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ABSTRACT 29 

Genome-wide association studies (GWAS) of melanoma risk have identified 68 independent signals at 54 30 

loci. For most loci, specific functional variants and their respective target genes remain to be 31 

established. Capture-HiC is an assay that links fine-mapped risk variants to candidate target genes by 32 

comprehensively mapping cell-type specific chromatin interactions. We performed a melanoma GWAS 33 

region-focused capture-HiC assay in human primary melanocytes to identify physical interactions 34 

between fine-mapped risk variants and potential causal melanoma susceptibility genes. Overall, 35 

chromatin interaction data alone nominated potential causal genes for 61 of the 68 melanoma risk 36 

signals, identifying many candidates beyond those reported by previous studies. We further integrated 37 

these data with cell-type specific epigenomic (chromatin state, accessibility), gene expression 38 

(eQTL/TWAS), DNA methylation (meQTL/MWAS), and massively parallel reporter assay (MPRA) data to 39 

prioritize potentially cis-regulatory variants and their respective candidate gene targets. From the set of 40 

fine-mapped variants across these loci, we identified 140 prioritized candidate causal variants linked to 41 

195 candidate genes at 42 risk signals. In addition, we developed an integrative scoring system to 42 

facilitate candidate gene prioritization, integrating melanocyte and melanoma datasets. Notably, at 43 

several GWAS risk signals we observed long-range chromatin connections (500 kb to >1 Mb) with distant 44 

candidate target genes. We validated several such cis-regulatory interactions using CRISPR inhibition, 45 

providing evidence for known cancer driver genes MDM4 and CBL, as well as the SRY-box transcription 46 

factor SOX4, as likely melanoma risk genes. 47 

INTRODUCTION 48 

Melanoma is the deadliest form of skin cancer and originates from melanocytes. Multiple genome-wide 49 

association studies (GWAS) of melanoma risk have been conducted1-9, with the most recent meta-50 

analysis of 36,760 melanoma cases identifying 54 loci and 68 independent signals10. Despite this success, 51 
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significant challenges lie in pinpointing the functional variants and causal genes at most of these GWAS 52 

risk loci11-13. Most loci associated with complex traits, including those for melanoma risk, do not harbor 53 

risk-associated protein-coding variants11-13. Instead, these loci may potentially function through genetic 54 

variants located in cis-regulatory regions such as enhancers and gene promoters, influencing target gene 55 

expression in an allele-specific manner11-13. Consistent with this, genetic variants associated with 56 

complex traits are often found to be enriched at genomic regions annotated as regulatory elements14-18. 57 

For many loci, the lead reported variant is not necessarily the functional variant, as each locus may 58 

harbor multiple risk-associated variants that are in linkage-disequilibrium (LD) with the unknown causal 59 

variant or variants12. This often makes it difficult to statistically distinguish the causal risk variant(s) from 60 

LD passengers. Furthermore, given that enhancers may function over long distances, the nearest gene to 61 

a GWAS risk signal is not necessarily the target gene and therefore, genes other than the nearest gene in 62 

the region must be considered plausible targets11,18,19.  63 

One commonly used post-GWAS approach for identifying target genes is colocalization of the GWAS 64 

signal with those from quantitative trait locus (QTL) datasets generated from disease- or trait-relevant 65 

cell types or tissues20-22. Colocalization of melanoma GWAS with multiple QTL types derived from 66 

expression and methylation data from human primary melanocytes identified at least one colocalizing 67 

QTL for less than half (39%) of melanoma GWAS loci23,24. While QTLs derived from expression data 68 

nominate specific gene candidates for a given locus, meQTLs do not necessarily directly implicate 69 

specific genes. Long and colleagues compiled available QTL data with a custom massively parallel 70 

reporter assay (MPRA) of fine-mapped melanoma-associated variants and still only linked MPRA-positive 71 

variants to genes for roughly 50% of loci25. Given many GWAS risk variants have relatively small effects 72 

on disease risk, this lack of colocalizing QTLs could be explained by limited statistical power in small QTL 73 

studies11,12,26-28. Alternatively, there is growing evidence that many variants associated with complex 74 
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traits may function in a context- and/or state-specific manner which may be missed when using QTL 75 

data from cells in a steady-state or MPRA assays in specific cell systems22,29-31.  76 

Enhancer elements regulate gene expression via physical interactions with promoter elements and can 77 

thus regulate expression of distant genes via long-range three-dimensional chromatin interaction. 78 

Methods to characterize chromatin conformation, including HiC-based methods32-37 have emerged as 79 

powerful approaches to map such interactions at GWAS risk loci34,35,38-43. One of these methods, capture-80 

HiC43-46, utilizes capture baits targeting regions of interest, often gene promoters or GWAS signals. To 81 

date, targeted cell-type specific chromatin interactions have not been evaluated across all genome-wide 82 

significant melanoma risk loci, but the utility of this approach has been demonstrated in establishing 83 

AHR as a functionally-validated ultraviolet B (UVB)-responsive melanoma susceptibility gene47. In this 84 

study, we performed a GWAS region-specific capture-HiC assay, baiting the entire regions of association 85 

for the 68 melanoma GWAS risk signals (locus and signal numbering is listed in Table S1) to 86 

comprehensively map cell-type specific chromatin interactions between fine-mapped risk variants and 87 

potential target genes in human primary melanocytes. We integrated capture-HiC data with fine-88 

mapping, as well as cell-type specific epigenomic (chromatin state, accessibility), gene expression 89 

(eQTL/TWAS), DNA methylation (meQTL/MWAS), and high-throughput screening (massively parallel 90 

reporter assays; MPRA) data to prioritize variants and their respective candidate gene target(s) for cis-91 

regulation (Figure 1A).  92 

Our approach nominated potential causal genes for the vast majority of melanoma risk signals, 93 

identifying many plausible candidates beyond those reported by previous studies10,23,24,48. Notably, we 94 

identify multiple candidate genes previously identified as somatically altered in melanoma and pan-95 

cancer tumor analyses. 96 
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 97 

Figure 1. Schematic of data integration of capture-HiC data with orthogonal data to prioritize 98 
candidate causal variants and genes. (A) Schematic summary of this study utilizing an integrative 99 
analysis approach to identify candidate causal variants (CCVs) and target candidate genes at the 68 100 
melanoma GWAS risk signals. We performed GWAS region-specific capture-HiC assay, baiting the entire 101 
region of association for the 68 melanoma GWAS risk signals to comprehensively map chromatin 102 
interactions. Subsequently we utilized this dataset to link fine-mapped risk variants to candidate target 103 
genes. We integrated fine-mapping with observed chromatin interactions, further overlaying cell-type 104 
specific epigenomic (chromatin state, accessibility) and high-throughput reporter assay screening 105 
(massively parallel reporter assays, MPRA) datasets to prioritize likely functional variants and respective 106 
candidate gene target(s) for cis-regulation. Finally, we validated candidate genes nominated at multiple 107 
loci via CRISPR inhibition system. (B) Summary of fine-mapped credible causal variants (CCVs) using 108 
Bayesian, LLR/LD, or both criteria at the 68 melanoma GWAS signals (a key to numbered loci is provided 109 
in Table S1). The black bar shows the union of fine-mapped variants identified by Bayesian and LLR/LD 110 
approaches.  111 
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METHODS 112 

Fine-mapping of melanoma risk signals 113 

We performed statistical fine-mapping for the 54 GWAS loci (harboring 68 independent genome-wide 114 

significant signals) described by Landi and colleagues10 (Table S1) using an inclusive strategy, selecting 115 

any variant identified by any one of multiple approaches. Firstly, we used a combination of log-116 

likelihood ratio (LLR) and linkage disequilibrium (LD) based cut-offs, similar to that performed for a 117 

recent melanoma GWAS massively parallel reporter assay (MPRA) study25. The melanoma GWAS 118 

summary data was from the fixed-effect inverse-variance weighted meta-analysis of the full set of 119 

confirmed and self-reported melanoma cases and controls as previously described10.  120 

Specifically, we selected variants that met any one of the following criteria: 121 

a) Variants with log likelihood ratio (LLR) <1:100 relative to the lead variant for the primary signal 122 

of each GWAS locus. 123 

b) Variants that were not genotyped or successfully imputed in the GWAS (including 124 

insertion/deletion variants not assessed in the Haplotype Reference Consortium imputation 125 

panel) that had LD r2 > 0.8 (1000 Genomes Project, Phase 3, Version 5, EUR population)49 with 126 

the primary lead variant. These variants were identified using the LDlinkR package50-52. 127 

c) For secondary risk signals at a locus that were identified through conditional analysis within 1 128 

Mb of a primary lead SNP10 (irrespective of LLR), we relied on LD-based fine-mapping, selecting 129 

all variants with LD r2 > 0.8 (based on 1000 Genomes Project, Phase 3, Version 5, EUR 130 

population)49 to the leading variant at the independent risk signal. 131 

These LLR and LD based data were used for the capture-HiC bait design as well as for identifying credible 132 

causal variants.  133 
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We also used the Bayesian deterministic approximation of posteriors approach (as implemented in the 134 

DAP-G software tool)53,54. For each locus, we defined the region of association by identifying the set of 135 

variants with LLR<1:1000, ordered the variants based on increasing chromosomal position, and selected 136 

the median position to create a +/-500 kilobase (kb) fine-mapping window. Fine-mapping windows were 137 

visually inspected manually and adjusted to +/- 1.5 Mb for four loci where 500 kb was insufficient to 138 

capture all of the association signal (5p15.3, 16q24.3, 11q14.3, and 20q11.22). The test statistic (Z-score) 139 

for each variant from the GWAS summary statistics and the LD matrix (pre-computed using n=~337,000 140 

unrelated British-ancestry individuals from the UK Biobank55,56, s3://broad-alkesgroup-ukbb-141 

ld/UKBB_LD/) were used for the analysis. We set the maximum number of causals at each locus as 5, 142 

with exception of the 9p21.3 locus (locus number 27, risk signal numbers 30-35, Table S1), where the 143 

number of causals was set to six to account for the six independent genome-wide significant signals at 144 

this locus. Note, while we allowed for multiple causals/credible sets, for the purpose of fine-mapping we 145 

only retained variants within individual credible sets that directly correspond to each of the 68 146 

independent genome-wide significant GWAS signals. 147 

GWAS conditional analysis 148 

To identify independent risk-associated signals at the MDM4 locus, we performed conditional and joint 149 

association analyses of melanoma GWAS summary data10 using the Genome-wide Complex Trait 150 

