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Abstract—Fault diagnosis of rotating machinery driven by 

induction motors has received increasing attention. Current 

diagnostic methods, which can be performed on existing inverters 

or current transformers of three-phase induction machines, have 

become a more economical and reliable alternative to vibration 

diagnostic methods. Existing references mainly focus on the 

stator current analysis of single-phase, but most single-phase 

current analysis methods utilize only a fraction of the total 

information accessible in the three-phase system. Field 

experience shows that zero-sequence current has more distinctive 

fault characteristics compared to single-phase current, and 

therefore it is better to use in mechanical fault detection and 

diagnostic tasks. This paper proposes a novel sparse learning-

based method for zero-sequence current analysis for induction 

rotating motor drive fault diagnosis. Firstly, it elaborates and 

compares the effectiveness of zero-sequence current in revealing 

fault characteristics compared with single-phase current by 

analyzing the fault diagnosis mechanism of zero-sequence 

current. Additionally, the method proposes a correlation 

entropy-enhanced sparse learning method for the problem of 

high-frequency noise and interference in the zero-sequence 

current signals, so as to enhance the learning of the features of 

the noise-containing signals. The diagnostic efficacy of the 

proposed method has been verified through experiments on two 

real datasets. 

Index Terms—induction motor, rotating machinery, zero-

sequence current, fault diagnosis，sparse autoencoder 

I. INTRODUCTION1 

HE rotating machinery, as the heart of industrial drive 
systems, such as rolling bearings and gears, is of 
crucial importance for system safety and reliability [1]. 
Under harsh operating environments with high loads 
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and high torque, rotating machinery is highly susceptible to 
faults. The occurrence of fault can jeopardize the safety and 
reliability of the equipment, or even causes huge economic 
losses and casualties [2]. Therefore, efficient and effective 
fault diagnosis is essential to improve the safety and reliability 
of industrial rotating machines [3],[4]. 

Considerable attention has been paid to fault diagnosis 
methods for induction motor drive systems, where factors and 
signals used include vibration [5], acoustic emission [6], 
temperature [7], rotational speed [1] among others. In the 
existing study, vibration diagnostic methods are commonly 
used [8]. However, such a method potentially suffers from a 
few drawbacks due to the following factors: 1) the installation 
of sensors may be expensive; 2) the installation location is 
inconvenient or difficult to access, for example, it may be 
difficult to install sensors to an equipment that has already 
been put into production; 3) the collected signals are usually 
susceptible to vibration of coupled components as well as 
external interference [9]. On the contrary, motors are widely 
used in industrial production. The stator currents of motors 
can be obtained directly from the existing frequency 
converters or current transformers, making motor current 
signals (MCS) method a non-intrusive, more economical and 
reliable alternative for fault diagnosis [10]. 

For MCS-based methods, it is necessary to distinguish 
between rotating machinery inside the motor (internal rotating 
components) and rotating machinery of the external drive train 
(external rotating components) [11]. Extensive research on 
methods of fault identification of internal rotating components 
has been done in recent years [12], [13]. Damage of the 
internal motor bearings directly affects the air gap of the 
motor and induces vibrations at characteristic frequencies in 
the motor current. Whereas the failure characteristics of 
external bearings must be transmitted through torque 
variations along the drive train, which can greatly weaken its 
amplitude after experiencing the damping effect of the 
couplings and the interference of other dynamical processes, 
and at the same time, the fault-related current signals are very 
weak and easy to be drowned out in the noise [14]. Therefore, 
the use of MCS for external rotating components is 
challenging. 

For the purposes of extracting meaningful signatures from 
weak fault currents, various approaches have emerged, which 
can be broadly classified into two categories: 1) model-based 
analysis approaches, 2) data-driven approaches. Model-based 
methods establish analytical relationships between the model 
parameters and the physical parameters of the system with a 
high degree of interpretability [15]. Amplitude-Frequency 
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Demodulation Analysis method [16], Iterative Numerical 
Integration Solution method [17], and Bispectrum Analysis 
method have been used to highlight the frequency components 
associated with faults. However, in practice, such approaches 
can have the following limitations: 1) it is highly dependent on 
a priori knowledge to build and maintain the model, and 2) it 
is difficult to build a completely accurate model due to the 
complexity and uncertainty of the environment. If the model is 
inaccurate, then decision-making and planning based on the 
model may create uncertainty and lead to misdiagnosis. 

