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Abstract—Audiovisual active speaker detection (ASD) addresses the

task of determining the speech activity of a candidate speaker given acous-

tic and visual data. Typically, systems model the temporal correspondence

of audiovisual cues, such as the synchronisation between speech and

lip movement. Recent work has explored extending this paradigm by

additionally leveraging speaker embeddings extracted from candidate

speaker reference speech. This paper proposes the speaker comparison

auxiliary network (SCAN) which uses speaker-specific information from

both reference speech and the candidate audio signal to disambiguate

challenging scenes when the visual signal is unresolvable. Furthermore, an

improved method for enrolling face-speaker libraries is developed, which

implements a self-supervised approach to video-based face recognition.

Fitting with the recent proliferation of wearable devices, this work

focuses on improving speaker-embedding-informed ASD in the context

of egocentric recordings, which can be characterised by acoustic noise

and highly dynamic scenes. SCAN is implemented with two well-

established baselines, namely TalkNet and Light-ASD; yielding a relative

improvement in mAP of 14.5% and 10.3% on the Ego4D benchmark,

respectively.

Index Terms—Diarization, Audiovisual Active Speaker Detection,

Video-based Face Recognition, Speaker Recognition

I. INTRODUCTION

Audiovisual active speaker detection (ASD) revolves around deter-

mining the video-framewise speech activity of a candidate speaker.

The task is typically formulated as a binary classification problem,

where, given a mixed audio signal and sequence of temporally

contiguous bounding boxes centered on the candidate speaker’s face,

a system identifies video frames where the candidate speaker is

talking [1]–[6].

Previous ASD research has mainly focused on improving perfor-

mance for exocentric data (recorded from the third person perspec-

tive) [1], [3], [7], [8], where the camera and microphone are typically

stationary relative to the scene rendering the recording conditions

favourable. With the recent proliferation of wearable devices, how-

ever, the flavour of data ASD systems are likely to be deployed

upon has shifted to egocentric recordings, where the audiovisual

signal is acquired from the first person perspective, and the camera

and microphone are dynamic relative to the scene. This change in

recording perspective introduces several challenges: (i) low signal-to-

noise ratios for speech signals, (ii) highly spontaneous conversations

with overlapping speech, (iii) audiovisual distortion caused by the

camera wearer’s head movements, and (iv) situational obfuscation,

where visual cues are occluded [9], [10]. Since the paradigm observed

in recent literature involves modelling the correspondence between

audiovisual cues indicative of a candidate speaker talking [3], [11]–

[13] (like lip movement, cheek posture [4], and audible speech), this

paper argues said approaches are not sufficiently robust to handle the

aforementioned challenges associated with egocentric recordings. For
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example, when speech is present in the audio signal but the video

signal is heavily corrupted, a typical system based on audiovisual

correspondence will only be able to recognise the presence of speech,

the system will not be able to attribute it to the candidate speaker [3].

This is illustrated in Figure 1: degraded video frames of the candidate

speaker (bottom panel) and active speech in the microphone channel

(top panel) that is not spoken by the candidate speaker induces a

false activity detection for a speaker-embedding-naive system [13]

(blue line in the middle panel of Figure 1). This problem is also

demonstrated by the disparity in performance when evaluating ASD

systems on exocentric [8] vs egocentric [9], [14], [15] benchmarks,

where in the latter, challenging scenes are regularly prevalent.

Figure 1. Example of typical false-positive ASD: a) input audio signal; b)
ground truth speaker activity of the candidate speaker (inactive throughout)
and hypothesised speaker activity by a state-of-the-art speaker-embedding
naive ASD system [13]; c) selection of challenging video frames from a
typical egocentric video track [10].

Recent work has attempted to mitigate the limitations of estab-

lished ASD systems [1] by injecting speaker-specific information.

Specifically, TS-TalkNet [7] uses a pre-trained speaker recognition

model to extract speaker embeddings from reference speech based

on the well-known ECAPA-TDNN architecture [16]. These speaker

embeddings are then leveraged as an additional source of information.

Drawing inspiration from this, this paper proposes the speaker

comparison auxiliary network (SCAN), an auxiliary module that

can be integrated with various end-to-end ASD systems [1], [13].

