematical approaches aggregate stages into early and advanced cancer or simply 

distinguish preclinical from clinical cancers.  Uncertainty over the ‘stage-shift assumption’ needs to 
be examined in further work in support of decision making. 

Computational burden is also of concern, as more complex models may compromise transparency and 

accessibility, particularly for calibration approaches, typically using individual level simulation, 

applied in the multicancer context. Alternatives to individual level simulation can be considered, such 

as the multi-cohort model structure exemplified in Thomas. It partitions the cohort into sub-cohorts 

based on relevant baseline characteristics, such as risk or demographic groups.  

Other key considerations for future MCED model development relate to overdiagnosis and within-

tumour heterogeneity. In what concerns overdiagnosis, there are important challenges in obtaining 

valid empirical estimates [25] and therefore decision making may initially need to consider estimates 

from modelling which require extensions to existing MCED modelling approaches (see critical 

appraisal section). In what concerns within-tumour heterogeneity, this is known to exist across several 

cancer types. Heterogeneity has been considered in the broader screening modelling literature 

structurally, for example, by adding states for indolent or slow growing cancers[26] and in its 

contribution to overdiagnosis[27]. While describing heterogeneity depends on model 

specification[28], it can lead to more accurate estimates but also increased uncertainty[29, 30]. The 

NHS-Galleri trial will not provide characterisation of within-tumour heterogeneity, so it is important 

to better understand its potential impacts (on detection, overdiagnosis and mortality),  to support 

further evidence gathering in support of further model development. 

Multi-cancer technologies are developing rapidly, and large and costly clinical studies are being 

designed and implemented across the globe. Recognising the need to produce clinical and economic 

evidence suitable for consideration by committees deciding whether to introduce MCED-screening 

programmes, it is important that similar efforts are made in the development of MCED models that 

make best use of the available data, and that the required data to fit those models from clinical studies 

is made widely available. 
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Box 1 Glossary 

 

Stage-shift: change in the stage distribution attributed to screening  

Sojourn time, time to transition and dwell time: Sojourn time refers to the time spent in preclinical 

cancer, which is equal to the time until clinical detection or death (whichever first). Sojourn time for a 

particular cancer stage is the time spent in that preclinical stage of cancer, specifically it is the time 

until progression to the next stage, clinical detection or death (whichever first).  

NHD models may be parameterised by using distributions that describe the times to each individual 

transition allowed in the model, for example, time for early cancer in the preclinical stage to progress 

to advanced preclinical cancer or time for preclinical cancer to be clinically detected.  

Dwell time has been used in the literature to reflect time to stage progression, given the cancer does 

not get clinically detected at that stage or the individual does not die from other causes at that stage . 

Note that, because GRAIL models only model individuals that would be clinically diagnosed cancers 

under current care, the term dwell time can be used interchangeably to represent sojourn time . 

Inference: An inferential process uses data to evaluate the NHD model and help gain understanding 

over the likely values of the NHD model parameters in the underlying population.  

Model identifiability: identifiability is achieved when the number of observed quantities (the number 

of screen detected and interval cancers across different screens) is larger than the number of model 

parameters. 

Correlation in progression parameters: Uncorrelated (or independent) parameters describing 

progression between stages assume that the time it takes for a cancer to progress between stage 1 and 

2 is independent of the time it takes for the same cancer to progress between stages 2 and 3. These 

quantities may also be assumed correlated, meaning that a cancer with a lower time to progression 

between stage 1 and stage 2 would be expected to also present a lower time to progression in 

subsequent transitions. Correlation or independence can also apply to sojourn time 

Length time bias: Length time bias is related to reliance of the models on a categorisation of disease 

progression across a limited number of stages. The screening models that rely on impact of screening 

through the stage-shift (i.e. change in the stage distribution in screening and comparator arms) ignore 

the possibility for additional screening benefits related to earlier cancer diagnosis not captured within 

allocated stages. The models that incorporate length time bias, assume that even within the same 
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stages at diagnosis, screen-diagnosed cancers have better survival than symptomatically diagnosed 

cancers, due to the limitations of the stage at diagnosis as a surrogate outcome for long-term survival.  