Data-driven techniques such as machine learning methods 
directly use historical data, their reliance on a priori 
knowledge of the system of interest can be reduced and thus 
are more suitable for modern industrial applications. Singh et 
al. utilized Continuous Wavelet Transform (CWT) to extract 
stator current fault features, and achieved outer ring fault 
detection of bearings mounted on load machine [18]. Lee 
proposed an external bearing fault diagnosis method that 
utilizes time domain features (TDFs) to reduce training and 
inference time, and improves model performance by making 
use of residuals and densely connected structures [19]. Luo et 
al. applied Variational Mode Decomposition (VMD) to 
decompose the motor current signal, the energy entropy of the 
resulting intrinsic mode functions (IMFs) and five time-
frequency features were selected as inputs to the Probabilistic 
Neural Network (PNN) classifier for fault diagnosis of wind 
turbine gearboxes [20]. The aforementioned methods have 
yielded remarkable results, but there are limitations in terms of 
stability and generalizability. Specifically, all these methods 
are designed based on multiple signal preprocessing methods 
in the time-frequency domain, requiring a large amount of a 
priori knowledge or diagnostic expertise. The performance of 
feature engineering and machine learning models greatly 
affects the accuracy and generalization ability of diagnostics. 
Deep learning (DL) methods, due to their powerful ability to 
automatically learn useful information and feature 
representations, become an effective means to for signal 
processing and feature extraction [21]. More attention is being 
paid to automatic feature learning, including Convolutional 
Neural Network (CNN) and Autoencoder (AE), which have 
been used for machine state identification and effective 
current signal processing [9].  

In [11], two-phase current signals were transformed into 2D 
image signals and fed into a CNN model, then fused the 
learned two-phase information for fault classification. Wang et 
al. designed a CNN-based feature fusion model, which fully 
fused the complementary characteristics extracted from 
current and vibration signals to realize the fault diagnosis of 
bearings [22]. Hou et al. designed a CNN-based current fault 
diagnosis model that used a comb filter as a convolutional 
layer to realize the diagnosis task under limited sample 
conditions [23]. Cipollini et al. utilized two-phase current 
signals as inputs to the stack AE to achieve diagnosis of two 
bearing faults [24]. Sun et al. introduced a noise cancellation 
method to obtain the residual current, the features were then 
extracted from the residual current data using the stack AE 
and finally fault diagnosis of the motor was realized [12]. 

Literature reviews show that deep learning methods 
outperform other state-of-the-art fault detection methods in 
some applications, but there are still some challenges that limit  

Simulated bearing and gear failures in driveline systems

Data Acquisition

Mechanical Analysis

Model Construction

Fault Diagnosis

Collected three-phase current data in stator current

Analyzed zero-sequence current fault mechanisms and 
verified their effectiveness in fault diagnostic tasks

Build a fault diagnosis model based on zero-sequence 
current

Fault classification and recognition

Construction of Fault Simulation 
Experiment Platform

 
Fig. 1. The block diagram of the proposed fault diagnosis 
approach. 

their application. For example, the performance of the above 
methods often depends on the design of the network 
architecture and the quality of the fault data used. These 
methods may not be easily implemented and used for complex 
industrial applications [25]. If the network is not well designed 
or the training data are not good enough, the resulting models 
may not work well. Therefore, it is particularly important to 
develop effective feature learning and enhancement methods 
to improve fault feature extraction for noisy current signals. 

It is worth noting that all papers reviewed above focus on 
analyzing single-phase current signals. In fact, most existing 
current diagnostic methods are also based on single-phase 
current signals. However, the information carried by each 
stator current in a three-phase system can vary slightly from 
phase to phase due to the presence of initial phase shifts, 
amplitude and/or phase imbalances, high-frequency noise 
components, and measurement errors. Therefore, methods that 
rely solely on single-phase current analysis can only utilize a 
small fraction of the total available information in a three-
phase system and cannot fully exploit the potential value of 
the data [26]. 

Given the wide range of applications of three-phase rotating 
motors in complex industrial equipment such as wind turbines, 
automobile manufacturing and metallurgical machinery, it is 
particularly important to comprehensively consider the three-
phase current parameters in the condition monitoring of three-
phase systems. In particular, the zero-sequence current (ZSC), 
as a superposition of the three-phase currents, contains a 
wealth of information about the symmetry of the machine. A 
deviation from the normal state may indicate a potential fault 
condition, making the zero-sequence current component an 
extremely sensitive indicator for monitoring machine 
operating conditions. 