Analysis (GCTA, v1.94.1)57 COnditional and JOint association (COJO) module58, default settings, and a 151 

genomic window of chr1: 203021577-206021577 (hg19). We used an LD reference population of 5,000 152 

individuals selected randomly from the UKBB population determined to be European by PCA (LDEUR); 153 

variants were converted to best-guess genotype (threshold 0.3) followed by data cleaning for 154 

missingness > 3%, HWE p < 1 × 10−6, and MAF < 0.001. Separate analyses were performed conditioning 155 

on lead variants from credible sets identified via Bayesian fine-mapping (DAPG credible set 1 lead 156 
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variant: rs2369633, DAPG credible set 2 lead variant: rs12119098). For the conditional analyses, we 157 

selected the following genomic window chr1: 203021577-206021577 covering both the DAP-G credible 158 

set signals. 159 

Variant effect prediction 160 

We annotated all fine-mapped variants using Variant Effect Predictor tool 161 

(https://grch37.ensembl.org/Homo_sapiens/Tools/VEP)59 based on human genome GENCODE version 162 

19 protein coding transcripts. The rsID and “Consequence” columns were extracted and deduplicated to 163 

obtain a list of rsIDs and their possible impacts. Additional descriptions of the predicted “consequences” 164 

for a given variant can be found at 165 

https://useast.ensembl.org/info/genome/variation/prediction/predicted_data.html. 166 

Melanocyte cell culture 167 

We obtained frozen aliquots of melanocytes, isolated from discarded foreskin tissue of healthy newborn 168 

males, from the SPORE in Skin Cancer Specimen Resource Core at Yale University as described 169 

previously23,24. For capture-C analysis we used three distinct cultures of European ancestry and two of 170 

African ancestry (C24, C27, C56, C140, C205). Melanocytes were either grown in Dermal Cell Basal 171 

Medium (ATCC PCS-200-030) supplemented with Melanocyte Growth Kit (ATCC PCS-200-041) and 1% 172 

amphotericin B/penicillin/streptomycin (120-096-711, Quality Biological) for QTL23,24 and capture-HiC 173 

analysis, or alternatively in M254 (Invitrogen, M254500) supplemented with HMGS-2 (Invitrogen, S0165) 174 

for all other experiments. Cells were grown at 37°C with 5% CO2. All cells tested negative for 175 

mycoplasma contamination using MycoAlert PLUS mycoplasma detection kit (LT07-710, Lonza).  176 
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Capture-HiC bait design and library preparation 177 

Capture-HiC baits were designed by Arima Genomics (San Diego, CA, 2x tiling, least stringent masking, 178 

XTHSBoosting) to obtain an Agilent Sure Select library (Santa Clara, CA) targeting all restriction 179 

fragments (recognition sequences: ^GATC, ^GANTC) covering entire regions of association for the 68 180 

independent genome-wide significant signals (Table S2)10. 181 

For most regions, we used the LLR- and LD-based fine-mapping to define regions of association. The 182 

region of association was defined by the two outermost fine-mapped variants and was extended by at 183 

least one restriction fragment. Exceptions to this were made for the following genomic loci: For the 184 

5p15.33 locus (locus 11, signals 11-13, Table S1), capture baits were designed to cover the entire region 185 

spanning both the TERT and CLPTM1L genes (chr5: 1230000-1360000, ~130 kb). For the 7q31.11 locus 186 

(locus 22, signal 25), we extended the region of association to encompass the complete LD block as 187 

defined by LD link 50-52 (chr7:124392512-124710858). For the 9p21.3 locus (locus 27, signals 30-35, Table 188 

S1), we included the entire region spanning from the MTAP to DMRTA1 genes (chr9:21790755-189 

22452478, ~660 kb). Finally, for the 21q22.3 locus (locus 51, signal 65, Table S1), we extended the 190 

region to include the previously functionally fine-mapped variant rs39820660.  191 

Bait sequences are listed in Table S2. Hi-C libraries were generated using the Arima HiC kit (Arima 192 

Genomics) and the KAPA HyperPrep kit (KAPA Biosystems) following the manufacturer's protocol. 193 

Briefly, 2-4 million cells were crosslinked, enzyme digested, and ligated. The ligated DNA was reverse-194 

crosslinked, fragmented by sonication, and size-selected for adaptor ligation and library amplification. 195 

The HiC library was then hybridized with the custom capture baits and captured by the SureSelect XT HS 196 

and XT low input library preparation kit for ILM (Agilent). 15 capture-HiC libraries were made from five 197 

human primary melanocyte cultures (C56, C140, C205, C24, and C27) with three technical replicates per 198 

melanocyte culture. Barcoded capture-HiC libraries were pooled and sequenced using an Illumina 199 
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Novaseq, with one run on an SP and a second run on an S1 flowcell, generating ~5.7 billion paired-end 200 

reads with 150bp read length, for a median coverage of ~350 million read pairs per technical replicate, 201 

~1.1 billion read pairs per culture. 202 

Capture-HiC chromatin interaction analysis 203 

Paired-end sequencing reads were pre-processed using the HiCUP pipeline61 and aligned to the human 204 

genome version 19 using Bowtie262. The summary of quality-control (QC) of sequencing reads for each 205 

replicate are shown in Table S3. For each melanocyte culture, the aligned reads were pooled across the 206 

technical replicates. Chromatin interaction loops were detected at one and four restriction fragment 207 

resolutions, separately, using CHiCAGO pipeline version 1.16.063, treating each of the five melanocyte 208 

cultures as biological replicates. As described previously42, the four-fragment resolution was created 209 

using the artificial “.baitmap” and “.rmap” files, where four consecutive restriction digestion fragments 210 

were grouped into one fragment (baitmap files provided in Tables S4 and S5). We used the default 211 

parameters for one- fragment analysis except for minFragLen, maxFragLen, binsize, maxLBrownEst 212 

which were set to 75, 1200, 2000, and 150000 respectively (Table S6). Four-fragment analysis was 213 

conducted using default parameters except for minFragLen, maxFragLen, binsize, maxLBrownEst which 214 

were set to 150, 5000, 8000, and 600000 respectively (Table S6). Based on the literature39,42, for four 215 

fragment analysis the removeAdjacent parameter was set to FALSE. Following CHiCAGO tool 216 

recommendations, chromatin interaction capture-HiC loops with CHiCAGO scores ≥ 5 were considered 217 

high-confidence interactions and were further analyzed. The output file was generated using the long 218 

range interaction format and big interact format for visualization on the WashU Epigenome Browser64,65 219 

and UCSC genome browser66-70 respectively. 220 

Considering the wide possible range of cross-linking resolution, the potential for incomplete restriction 221 

digestion, as well as the fact that some variants may be located at the edge of restriction fragment bins, 222 
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data from adjacent bins may also reflect physical interactions from fine-mapped variants to genes. 223 

Therefore, to inclusively identify such interactions, we also considered interaction data from adjacent 224 

restriction fragment bins. Specifically, for each fine-mapped variant, we defined a genomic window +/-225 

500 bases and assessed whether any adjacent restriction fragments overlap this window. In this case, 226 

we assessed chromatin interactions from the restriction fragment bin harboring the variant itself as well 227 

as any overlapping adjacent restriction fragment bin.  228 

Capture-HiC target gene nomination for GWAS risk loci 229 

For each GWAS signal, we mapped chromatin interaction loops between baited restriction fragments 230 

overlapping fine-mapped risk variants (see above) and the promoter regions of the target gene 231 

transcripts as per the GENCODE version 1967,71. We defined the promoter regions of the respective 232 

target genes using three criteria, identifying genomic regions with histone marks consistent with active 233 

promoters in melanocytes and melanoma cells, as well as using a broader definition for gene promoters 234 

regardless of activity in melanocytic cells. Specifically: 235 

1) Melanocyte-specific active promoter regions: We annotated genomic regions as melanocyte-236 

specific active promoters using the NIH Roadmap Epigenomics Mapping Consortium16 237 

ChromHMM imputed state model annotations72,73 derived from human primary neonatal 238 

melanocyte cultures (imputed ChromHMM state model data was downloaded from the UCSC 239 

genome browser Roadmap Epigenomics Integrative Analysis Hub for melanocyte samples E059, 240 

E061). Genomic regions were annotated as melanocyte-specific promoter if they overlapped 241 

with the ChromHMM imputed model states annotated as: PromU (Promoter Upstream 242 

transcriptional start site; TSS), PromD1 (Promoter Downstream TSS with DNase), PromD2, TssA 243 

(Active TSS), PromP (Poised Promoter), PromBiv (Bivalent Promoter), Tx_Reg (transcription 244 

regulator). Data were available from two melanocyte cultures (E059, E061) and were merged 245 
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such that regions were defined as promoter if they overlapped promoter annotated sequence 246 

from either of the two cultures. Subsequently, target genes were assigned for these promoters 247 

based on whether the promoter region overlapped +/-2.5 kb of a transcription start site (TSS) 248 

for any GENCODE version 19 comprehensive protein coding and non-coding transcripts71.  249 