Stage-shift assumption: The ‘stage-shift assumption’ means that cases shifted to an earlier stage via 
screening are assumed to have the same survival as cases detected in an earlier stage without 

screening.  

Lead time assumption: Lead time is defined as the time between when a cancer is detected by 

screening and when it would have been detected without screening. The ‘lead time assumption’ means 
mortality is not considered during lead time and therefore bringing forward diagnosis through 

screening does not bring forward harms such as those from more aggressive treatment.  

Cancer overdiagnosis: We define overdiagnosis as the diagnosis, from screening, of a cancer that 

would not have been diagnosed under current care. 

 

  



 

17 

 

Tables 

Table 1. List of models reviewed 

Model Technology N cancers 

modelled 

Outcomes 

GRAIL models    

Hubbell 2020 Galleri test 19 Clinical  

Sasieni 2023 Galleri test 24 Clinical 

Tafazzoli 2022 Galleri test 23 Clinical and cost-

effectiveness 

Dai 2024 Galleri test 25 Clinical 

Other MCED    

Lange 2024 Hypothetical MCED (based 

on Galleri test) 

12 Clinical 

Other multi-cancer    

Mandrik 2024 Dipstick test for bladder and 

kidney cancer 

2  Clinical and cost-

effectiveness 

Thomas 2024 Imaging test for abdominal 

cancers 

10 Clinical and cost-

effectiveness 

Other single-cancer    

Skates 1991 Blood test (CA 125) for 

ovarian cancer 

1 Clinical  

Pinsky  CT screening for lung cancer 1 Clinical 
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Table 2. Key features of the Natural History of Disease (NHD) models reviewed 

 Scope Structural NHD model evaluation Evidence for NHD Uncertainty 

Model Populatio
n 

modelled 
in the 
NHD 

Mortality 
impacts  

included? 

Common 
structure 
across 
cancer 
types? 

Disease stages 
in NHD? 

Clinically 
diagnosed 

cancer 
mortality used 

on screen-
detected 
cases? 

Cohort model 
(vs IPL) 

Approach, 
NHD  

Approach, 
comparative 
screening 
outcomes  

Detection data on 
screening? 

External 
pre-

clinical 
progressio

n 
evidence? 

Uncertainty 
evaluated 
(above 

individual 
variability, 

where 
relevant)? 

GRAIL models            

Hubbell 2020 Incident Yes Yes 1,2,3 and 4 Yes Cohort Prediction Prediction No Yes No 
Sasieni 2023 Incident Yes Yes 1,2,3 and 4 Yes Cohort Prediction Prediction No Yes No 

Tafazzoli 2022 Incident Yes Yes 1,2,3 and 4 Yes Cohort Prediction Prediction No Yes No 
Dai 2024 Incident Yes Yes 1,2,3 and 4 Yes IPL Prediction Prediction No Yes No 

Other MCED            
Lange 2024 All No Yes early vs. late NA Cohort Inference, ML Prediction No Yes Yes 

Other multi-disease            
Mandrik 2024 All Yes No 1,2,3 and 4 Yes IPL Inference, 

Bayesian 
calibration 

Prediction No Yes 
(within 
priors) 

Yes 

Thomas 2024 Screen-
detected 

Yes Yes 1,2,3 and 4 Yes Cohort, 
multiple 

Inference, 
calibration 

Prediction Yes, cases of 
cancer detected 
with screening. 
No data in the 

absence of 
screening 

Yes No 

Other single 
disease 

           

Skates 1991 Incident Yes NA early vs. late Yes IPL Prediction Prediction  No Yes No 
Pinsky  All No NA early vs. late NA Cohort Inference, ML Yes, cases of 

screen-detected 
and interval 
cancers by 

screening round 

No Yes 

Legend:  NA- Not Applicable, NHD-natural history disease , IPL-Individual Patient Level; ML-Maximum Likelihood estimation
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Table 3. Assumptions over the Natural History of Disease (NHD) model  

NHD model 
element 

Cancer onset Pre-clinical progression parameters Probability 

of clinical 
identificati

on 

Mortality 

included in 
NHD model 

Overdiagnosis 

included in NHD 
model  

Others 

Distribution Heteroge

neity 

Parameterisation Distributions Correla

tion? 