Bearing the above consideration in view, this work tasked 
to improve the performance of extracting weak fault features 
from motor current signals. In doing so, a correlation entropy-
enhanced sparse learning method (CESL) is proposed to 
handle zero-sequence current signals. Through this perspective, 
it targeted to dig deeper into the fault characteristics in the 
current signals and provide a more accurate and 
comprehensive basis for the fault diagnosis of rotating 
machinery. The block diagram of the proposed fault diagnosis 
approach is shown in Fig. 1. 

The main contributions of the paper are outlined below: 
1) A new fault diagnostic scheme using zero-sequence
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Fig. 2. The schematic diagram of the induction motor drive 
system. 
 
current is introduced and its effectiveness in revealing fault 
characteristics is analyzed. 

2) An intelligent fault diagnosis approach based on three-
phase current signals is proposed, which can automatically and 
efficiently extract representative features from weak current 
data, and eliminate the need for traditional signal processing 
methods and expert experience. 

3) Considering the existence of high-frequency and periodic 
noise in the motor stator current, a correlation entropy-
enhanced sparse autoencoder loss function is designed to 
strengthen the ability of feature representation and learning. 

The rest of the paper is organized as follows. In Section II, 
the fault mechanism of current signals is analyzed, Section III 
describes the details of the suggested model, and the validity 
of the method is verified by experiments on two datasets in 
Section IV. The paper is summarized in Section V. 

II. ANALYSIS OF MOTOR CURRENT MECHANISM 

A. Analysis of stator currents 

In rotating machinery, when a malfunction (e.g., bearing 
failure, gear breakage) occurs, additional torque fluctuations 
may be generated [27]. These events cause fluctuations in the 
air-gap magnetic chain, which result in the stator current 
signals being modulated in both amplitude and phase, thereby 
emerging new frequency components [23]. To facilitate the 
analysis process, the following provides an example of a 
bearing failure. 

For the bearing current detection model, it can be roughly 
divided into two components: the rotor radial model and the 
torque transmission model. The radial model was initially 
proposed by Schoen, where it was assumed that the motor 
stator generates a rotational eccentricity when the bearing is in 
a faulty state, and this eccentricity leads to the stator induced 
current cyclic change [28]. However, this model does not take 
into account the torque variation, so it is only suitable for fault 
diagnosis of internal rotating components. Another model is 
the torque transmission model, its mechanism is as follows: 
when the bearing fails, the ball passing through the defective 
parts of the inner and outer rings of the bearing generates 
transient fluctuations of torque, causing changes in the stator 
current signal [29]. 

It was shown that torque fluctuations arising from bearing 
faults are the main cause of the changes in the stator current 
through mechanical analysis [30]. The torque transmission 
model can explain not only the motor itself, but also the fault 
induction principle of the drive train bearing. Thus, this paper 
mainly focuses the stator current induction principle of 
bearing failure with the torque transmission model. To 
illustrate the effect of bearing failure on the current signal, a 

schematic diagram of an electromechanical drive train is 
depicted in Fig. 2. 

When the bearing breaks down, the load torque consists 
mainly of a constant component T0 and an oscillating 
component at the characteristic frequency fc [29]. The higher 
order terms are neglected and only the fundamental terms are 
considered as follows: 

 Load 0( ) cos(2 )c cT t T T f= +  (1) 

where Tc is the amplitude of the oscillations associated with 
the severity of the fault. 

The change in rotor speed and rotor angular position due to 
torque oscillations at the characteristic frequency lead in turn 
to phase modulation of the rotor magnetomotive force (MMF) 
in the stator reference frame. As a result, the flux density in 
the motor air gap will change and the additional flux causes 
the stator current to generate an extra frequency. The stator 
current can be expressed as： 
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where terms ist(t) and irt(t) are the stator current components 
generated by the stator magnetomotive force and rotor 
magnetomotive force respectively; ωs is the angular velocity 
associated with the power supply, and β is the modulation 
index, a healthy case is obtained for β=0. 

The main principle of stator current detection for bearing 
faults can be found in [29]. The effect of torque variations 
causing changes in the motor current is a phase modulation of 
the current spectrum: 

 BF s cf f kf=   (3) 

where k is the harmonic order, k=1,2,3…, fc is the 
characteristic frequency of bearing faults. 

B. Analysis of zero-sequence current 

Theoretically, in a healthy operating condition, the phase 
current is defined as: 

 ( ) ( ) ( ) 2  H n s n si t I cos nf t I cos n t = =  (4) 

where fs is the power supply frequency. And in a three-phase 
system, the currents have symmetry, i.e., the three-phase 
currents are equal in amplitude and 120° out of phase: 

 _ _ _ ) ( ) ( ) ( ) (
zsc ph a ph b ph c

i t i t i t i t= + +  (5) 

The ZSC arises from the instantaneous sum of the three-
phase currents and hence the ZSC is zero. Considering the 
effect of bearing failure on stator current, (4) is modified as 
follows: 
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where N(t) represents the Gaussian noise arising from sensor 
measurement. 