Unlike TS-TalkNet [7], SCAN extracts speaker-specific information

from two distinct sources: reference speech, i.e. previously diarised

speech spoken by the candidate speaker, and the candidate audio

signal. This technique has previously leveraged successfully in the

domain of personal voice activity detection [17], [18]. The novelty of

SCAN lies in its ability to perform framewise comparisons between

these two sources via a cross-attention mechanism. This enables

SCAN to identify similarities and distinctions between speaker-

specific cues in the reference speech and the candidate audio signal

with high temporal granularity. By doing so, SCAN provides a



mechanism for effectively disambiguating scenarios with low-quality

video signals, resulting in improved ASD reliability and robustness.

SCAN constitutes the first contribution of this paper. Additionally,

this work demonstrates that existing methods for generating identity-

speech libraries, which associate reference speech with the identity of

the candidate speaker, are not robust to the challenges of egocentric

video. To address this, this paper proposes an improved method for

generating identity-speech libraries by extending and finetuning an

existing face-recognition model to leverage the temporal context of

video data via a self-supervised learning objective. This constitutes

the second contribution of this paper.

To summarise, the work outlined in this paper expands upon the

concept of target-speaker ASD, tailoring it to address the particular

challenges posed by egocentric recordings with the following main

contributions:

1) The auxiliary module SCAN, which leverages speaker-specific

information to help disambiguate challenging scenes for ASD.

2) A self-supervised method to finetune a pre-trained face recog-

nition model on video data to enroll identity-speech libraries

more robust to egocentric recordings.

3) Performance analysis on the egocentric Ego4D-AVD

dataset [10] and exocentric AVA-ActiveSpeaker [8] using

three existing systems as baselines: two speaker-embedding-

naive systems - TalkNet [1] and Light-ASD [13]; and the

current state-of-the-art speaker-embedding-informed system

TS-TalkNet [7].

II. SPEAKER EMBEDDING INFORMED AUDIOVISUAL ACTIVE

SPEAKER DETECTION

This section presents an overview of a typical ASD architecture,

introduces the proposed SCAN module, and outlines the training

protocol for fine-tuning an existing framewise face recognition model

on egocentric video to construct more robust identity-speech (face-

speaker [7]) libraries.

Figure 2. SCAN is shown in the top box which leverages speaker-specific
information for framewise comparison of reference speech and input audio
signal via cross-attention. The bottom box shows a typical ASD architectural
design (baseline). Dotted connections represent non-end-to-end passages in
the framework.

A. Baseline Architecture Overview

As shown in the lower part of Figure 2, conventional ASD systems,

such as the speaker-embedding-naive systems used as baselines in

this paper (i.e. TalkNet [1] and Light-ASD [13]), follow the current

paradigm of comprising an audio encoder, a video encoder, a modality

fusion mechanism, and a temporal decoder [1], [7], [12], [13]. These

systems operate on the video signal VS and the audio signal A.

The video signal is a set VS = {VS,1, ...,VS,T } of temporally

contiguous video frames, centred on a single candidate speaker

S. Each grayscale image in the set is denoted VS,t ∈ R
H×W

with time index t ∈ {1, ..., T}, height dimension H , and width

dimension W . A = {a1, ...,aTA
} denotes the mixed audio signal

temporally correspondent to VS with time index tA ∈ {1, ..., TA}.

The distinction between T and TA compensates for the discrepancy

in modality sampling rates.

Video and audio encoders extract pertinent features from their re-

spective modality inputs, and perform short-term temporal modelling

to encapsulate the local inter-frame relationships. These encoders

typically resemble 3D-ResNets [2], visual temporal convolutional

networks (V-TCNs) [1], or depth-wise separable convolutions [13].

The audio and video encoders embed their respective inputs, resulting

in two matrices FA ∈ R
T×d and FV ∈ R

T×d, where d is the

embedding dimension of both encoders. A fusion mechanism is then

applied to combine these two embeddings, generating a single 2-

dimensional output FASV. This fusion is often a simple channel-wise

concatenation, summation [13], or an attention-based approach [1],

[14]. The temporal decoder performs two tasks: long-term temporal

modelling on the mixed-modality embedding to capture the sequential

nature of speech and framewise classification to predict the speaker

activity of the candidate speaker.