2) Melanoma-specific active promoter regions: Similarly, we defined melanoma-specific active 250 

gene promoters using publicly available ChromHMM data from two different engineered 251 

melanoma cell-models, HMEL and PMEL74. Both HMEL and PMEL cell lines were originally 252 

derived from primary foreskin melanocytes, immortalized by overexpression of TERT, and 253 

introduction of oncogenic CDK4R24C, dominant negative TP53, and BRAFV600E 75. We used the 254 

ChromHMM data specifically from tumorigenic cell line variants with shRNA mediated PTEN 255 

knockdown (HMEL-shPTEN and PMEL-shPTEN)74. Melanoma-specific active promoter regions 256 

were defined if annotated as the following ChromHMM states: 1_TssA, 2_PromWkD, 3_TssWkP. 257 

Target genes were assigned where the promoter region overlapped +/-2.5 kb of a TSS for any 258 

GENCODE version 19 comprehensive protein coding and non-coding transcripts71. 259 

3) Globally defined gene-promoter regions: We utilized the ENCODE based76 promoter boundary 260 

criterion in order to more globally define promoter regions regardless of activity in melanocytic 261 

cells. Global promoters were defined as regions +/-2.5 kb of a TSS for each of the GENCODE 262 

version 19 comprehensive protein-coding transcripts 71. 16,663 genes annotated with a 263 

respective promoter using the globally defined promoter criteria also have melanocyte- and/or 264 

melanoma-specific active promoters.  265 
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ATAC-seq library generation and data analysis 266 

As described previously47, 30K-50K primary melanocytes were lysed with cold lysis buffer (10 mM Tris-267 

HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% IGEPAL CA-630) and centrifuged to obtain nuclei. The 268 

nuclei were resuspended in the transposition reaction mix (2x TD Buffer, Illumina Cat #FC-121–1030, 269 

Nextera), 2.5 µl Tn5 Transposase (Illumina Cat #FC-121–1030, Nextera) and Nuclease Free H2O on ice 270 

and then incubated for 30 min at 37C. The transposed DNA was then purified using the MinElute Kit 271 

(Qiagen). PCR amplification was performed using Nextera primers for 12 cycles to generate each single 272 

library and PCR reaction cleanup was performed using AMPureXP beads (Agencourt). ATAC libraries 273 

were sequenced on an Illumina NovaSeq platform using paired-end sequencing. We sequenced 15 ATAC 274 

libraries from five independent primary melanocyte cultures (C24, C27, C56, C140, C205), with three 275 

technical replicates for each melanocyte culture. The ATAC-seq reads from the technical replicates were 276 

merged for each melanocyte culture. We processed the ATAC sequencing (ATAC-seq) data using the 277 

ENCODE ATAC-seq pipeline version 1.6.1 (https://www.encodeproject.org/atac-seq/), treating five 278 

melanocyte cultures as biological replicates. Sequencing reads were aligned to hg19 using bowtie262,77. 279 

The pipeline requires generating two pseudo replicates via random sampling of reads from pooled 280 

biological replicates for peak calling. ATAC peaks were called using MACSv2 peak caller (2.1.0)78 (P < 281 

0.01) and regions overlapping ENCODE blacklisted regions were removed79. ATAC peaks were called 282 

from the five melanocyte biological replicates, pooled biological replicates, and the pseudo-replicates. 283 

The ATAC overlap reproducibility peaks were identified via the optimal criteria assessing peak overlap 284 

between individual biological replicates, pooled biological replicates, and the pseudo biological 285 

replicates. ATAC-peaks were analyzed and visualized on the WashU Epigenome Browser64,65 and UCSC 286 

genome browser66-70. 287 
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ATAC-seq data from melanoma cell lines 288 

We analyzed publicly available omni-ATAC-seq data80 generated from nine melanoma cell lines derived 289 

from melanoma patient biopsies80. Melanoma cell lines were annotated as belonging to the following 290 

melanoma tumor states: melanocyte-like melanoma cell line (data available from three individual cell 291 

lines), the intermediate-like melanoma cell lines (data available from three individual cell lines), and 292 

mesenchymal-like melanoma cell lines (data available from three individual cell lines). We assessed fine-293 

mapped variant overlap with ATAC-seq peaks in any of the nine melanoma cell lines using the Bedtoolsr 294 

package (intersect function)81,82. 295 

Melanocyte-specific and melanoma-specific enhancers  296 

To refine variant and candidate gene selection we utilized publicly available chromatin state data from 297 

both melanocytes and melanoma cells to identify genomic regions with promoter or enhancer histone 298 

marks. Promoter regions were defined as described above. We annotated genomic regions as 299 

melanocyte-specific enhancers using Roadmap ChromHMM data from two primary human melanocyte 300 

cultures16,73. We utilized the following enhancer annotated states in the primary ChromHMM (Enh, 301 

EnhG, EnhBiv), auxiliary ChromHMM (EnhG1, EnhG2, EnhA1, EnhA2, EnhWk, EnhBiv), or the imputed 302 

ChromHMM (TxEnh5, TxEnh3, TxEnhW, EnhA1, EnhA2, EnhAF, EnhW1, EnhW2, EnhAc) model data to 303 

define melanocyte specific enhancers. We classified a region as enhancer if marked as an enhancer in 304 

either cell line for either model. Melanoma-specific active enhancers were defined as regions annotated 305 

as any of the following ChromHMM states: 4_EnhA, 5_EnhM, 6_EnhW, 7_TxEnhM, 7_TxEnhW, and 306 

9_TxWkEnhW, from the tumorigenic melanoma cell models described above74; regions were classified 307 

as an enhancer if marked as an enhancer in any cell line. Any region annotated as enhancer or promoter 308 

was considered regulatory. Data were analyzed using the Bedtoolsr package81,82. 309 
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Massively Parallel Reporter Assay (MPRA) data from melanocytes and melanoma cell 310 

lines 311 

We previously performed episomal Massively Parallel Reporter Assays (MPRA) in immortalized primary 312 

melanocytes and the UACC903 melanoma cell line to assess variant allele-specific transcriptional 313 

activity25. The MPRA study design conducted fine-mapping using LLR- and LD-based criteria similar to the 314 

fine-mapping strategies utilized in this manuscript (LLR<1:1000 to the primary lead variant at each locus, 315 

LD r2>0.8 1000 Genomes Project Phase 3 EUR for secondary signals and variants not included in the 316 

GWAS summary data). 1,701 out of the 1,948 fine-mapped candidate variants from this study were 317 

successfully tested using MPRA. The remaining 247 variants could not be assessed for two reasons25: 318 

102 were not amenable to design or failed assay QC, and 145 were not fine-mapped in the MPRA study 319 

due to slightly different fine-mapping criteria. 320 

QTL colocalization and TWAS/MWAS in melanocytes and melanoma  321 

QTL Colocalization as well as TWAS/MWAS analyses of the GWAS summary data with the expression-322 

QTL or methylation-QTL datasets were available from our previous melanocyte QTL studies10,23,24 323 

(dbGaP: phs001500.v1.p1); melanocyte-eQTLs and meQTLs were generated using 106 primary 324 

melanocyte cultures derived from individuals mainly of European descent; methylation probes were 325 

assigned to genes as previously described (CpG probes located within 1.5 kb of the TSS, 5ʹ-UTR, 1st exon, 326 

gene body, or 3ʹ-UTR of a gene)23. Colocalization for the secondary marginal GWAS signal near locus 4 327 

(signal 4) was performed using the ezQTL website (https://analysistools.cancer.gov/ezqtl/#/home)83 328 

(Parameters: LD- 1000 Genomes Project EUR population, window= +/-250 kb). ezQTL performs 329 

colocalization using HyPrColoc84 as well as eCAVIAR85 (eCAVIAR results use a 100 kb window centered on 330 

the lead GWAS variant). Consistent with prior studies of melanocyte QTLs23,24, we considered 331 
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colocalization significant where the HyPrColoc posterior probability exceeded 0.5 or the eCAVIAR CLPP 332 

exceeded 0.01. 333 

In addition, we assessed QTLs from TCGA melanoma tumors86. eQTL colocalization was performed using 334 

pre-analyzed QTL data on the ezQTL website. We performed melanoma TWAS using the pre-computed 335 

weights from 103 TCGA melanoma samples (http://gusevlab.org/projects/fusion/#the-cancer-genome-336 

atlas-tcga-tumornormal-expression) using FUSION (http://gusevlab.org/projects/fusion/)87. Melanoma 337 

meQTL colocalization and MWAS were performed as described previously23.  338 

For assessing nominal eQTL support for 195 high-confidence candidate genes nominated via chromatin 339 

interaction data, we assessed QTLs specifically between the interacting fine-mapped variant and its 340 

putative target(s); where candidate genes were outside the +/- 1 Mb cis-window previously used for 341 

melanocyte eQTL analysis24, we specifically tested the association between fine-mapped variant 342 

genotype and nominated target gene expression in the melanocyte eQTL data using a linear regression 343 

model, where the input to the model included the interacting variant genotype and additional 344 

covariates (3 genotyping principal components and 15 PEER factors) from the previous melanocyte 345 

study24. TCGA melanoma eQTLs were only assessed for genes within +/- 1Mb cis window. 346 

Candidate gene expression in melanocytes and melanomas 347 

For use with an integrative scoring system (described below), we assessed gene expression in 348 

melanocyte24 and melanoma (The Cancer Genome Atlas project, SKCM Pan-Cancer build accessed via 349 

cBioPortal)86 gene expression datasets. For each gene expression dataset, we filtered out genes that are 350 

not expressed by excluding those with an RSEM value <0.1 in more than 20% of samples criteria. For the 351 

remaining genes, we calculated the median expression percentile across samples in the melanocyte and 352 

melanoma datasets, respectively. 353 
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Pathway enrichment analyses 354 

Pathway and upstream-regulator enrichment analyses were performed using the Ingenuity Pathway 355 