Therefore, for each phase current 
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Fig. 3. True motor current under normal and fault conditions. 
(a) Normal three-phase current signals. (b) Faulty bearing 
zero-sequence current signals. 
 

Firstly, when rotating machinery fails, such as damage to 
bearing rolling elements or missing and broken teeth in gear 
components, it leads to uneven load distribution, so that the 
three phases are not completely symmetrical, as a result of 
which (5) is not at zero. Secondly, the failure of rotating 
machinery can cause mechanical vibration and impact, which 
in turn is transmitted to the stator of the motor. In the current 
signal, the mechanical vibration and impact will be manifested 
as an increase in the ZSC, and different faults may also lead to 
differences in the phase of the ZSC. This is depicted in Fig. 3. 
Observing Fig. 3(a), it can be seen that when the machinery is 
operating in a normal state, the zero-sequence current is 
almost zero and is at a very low level. However, as shown in 
Fig. 3(b), once a fault occurs in the machinery, the zero-
sequence current will show a clear trend of increase, 
accompanied by the generation of phase difference.  

Therefore, by monitoring the magnitude of the ZSC, it is 
possible to determine whether a fault exists in the rotating 
machinery. 

C. Spectral analysis 

The spectrograms of single-phase current signal and ZSC 
signal is plotted to further elaborate the above fault 
mechanism, as shown in Fig. 4. Taking the induction motors 
speed (S=1000 rpm) as an example, the current mechanism of 
inner ring failure and outer ring failure of the bearing is 
analyzed. The bearing parameters are shown in Table I.  

The rotational frequency can be calculated as: 

 
1000

= 16.7 
60

r

S
F Hz

T
= =  (8) 

where T is the number of seconds contained in each minute. 
The failure frequency of the inner ring can be calculated as: 

( )9*16.7 25
1 cos * 1 *cos 0 111.28 

2 2 52
r

i

nF d
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D
   = + = + =   

   
 (9) 

The failure frequency of the out ring can be calculated as: 

( )9*16.7 25
1 cos * 1 *cos 0 39.02 

2 2 52
r

o

nF d
F Hz

D
   = − = − =   

   
(10) 

The current spectra for the outer ring fault (OF) are shown 
in Fig. 4(a) and Fig. 4(c). For single-phase currents, the 
amplitude of the fault frequency is weak and shows essentially 
no peaks. Zooming in on the spectrogram reveals tiny spikes 
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Fig. 4. Illustrations of the spectra of inner and outer ring faults. 
(a) Single-phase current of outer ring fault. (b) Single-phase 
current of inner ring fault. (c) zero-sequence current of outer 
ring fault. (d) zero-sequence current of inner ring fault. 
 

TABLE I 
BEARING-RELATED PARAMETERS 

Parameter Value Parameter Value 
Number of balls(n) 9 Pitch diameter(D) 52mm 

Ball diameter(d) 25mm Contact angle(β) 0 

 
at 35.1 Hz and 79.3 Hz. Whereas in the spectrogram of ZSC, it 
can be found that there are obvious peaks at 35.3 Hz and 79.1 
Hz. The spectra of the current for the inner ring fault (IF) are 
shown in Fig. 4(b) and Fig. 4(d). For single-phase current, two 
small peaks are found at 112.1 Hz and 221.2 Hz. For ZSC, 
fault frequencies of 111.3 Hz and 226.9 Hz are clearly 
observed. 

In summary, compared to single-phase current, ZSC has 
more distinctive fault characteristics and is better to use for 
mechanical fault detection and diagnosis. In addition, the 
diagnosis using the spectrum signal may be inaccurate due to 
the fact that the noise signal still exists in the ZSC signal and 
the fault signature frequency in practical applications can 
differ from the theoretical value.  

Therefore, using feature extraction techniques is necessary 
and more effective in enhancing the fault features for better 
diagnosis.  

III. THE PROPOSED CESL NETWORK 

A. The proposed CESL network 

The traditional sparse autoencoder (SAE) learns features 
from the original data by encoding and decoding. Encoding is 
a process of encoding the input data into features, whereas 
decoding is a process of decoding the features into outputs for 
input reconstruction [31]. 