GRAIL models Not modelled  Individual parameters for 
progression between stages 

Exponential No Not 
modelled 

Yes, 
predictive 

No NA 

Other MCED: 
Lange  

Hypoexponential 
(fixed parameter 

m) 

N0 Fixed values for time in 
overall and late-stage pre-

clinical disease  

Exponential  No Exponential  No No Clinical 
detection rates 
described by 

Poisson 
distribution as 

part of inference 
Other multi-
disease: Mandrik 

Annual 
probability as a 
function of age 
and other risk 
factors (cohort 

model 
component) 

Yes Individual parameters for 
progression between stages, 

using assumptions, 
informative priors and 
constraints to ensure 

identification 

Weibull (IPL 
model 

component) 

Yes Annual 
probability 

(cohort 
model 

component) 

Yes Yes Bayesian 
calibration with 
multiple targets  

Other multi-
disease: Thomas 

Not modelled Individual parameters for 
progression between stages 

Triangular No Yes, for 
comparator 

arm. 
Triangular 
distribution 

Yes, 
predictive 

Yes, by 
considering 
competing 
mortality 

NA 

Other single 
disease: Skates 

Not modelled  Four-variate Normal 
distribution. Ratio of time 
in early vs late stage and 

constant CV for each stage 
were assumed constant  

Four-variate 
Normal 

distribution. 

Yes Not 
modelled 

Yes, 
predictive 

No NA 

Other single 
disease: Pinsky 

Cubic polynomial 
function of age 

No Single parameter for 
progression between early 

and late   

Weibull 
(Exponential 

as special 
case) 

No Weibull 
(Exponentia
l as special 

case) 

Yes, 
predictive and 

not used in 
NHD model 

inference 

Yes, predicted 
using NHD model 

estimates and 
external mortality 

estimates 

NA 

Legend:  NA- Not Applicable, NHD-natural history disease, IPL-Individual Patient Level; ML-Maximum Likelihood estimation 
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Online appendix 
 

Overview of the methodology 

We performed a scoping literature review to identify previous studies that performed quantitative 
modelling to assess long-term clinical, epidemiological and/or economic outcomes associated with 
implementing MCED. Scoping searches were developed for MEDLINE and Embase in collaboration 
with an information specialist and are provided below. The MCED related terms were those used in a 
previous systematic review by Wade et. al(2024)1 The searches aimed to identify both scientific 
articles and conference abstracts, with a broad remit to include statistical, economic, decision -
analytic, mathematical, econometric, theoretical or epidemiological models or frameworks.  The 
relevance of each identified record was assessed by one researcher (NK) based on its title and 
abstract, and if necessary, its full text. Studies were included in the broader scoping review if they 
performed quantitative modelling to assess long-term clinical, epidemiological and/or economic 
outcomes associated with implementing MCED (inclusion criteria). In this paper, we applied an 
additional inclusion criteria and required models to have included a Natural History of Disease 
component and to be available in full text. 
 