Analysis (IPA) tool (Qiagen)88. Pathway enrichment P-values were calculated using the Ingenuity 356 

knowledge base (genes only) as the reference set and using default parameters. The IPA tool parameter 357 

“Relationships to consider” was set to “Direct relationships” for the upstream regulator analysis. 358 

CRISPRi validation of regulation of target genes transcription 359 

CRISPR interference (CRISPRi) was performed in the immortalized human melanocyte cell line 360 

C283T/dCas9-KRAB. The immortalized human melanocyte cell line C283T47 was  infected with a lentiviral 361 

vector pLX_311-KRAB-dCas9 (gift from John Doench, William Hahn, and David Root; Addgene plasmid # 362 

96918; http://n2t.net/addgene:96918; RRID:Addgene_96918)89 followed by monoclonal cell selection. 363 

We validated dCas9-KRAB expression and activity in the clone used for CRISPRi validation. For each 364 

variant tested, three different guide RNAs (gRNAs) were designed to target the genomic regions 365 

surrounding the variant, with the gRNA sequence located within/around +/- 50bps from the variant 366 

(sequences for guides designed to target the region surrounding each variant are listed in Table S7). Two 367 

non-targeting gRNAs were used (NTC1, NTC2). gRNAs were ligated into the lentiviral vector pXPR-050 368 

(gift from John Doench and David Root, Addgene plasmid #96925; RRID: Addgene_96925)90. Cells were 369 

infected with lentiviral particles encoding gRNA and at 24h after infection, 1.5 μg/mL of puromycin was 370 

added for selection. After two days of puromycin selection, puromycin was removed, and cells were 371 

harvested for RNA collection on the same day or one day after puromycin removal. Total RNA was 372 

isolated with RNeasy Mini Kit (Qiagen) and cDNA was generated with SuperScript IV VILO Master Mix 373 

(Thermo Scientific). For each variant, at least three infections were performed, with two biological 374 

replicates per infection for each of the three gRNAs against the variant. mRNA levels of the candidate 375 

target genes being assessed were measured by Taqman assay (Thermo Scientific) and normalized to 376 
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GAPDH levels. qPCR triplicates (technical replicates) were averaged and subsequently considered as a 377 

single data point. Data from NTC1 was used for statistical comparisons of other gRNAs, data in tables 378 

and graphs were represented as fold-change relative to the average of NTC1. The statistical analysis was 379 

performed using a paired two-tailed t-test comparing delta-Ct values.  380 

Mutational cancer driver genes 381 

Mutational driver genes identified from analysis of melanoma cohorts and pan-cancer dataset were 382 

available from the intOGen database91 (https://www.intogen.org/search?cancer=MEL and 383 

https://www.intogen.org/search#driver-genes:table). We used this nominated target gene list to 384 

identify if any of the candidate genes were also identified as cancer drivers in melanoma and pan-cancer 385 

datasets. 386 

Candidate gene prioritization via integrative scoring 387 

We created a scoring scheme (Figure S1) for candidate gene prioritization at each melanoma risk signal 388 

using complementary information from fine-mapping, chromatin interaction, cell-type specific 389 

epigenomic (chromatin state, accessibility), gene expression (eQTL/TWAS), DNA methylation 390 

(meQTL/MWAS), MPRA, and mutational cancer driver datasets.  391 

At each risk signal, if a candidate gene was nominated via melanocyte- or melanoma-specific expression 392 

QTL colocalization analyses or TWAS, we considered it as a strong plausible candidate and added 6 393 

points to the total score for the gene.  394 

For the remaining genes, we cumulatively assigned scores if: 395 

• The gene is nominated by a fine-mapped variant being linked to the gene promoter via 396 

chromatin interaction or physical location within a promoter (+1) 397 
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• The gene is nominated by a fine-mapped variant within a melanocyte or melanoma 398 

enhancer/promoter region and being linked to the gene promoter (+1) 399 

• The gene is nominated by a fine-mapped variant that overlaps a melanocyte or melanoma 400 

enhancer/promoter region, displays significant allelic transcriptional activity, and is linked to the 401 

gene promoter (+1) 402 

• The gene is nominated by a fine-mapped variant that overlaps a melanocyte or melanoma 403 

enhancer/promoter region, displays significant allelic transcriptional activity, is a marginally 404 

significant eQTL for the gene (P < 0.05), and is linked to the gene promoter (+1) 405 

• The gene is nominated via methylation colocalization analysis or MWAS approaches (+2). 406 

For all nominated candidate genes, we then added to the score if a candidate gene was identified as 407 

driver in melanoma (+1) or pan-cancer (+1) analyses from the intOGen database91. 408 

RESULTS 409 

Fine-mapping 68 independent melanoma risk signals from GWAS 410 

We performed fine-mapping at 68 genome-wide significant melanoma GWAS risk signals10 using a 411 

combination of complementary approaches in order to comprehensively and inclusively identify 412 

potential causal variants (credible causal variants: CCVs). We first fine-mapped using GWAS summary 413 

data, selecting variants with log-likelihood ratios (LLR) <1:100 relative to the lead variant at each locus. 414 

We also performed Bayesian fine-mapping using DAP-G53,54, identifying credible sets that directly 415 

correspond to each of the 68 signals. Lastly, to identify potential causal variants that are not present in 416 

the summary data due to quality control filters and or imputation reference choice, we used an LD-417 

based fine-mapping strategy (r2>0.8, 1000 Genomes Project, Phase 3, Version 5, EUR). We selected all 418 
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variants fine-mapped by at least one approach as CCVs, for a total of 1,948 variants. 1,477 variants were 419 

fine-mapped by DAP-G, while 1,892 were fine-mapped using the LLR/LD approaches (Table S8). 1,421 420 

were identified by both approaches, suggesting that distinct fine-mapping approaches largely prioritize 421 

the same set of variants as credible causal variants (Figure 1A, Figure S2).  422 

As expected, a large proportion of the fine-mapped CCVs were in non-protein coding regions and only a 423 

few variants were identified as directly impacting the protein coding sequence (Tables S9 and S10). 424 

Among the 1,948 fine-mapped variants, variants altering protein coding sequence (i.e., variant 425 

annotated as missense variant or frame shift variant) were observed at the 20 of the 68 GWAS risk 426 

signals (20 genes; Tables S9 and S10); we observed no variants in consensus splice donors or acceptors. 427 

Therefore, at these risk signals we considered the affected gene as a potential target gene based on the 428 

variant impacting protein coding sequence; amongst these are well-established pigmentation genes 429 

(MC1R92-94, SLC45A292,95-97, TYR2,10,92,98,99), well-characterized protein-coding melanoma risk variants 430 

(MITF100,101), and variants in well-established cancer genes (OBFC18,102,103, ATM104,105). Most melanoma 431 

GWAS risk signals lack protein-altering CCVs, and even still, the presence of such variants within a 432 

credible set for a locus does not exclude the possibility of cis-regulation being the causal mechanism. 433 

Mapping chromatin interactions at 68 GWAS signals using a custom region-focused 434 

capture-HiC assay 435 

We performed a custom capture-HiC assay to resolve chromatin interaction patterns at melanoma 436 

GWAS risk signals. We designed custom capture baits tagging all restriction digestion fragments tiled 437 

across the entire region of association for each locus (Table S5). 88% of fine-mapped variants (1,717 out 438 

of the total 1,948 fine-mapped variants) were located within a baited restriction fragment (Table S8, 439 

Figure S3). 94% of variants were either directly baited or were located adjacent to at least one baited 440 

restriction fragment (Table S8). As binning groups of adjacent restriction fragments has been shown to 441 
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increase sensitivity to detect long range interactions39,40,47,106, we also assessed baiting coverage for bins 442 

of four adjacent restriction fragments (Table S5). We observed slightly better coverage of fine-mapped 443 

CCVs in four-fragment analysis, as 95% of variants (1858 out of 1948) were located within a four-444 

fragment bin with at least one restriction fragment that was baited (Table S8, Figure S3). The capture-445 

HiC assay was performed using five primary cultures of human melanocytes from unrelated individuals 446 

drawn from the melanocyte collection we previously used for eQTL and meQTL studies23,24.  To maximize 447 

sensitivity to detect long-range interactions as others have done, as well as to assess regions harboring 448 

variants that were not directly baited, we assessed collective groupings of four adjacent restriction 449 

fragments (e.g. four-fragment analysis, 4F; Table S5) and compared to the analysis of individual 450 

fragments (one-fragment analysis, 1F; settings for both analyses summarized in Table S6). 451 

Consistent with previous studies39,42, 4F analysis identified chromatin interactions spanning longer 452 

distances (Table S11) in comparison to the 1F analysis. As expected given the larger number of bins 453 

analyzed, the 1F analysis overall identified a higher number of unique chromatin interactions with better 454 

resolution (>2.3 fold). We also observed similar distributions of CHiCAGO scores between the 1F 455 

(median score=8.38) and 4F (median score=7.07) analyses (Table S12). Given the better coverage of 456 

variants and increased sensitivity to detect long-range interactions, we used 4F data in the subsequent 457 

analyses. 458 

Capture-HiC links fine-mapped risk variants to candidate target genes at most loci  459 

Next, we analyzed the capture-HiC chromatin interaction data to identify physical interactions between 460 

fine-mapped CCVs at the 68 melanoma GWAS signals and gene promoter(s). We defined promoters in 461 

three different ways. Firstly, in order to identify promoters in melanoma relevant cell-types where 462 

target gene is more likely to be causal, we separately defined melanocyte- and melanoma-specific 463 

promoters using ChromHMM state model data from two primary melanocyte cultures (ROADMAP 464 
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epigenome project16), as well as two engineered melanoma cell-models74, respectively. We also more 465 

broadly defined promoters regardless of activity in melanocytic cells using a general promoter definition 466 

from the ENCODE consortium 69,76,107. 467 

The capture-HiC data identified chromatin interaction loops from 84% of fine-mapped risk variants 468 