B. Speaker Comparison Auxiliary Network (SCAN)

The TS-TalkNet system, introduced in [7], builds upon the

paradigm outlined in the bottom part of Figure 2. It does so by inject-

ing speaker-specific information from pre-diarised reference speech

of the candidate speaker AS into the model. A speaker embedding

fφ(AS) is extracted from AS via ECAPA-TDNN [16] which is then

fused with FA and FV prior to temporal decoding. This injection of

speaker-specific information relating to the candidate speaker results

in a significant performance improvement over its respective baseline

[1]. This extension is motivated by the need to resolve ambiguous

scenarios where visual cues indicative of speech activity are occluded,

rendering the scenario intractable via audiovisual correspondence

alone.

Inspired by this approach, SCAN employs a distinct modification

by extracting speaker embeddings from not only pre-diarised refer-

ence speech AS, but also from the candidate audio signal A. This

enables an explicit comparison between speaker characteristics of the

reference speech and the candidate audio signal via the cross-attention

mechanism shown in Figure 2. As a result, it will be easier for the

network to learn to identify similarities and distinctions between A
and AS.

First, overlapping windows temporally centred around each video

frame are extracted from the raw waveform input of A, transforming

A to a matrix A. This transformation is performed such that a

sufficient duration of audio exists at each time point for meaningful

speaker embeddings to be extracted. AS and A are then embedded

by a pre-trained speaker recognition model fφ and a cross-attention

mechanism is employed along the temporal dimension of A:

FS = σ

(

fφ(A)fφ(AS)
⊤

√

dφ

)

fφ(AS) (1)

The embedded audio signal fφ(A) is used as the queries, and the

embedded reference speech fφ(AS) is used as the keys and values. dφ
denotes the embedding dimension of the speaker recognition model



and σ represents the softmax function. This is done to determine how

well the speech in the current track’s audio correlates with that of the

reference speech. ECAPA-TDNN [16] pre-trained on the VoxCeleb

dataset [19] is used as fφ due to its previous use in TS-TalkNet and

robust performance on various benchmarks [7]. The ECAPA-TDNN

model parameters are frozen and therefore do not contribute to model

training.

C. Identity-Speech Library Generation

To exploit reference speech information for ASD, a correspondence

between candidate speaker identity and reference speech must be es-

tablished. Following TS-TalkNet [7], this work generates an identity-

speech library E : iS → AS which is pre-enrolled offline, where

iS is a vector representing the candidate speaker’s identity. In ASD

datasets, identity annotations are typically not provided. However, by

definition, tracks are identity-homogeneous. By clustering the identi-

ties of each track, this indirectly clusters each track’s corresponding

pre-diarised speech signal (if the track contains active speech). This

is the premise of identity-speech library generation.

1) Identity Aggregation: To construct the identity-speech library,

identity embeddings i are extracted from the visual component of all

tracks in a given dataset. Cosine similarity is used to assess the simi-

larity between a pair of identity embeddings. If the similarity exceeds

a static threshold, the identities within each track are considered to

be the same, and pre-diarised speech within the track’s corresponding

audio signal is attributed to this identity in the library.

2) Self-Supervised Video-Based Face Recognition: The perfor-

mance of the face recognition model used is critical to the quality

of the identity-speech library and consequently the utility of the

output of SCAN. For example, if E : iS contains speech not spoken

by S when AS is sampled, irrelevant speech could be fed into

the speaker recognition module, rendering its output uninformative,

or even deleterious. The reliability of existing frame-based face

recognition systems [20]–[23], despite their robust performance on

other benchmarks, will not be sufficient to withstand the challenges

posed by the highly domain-specific nature of egocentric recordings.

Subsequently, a method was devised to adapt and finetune an existing

pre-trained face recognition model. Firstly, a means of modelling

consecutive frames as a sequence was integrated into a frame-based

face recognition model, enabling it to effectively encapsulate and

leverage the temporal context associated with video data. Secondly,

since hard labels describing the trackwise identities of each person

within ASD datasets are not typically provided, a self-supervised

training objective was employed.

As depicted in Figure 3, input tracks VS are polluted with impostor

frames VIx randomly chosen from other tracks. Frames within

the polluted track V ′

S are then individually encoded by the face

recognition model [24]. This output is then fed through L transformer

encoder layers [25] where the model has the capacity to attend

across different frames within the track, thus leveraging the temporal

context of video data. The model then determines whether each

frame is either an impostor or native frame via binary classification.

Learning this classification indirectly conditions the model to assign

low weighting to frames not relevant to the track’s overall identity

(poor quality frames with significant visual distortion or occlusion)

and high weighting to crisp frames where the parent track identity is

clearly apparent and recognisable.

