
This is a repository copy of Diagrammatic physical robot models.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/223475/

Version: Published Version

Article:

Miyazawa, Alvaro orcid.org/0000-0003-2233-9091, Ahmadi, Sharar, Cavalcanti, Ana Lucia
Caneca orcid.org/0000-0002-0831-1976 et al. (5 more authors) (2025) Diagrammatic
physical robot models. Software and Systems Modeling. ISSN: 1619-1366

https://doi.org/10.1007/s10270-025-01270-9

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1007/s10270-025-01270-9
https://eprints.whiterose.ac.uk/id/eprint/223475/
https://eprints.whiterose.ac.uk/

Software and Systems Modeling

https://doi.org/10.1007/s10270-025-01270-9

REGULAR PAPER

Diagrammatic physical robot models

Alvaro Miyazawa1 · Sharar Ahmadi2 · Ana Cavalcanti1 · James Baxter1 ·Mark Post3 · Pedro Ribeiro1 ·

Jon Timmis4 · Thomas Wright5

Received: 15 November 2022 / Revised: 22 November 2024 / Accepted: 21 January 2025

© The Author(s) 2025

Abstract

Simulation is a favoured technique in robotics. It is, however, costly, in terms of development time, and its usability is limited
by the lack of standardisation and portability of simulators. We present RoboSim, a diagrammatic tool-independent domain-
specific language to model robotic platforms and their controllers. It can be regarded as a profile of UML/SysML enriched with
time primitives, differential equations, and a mathematical semantics. Our previous work on RoboSim described a notation
to specify control software. In this paper, we present a novel notation to describe physical models: block diagrams that can
be linked to the platform-independent software model to characterise how services required by the software are realised by
actuators and sensors. Behaviours are specified by differential equations, and simulations and mathematical models of the
whole system can be generated automatically. Our main contributions are a modular and extensible diagrammatic notation
that supports the explicit specification of physical behaviours; a set of validation rules that identify well-formed models; a
model-to-model transformation from RoboSim to an input format accepted by several simulators; and a formal semantics for
mathematical reasoning.

Keywords Simulation · Verification · SDF · Hybrid models · Diagrammatic models

Communicated by Manuel Wimmer.

B Alvaro Miyazawa
Alvaro.Miyazawa@york.ac.uk

Sharar Ahmadi
s.ahmadi@reading.ac.uk

Ana Cavalcanti
Ana.Cavalcanti@york.ac.uk

James Baxter
James.Baxter@york.ac.uk

Mark Post
Mark.Post@york.ac.uk

Pedro Ribeiro
Pedro.Ribeiro@york.ac.uk

Jon Timmis
Jon.Timmis@sunderland.ac.uk

Thomas Wright
thomas.wright@ece.au.dk

1 Department of Computer Science, University of York, York,
UK

2 Department of Meteorology, University of Reading, Reading,
UK

1 Introduction

The importance of rigorous approaches to software engi-
neering in robotics is recognised, but it is still a new and
developing research area [15]. There are a number of chal-
lenges: (1) the development of software is often tackled at
the programming, rather than modelling level; (2) the APIs of
robots and simulators differ significantly and require manual
adaptations; (3) simulations often rely on black-box simula-
tors where assumptions and physical equations are not readily
available; and (4) verification is by trial and error [10]. All
this drives costs up, with the need for expensive tests and to
deal with low-level code. Moreover, in the end, the only guar-
antee is that undesirable behaviours have not been found, not
that they are not possible. Here, we propose a new notation to
support modelling and verification of a robotic system based

3 School of Physics, Engineering, and Technology, University
of York, York, UK

4 Department of Computer Science, Aberystwyth University,
Aberystwyth, UK

5 Department of Electrical and Computer Engineering, Aarhus
University, Aarhus, Denmark

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-025-01270-9&domain=pdf

A. Miyazawa et al.

on simulation and proof, advancing previous work by tack-
ling models and properties that involve the physical hybrid
model of the robotic platform.

Several reactive simulators are available [42, 50, 61].
They typically, however, use dedicated APIs, with different
libraries to support simulation of platforms and environ-
ments, sometimes written using proprietary languages. Lack
of portability has an impact on the cost of simulations and
availability of simulation facilities. In addition, although
extremely useful to explore the design of systems, sim-
ulations are tests. In our approach, costs are lowered by
automatic generation of (simulation) code, and confidence
is increased by complementary proofs.