(n=1,632) to at least one annotated promoter region, nominating 323 genes as candidate causal genes 469 

(CCGs) for 61 melanoma GWAS signals (Figures 2A-B, Figures S4, S5, and S6). A small proportion of fine-470 

mapped variants were located directly within annotated gene promoters (13%, 263 out of 1,948 471 

variants, 56 unique genes; Figure 2B). Most of these not surprisingly showed physical interactions within 472 

the promoter itself, however there were nine additional CCVs without such an interaction nominating 473 

an additional two genes as potential CCGs (Figure S7). 122 promoter-overlapping variants (6%) showed 474 

chromatin interaction loops to an alternative promoter for the same gene (located at least 10 kb away). 475 

234 promoter overlapping variants (12% out of 1,948 variants) showed chromatin interactions with 476 

gene(s) other than the gene nominated by promoter overlap. Therefore, we considered both chromatin 477 

interaction or direct promoter overlap criteria for linking variant to genes and collectively identified a 478 

total set of 1,641 unique variants linked to 325 genes (Figures 2A-B). 479 

A median of five candidate target genes were nominated per risk signal; nine GWAS risk signals had only 480 

one target gene nominated. Eight fine-mapped CCVs per risk signal (median) were linked to at least one 481 

target gene promoter; three risk signals had only one fine-mapped CCV linked to a gene promoter. For 482 

seven signals (~10%), no candidate target could be nominated due to the lack of observed capture-HiC 483 

chromatin interaction from the fine-mapped CCVs to any target gene promoter. Of these, three have 484 

well characterized pathogenic protein coding changes (signal 9, MITF 100,101; signal 14, SLC45A2 92,95-97; 485 

and signal 42, TYR2,10,92,98,99, while three others harbor known melanoma driver or pigmentation genes 486 

(signal 11, TERT; signal 12, TERT; signal 50, OCA2;)5,108-110. We note that we did not observe the 487 
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previously reported interaction between rs12913832 within an enhancer in the gene body of HERC2 and 488 

the promoter of OCA2109. 489 

 490 

Figure 2. Summary of fine-mapped candidate causal variants (CCVs) linked to potential target 491 
candidate causal genes (CCGs) at 68 melanoma GWAS risk signals. (A) Stacked bar plot summary of 492 
fine-mapped CCVs and nominated target CCGs. The top bar plot (dark blue color) shows the number of 493 
CCVs linked by chromatin interaction or overlap with at least one gene promoter, while the light blue 494 
color shows the number of CCVs not linked to a promoter. The bottom plot shows the total number of 495 
nominated CCGs per locus. (B) Pie chart showing the proportion of all fine-mapped CCVs that are linked 496 
to target CCGs via distant promoter interactions, direct overlap with gene promoter regions, or both. (C) 497 
Bar plot summarizing the proportion of GWAS risk signals with at least one gene nominated through 498 
chromatin interactions over varying distances. 499 
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Notably, we nominated several distant target CCGs via long-range chromatin interaction between fine-500 

mapped CCVs and target gene promoter(s) (Figure 2C, Figure S8). A large proportion of the GWAS risk 501 

signals (79%, or 54/68) had at least one CCG nominated by a chromatin interaction loop spanning 502 

between 100-1000 kb distance from the fine-mapped CCV to the target gene promoter (Figure 2C). For 503 

23% (16/68) of GWAS risk signals, at least one nominated CCG was located >1 Mb away from the fine-504 

mapped CCV (Figure S8). 505 

Refining variant and gene nomination via integration with cell-type specific 506 

epigenomic and massively parallel reporter assay data 507 

Not all interactions between fine-mapped risk variant and gene promoters are necessarily functional cis-508 

regulatory interactions, thus we sought to further refine candidate gene nomination using melanocyte- 509 

and melanoma- specific epigenomic datasets as well as data from cell-type specific massively parallel 510 

reporter assays (MPRA). Firstly, we utilized chromatin accessibility data (ATAC-seq) and chromatin state 511 

annotations (ChromHMM) from human melanocytes and melanoma cell lines to identify those 512 

interactions between gene promoter(s) and risk variants in potential regulatory elements. We generated 513 

ATAC-seq data for the same five melanocyte cultures used in the capture-HiC assay (three replicates per 514 

culture) and analyzed treating the five cultures as biological replicates. Additionally, we also utilized 515 

publicly available ATAC-seq data from nine melanoma cell cultures80. 203 fine-mapped variants (10%) 516 

were located within annotated accessible chromatin regions in melanocyte or melanoma cells (Figure 517 

3A); of these, 186 variants (9% of 1,948) were linked to a gene promoter via chromatin looping or direct 518 

promoter overlap (Figure S9, Table S13). These variants were linked to the promoter(s) of 223 unique 519 

genes nominated as potential candidates at 46 GWAS risk signals. In addition, we performed a similar 520 

analysis using melanocyte- and melanoma-derived ChromHMM data, which provides broader regulatory 521 

region definitions using multiple histone marks. Specifically, we utilized ChromHMM enhancer and 522 
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promoter annotations from two human melanocytes cultures from the Roadmap Epigenome Project16,73 523 

as well as published data from two engineered melanoma cell models74. In contrast to the ATAC-seq 524 

data, analysis using ChromHMM data identified considerably more fine-mapped variants located within 525 

potentially regulatory regions (n=618, 32%) (Figure 3A), with 579 linked via looping or direct promoter 526 

overlap to 275 total candidate genes at 56 GWAS risk signals (Figure S10, Table S13). In total, 610 527 

potentially cis-regulatory variant-promoter interactions were identified using either ATAC-seq or 528 

ChromHMM data (linked to 282 unique genes, 57 risk signals (Figure S11, Table S13), while 155 (209 529 

genes) were identified using both datasets. The latter potentially represent stronger functional 530 

evidence, however, given functional cis-regulatory variants may be found outside of ATAC-seq peaks, we 531 

moved forward with a more inclusive approach to identify potential cis-regulatory variants (n=610). 532 

We then sought to further refine our variant and candidate gene nomination using additional evidence 533 

from melanocyte- and melanoma-specific episomal massively parallel reporter assays. We previously 534 

assessed allele-specific cis-regulatory activity of fine-mapped melanoma risk variants25. 1,701 out of the 535 

1,948 fine-mapped variants were assessed in both melanocyte cultures and melanoma cells, of which 536 

349 were FDR-significant in either melanocytes or melanoma cells. We subsequently assessed those 537 

MPRA-significant variants located within potentially cis-regulatory regions as described above, 538 

identifying 140 variants linked to 195 genes at 42 risk signals (“high-confidence gene set”; Figure 3B, 539 

Table S13). While we cannot exclude the possibility that variants and genes filtered out using this 540 

strategy may be functional under specific cellular contexts not evaluated here, this set of 140 variants 541 

and 195 genes represent strong functional leads. 542 
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 543 

Figure 3. (A) Summary of fine-mapped variants overlap with chromatin interaction cis-regulatory regions 544 
in the ATAC-seq and ChromHMM datasets. (B) Stacked bar plot summary of fine-mapped variants (CCVs) 545 
and nominated target genes (CCGs) after integrating the chromatin interaction dataset with 546 
melanocyte- and melanoma-specific ATAC-seq, ChromHMM, and MPRA datasets for each of 68 547 
melanoma risk signals. The top bar plot shows the total number of fine-mapped variants that are linked 548 
to at least one target gene using the chromatin interaction dataset, while blue color shows the number 549 
of interacting variants overlapping a potential regulatory region in any of the ATAC-seq or ChromHMM 550 
datasets and the variant is also FDR significant in MPRA dataset. The bottom plot shows the number of 551 
unique genes nominated as potential candidates using chromatin interaction data only, while the green 552 
color shows the number of candidate genes following integration with epigenomic (ATAC-seq and 553 
ChromHMM) and MPRA datasets. 554 
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We looked into cell-type specificity of the high-confidence gene set. In general, roughly half of these 555 

high-confidence capture-HiC-nominated genes were identified via interactions with variants that were 556 

MPRA-significant and/or located within regulatory regions of both melanocytes and melanomas. Slightly 557 

less than half of these high-confidence genes were nominated by analysis of only melanocyte 558 

epigenomic/MPRA data but not a similar analysis using melanoma data, e.g. melanocyte-specific 559 

candidates (n=88 genes, Table S14). Very few gene candidates were identified solely by analysis using 560 

only melanoma epigenomic/MPRA data (n=17 genes, Table S15). Perhaps unsurprisingly given the role 561 

of normal melanocytes in regulating pigmentation, analyses using only melanocyte data nominated 562 

candidates for far more loci found to be implicated in pigmentation phenotypes by Landi and 563 

colleagues10 (n=13 loci) versus analyses using only melanoma data (n=1 locus). Thus, in all, these data 564 

suggest that a substantial number of loci may retain function in both melanocytes and melanoma cells 565 

and that analyses using melanocyte data appear to better annotate melanoma GWAS loci. 566 