Search strategies 
 
Ovid MEDLINE(R) ALL <1946 to February 07, 2024> 
08/02/2024 
349 hits 
 
1 Neoplasms/ 513375 
2 ((cancer$ or neoplas$ or tumour$ or tumor$ or carcinoma$ or oncolog$ or malignan$ or 
precancer$) adj6 (multiple$ or many or several or numerous or various or varied or miscellaneous or 
mixed or diverse or different)).ti,ab. 494280 
3 (multicancer$ or multi-cancer$ or multitumo?r$ or multi-tumo?r$ or pan-cancer$ or 
pancancer$ or pan-tumo?r$ or pantumo?r$ or cross-cancer$ or crosscancer$ or cross-tumo?r$ or 
crosstumo?r$).ti,ab. 5384 
4 ((cancer$ or neoplas$ or tumour$ or tumor$ or carcinoma$ or oncolog$ or malignan$ or 
precancer$) adj3 (type or types)).ti,ab.179562 
5 1 or 2 or 3 or 4 1016216 
6 Liquid Biopsy/ 2879 
7 ((liquid$ or fluid$ or biofluid$ or bio-fluid$) adj3 biops$).ti,ab.8961 
8 6 or 7 9546 
9 Biopsy/ or Biopsy, Fine-Needle/204798 
10 exp Blood/ 1204680 
11 9 and 10 9142 
12 ((blood or h?ematolog$ or plasma or serum) adj3 biops$).ti,ab.5680 
13 11 or 12 14643 
14 Hematologic Tests/ 10225 
15 ((blood or h?ematolog$ or plasma or serum) adj2 (test or tests or testing or tested or 
assay$)).ti,ab. 81266 
16 14 or 15 90062 
17 Multiomics/ 1330 
18 ((multiomic$ or multi-omic$ or panomic$ or pan-omic$ or integrative omic$) adj4 (test or 
tests or tested or testing or assay$ or biops$)).ti,ab. 140 
19 17 or 18 1453 
20 ((Multi-analyte$ or multianalyte$) adj4 (detect$ or screen$ or test or tests or tested or testing 
or assay$ or biops$)).ti,ab. 591 