Our work is based on RoboSim, a diagrammatic notation
for tool-independent modelling of robotics simulations. With
the work presented here, modelling can cater for both con-
trol software and hardware designs. This provides support
for simulation and proof of properties [52] that may not be
true, or even expressible, when the software is considered in
isolation, but are valid when the physical platform is in the
loop.

Previously, we have presented the RoboSim notation for
modelling software [19]; it can be regarded as a profile of
UML [58] component diagrams and state machines. Over
and above what can be specified in UML, however, RoboSim
supports the definition of timed properties backed by math-
ematical models automatically generated for verification.
With a mathematical model, we can, for instance, prove
properties observed in a simulation or compare a RoboSim
(simulation) model with a design model, to ensure consis-
tency.

The work presented in this paper enriches RoboSim with
a profile of block diagrams of the systems modelling notation
SysML [57] to describe physical models of robotic platforms.
With this facility, we can define an integrated model of a con-
troller software and the physical platform that it controls.
RoboSim block diagrams adopt concepts of XML-based
notations used by robotics simulators, notably, SDF (Scene
Description Format).1 So, in terms of ease of use, we benefit
from the popularity of both SysML and SDF.

SDF can be used to describe scenarios, including, but
not restricted to, robotic platforms. It is accepted by pop-
ular simulators, such as, Gazebo [42] and CoppeliaSim [61].
It is a superset of URDF (Unified Robot Description For-
mat), adopted by the widely used ROS (Robotic Operating
System),2 and accepted by, for example, Simulink.3 Popular
physics engines4,5 work with SDF documents. SDF embeds

1 http://sdformat.org
2 www.ros.org
3 www.mathworks.com/products/simulink
4 http://pybullet.org
5 http://dartsim.github.io

domain knowledge in the form of XML tags to describe ele-
ments of robotic platforms and environments. The use of
SDF avoids or minimises the need to program a simulation
of a customised platform. Alternative formats, such as COL-
LADA,6 exist but are more general and focus on 3D models
instead of the specificities of robotic applications.

SDF, however, is a textual notation without clear seman-
tics. The behaviour of an SDF document is defined by the
particular physics engine adopted in a simulation. In [65], a
number of challenges in the adoption of URDF are identi-
fied, and while SDF addresses some of these challenges (for
instance, modelling parallel linkages), others such as XML
syntax and ensuring accuracy of frames remain. Moreover,
there is no support for validation of SDF documents, beyond
graphical rendering in a simulator, which may not be possible
for an invalid document.

In contrast, RoboSim is a diagrammatic notation with a
specialised editor, which also checks the validity of mod-
els. Moreover, RoboSim supports model decomposition for
readability and reuse, and the definition of new kinds of sen-
sors, actuators, and joints. Importantly, RoboSim supports
behavioural modelling, building on a uniform and simple
approach to specify frames of reference and poses. Finally,
RoboSim’s process-algebraic semantics allows verification
of properties related to both the control software and the
physical robot. Our focus is on the rigid-body dynamics of
the robots [46, 64] (and their interaction with the software)
and not on aspects such as soft bodies, stress, and strain.
It is worth noting, however, that while we use formulations
of robot behaviours from sources such as [46] in our exam-
ples and libraries, RoboSim is agnostic to the formulation of
these behaviours. The only two limitations are the focus on
rigid bodies and the use of roll-pitch-yaw poses. Rigid bodies
already pose challenges (addressed here), and roll-pitch-yaw
poses simplify the translation to widely used notations such
as SDF. Both restrictions can be relaxed and are the subject
of planned future developments.

The RoboSim block diagram notation presented here
includes a significant number of extra facilities for modelling
and reuse, and yet can be used to derive an SDF document.
In this paper, we present model transformation rules that we
have implemented to automate the generation of SDF docu-
ments for CoppeliaSim [61]. The SDF documents generated
can be used directly, or tailored to specify how aspects of a
particular scenario (wind, light, and so on) affect the system.