An integrative scoring system to prioritize GWAS candidate causal genes. 567 

We previously used cell-type specific expression and methylation QTL datasets (eQTL, meQTL) to 568 

nominate candidate genes for melanoma GWAS risk loci10,23,24. Specifically, we performed colocalization 569 

for FDR-significant QTLs, as well as identifying FDR-significant transcriptome- and methylome-wide 570 

association study (TWAS, MWAS) genes using data from both a panel of primary human melanocyte 571 

cultures as well as melanoma tumors from The Cancer Genome Atlas Project10,23,24. 40% of candidate 572 

genes (22 out of 55) nominated via eQTL colocalization and/or TWAS from melanocytes and melanoma 573 

were also nominated as high-confidence genes from capture-HiC data (Figure 4, Table S16). For meQTL-574 

colocalizing and MWAS-significant genes, only 32% (32 out of 100) were identified in the high-575 

confidence gene set. Of the meQTL/MWAS-nominated candidate genes that lack significant eQTL/TWAS 576 
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support, 26% (19 out of 74) were nominated as high-confidence candidates in chromatin interaction 577 

analyses. 578 

 579 

Figure 4. Summary of overlapping CCGs between QTL datasets and capture-HiC chromatin interaction 580 
analyses. eQTL/TWAS CCGs were nominated when colocalization of eQTL and GWAS data was observed, 581 
or alternatively when the gene was identified as FDR-significant via Transcriptome Wide Association 582 
Study (TWAS), using either primary melanocyte or melanoma tumor eQTL reference datasets. Likewise, 583 
meQTL/MWAS CCGs were nominated via meQTL colocalization or an FDR-significant Methylome-Wide 584 
Association Study finding, where the significant CpG probe was located within a gene promoter or gene 585 
body, and meQTL reference datasets from melanocytes and melanoma tumors were tested separately. 586 
High confidence CCGs were nominated via integration analyses of fine-mapping, chromatin interactions 587 
datasets with epigenomic (ATAC-seq and ChromHMM) and MPRA data derived from melanocytes and 588 
melanoma cells. 589 

Given that a large proportion of the 195 genes nominated via chromatin interaction analyses lack 590 

significant eQTL/meQTL/TWAS/MWAS support, we assessed whether any of these genes may be 591 

supported via marginal eQTLs between the promoter-interacting variant and its putative target(s). In 592 

total, 36 such genes displayed at least nominal QTL support (P < 0.05) in melanocyte and/or TCGA eQTL 593 

datasets (Table S13). 594 
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Finally, to better prioritize cis-regulatory functional leads at each risk signal, we created a candidate 595 

gene prioritization score integrating melanocyte and melanoma functional datasets (Figure S1). At each 596 

signal, we considered the presence of significant colocalizing eQTL or TWAS findings, which suggest 597 

potential shared causal variants between gene expression and melanoma risk, to be strong evidence for 598 

candidate genes, contributing a total of six points to the gene score. For the remaining gene candidates, 599 

we combined fine-mapping, chromatin interaction, cell-type specific epigenomic (chromatin state, 600 

accessibility), DNA methylation (meQTL/MWAS), and MPRA evidence to assign a gene score up to six 601 

points. For all candidates, we further added one point each where genes have been identified as 602 

melanoma or pan-cancer driver genes in the intOGen database91, allowing for a maximum gene score of 603 

8 (Table S17, Figures 5A-B, Figures S12A-H). In total, six risk signals had at least one candidate gene 604 

score ≥ 7, 37 with a gene scoring ≥ 6, and 49 with a score ≥ 4. At previously characterized loci, the 605 

scoring system ranked the likely casual as the highest scoring gene, including PARP1 at 1q42111 (locus 5, 606 

score = 6), AHR at 7p2147 (locus 23, score = 4), and MX2 at 21q2260 (locus 65, score = 6) (Figure 5A). For 607 

novel loci, the scoring system ranks MDM4 as the best scoring and CBL as the second-best candidate for 608 

loci on chromosome bands 1q32 (locus 4, score =7) and 11q23 (locus 44, score =4) respectively. Both 609 

genes are located more than 500 kb and 1 Mb from their respective lead variants (Figure 5B). In 610 

addition, the scoring system nominates two SRY-related HMG-box genes, SOX4 and SOX6, as the best 611 

candidates at 6p22 (loci 18-19, scores =4,2) and 11p15 (locus 40, score=6), respectively (Figure 5B). 612 

Collectively, our integrative scoring system-based gene prioritization approach re-identified previously 613 

characterized susceptibility genes and provide additional support for functional investigation of novel 614 

candidates. 615 
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 616 

Figure 5. Integrative evidence for candidate causal genes at select melanoma risk signals. (A) Loci with 617 
previously characterized candidate causal genes, and (B) select novel loci. For each locus, the figure 618 
indicates the nearest gene to the lead variant, summarizes candidate gene expression in primary 619 
melanocytes and melanoma tumors, indicates genes implicated by interaction of fine-mapped variants 620 
to the gene’s promoter, along with further refined evidence for these interacting variants integrated 621 
with melanocyte and melanoma epigenomic and MPRA data. Also summarized are melanocyte 622 
eQTL/TWAS evidence, meQTL/MWAS evidence, and whether the candidate gene has been implicated as 623 
a melanoma or pan-cancer driver gene. Finally, the figures show an overall integrative score for each 624 
candidate scored from 0-8 with 8 being the highest score. 625 
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Biological pathway enrichment analysis of capture-HiC nominated gene candidates 626 

To identify biological pathways associated with melanoma risk, we performed pathway enrichment 627 

analysis of the collective set of genes nominated by (1) identification of protein-coding variants amongst 628 

the full set of fine-mapped variants, (2) colocalizing eQTLs/meQTLs or FDR-significant TWAS/MWAS 629 

findings, and (3) the set of high-confidence gene candidates (n=195 genes) nominated via capture-HiC 630 

analyses (Table S18). We compared this to a pathway analysis of only these genes nominated by prior 631 

QTL (eQTL/meQTL colocalization, TWAS/MWAS) analyses or protein-coding fine-mapped variants (Table 632 

S19). Overall, pathway analyses including the high-confidence capture-C nominated genes had a greater 633 

number of pathways enriched in comparison to that of protein-coding/QTL nominated genes. Novel 634 

pathways identified only by the former analysis include p53 signaling (P = 0.0005), WNT/beta-catenin 635 

signaling (P = 0.002), and interferon gamma signaling (P = 0.003) (Table S18); the capture-HiC gene set 636 

further strengthened the evidence for enrichment in numerous pathways, including MITF-M-dependent 637 

gene expression (-log10P = 4.26 vs 2.87), telomere maintenance (-log10P = 3.52 vs 1.9) and aryl 638 

hydrocarbon receptor signaling (-log10P = 3.22 vs. 1.87; Tables S18-S19) along with pigmentation 639 

related pathways (melanin biosynthesis, -log10P = 7.28 vs 5.92; L-dopachrome biosynthesis, -log10P = 640 

3.99 vs. 2.0; melanocyte development and pigmentation signaling 3.29 vs. 1.88; Tables S18-S19) which is 641 

consistent with skin pigmentation-related phenotypes as critical risk factors for melanoma. We also 642 

performed enrichment analysis for upstream transcriptional regulators of genes collectively nominated 643 

by capture-HiC, eQTL/TWAS, meQTL/MWAS, and protein-coding fine-mapped variants (Table S20). We 644 

found MITF to be the most enriched upstream regulator, consistent with its well-established role in 645 

pigmentation and melanoma risk and progression. In addition, multiple upstream regulators related to 646 

MITF were identified as enriched with this gene set, including ZEB2, which has been itself shown to 647 

regulate MITF levels112, as well as SMARCA4 (BRG1) which has previously been shown to be required for 648 

MITF activation of melanocyte-specific target genes113. 649 
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CRISPRi validation of long-range cis-regulatory interactions 650 

To further assess and validate the regulation of potential target genes by fine-mapped functional 651 

variants nominated by integrative analysis, we performed CRISPRi experiments to test the 652 

transcriptional regulation of four nominated high-confidence candidate genes at five independent loci. 653 

Firstly, we assessed two SOX family transcription factors given a well-established role for SOX proteins in 654 

neural crest and melanocyte development, as well as the fact that capture-HiC data identify chromatin 655 

interactions with multiple SOX genes. Specifically, SOX4 was nominated via long-range interactions from 656 

two independent loci located more than 1.5 Mb apart (locus 16, signal 18, ~400 kb; locus 17, signal 19, 657 

~1.1 Mb, Figure 6). SOX6 was nominated via ~130 kb chromatin interactions (locus 32, signal 40) and 658 

was also identified in melanocyte methylation QTL colocalization and MWAS analyses (Figure S13A). In 659 

addition, we assessed loci interacting with known cancer driver genes. Specifically, MDM4 was 660 

nominated by long-range chromatin interaction (locus 4, signal 4, ~550 kb) and was further nominated 661 

by melanocyte MWAS and TCGA melanoma TWAS analyses (Figure S13B). Finally, CBL was nominated by 662 

a long-range ~1.1 Mb interaction (locus 36, signal 44; Figure S13C). As eQTLs for CBL were not previously 663 

been tested10 given the 1.1 Mb distance, we evaluated multiple fine-mapped variants and observed a 664 

marginal correlation between risk allele and CBL expression in primary melanocytes (including 665 

rs2120430, P = 0.008; rs61898347, P = 0.009; rs11217853, and P = 0.02; rs61900794, P = 0.02; Figure 666 

S14; Table S21).  667 

For each locus, we chose fine-mapped variants using the collective evidence from capture-HiC, 668 

epigenomic, and MPRA datasets, designed three guides targeting the region surrounding each variant, 669 

and tested these guides for effect on target gene expression relative to a non-targeting control gRNA 670 

(NTC1) in an immortalized human melanocyte cell clone stably expressing dCas9-KRAB.  671 
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 672 

Figure 6. Chromatin looping from two independent loci on chromosome 6 to the promoter of SOX4. 673 
Figure shows data from melanocyte DNase I hypersensitivity sequencing (Roadmap, n=2 melanocyte 674 
cultures), melanocyte ChromHMM (Roadmap, n=2 melanocyte cultures), melanocyte ATAC-seq (n=5 675 
cultures), and melanoma cell ATAC-seq relative to genes in the region. Fine-mapped variants for both 676 
loci and location of capture-HiC baits is shown along with chromatin looping. Fine-mapped variants from 677 
both loci located within the CDKAL1 gene and near HDGFL1, respectively, directly interact with the SOX4 678 
promoter region. 679 