Let 1 2[ , ,..., ]T n m

nX x x x R =   be unlabeled data used in the 

encoding process, and zi be data used in the hidden layer 
which can be obtained by the encoding function fe() used in 
the decoding process. The decoder uses a mapping function 



 

gd() to reconstruct the data X̂ ,which is formulated in (11): 
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where σf and σg are two nonlinear activation functions, W and 

W' are the weight matrix, b and b' are the bias vector. 
SAE seeks to optimize parameters ω={W, b, W', b'} by 

minimizing the error between X̂  and X, and the process of 
training is to minimize the cost function: 
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where JMSE(ω) is the reconstruction error; JKL(r||ȓ) is the 
sparse penalty term defined by the KL divergence (distance), β 
is the sparse weight, nl is the number of hidden layers, and r is 
a sparse parameter. The purpose of JKL(r||ȓ) is to keep the 
average activity of hidden neurons small to ensure that more 
features can be learned. 

Based on SAE, we propose to use CESL for extracting 
more representative features from fault signals. The diagram 
of the CESL model is shown in the Fig.5. The differences 
between CESL and traditional SAE are as follows. 

In SAE, the mean square error (MSE) is traditionally 
considered as the loss function. However, MSE lacks 
robustness for feature learning. To improve the ability of SAE, 
an integrated loss function, comprising three components, 
namely, correlation entropy term JMSE(ω), divergence 
(distance) term JKL(r||ȓ) and a weighting term Jweight(ω), is 
used in this paper which is defined as follows: 

 ( ˆ( ) ) ( )( )new K hM w i tC L e gJ J J r r J    = − + +  (13) 

where the explanations of three terms are given below. 
Firstly, the correlation entropy function is introduced to 

address the limitations of the traditional reconstruction loss 
function. The correlation entropy is a generalized similarity 
metric of two random variables A and B, it can be used as an 

indicator of the error between X̂  and X [32]. It is defined as： 

  ( , ) ( )V A B E A B = −  (14) 

where ( )  is a kernel function that satisfies Mercer's theory, 

and ( )E   is the expectation.  

Unlike MSE, correlation entropy is more robust to outliers 
and noise. Since correlation entropy uses a kernel function to 
measure the similarity between predicted and target values, it 
is less sensitive to outliers. This makes correlation entropy 
better for handling data with noise or outliers. The estimated 
correlation entropy is calculated by (14): 
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In this work, the Gaussian kernel function is used, which is 
defined as: 
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where σ is the kernel size. Then, the correlation entropy loss 
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Fig. 5. The proposed CESL network. 
 
function is designed to replace the traditional MSE, and the 
formula is shown below: 

 MC
1

1 ˆ( ) ( )
n

i i

i

J x x
n

 
=

= −  (17) 

To further enhance the feature learning ability of the 
designed network model, a non-negative constraint term is 
introduced into the cost function, which makes the model 
parameters sparser and thus enables the learning of more 
representative features from high-dimensional data [33], 
denoted as 
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where λ is weighting coefficients, k is the number of network 
layers. nl is the number of nodes in layer l. 

D. The procedure of the CESL method 

The diagram of implementation procedure of the proposed 
CESL diagnostic approach is shown in Fig. 6, which include 
the following steps. 

1) Data acquisition: To design rotating machines fault 
experiments, based on which to collect three-phase current 
data, and get zero-sequence current signals. 

2) Data preprocessing: To remove random noise and high 
frequency components from the signals; to preprocess the raw 
data using a mean filtering technique. To segment the 
processed data using a time shift window scheme. Finally, to 
normalize the preprocessed data. 

3) The CESL structure establishment: To initialize the 
network parameters, fine-tune the network parameters 
according to the proposed integrated error function model, and 
complete the entire training process with the goal of 
minimizing Jnew(ω). 

4) Fault classification: To perform fault diagnosis by 
putting test samples into the trained CESL network models to 
learn representative features, which are then fed into the 
SoftMax classifier. 
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Fig. 6. The framework of the proposed CESL.
 

IV. CASE VERIFICATION 

A. Experimental Settings 

To evaluate the performance of the suggested approach, a 
mechanical fault simulation test rig was constructed as shown 
in Fig. 7. It comprises a three-phase asynchronous motor and a 
mechanical transmission device, in which the mechanical 
transmission device includes a variety of engineering 
machinery used in the main transmission parts, including 
bearings, gears, couplings, drive shafts and so on. Some 
details of the parameters of the asynchronous motor are shown 
in Table II. 