In addition, RoboSim models record (a system of) differ-
ential equations that characterise the behaviour of sensors,
actuators, and joints in terms of their inputs and outputs. The
equations provide a mathematical description of the physical
properties of a platform. When SDF is used with a simu-
lator, the sensors, actuators, and joints are simulated using

6 https://www.khronos.org/collada/

123

http://sdformat.org
www.ros.org
www.mathworks.com/products/simulink
http://pybullet.org
http://dartsim.github.io
https://www.khronos.org/collada/

Diagrammatic physical robot models

a physics engine that typically provides code for efficient
approximate accounts of this behaviour. In RoboSim, the
equations can provide mathematical accounts of (continu-
ous) behaviour useful for mathematical proof.

We have defined and implemented model transforma-
tion rules that define a process-algebraic semantics for our
RoboSim block diagrams. Due to the continuous nature of
physical systems, we need to account for both the discrete
behaviour of the software and the continuous behaviour of
the robotic platform. So, we use a data-rich hybrid version
of the process algebra CSP [62], called CyPhyCircus [53].
The semantics of RoboSim software models [19] is already
described in CSP [62]. So, as we illustrate here, that seman-
tics and the CyPhyCircus semantics we present integrate well
to provide a unified model of the control software and of the
robotic platform.

On the other hand, while RoboSim block diagrams are
described here in the context of RoboSim control soft-
ware models, the notation is general. RoboSim block dia-
grams can be combined with platform-independent software
models written in other languages. For instance, in [17],
RoboChart [19], the notation for software modelling on
which RoboSim is based, is combined with SysML to sup-
port simulation and co-simulation, and in [54], RoboChart
and Simulink [47] are combined for co-verification of a high-
voltage electrostatic control system.

In RoboSim, the connection between a block diagram and
a control software model is defined by another diagram: a
platform mapping that specifies the interaction between
them. With this separation, the generation of simulations and
of the formal semantics can be tackled in a self-contained
manner. For verification purposes, the semantics of RoboSim
p-models can be used in isolation or composed with other
models as long as a suitable formal connection is established.
So, verification relies on the software model only when the
property of interest relates to and depends on the behaviour
of both the software and the platform.

RoboSim is supported by a tool called RoboTool.7 We
have extended it to support RoboSim block diagrams. With
RoboTool, we can validate the models to ensure that they
are well-typed and well-formed. We can also generate auto-
matically SDF documents for simulation and mathematical
models for mechanised proof of properties. All examples in
this paper have been developed using RoboTool, as have the
physical model for the complete marXbot [9]8 (a robot with
several modules), a dressing robot, a firefighting drone, and
a solar panel vacuum cleaner [2].

To summarise, our novel contributions here are: (1) a
modular and extensible diagrammatic notation for the phys-
ical modelling of robotic platforms that supports the explicit

7 www.cs.york.ac.uk/robostar/tools/
8 www.cs.york.ac.uk/robostar/case_studies/

specification of physical behaviours while improving read-
ability; (2) conditions that characterise well-formed models;
(3) model transformation rules for automatic generation of
SDF documents from diagrams for simulation; (4) model
transformation rules for automatic generation of CyPhyCir-

cus diagram models for proof in the context of a control
software; and (5) a tool for editing and validating models, and
automatic generation of SDF documents and mathematical
CyPhyCircus models. To illustrate our approach to proof, we
use an integration of two model checkers: FDR (for discrete
time software models) [33] and Flow* (for hybrid platform
models) [23].

Our vision for the development of robotic applications fol-
lows an iterative pattern where initially software and physical
models are created and properties are specified, and at each
iteration, the properties are verified, simulations and tests are
automatically generated and executed, code is generated and
deployed, and real-world tests are run. Any problems identi-
fied in verification, simulation, or deployment are addressed
directly in the models, which are updated and re-evaluated in
the next iteration of the development process. This approach
complements current practice by providing further structure
to the development process and improving automation and
reuse.

Next, we discuss related work. Section 3 gives an overview
of control software modelling in RoboSim. Section 4 describes
our novel approach to physical modelling; we define the
metamodel of the block diagrams and their well-formedness
conditions, and provide examples. Section 5 describes the
approach to generate SDF documents, and Sect. 6 shows
the approach to generate mathematical models for proofs.
RoboTool and the implementation of our notation are dis-
cussed in Sect. 7, and several case studies are described in
Sect. 8. We conclude and indicate future work in Sect. 9.