At locus 16 (signal 18) within the CDKAL1 gene, we tested four regions harboring a set of five fine-680 

mapped variants within a ~3 kb stretch (Figure 7A); at least one gRNA targeting each of the four CCVs 681 

showed significant reduction of SOX4 without affecting CDKAL1. All three gRNAs targeting both 682 

rs7776158 or rs2125570 showed significant reductions of SOX4 (0.63-0.68-fold and 0.67-fold expression 683 

relative to non-targeting guide 1, NTC1), as did two out of three gRNAs simultaneously targeting both 684 

rs6935117 and rs6935124 (0.72-0.84-fold expression relative to NTC1; Figure 7B, Table S22). Only one of 685 

three gRNAs targeting rs6914598 showed inhibition of SOX4 (0.72-fold expression relative to NTC1; 686 

Figure 7B, Table S22). None of the guides targeting any of these variants significantly influenced CDKAL1 687 

(Figure 7C, Table S22). While further characterization is necessary to disentangle the exact functional 688 

variant or combination thereof, these data clearly indicate specific transcriptional regulation of SOX4 via 689 

this risk locus. At a second locus (locus 17, signal 19) closest to the HDGFL1 gene, we targeted three 690 
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regions harboring four fine-mapped variants (Figure 7A, Table S22). While guides targeting rs16886790 691 

showed no significant reduction of SOX4 levels, all three gRNAs simultaneously targeting both 692 

rs72834823 and rs72834822, as well as those targeting rs6456503 significantly reduced SOX4 levels 693 

(0.72-0.80 and 0.75-0.78-fold expression relative to NTC1, respectively; Figure 7B, Table S22), consistent 694 

with the potential regulation of the SOX4 gene by the region. In contrast to rs1688670, rs72834823, 695 

rs72834822, and rs6456503 do not directly overlap with a restriction fragment bin interacting with SOX4 696 

nor are located within ATAC open or ChromHMM enhancer regions but are in close proximity to 697 

interacting enhancer regions. These CRISPRi data nonetheless suggest the regions harboring these SNPs 698 

directly regulate SOX4 expression. 699 

 700 

 701 
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Figure 7. CRISPR-inhibition validation of SOX4 as a target of regulatory regions harboring fine-mapped 702 
variants at two independent melanoma risk loci on chromosome 6. (A) Guide RNAs were designed to 703 
target four regions collectively harboring five fine-mapped sequence variants in a risk locus located 704 
within an intron of the CDKAL1 gene (left), as well as three regions harboring four fine-mapped variants 705 
for an independent locus nearest the HDGFL1 gene (right); three guides were designed per region and 706 
tested along with two non-targeting guides (NTC1 and NTC2). (B) Each guide was individually tested for 707 
effects on SOX4 expression relative to NTC1 in immortalized melanocytes stably expressing dCas9-KRAB 708 
via a TaqMan quantitative RT-PCR assay. Expression values from six replicate experiments are shown as 709 
fold change relative to NTC1. Where SNP-targeting guides were tested in separate experiments, they are 710 
shown grouped with respective values for NTC2 from the same experiments. Whiskers show minimum 711 
and maximum values. P-values were calculated using a two-sample two-sided paired t-test comparing 712 
delta-Ct values from individual guides to those from NTC1. 713 

For SOX6 (locus 32, signal 40), we tested five regions harboring six SNPs (rs1455114/rs1455115, 714 

rs2953060, rs4617548, rs7108091 and rs7941496). Only one of the five regions (targeting both 715 

rs1455114 and rs1455115; interact with SOX6; located within melanocyte enhancer; within ATAC-open 716 

region in melanocytes and melanoma) showed a reduction of SOX6 by a single guide (0.71 fold 717 

expression relative to NTC1; Table S22). A second region targeting rs7108091 (interacts with SOX6, 718 

MPRA-significant in melanocytes and melanoma) showed marginal reductions for two gRNAs (Table 719 

S22). On the other hand, at least one guide targeting each of the five regions showed a reduction in 720 

C11orf58, another interacting candidate gene ~650 kb from the GWAS signal. All three guides each 721 

respectively targeting rs2953060 or rs4617548 showed significant reductions in C11orf58 (0.34-0.56 and 722 

0.72-0.81 fold-expression relative to NTC1, respectively; Table S22), suggesting this gene as a strong 723 

candidate causal gene. For CBL (locus 36, signal 44), two out of three gRNAs for one of four tested SNPs 724 

(rs61900794; melanoma and melanocyte enhancer, ATAC open in melanoma) showed small but 725 

significant effects on CBL transcription (0.81-0.84 fold expression relative to NTC1). We note that while 726 

the restriction fragment bin harboring rs61900794 was not found to interact directly with CBL promoter, 727 

it is located within a contiguous enhancer region that does, consistent with the region surrounding 728 

rs61900794 functioning as an enhancer for CBL. Finally, for MDM4 (locus 4, signal 4), all three gRNAs for 729 

one of the four SNPs tested (rs6700182; interacts with MDM4; within melanocyte and melanoma 730 
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ChromHMM regulatory region; MPRA-significant in melanoma) showed significantly reduced MDM4 731 

levels (0.82-0.85-fold expression relative to NTC1; Table S22); only one of these variants reduced 732 

expression of another candidate in this region, RBBP5, with no effect on a third candidate, TMEM81.  733 

Additional evidence for MDM4 as a melanoma predisposition gene 734 

Bayesian fine-mapping of the locus for which MDM4 was nominated as a potential causal gene (locus 4, 735 

signal 4, lead SNP rs2369633) identified a second set of credible causal variants (Table S23; variant with 736 

highest posterior inclusion probability is rs12119098). This second credible set appears to be an 737 

independent GWAS signal of marginal significance marked by rs12119098 (GWAS P = 1.30 x 10-7, 738 

rs12119098-G OR = 0.95; LD to rs2369633, r2 = 0.0016, D’ = 0.18) which remains strongly significant after 739 

conditioning on the lead SNP for locus 4 (signal 4, rs2369633; Pconditional = 2.17 x 10-7). In addition, 740 

rs12119098 is a significant colocalizing melanocyte eQTL for MDM4 (P = 5.83 x 10-6; HyPrColoc posterior 741 

probability = 0.78; eCAVIAR CLPP = 0.073; Figure S15) but no other gene, where the risk-associated allele 742 

is associated with lower MDM4 levels. rs12119098 is not an eQTL for MDM4 (P = 0.10) or any other 743 

gene in melanoma tumors. Taken together with the capture-HiC and CRISPRi already linking locus 4 to 744 

regulation of MDM4, these reinforce a potential role for MDM4 in melanoma risk. 745 

DISCUSSION 746 

With ever growing GWAS sample-sizes for GWAS resulting in increasing numbers of genome-wide 747 

significant loci, high-throughput analyses are critically needed to link risk variants with their respective 748 

target genes. Most common trait-associated loci identified by GWAS harbor risk variants located 749 

primarily in non-coding regions, with the underlying causal variants largely hypothesized to function via 750 

altering expression of causal genes. Here, we report a post-GWAS follow-up study aimed at identifying 751 

potential causal genes underlying common melanoma risk loci by evaluating cell-type specific chromatin 752 
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interactions using a custom, GWAS region-focused chromatin capture-HiC assay in human primary 753 

melanocytes.  754 

Where eQTL colocalization and TWAS using a primary melanocyte expression reference dataset 755 

previously nominated candidate genes for only roughly 25% of the loci from the most recent (2020) 756 

melanoma risk GWAS10, our GWAS region-focused capture-HiC data identified fine-mapped risk variants 757 

either interacting with or overlapping with gene promoters for 61 out 68 risk signals, with a median 758 

number of five candidate genes per locus. These data suggest that region-focused capture-HiC assays 759 

are highly sensitive for identifying variant-to-gene promoter associations, but alone are not likely 760 

sufficiently specific to pinpoint the individual causal gene or genes at many loci. We applied multiple 761 

additional filters to narrow down the number of interactions to retain (1) only those involving fine-762 

mapped variants located within cell-type specific (melanocyte or melanoma cell) cis-regulatory regions 763 

(nominates 282 genes at 57 risk signals), and (2) subsequently requiring these interacting variants to 764 

have been significant in a large-scale parallel reporter assay screen conducted in both melanocytes and 765 

melanoma cells25. This resulted in prioritization of 140 cis-regulatory variants interacting with 195 genes 766 

at 42 signals, with at least one gene nominated at 62% of risk signals.  767 

Our analysis appeared to be highly sensitive for identifying long-distance interactions. Most risk signals 768 

(54/68) had at least one gene nominated by an interaction ranging from 100 kb to 1 Mb. Notably, 769 

roughly a quarter of GWAS signals (16/68) had a fine-mapped variant interacting with a gene more than 770 

1Mb away, distances conventionally ignored in cis-eQTL analyses. Indeed, as an example we identified 771 

multiple fine-mapped SNPs interacting with the promoter of CBL that were in fact previously-untested 772 

marginal eQTLs for CBL (locus 36, signal 44, rs2120430, P = 0.007; rs11217853, P = 0.02), consistent with 773 

potential long-range allelic cis-regulation of CBL by risk-associated variants. We focused our CRISPRi-774 

based validation efforts primarily on validating longer-range cis-regulatory interactions with strong 775 
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causal candidates, validating such regulatory interactions for two independent loci and SOX4 (loci 16 and 776 

17, signals 18 and 19, located ~400 kb and 1.1 Mb away from SOX4, respectively), one with MDM4 777 

(locus 4, signal 4, ~550 kb distance), and one with CBL (locus 36, signal 44; 1.1 Mb distance). Of the loci 778 

we tested, we only failed to validate cis-regulation of SOX6 (locus 32, signal 40), but instead showed 779 

strong regulation of a distant candidate (C11orf58) located more than 500 kb from the risk signal. 780 