In our experiments, a frequency converter (Model: FD9A0- 
MS43ANSAA) is used for precise speed control of the motor, 
and a current sensor (Model: CSM020GB) is used to monitor 
the motor current in real time. Simulations for different loads 
were carried out by applying different radial load forces. In 
addition, we installed acceleration sensors (Model: HD-YD-
232) on the monitored components to capture vibration signals. 
Eventually, these data were collected synchronously by a 
multi-channel data acquisition device to ensure the integrity 
and accuracy of the data. The sampling frequency of the data 
acquisition card is 16K, enabling sufficient frequency 
resolution to capture the characteristic frequency of fault 
generation. Taking into account data adequacy and processing 
efficiency, we selected a sampling time of 4 seconds. The 
working condition of the motor is 2,000 rpm and the radial 
loading force is 1400 N to simulate the bearing load under 
normal operating conditions. A total of three sets of data were 
collected. 

Parameter settings: The CESL model was constructed to 
determine the network structure by analyzing the trend of the 
novel integrated error function Jnew(ω). The training period for  
the experiment is 50, and the batch size is 128. 
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Fig. 7. Mechanical fault simulation test rig. 

TABLE II 
INDUCTION MOTOR PARAMETERS 

Parameter Value Parameter Value 
Rated power 3 kW Stator Connection Y 
Rated current 6.58 A Rated frequency 50 Hz 
Rated voltage 380 V Pole-pair number 1 

TABLE III 
MODEL PARAMETER 

Description Symbol Value 
The structure of the CESL - 1024-256-100-6 

Gaussian kernel size   1 

Sparsity penalty weight 
 0.03 

Sparsity parameter r 0.01 
Non-negative constraint weight   0.1 

Learning rate - 0.001 

The window length is fixed at 1024 and the moving step is 
100. the number of samples in each category is 1881. The 
optimizer of the network is Adam. The main parameters of the 
model are shown in Table III. 



 

Comparison methods: To test and verify the model 
performance, we considered the following eight methods for 
comparison purposes. 

a) SP-CESL: As with conventional current diagnostics, 
single-phase currents are directly used as inputs to the CESL. 

b) SC-CESL: The three-phase currents are first time-shifted 
and synchronized, then integrated and squared to obtain the 
current residual signal. Finally, the current residual signal is 
fed into the CESL. Residual currents are obtained in [13]. 

c) ZS-SAE: It adopts ZSC data as input to a standard SAE. 
The parameters are consistent with the proposed method. 

d) ZS-SVM: It adopts the ZSC data and then use SVM for 
fault classification. Build and apply SVM models by calling 
the Scikit-learn library. A Gaussian kernel, with penalty 
coefficient C=1, is used in the SVM model. 

e) ZS-MSCNN: It takes the ZSC data and then uses a 
multiscale CNN for subsequent feature extraction and 
classification. The configuration of the CNN is as follows. The 
convolutional kernels are 7, 5, and 3, respectively, and the 
corresponding number of output channels are all set to 32, the 
pooling kernel size is 2, the step size is 2. The nonlinear 
transformation is performed using the ReLU activation 
function, and the classification results are obtained through the 
fully connected layer. The learning rate is 0.001. 

f) ZS-GRU: It adopts ZSC data as input to Gated Recurrent 
Unit (GRU). The hidden layer dimension of GRU is 128 and  
the number of layers is 4. The learning rate is 0.001. 

g) VS-CESL: It adopts vibration signal data as input to 
CESL. 

All the experiments were repeated five times and their mean 
value was taken as the final experimental result to reduce the 
effect of chance. 

B. Bearing Fault Experiment 

The experiment is as follows: four bearings with different 
failure types were used for the experiment. The specific setup 
and procedure of the experiment ensured that all bearings were 
tested under the same conditions. In addition, a set of 
experiments were added for bearing seat misalignment. Fig. 8. 
clearly shows the failure areas of the bearings. Table Ⅳ 
provides a detailed description of the five bearing failure types. 

Diagnostic result analysis: The diagnostic results for the six 
bearing conditions are shown in Table V, where it can be 
observed that the proposed method significantly outperforms 
other methods in terms of accuracy (98.48%), standard 
deviation (0.23%), and run time (12.49 s), and can meet the 
field requirements of industrial applications, which can meet

(a) (b) (c) (d) (e)

Fig. 8. Rolling bearings with different faults. 