2 Related work

There are several general-purpose languages that can be used
in robotics. Some of them are diagrammatic, notably UML
and its variants (SysML, UML MARTE, AADL, and so on).
For most, there is some support for verification and code
generation, but not for physical modelling, which is our focus
here.

We can find several domain-specific languages for robotics
in the literature [56]. They target control software [15]. Auto-
matic generation of code is a main motivation for their design,
and in several cases, the generated code can be used for simu-
lation. There is, however, no coverage of code to simulate the
robotic platform as we do here. A few languages support ver-
ification [29, 32, 35] of software properties. With RoboSim,
we can also reason about properties that are related to, or
depend on, the physical platform.

123

www.cs.york.ac.uk/robostar/tools/
www.cs.york.ac.uk/robostar/case_studies/

A. Miyazawa et al.

Closest to our work is that in [3], in which a UML profile
caters for modelling scenarios where robots collaborate with
humans. Scenarios are captured by class diagrams and can
specify physical components of the robot. There is a notion
of mobile device with attributes relevant for reasoning about
the safety of collaborative applications. A mobile device has
a type (anthropomorphic, SCARA, cartesian, or dual arm),
DoF (Degree of Freedom), joints (prismatic, rotational, or
spheric), maximum weight it can carry, and maximum reach.
Skills (moving, hooking, and so on) can be recorded. Specific
types of end-effectors can be identified (grippers, screw-
drivers, and others), with relationships (such as ‘attached to’)
capturing some kinematic restrictions. Control is described
via activity diagrams, picturing the actions of the human and
the robot. Mathematical models for verification automati-
cally generated use a temporal logic with a notion of discrete
time. We share the vision to automate artefact generation to
deal cost-effectively with changes. Their goal, however, is
different: risk analysis and generation of deployment code
with a focus on human interaction. Their models go further
than ours, covering the behaviour of operators, but do not
cater for concepts such as controllers, sensors, and actuators,
and their hybrid behaviour.

A version of UML for mechatronics, called mUML, is
presented in [34]; its focus is modelling and verification for
systems with reconfigurable software. Like RoboSim, it uses
a specific component model and has support for model check-
ing. An mUML model follows a hierarchy, which, at the
lowest level, captures alternative control strategies defined
by differential equations. Physical modelling, however, is not
considered in [34]. Joint use of RoboSim block diagrams, as
presented here, and mUML software models can enable the
use of their tool for code generation. In general, RoboSim
block diagrams can be used to complement software mod-
els written in other languages for robotics in the literature,
especially those few that define a mathematical model for the
software.

A popular line of work is the use of mathematical
approaches to develop planners [12, 43, 66]. An extensive
survey [28, 45] indicates that model checking is the most pop-
ular approach for specification and verification in robotics.
RoboSim brings together the convenience of diagrammatic
modelling and the power of mathematics. Since math-
ematical models are generated automatically, specialised
modelling expertise is not required. Yet, the mathematical
models generated open a wide variety of possible avenues
for verification.

Automated proof (via model checking) and physical mod-
elling has been pursued using JavaPathFinder [63]. Physical
modelling is via (linear time-invariant ordinary) differential
equations and covers the robotic platform and the environ-
ment. The control software is written in Java. The equations
capture inputs to sensors and outputs of actuators, but

abstracts the physical structure of the robot. Model check-
ing uses a separate simulation of the dynamical systems in
conjunction with the Java code. In contrast, we automatically
generate simulations and mathematical models.

The RoboSim mathematical model of a robotic platform
is generated based on the behaviour of its sensors, actua-
tors, and joints, and on properties of its components. An
early work [59] on modular robotics uses data stored in
modules to obtain the gravity vector. Approaches based on
Lie groups [22, 48, 60] are suitable for modular structures
with particular geometries. An approach based on the stan-
dard Denavit–Hartenberg (D-H) convention [7, 8, 27] is used
in [40] specifically for revolute joints, and in [64] for con-
secutive axes.

Property-driven approaches [11] use models to guide the
construction of a simulation. Similar to ours, their engineer-
ing approach benefits from precise mathematical models for
proof. Their model is based on automata, and gives a mono-
lithic account of the system as a whole. Simulations have
to be developed by hand. Use of RoboSim models to gener-
ate mathematical models and simulations automatically can
reduce costs by avoiding the manual development of simu-
lations.