Once fine-tuned, the output of the last transformer encoder layer

is averaged across its temporal dimension to generate a single

embedding representative of the candidate speaker’s identity iS.

Figure 3. Self-supervised video-based face recognition model. impostor
frames are randomly inserted into the parent track, resulting in polluted track
V ′

S
. The training objective involves the model classifying frames as either

native or impostor frames with respect to the parent track. � denotes mean
average.

III. EXPERIMENTS

This section describes the datasets and experiments used to evaluate

SCAN for ASD and the quality of the identity-speech library.

A. Datasets

AVA-ActiveSpeaker [8] is a frequently-used, exocetric, large-scale

audiovisual ASD dataset, comprising 262 Hollywood movie clips

(120 for training, 33 for validation, and 109 for testing) with 3.65
million human-labeled video frames (38.5 hours of face tracks) and

corresponding audio.

Ego4D-AVD [10] records from the egocentric perspective. It

comprises 572 distinct video clips. Each video clip is 5 minutes in

length, some of which are recorded concurrently. All data is recorded

monaurally using a variety of wearable devices. All video is sampled

at 30 Hz and uses high-definition resolution. The dataset is stratified

as follows: 379 clips for training, 50 clips for validation, and 133 clips

for testing. The full validation fold of Ego4D-AVD was annotated by

this work in terms of pseudo-identity. This was to provide a robust

means of evaluating identity-speech libraries (cf. Table III).

B. Implementation Details

Baselines: All baseline models were implemented using the same

input features, optimisers, and learning rates used in each systems’s

original implementations [1], [7], [13]. Standard ASD augmentation

techniques were applied such as negative sampling of the audio

signal, and flipping, cropping, and rotating of the video signal.

SCAN: The output of SCAN contributed to each baseline system’s

loss function as an auxiliary loss, using binary cross entropy to

perform framewise classification upon FS. Raw waveform audio

served as the reference speech input to the speaker recognition model

(1024 channel ECAPA-TDNN [16]). The output of SCAN FS used

an embedding dimension of 64. 1 second windows of audio was used

to extract each speaker embedding from A. Reference speech was

randomly selected from the relevant part of the identity-speech library

to increase training variability.

Identity-Speech Library: For the finetuning of the face recog-

nition model (cf. Section II-C2), a cross-entropy loss function was

used. Input to the system were tracks comprising colour images with

a 30% impostor insertion rate. 4 Transformer encoder layers (L = 4)

each comprising 8 attention heads with a model dimension of 1024
were trained for 10 epochs on a single NVIDIA A100 GPU for 2



hours with a batch size of 1800. To create the identity-speech library

a static comparison threshold of 0.9 was used to construct the library

and a 2.5 second minimum duration of speech was enforced.

C. Evaluation Metric

Evaluation of each system for ASD is performed using the Car-

tucho object detection mean Average Precision (mAP) [26], which

adheres to the mAP criterion from the PASCAL VOC2012 competi-

tion [27]. This approach is consistent with the Ego4D audiovisual

diarisation challenge [10] and recent literature [9]. Due to the

unavailability of ground truth annotations for the test folds of Ego4D

and AVA-ActiveSpeaker, results are reported on the validation folds

of each dataset, following the convention in ASD [3], [9], [11], [12],

[14], [15].

IV. RESULTS

This section demonstrates the performance of SCAN when used in

conjunction with two speaker-embedding-naive systems, TalkNet [1]

and Light-ASD [13]. The identity-speech library generation method

proposed by this paper (cf. Section II-C) is also evaluated and

compared with previous work when applied to egocentric recordings.

A. Audiovisual Active Speaker Detection

The results of incorporating SCAN with two speaker-embedding-

naive systems, TalkNet [1] and Light-ASD [13], are shown in Table I.

Table I
PERFORMANCE COMPARISON ON EGO4D-AVD AND AVA VALIDATION

FOLD. IDENTITY-SPEECH LIBRARY† REFERS TO GROUND TRUTH

IDENTITY-SPEECH LIBRARY. BOLD HIGHLIGHTS BEST-PERFORMING

SYSTEM WITH HYPOTHESISED IDENTITY-SPEECH LIBRARY, UNDERLINED

REPRESENTS BEST SYSTEM WITH GROUND TRUTH IDENTITY-SPEECH

LIBRARY.