TABLE Ⅳ 
ROLLING BEARINGS WITH DIFFERENT FAULTS 

Index Class Label 
 Normal NR 
(a) Outer ring crack failure OF 
(b) Inner ring crack failure IF 
(c) Ball pitting failure BF 
(d) Cage broken failure CF 
(e) Misalignment failure MF 

 

the field requirements for industrial applications. Overall, our 
approach achieves great the best diagnostic performance for 
the six bearing faults, specifically: 
1) Advantages of ZSC 

For the current-based approach, if only the single-phase 
current is used, the accuracy of the SP-CESL approach is 
16.57%. However, if the ZSC is taken as an input to the 
network, the accuracy increases significantly. This can be 
explained by the fact that single-phase current does not 
characterize mechanical faults significantly, whereas the ZSC 
carries all the information of the three-phase current, which is 
more suitable for monitoring the condition of machinery. 

If the integration of stator synchronized current method is 
used, the fault information is still not sensitive enough to 
achieve a better diagnostic performance, even if the SC-CESL 
model eliminates the noise to a certain extent. 

Compared with the vibration-based method, the accuracy 
(99.54%) of VS-CESL is slightly higher than that of our 
proposed method, but the method has limitations in practical 
applications. From the perspective of applicability, the 
proposed method is superior to VS-CESL. 
2) Advantages of the proposed CESL 

Compared with the standard SAE, our approach has 
improved feature extraction capability. The superiority of the 
new approach is attributed to the better adaptability of the 
designed integrated loss function, which is more robust in 
dealing with outliers and background noise of the motor 
current signals. Moreover, the introduced non-negative 
constraint term can further enhance the sparsity, making the 

TABLE V 
A COMPARISON OF DIFFERENT METHODS 

Method Accuracy (%) 
Standard 
deviation 

Precision Recall F1_score Time (s) 

SP-CESL 16.57% 1.31% 0.1825 0.1670 0.1086 9.77 
SC-CESL 43.12% 0.43% 0.5030 0.4309 0.4033 11.92 
VS-CESL 99.54% 0.31% 0.9957 0.9955 0.9955 13.15 
ZS-SAE 86.50% 2.3% 0.8675 0.8667 0.8648 8.84 
ZS-SVM 93.2% 0.71% 0.9330 0.9317 0.9320 2.25 
ZS-GRU 96.09% 0.95% 0.9627 0.9617 0.9616 10.23 

ZS-MSCNN 98.74% 0.47% 0.9877 0.9875 0.9875 17.23 
Proposed 98.48% 0.23% 0.9851 0.9851 0.9851 12.49 



 

a) Proposed b) ZS-SAE c) ZS-MSCNN

e) ZS-SVM f) SP-CESL g) VS-CESL h) SC-CESL

d) ZS-GRU

Fig. 9. t-SNE visualization results. 

model more focused on learning positive feature 
representations. 

Compared to GRU and MSCNN methods, our method 
balances robustness and computational efficiency. This is due 
to the fact that our method is able to capture the essential 
features from the noise contaminated signals through the 
correlation entropy-enhanced sparse learning approach. In 
contrast, although the MSCNN method achieves good 
performance by using convolutional kernels of different scales 
for multi-scale feature extraction of current signals, its 
performance highly depends on the design of the network 
architecture and the number of samples, and the associated 
model training is usually time consuming.  

The GRU method, on the other hand, mainly controls the 
flow of information through a gating mechanism, but it does 
not impose an explicit constraint on the sparsity of features, 
therefore its feature extraction capability is relatively weak. 
The performance of traditional machine learning methods 
(SVM) is highly dependent on the quality of pre-determined 
features and may be difficult to generalize across different 
fault diagnosis tasks. In contrast, our method can adaptively 
learn representative features from the input data and show 
better diagnostic performance. 

To demonstrate the signature extraction capability of the 
proposed approach, the t-SNE technique is utilized to visualize 
the fault classification results [34]. The principle of this 
algorithm is to downscale the high-dimensional data to a low-
dimensional space through nonlinear mapping to achieve 

 

better visualization, and meanwhile maintains the local 
structure of the data. Fig. 9. shows the visualization results of 
the eight methods, from which we can see that the proposed 
method can distinguish the six bearing states clearly. These 
show that the features extracted by the suggested approach are 
highly beneficial for the bearing condition monitoring task. 

C. Gearing Fault Experiment 

In this section, failure simulation has been carried out on 
planetary gearboxes with three failure faults, each on the sun 
wheel and planetary wheel as shown in Fig. 10. Table VI 
details the seven types of gear failures. 

(a) (b) (c) (d) (e) (f)

Fig. 10. Gearings with different faults. 