In Capella,9 physical modelling refers to allocation of soft-
ware components to computational units. This is important,
but complementary to our work, we concentrate here on the
physical behaviour of mobile robots. An example where a
CAD tool is used for physical modelling in conjunction with
CoppeliaSim is in [24].

Xacro10 is an XML macro-language used as a front-end to
simplify URDF descriptions. Use of Xacro increases mod-
ularity, reduces redundancy, and permits parametrisation.
Using Xacro, we can obtain automatically generated URDF
descriptions. The design of Xacro shares many of our goals.
RoboSim, however, goes further in adopting domain-specific
concepts (links, joints, parts, and so on) as building blocks,
rather than XML macros. RoboSim also supports the defini-
tion of equations to capture behaviour (of sensors, actuators,
and joints) and has a formal semantics. RoboSim is not a
front-end for SDF or URDF.

Use of SDF for physical modelling is described in [68].
Automatic generation of SDF documents is reported in [41].
The source is an object-oriented language for building mod-
elling called BIM. A technique for construction planning
and scheduling based on BIM is integrated with ROS for
generation of task plans for robots. In this approach, the spa-
tiotemporal information of a building and its construction
plans are used to define an SDF model for the building. The
model for the robot is defined (by hand) using URDF.

9 www.eclipse.org/capella/
10 http://wiki.ros.org/xacro

123

www.eclipse.org/capella/
http://wiki.ros.org/xacro

Diagrammatic physical robot models

In summary, RoboSim is a tool-independent domain-
specific diagrammatic simulation language for robotics with
distinctive features. It has support for generation of SDF doc-
uments and mathematical models. The work presented here
enriches RoboSim to cover physical modelling of robots.
With this, for verification, we can generate simulation code
for the software and the robot, and prove properties that
depend on both. So, the RoboSim notation now supports the
definition of three aspects of simulation models: software,
robotic platform, and their connections.

3 RoboSim control software

RoboSim is part of the RoboStar [13] family of nota-
tions. It enforces a cyclic behavioural pattern, where the
system evolves in steps in which, first, inputs are read,
and then outputs are calculated and provided, all infinitely
fast, before time advances to the next cycle. The subset
of RoboSim concerned with models of control software
is called d-models[19], and the semantics of RoboSim d-
models supports the comparison between RoboSim models
and a reactive design model. (In RoboStar, reactive control
software models are written using RoboChart.)

We give in this section a brief overview of how con-
trol software is modelled and verified in RoboSim. For that,
we use the toy example in Fig. 1: a model for a robot that
detects and moves away from obstacles. Figure 3 shows on
the left the marXbot [9], a robot that can be used for this
simple application. The marXbot is a modular mobile robot
for swarm applications that uses differential-drive treels to
deal with rough terrain, and includes a powerful battery
and high-quality cameras. Complete physical models of the
marXbot and of other commercial robots, described using
the RoboSim diagrammatic notation presented in this paper,
are available.11

In the next sections, we use as a running example the
physical model in Fig. 2 just for the marXbot base, which is
enough for the application defined in Fig. 1. Since this is a
RoboSim d-model, it captures a software simulation model
and the requirements that it imposes on the robotic platform,
not a specific platform. A full account of RoboSim software
models is in [18, 19]. Table 1, explained later, describes how
the requirements on the robotic platform defined in Fig. 1 can
be satisfied by the model in Fig. 2.

Control software is described in RoboSim by a module.
In Fig. 1, the module for the simulation of our simple robot is
given by the block named marXbotSoftware. The declara-
tion (at the top) of the module includes a cycleDef clause that
defines the length of the simulation cycle; in our example, it

11 www.cs.york.ac.uk/robostar/case_studies/

is 1 time unit. The specific value of a time unit is defined as
part of the automated process to generate simulation code.

A module includes a component, namely the robotic plat-
form that specifies the services required by the software.
These requirements are defined by variables, events, and
operations that are realised by sensors and actuators. The
variables, events, and operations define an abstraction of the
sensors and actuators. In our example, we call this abstraction
marXbotServices.