 
1 Wade R, Nevitt S, Liu Y, Harden M, Khouja C, Raine G, Churchill R, Dias S. Multi-cancer early detection 

tests for general population screening: a systematic literature review. medRxiv 2024.02.14.24302576 
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21 8 or 13 or 16 or 19 or 20 115041 
22 5 and 21 6039 
23 Mass Screening/ 117228 
24 Diagnostic Screening Programs/156 
25 early diagnosis/30531 
26 "Early Detection of Cancer"/ 39411 
27 (screen$ or detect$).ti. 672570 
28 ((early or earlystage or earli$ or first or initial or timely) adj3 (screen$ or detect$ or diagnos$ 
or test or tests or testing or tested)).ti,ab.448435 
29 (screen$ adj3 (test$ or tool$ or method$ or strateg$ or modalit$ or technolog$ or program$ or 
service$ or policy or policies or guideline$ or population$)).ti,ab.  206676 
30 23 or 24 or 25 or 26 or 27 or 28 or 29 1218867 
31 22 and 30 1996 
32 ((cancer$ or neoplas$ or tumour$ or tumor$ or carcinoma$ or oncolog$ or malignan$ or 
precancer$) adj6 (multiple$ or many or several or numerous or various or varied or miscellaneous or 
mixed or diverse or different) adj6 (screen$ or detect$)).ti,ab.12389 
33 ((cancer$ or neoplas$ or tumour$ or tumor$ or carcinoma$ or oncolog$ or malignan$ or 
precancer$) adj6 (type or types) adj6 (screen$ or detect$)).ti,ab.4561 
34 32 or 33 15629 
35 21 and 34 635 
36 31 or 35 2138 
37 (((multi-cancer$ or multicancer$ or multi-tumo?r$ or multitumo?r$) adj6 (detect$ or screen$ 
or test or tests or tested or testing or assay$)) or MCED or MCDBT).ti,ab. 186 
38 ((multiple cancer$ or multiple tumo?r$) adj6 (detect$ or screen$ or test or tests or tested or 
testing or assay$)).ti,ab.552 
39 ((pan-cancer$ or pancancer$ or pan-tumo?r$ or pantumo?r$) adj6 (detect$ or screen$ or test 
or tests or tested or testing or assay$)).ti,ab. 222 
40 ((cross-cancer$ or crosscancer$ or cross-tumo?r$ or crosstumo?r$) adj6 (detect$ or screen$ or 
test or tests or tested or testing or assay$)).ti,ab.5 
41 ((multi-class cancer$ or multiclass cancer$ or multi-class tumo?r$ or multiclass tumo?$) adj6 
(detect$ or screen$ or test or tests or tested or testing or assay$)).ti,ab.6 
42 37 or 38 or 39 or 40 or 41 944 
43 (Galleri or GalleriTM).mp. 13 
44 PanSEER$.mp. 3 
45 CancerSEEK$.mp. 10 
46 CancerEMC$.mp. 1 
47 (PanTum or PanTumDetect).mp. 3 
48 Epitope-detection in monocytes.mp. 12 
49 CancerRadar$.mp. 0 
50 (IvyGene$ or IvyGeneCORE$).mp. 0 
51 CancerLocator$.mp. 1 
52 CancerDetector$.mp. 3 
53 (EpiPanGI Dx$ or EpiPanGIDx$).mp. 1 
54 OverC.mp. 2 
55 DEEPGEN.mp.6 
56 Dxcover$.mp. 2 
57 trucheck$.mp. 0 
58 Elypta$.mp. 0 
59 MiRXES$.mp. 6 
60 Freenome$.mp.1 
61 43 or 44 or 45 or 46 or 47 or 48 or 49 or 50 or 51 or 52 or 53 or 54 or 55 or 56 or 57 or 58 or 
59 or 60 58 
62 DELFI$.mp. 702 
63 Omni1$.mp. 24 
64 Signal-X$.mp. 50 
65 Harbinger$.mp.2137 
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66 EDIM$.mp. 182 
67 LUNAR$.mp. 4624 
68 MERCURY$.mp. 56259 
69 62 or 63 or 64 or 65 or 66 or 67 or 68 63932 
70 22 and 69 5 
71 36 or 42 or 61 or 70 3023 
72 exp animals/ not humans.sh. 5193858 
73 71 not 72 2990 
74 limit 73 to yr="2010 -Current" 2466 
75 models, statistical/ or models, economic/ or models, econometric/ or models, theoretical/ or 
epidemiological models/ 274003 
76 model$.ti,ab. 3901991 
77 simulation$.ti,ab. 477142 
78 ((analy$ or math$ or quantitative$) adj3 framework$).ti,ab.  25303 
79 (math$ adj3 (equation$ or expression$ or formula$)).ti,ab.  6805 
80 75 or 76 or 77 or 78 or 79 4259368 
81 74 and 80 346 
82 decision support techniques/ 22604 
83 exp Decision Trees/ 12603 
84 Decision Theory/ 968 
85 markov chains/16081 
86 (decision$ adj2 (tree$ or analy$)).ti,ab.33491 
87 markov$.ti,ab. 32632 
88 discrete event simulation$.ti,ab.958 
89 microsimulation$.ti,ab.1979 
90 82 or 83 or 84 or 85 or 86 or 87 or 88 or 89 96381 
91 74 and 90 21 
92 81 or 91 349 
 