SCAN Identity-Speech mAP [%]
Baseline

used Library† Ego4D AVA

✗ ✗ 52.2 93.9
TS-TalkNet

✗ ✓ 54.0 93.9

✗ - 51.0 92.3
TalkNet ✓ ✗ 58.0 93.8

✓ ✓ 58.4 94.0

✗ - 54.3 94.1
Light-ASD ✓ ✗ 57.1 93.9

✓ ✓ 59.9 94.2

On the Ego4D benchmark, SCAN significantly improves perfor-

mance of the respective baseline systems for both ground truth

identity-speech library and hypothesised identity-speech library con-

figurations. Ground truth identity-speech libraries referring to those

which are created directly from the dataset’s annotation, hypothesis

identity-speech library referring to those created by the method

outlined in Section II-C. For the AVA benchmark (exocentric) the

improvements are much more modest. This is likely because visu-

ally challenging multi-talker scenarios, in which SCAN would be

beneficial, are much less prevalent than in Ego4D. Nevertheless,

both configurations provide a substantial improvement upon the

TalkNet baseline system. Additionally, TalkNet+SCAN outperforms

TS-TalkNet, a previous speaker-embedding-informed system by 5.8%

and 4.4% mAP for ground truth and non-ground truth identity-

speech libraries, respectively. Since a significant improvement upon

the TS-TalkNet baseline is apparent when ground truth identity-

speech libraries are used, it is fair to deduce SCAN’s architectural im-

plementation and method of extracting speaker-specific information

from both the candidate audio signal and reference speech is more

effective than relying solely on reference speech. Furthermore, the

improvement yielded by incorporating SCAN into the baseline sys-

tems renders both baseline systems almost competitive with state-of-

the-art methods in the context of egocentric data. Specifically, SCAN

enhances the TalkNet and Light-ASD baselines by 14.5% and 10.3%,

respectively, bridging the gap with state-of-the-art performance, as

shown in Table II

Table II
COMPARISON WITH THE STATE-OF-THE-ART ASD SYSTEMS ON

VALIDATION FOLDS OF EGO4D AND AVA. VALUES FOR LOCONET [14]
AND SPELL [28] ARE FROM THEIR ORIGINAL MANUSCRIPTS.

System Spk. Emb. Inf. Ego4D [%] AVA [%]

TalkNet [1] ✗ 51.0 92.3
TS-TalkNet† ✓ 54.0 93.9

Light-ASD [13] ✗ 54.3 94.1
LoCoNet [14] ✗ 59.7 95.2

SPELLL [28] ✗ 60.7 94.2

TalkNet+SCAN† ✓ 58.4 94.0
Light-ASD+SCAN† ✓ 59.9 93.9

B. Identity-Speech Library

The results presented in Table III indicate a substantial improve-

ment in the quality of the identity-speech library generated by

the proposed method. This improvement is further demonstrated

by Figure 4. In the left panel (TS-TalkNet), it is impossible to

differentiate same-identity pairs from different identity pairings while

in the right panel (SCAN) resolving the two pairings is easier. This is

attributed to the face-recognition model’s ability to leverage temporal

context via self-attention. However, it is noted that the silhouette

score of 0.16 indicates only minor cluster separability, suggesting

that further refinement of the proposed method might be necessary

to achieve more robust future identity-speech library generation.

Table III
COMPARISON OF IDENTITY-SPEECH LIBRARY GENERATION METHODS.

System Ego4D-Silhouette

TS-TalkNet -0.17
SCAN 0.16

Figure 4. Similarity between same-identity embeddings and different-identity
embeddings shown in green and red, respectively, for Ego4D validation
fold [10]

V. CONCLUSION

This work proposes SCAN, a speaker-embedding-informed ex-

tension to conventional ASD systems. SCAN assists in disam-

biguating challenging multi-talker scenarios involving visual noise

and physical obfuscations. SCAN builds upon previous work by

extracting speaker-specific information from reference speech, but

is able to leverage speaker-specific information inherently present

in the candidate audio signal itself. Furthermore, SCAN proposes

a method to finetune frame-based face-recognition models on video

data without hard identity labels by transformer encoder layers and a

self-supervised training objective. This approach exhibits a significant

performance improvement relative to previous work for identity-

speech library generation.
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