SOX4 was nominated as a potential causal gene via variant-to-promoter looping for two loci originally 781 

considered independent based on distance (~1.6 Mb) and lack of LD, highlighting the limitations of 782 

assigning loci in this manner. For the first locus, located within the gene body of CDKAL1, we identified 783 

three variants each of which physically interact with SOX4, show allelic cis-regulatory potential via MPRA 784 

where the risk allele is associated with higher reporter expression, and are located within CRISPRi-785 

validated SOX4 regulatory regions (locus 16, signal 18, rs6935117, rs6935124, and rs2125570). In 786 

addition, all three of these variants are marginal eQTLs for SOX4 in TCGA melanomas (rs6935117, P = 787 

0.01; rs6935124, P = 0.01; and rs2125570, P = 0.01; Table S21) with direction of effect matching reporter 788 

assay data, i.e. risk alleles for these variants are associated with higher SOX4. We likewise see physical 789 

interaction between fine-mapped variants for the locus near HDGFL1 and SOX4 (locus 17, signal 19); 790 

while none showed clear allelic regulatory potential via MPRA or were marginal QTLs (Table S21), 791 

CRISPRi validated regulation of SOX4 from regions harboring these fine-mapped variants. Collectively, 792 

these data provide strong evidence establishing SOX4 as a potential melanoma risk gene. SOX4 plays a 793 

pivotal role in regulating stemness, promoting cell survival, and epithelial to mesenchymal transition114-794 

118. Single-cell sequencing studies have identified SOX4 as a marker of multiple melanoma cell states 795 

including a melanocytic state in human tumors80, and an invasive-like melanoma program in patient 796 

derived xenografts under RAF/MEK inhibition119. Intriguingly, analysis of a zebrafish model found SOX4 797 

to be a marker of stress-like cell population that more efficiently seeded new tumors; induction of a 798 

stress-like program conferred resistance to both BRAF and MEK inhibition in zebrafish melanoma 799 
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cells120. We do not observe a correlation between risk variant genotype and expression of SOX4 in 800 

melanocytes. We did observe at least a marginal correlation withSOX4 expression in melanomas for one 801 

of the two signals, suggesting that the function of causal variants in these two regions may be context-802 

dependent, e.g. dependent on cell state, differentiation, or requiring oncogenic mutations. Beyond 803 

SOX4, we provide weaker evidence for a second SRY-box transcription factor, SOX6. Specifically, while 804 

we observe interaction between multiple fine-mapped variants and SOX6 promoter, CRISPRi validation 805 

for the few variant regions we tested did not firmly establish a regulatory link between risk variants and 806 

SOX6. SOX6 was recently found to be a marker of a hypothesized intermediate melanoma cell state80 807 

between melanocytic cells and a mesenchymal-like state associated with increased migration and 808 

resistance to therapies. 809 

These data also provide strong evidence linking two risk loci to distant established melanoma driver 810 

genes. We find physical associations between multiple fine-mapped variants (locus 4, signal 4) and 811 

MDM4 amongst other candidate genes. On one hand, rs6700182 is located within a CRISPRi-validated 812 

MDM4 regulatory region and shows allelic regulatory potential via MPRA with the risk allele associated 813 

with higher reporter expression (Table S21). In contrast a second variant with two CRISPRi guides 814 

showing significant or marginal knockdown of MDM4 (Table S22), showed significant allelic regulation in 815 

the opposite direction via MPRA (Table S21). Fine-mapping of this locus identified a second 816 

independent-but-marginal melanoma GWAS signal over the MDM4 gene itself (rs12119098, P = 1.30 x 817 

10-7; Figure S15), a signal that colocalizes with a significant melanocyte MDM4 eQTL (P = 5.83 x 10-6; 818 

Figure S15), considerably strengthening the evidence for a role for MDM4 in melanoma susceptibility 819 

and potentially resolving a role for MDM4 in promoting or alternatively protecting against melanoma. 820 

Here, we observe a positive correlation between the rs12119098-protective allele and MDM4 821 

expression in melanocytes (as well as many other tissue types assayed by The Genotype-Tissue 822 

Expression (GTEx) project121), suggesting higher MDM4 expression is protective. In contrast to 823 
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melanoma risk,  MDM4 is found to be amplified in ~5% of melanoma tumors 86,122, is over-expressed in 824 

much larger proportion (65%) of melanomas123, and antagonizes TP53 function123,124. These data suggest 825 

potentially pleiotropic roles for MDM4 across different stages of melanomagenesis; on one hand higher 826 

expression of MDM4 protects against melanoma development while on the other overexpression is 827 

selected for during tumor progression and promotes melanoma cell survival. We note that a previously-828 

published small pooled CRISPR knockout screen in melanocytes47 found that MDM4 knockout 829 

significantly reduced melanocyte viability and/or growth (FDR = 0.000102), and both RNAi and CRISPR 830 

screen data from the Cancer Dependency Map project125 show MDM4 knockout to be strongly selective 831 

in the same direction. This locus appears to be potentially pleiotropic in terms of cancer risk; 832 

rs12133735 near MDM4 has been reported as a suggestive association for aerodigestive squamous cell 833 

cancers (rs12133735 LD to rs12119098 r2 = 0.82), where the rs12133735-G risk allele is on a shared 834 

haplotype with the melanoma rs12119098-G protective allele126. Further work will be required to 835 

understand this pleiotropy and the mechanistic role of MDM4 in risk. More broadly, pathway analysis of 836 

high-confidence candidate genes suggest enrichment for genes involved in p53 signaling including 837 

MDM4 including TP53 itself (loci 60 and 61, integrative scores of 3 and 4, respectively).  838 

For locus 36 (signal 44), we observe multiple interactions between fine-mapped risk variants and the 839 

CBL promoter and verified cis-regulation of CBL by a region harboring at one such variant (rs61900794) 840 

via CRISPRi. While this variant did not show significant allelic cis-regulatory potential via MPRA, fine-841 

mapped variants at this locus are indeed eQTLs for CBL in melanocytes (P = 0.02 to 0.008 for the four 842 

variants targeted by CRISPRi; Figure S14; Table S21), suggesting the potential for shared causal variants 843 

between melanoma risk and germline regulation of CBL expression at this locus. CBL plays a role in 844 

downregulation of receptor tyrosine kinase signaling including through the RAS-MAPK pathway. 845 

Germline CBL mutations, primarily missense mutations confined to the linker and RING domains, have 846 

been found to be associated with cancer including juvenile myelomonocytic leukemia127  as well as a 847 
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variable syndrome overlapping with Noonan syndrome128,129. Somatically, CBL has been identified as a 848 

potential melanoma driver91, with loss of function alterations specifically enriched in desmoplastic 849 

melanomas (11%)130. While our analysis does not identify one or more clear-cut causal sequence variant 850 

candidates, the physical and gene-regulatory connection from this risk locus as well as melanocyte eQTL 851 

for CBL nonetheless establishes regulation of CBL from this locus and suggests that a potential role for 852 

CBL and common variation underlying RAS-MAPK signaling in melanoma risk should be further explored.  853 

Recently Pudjihartono and colleagues performed an integrative analyses of the 2020 melanoma GWAS 854 

risk signals to nominate likely causal variants-target gene pairs using keratinocyte and melanoma 855 

genome-scale HiC data, melanocyte and melanoma-specific epigenomic (promoter, enhancer histone 856 

marks, and DNA accessibility), and melanocyte and GTEx skin tissue gene expression datasets131. While 857 

these studies share similarity in approach, there are several key differences. Pudjihartono and 858 

colleagues relied on genome-scale Hi-C data generated in keratinocytes and melanoma cells, while we 859 

applied a higher-resolution capture-HiC approach to primary melanocytes coupled with deep library 860 

sequencing, potentially allowing for more sensitive assessment of interaction in the cell-type of origin of 861 

melanoma. We further sought to take advantage of the resolution of this approach by requiring 862 

interactions between fine-mapped variants and annotated gene promoters, rather than including 863 

interactions with the gene body. Finally, we focused on integrating data specifically from melanocytic 864 

cells (melanocytes or melanomas/melanoma cells) and were able to further refine our candidate gene 865 

nomination by taking advantage of a larger massively parallel reporter assay which assessed the vast 866 

majority of fine-mapped variants from this study for allelic cis-regulatory potential in melanocytes and 867 

melanomas. Comparing the high-confidence set of candidate genes identified here, 44 of the 151 genes 868 

identified by Pudjihartono were likewise found amongst our 195 gene high-confidence gene set (Table 869 

S23). These approaches are complementary; inclusion of keratinocyte data and skin eQTLs has the 870 

advantage of potentially identifying causal variants and genes that function via gene regulation in a cell 871 
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type other than melanocytes, while our approach is highly focused on identifying genes that function in 872 

a cell-type intrinsic manner. We anticipate both approaches to be of considerable utility as applied to 873 

future melanoma GWAS. 874 

We also acknowledge several limitations of our current study. We performed the capture-HiC assay in 875 

primary melanocytes, the cell-of-origin for melanoma, and our downstream analyses integrating 876 

epigenomic and MPRA data focused on integrating data from melanocytes or melanomas. This approach 877 

could fail to identify appropriate gene candidates for loci where the causal variant(s) function in a non-878 

melanocytic cell type, e.g. keratinocytes or immune cells for example. Further, cultured melanocytes 879 

and melanomas may fail to replicate conditions or cellular contexts under which regulatory elements 880 

and causal variants within them may function, and thus may miss interactions with some causal genes. 881 

As the degree to which chromatin interactions are stable across such contexts is not entirely clear, 882 

interaction data alone may still identify potential candidate genes that only become functional under 883 

specific contexts. Lastly, capture-HiC sensitivity and precision are dependent on several factors, 884 

including whether a capture bait was designable to any given variant, bait efficiency, the size of the 885 

restriction fragment harboring a variant, and bin size used for analyses. Despite considerable apparent 886 

sensitivity of this method, some variant to gene interactions could be missed.  887 

  888 
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