Ovid Embase <1974 to 2024 February 07> 
08/02/2024 
226 hits 
 
1 neoplasm/ 448117 
2 ((cancer$ or neoplas$ or tumour$ or tumor$ or carcinoma$ or oncolog$ or malignan$ or 
precancer$) adj6 (multiple$ or many or several or numerous or various or varied or miscellaneous or 
mixed or diverse or different)).ti,ab. 697783 
3 (multicancer$ or multi-cancer$ or multitumo?r$ or multi-tumo?r$ or pan-cancer$ or 
pancancer$ or pan-tumo?r$ or pantumo?r$ or cross-cancer$ or crosscancer$ or cross-tumo?r$ or 
crosstumo?r$).ti,ab. 8439 
4 ((cancer$ or neoplas$ or tumour$ or tumor$ or carcinoma$ or oncolog$ or malignan$ or 
precancer$) adj3 (type or types)).ti,ab.262279 
5 1 or 2 or 3 or 4 1196309 
6 liquid biopsy/ 12247 
7 ((liquid$ or fluid$ or biofluid$ or bio-fluid$) adj3 biops$).ti,ab.15145 
8 6 or 7 18095 
9 biopsy/ 179967 
10 exp blood/ 2617042 
11 9 and 10 30021 
12 ((blood or h?ematolog$ or plasma or serum) adj3 biops$).ti,ab.10814 
13 11 or 12 39507 
14 blood examination/ 19256 
15 ((blood or h?ematolog$ or plasma or serum) adj2 (test or tests or testing or tested or 
assay$)).ti,ab. 131094 
16 14 or 15 146604 
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17 ((multiomic$ or multi-omic$ or panomic$ or pan-omic$ or integrative omic$) adj4 (test or 
tests or tested or testing or assay$ or biops$)).ti,ab. 261 
18 ((Multi-analyte$ or multianalyte$) adj4 (detect$ or screen$ or test or tests or tested or testing 
or assay$ or biops$)).ti,ab. 796 
19 8 or 13 or 16 or 17 or 18 201045 
20 5 and 19 14830 
21 mass screening/62609 
22 cancer screening/ 100611 
23 early cancer diagnosis/ 14712 
24 (screen$ or detect$).ti. 812818 
25 ((early or earlystage or earli$ or first or initial or timely) adj3 (screen$ or detect$ or diagnos$ 
or test or tests or testing or tested)).ti,ab.660791 
26 (screen$ adj3 (test$ or tool$ or method$ or strateg$ or modalit$ or technolog$ or program$ or 
service$ or policy or policies or guideline$ or population$)).ti,ab.  303302 
27 22 or 23 or 24 or 25 or 26 1579016 
28 20 and 27 4400 
29 ((cancer$ or neoplas$ or tumour$ or tumor$ or carcinoma$ or oncolog$ or malignan$ or 
precancer$) adj6 (multiple$ or many or several or numerous or various or varied or miscellaneous or 
mixed or diverse or different) adj6 (screen$ or detect$)).ti,ab.17884 
30 ((cancer$ or neoplas$ or tumour$ or tumor$ or carcinoma$ or oncolog$ or malignan$ or 
precancer$) adj6 (type or types) adj6 (screen$ or detect$)).ti,ab.6616 
31 29 or 30 22608 
32 19 and 31 1136 
33 28 or 32 4698 
34 (((multi-cancer$ or multicancer$ or multi-tumo?r$ or multitumo?r$) adj6 (detect$ or screen$ 
or test or tests or tested or testing or assay$)) or MCED or MCDBT).ti,ab. 400 
35 ((multiple cancer$ or multiple tumo?r$) adj6 (detect$ or screen$ or test or tests or tested or 
testing or assay$)).ti,ab.899 
36 ((pan-cancer$ or pancancer$ or pan-tumo?r$ or pantumo?r$) adj6 (detect$ or screen$ or test 
or tests or tested or testing or assay$)).ti,ab. 515 
37 ((cross-cancer$ or crosscancer$ or cross-tumo?r$ or crosstumo?r$) adj6 (detect$ or screen$ or 
test or tests or tested or testing or assay$)).ti,ab.10 
38 ((multi-class cancer$ or multiclass cancer$ or multi-class tumo?r$ or multiclass tumo?$) adj6 
(detect$ or screen$ or test or tests or tested or testing or assay$)).ti,ab.11 
39 34 or 35 or 36 or 37 or 38 1743 
40 (Galleri or GalleriTM).mp. 47 
41 PanSEER$.mp. 8 
42 CancerSEEK$.mp. 20 