TABLE VI 
ROLLING BEARINGS WITH DIFFERENT FAULTS 

Index Class Label 
 Normal NR 
(a) Sun Gear Broken Teeth SGBT 
(b) Sun Gear Missing Teeth SGMT 
(c) Sun Gear Crack SGC 
(d) Planetary Gear Broken Teeth PGBT 
(e) Planetary Gear Missing Teeth PGMT 
(f) Planetary Gear Crack PGC 

TABLE VII 
A COMPARISON OF DIFFERENT METHODS 

Method Accuracy (%) 
Standard 
deviation 

Precision Recall F1_score Time (s) 

SP-CESL 40.03% 3.23% 0.3509 0.4022 0.3374 10.77 
SC-CESL 60.03% 1.04% 0.5313 0.5984 0.5347 8.89 
VS-CESL 98.46% 0.48% 0.9847 0.9851 0.9848 15.36 
ZS-SAE 97.55% 0.82% 0.9755 0.9752 0.9752 10.24 
ZS-SVM 98.35% 0.18% 0.9829 0.9831 0.9829 2.38 
ZS-GRU 94.51% 0.85% 0.9488 0.9449 0.9412 12.25 

ZS-MSCNN 99.96% 0.06% 0.9996 0.9996 0.9996 20.05 
Proposed 0.9998 0.03% 0.9998 0.9998 0.9998 14.7 



 

a) Proposed b) ZS-SAE c) ZS-MSCNN d) ZS-GRU

e) ZS-SVM f) SP-CESL h) VS-CESLg) SC-CESL

Fig. 11 t-SNE visualization results. 
 

Diagnostic result analysis: Table VII illustrates the 
accuracy of eight different methods. It can be seen from the 
table that the proposed method has the best performance with 
an average accuracy of 99.98%. 

In terms of the feature extraction method, the accuracy 
(99.96%) of the MSCNN method is close to that of the 
proposed model, but its training time is much higher. The 
reason for the much higher accuracy of the SVM method 
(compared to the previous experiment) may be explained that 
gear faults are more sensitive to the features extracted 
manually. 

The t-SNE method is used for analyzing the experimental 
results. As can be seen from the Fig. 11, our method has clear 
boundaries between classes and the classification is very 
satisfactory. Combining the two experiments of bearing and 
gear, our proposed method takes into account the training 
efficiency and real-time demand while maintaining high 
accuracy, providing an efficient and reliable solution in the 
field of rotating machinery fault diagnosis, which is promising 
and desirable for practical applications. 

D. Hyperparameter analysis 

We analyzed the effect of the Gaussian kernel parameter 
and the sparsity parameter on the classification accuracy of the 
model, tested on both bearing and gearbox datasets. 

Gaussian kernel parameter: controls the sensitivity of the 
loss function to distance and affects the robustness of the 
model. We tested different values of the Gaussian kernel 
parameters (0.1,0.5,1,1.5,1.5,2). The optimal parameters are in 
the range between 0.5 to 1.5. As shown by the solid lines in 
Fig. 12. 

Sparse penalty coefficients are crucial for the quality of 
extracted features and affect the generalization of the model. 
We tested several different sparse penalty values 
(0.01,0.03,0.05,0.07,0.09,0.1). It turned out that the optimal 
parameters are between 0.01 and 0.05. In summary, the 
proposed method is not highly sensitive to parameter 
variations; it shows robust classification performance. 

The diagnostic experiments were performed on an NVIDIA 
GeForce RTX 4070 GPU and the programming language is 
Python. 

 

 
Fig.12. Effect of different parameters on accuracy. 

V. CONCLUSION 

The existing current-based methods cannot provide good 
performance and suffer from weak signal amplitude and low 
signal-to-noise ratio. To overcome these drawbacks, this paper 
investigates the problem of fault diagnosis of rotating 
machinery based on ZSC signals, by analyzing the fault 
mechanism of current. The ZSC contains rich fault 
information compared to that of single-phase current and is 
better to use for monitoring the safety of mechanical systems. 

A correlation entropy-enhanced sparse feature learning 
method is designed, which can automatically and efficiently 
extract fault characteristics without the need of manual 
interference. One of the advantages of the new method is that 
it has good robustness to with noisy signals. The method is 
applied to fault diagnosis of bearings and gearboxes in 
transmission systems. The experimental results show that the 
proposed rotating machinery fault diagnosis method has good 
application prospects. 

In the future, we plan to extend the pioneering approach to a 
wider range of electromechanical systems. In addition, due to 
the scarcity and variety of fault data, and the differences 
between testbed data and actual data, there is a need to take 
these differences into account and utilize transfer learning to 
improve the model capability. 
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