43 CancerEMC$.mp. 1 
44 (PanTum or PanTumDetect).mp. 7 
45 Epitope-detection in monocytes.mp. 18 
46 CancerRadar$.mp. 1 
47 (IvyGene$ or IvyGeneCORE$).mp. 9 
48 CancerLocator$.mp. 1 
49 CancerDetector$.mp. 2 
50 (EpiPanGI Dx$ or EpiPanGIDx$).mp. 2 
51 OverC.mp. 1 
52 DEEPGEN.mp.13 
53 Dxcover$.mp. 13 
54 trucheck$.mp. 4 
55 Elypta$.mp. 1 
56 MiRXES$.mp. 53 
57 Freenome$.mp.84 
58 40 or 41 or 42 or 43 or 44 or 45 or 46 or 47 or 48 or 49 or 50 or 51 or 52 or 53 or 54 or 55 or 
56 or 57 269 
59 DELFI$.mp. 1285 
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60 Omni1$.mp. 135 
61 Signal-X$.mp. 1059 
62 Harbinger$.mp.3074 
63 EDIM$.mp. 268 
64 LUNAR$.mp. 8449 
65 MERCURY$.mp. 73242 
66 59 or 60 or 61 or 62 or 63 or 64 or 65 87469 
67 20 and 66 25 
68 33 or 39 or 58 or 67 6420 
69 (animal/ or animal experiment/ or animal model/ or animal tissue/ or nonhuman/) not exp 
human/ 6917818 
70 68 not 69 6305 
71 limit 70 to yr="2010 -Current" 5690 
72 exp economic model/ 4068 
73 statistical model/ 176506 
74 mathematical model/ 141694 
75 epidemiological model/691 
76 model$.ti,kw. 963001 
77 ((economic or econometric or cost$ or statistical or mathematical or epidemiological or state 
transition or interception or natural history) adj2 model$).ab. 123461 
78 simulation$.ti,ab. 487641 
79 ((analy$ or math$ or quantitative$) adj3 framework$).ti,ab.  28327 
80 (math$ adj3 (equation$ or expression$ or formula$)).ti,ab.  7985 
81 or/72-80 1662473 
82 71 and 81 192 
83 "decision tree"/ 23369 
84 decision theory/1861 
85 exp markov chain/ 16817 
86 (decision$ adj2 (tree$ or analy$ or model$)).ti,ab. 53926 
87 markov$.ti,ab. 40975 
88 discrete event simulation/ 439 
89 discrete event simulation$.ti,ab.1478 
90 microsimulation$.ti,ab.2914 
91 or/83-90 107658 
92 71 and 91 56 
93 82 or 92 226 

 
Summary of results 
 
The search strategy was run on February 8, 2024, and retrieved 575 records in total, with 480 unique 
records remaining after duplicates were removed. The searches had an objective that was broader than 
the review in this paper. They aimed to scope the modelling literature, and presented a broad remit 
which included statistical, economic, decision-analytic, mathematical, econometric, theoretical or 
epidemiological models or frameworks. In this paper, we have only looked at models with an explicit 
natural history of disease (NHD) component.  
 
For the broader scoping review 20 publications/abstracts were selected. These were split into clinical 
models or clinical and cost-effectiveness models. Ten were clinical models, five of which were full 
papers and another five were abstracts. The remaining 10 included cost-effectiveness, 3 of which were 
full papers and the remaining seven were abstracts.  Where the work in an abstract used a particular 
model published in full text elsewhere, the abstract was linked to the full model publication. Given 
information was often limited, we confirmed the attribution of abstracts to models with GRAIL.  
 
Only five of the above MCED models had an explicit NHD component, and therefore only these were 
included in the review in this paper. Four of these were funded by GRAIL and specifically related to 
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the Galleri test [13-16] and one was based on a hypothetical MCED (although using some data inputs 
derived from studies on the Galleri test) [17]. 
 
 