In the definition of marXbotServices, we declare a
provided (P) interface MovementI and a defined inter-
face (i) ObstacleI. MovementI declares two operations
move(lv:real,av:real) and stop() to capture services provided
by embedded software in the marXbot using its motors. With
a call to move(lv:real,av:real), we request that the linear and
angular velocities of the robot are set to lv and av. With stop(),
we request the robot to stop. These operations are provided
by marXbotServices for use by the control software. In the
module, these operations are not further defined.

The event obstacle defined in ObstacleI is an abstraction
for an embedded operation that uses one the marXbot infrared
sensors to signal the presence of an obstacle. Other forms of
sensor may be used in other platforms. The event is used
by the control software to make decisions, but is not further
defined by the module.

The realisation of the variables, events, and operations
declared by a robotic platform block are defined as part of the
physical model in terms of its sensors and actuators, using the
new notation for platform mappings presented in this paper.
In the definition of the modules (that is, of software con-
trollers), the exact physical robotic platform used, including
the exact sensors and actuators that it includes, is not rele-
vant. In a module, the services provided and defined by the
robotic platform, as characterised by the variables, events,
and operations, define a data model. For this reason, we call
a module a d-model, standing for data model, to distinguish
it from the physical models, called p-models, we describe
here.

Besides a robotic platform, a module includes controllers
that define the software behaviour using state machines. In
our example, marXbotSoftware includes just one controller,
called Movement. The connection (represented by an arrow)
between the platformmarXbotServices andMovement indi-
cates that Movement uses obstacle as an asynchronous
input. Movement can also call the provided operation
move(lv:real,av:real).

Figure 1 presents the definition of Movement and of the
machine SMMovement that defines its behaviour. In general,
RoboSim permits the definition of parallel controllers whose
behaviour can itself be defined by several threads of execu-
tion specified by parallel machines. For our purposes here,
however, the details of how a d-model can be defined are not
important. In our example, we briefly note only the uses of

123

www.cs.york.ac.uk/robostar/case_studies/

A. Miyazawa et al.

Fig. 1 RoboSim: obstacle detection control software—module
marXbotSoftware defines the control software as a whole, in terms
of a robotic platform marXbotServices and a controller block Move-

ment, whose behaviour is defined by a state machine SMMovement.
MovementI and ObstacleI are interfaces used in the definition of the
various components

move(lv,av), stop(), and obstacle in SMMovement. In the
initial state SMoving, the operation call move(lvel,0) is used
to get the robot to move in a straight line with speed lvel.
Afterwards, SMMovement changes to the state DMoving.
Now, after each cycle of simulation, marked by a special
machine event exec, a decision is made based on whether
the event obstacle has happened or not. When it does, in
the action of a transition to a state Waiting, the operation
stop() is called (after a clock turnTimer is reset). Next, in
the following cycle, marked by the exec event in the transi-
tion to another state STurning, the callmove(0,avel) requests
that the robot turns. Afterwards, in each cycle, we determine
whether enough time, namely PI/avel time units, has passed,
by checking the value of the clock since it was last reset,
given by since(turnTimer). When enough time has passed, a
transition leads back to the state SMoving, where the robot
is again asked to move in a straight line (move(lvel,0)).

RoboTool automatically generates the semantics of a
RoboSim d-model (as well as of a p-model as described in
Sect. 6). Using that mathematical model, we can carry out

verifications (in the way explained in [52]). For example,
using the d-model we have proved the following property.

Once an obstacle is detected, the operation stop is

called immediately.

This is true in our software design: In the same cycle of the
simulation in which the event obstacle is raised, the operation
call stop() takes place. Of course, the robot does not actually
stop immediately, and several factors play a role in the delay.
With the d-model, we cannot consider any of these factors.
With a p-model, we can consider such issues in two ways.
First, we can automatically generate a simulation that can
be used to test the system in several scenarios. In addition,
we can generate a richer mathematical model that captures,
for example, the power and inertia of the motors, and other
attributes of the platform. This model can be used to prove
properties taking into account physical aspects of the system.

To summarise, Table 1 lists the events and operations of
marXbotSoftware. A p-model is defined in Sect. 4 (Fig. 2) to
illustrate the notation introduced in this paper. That model,
called BaseModule, describes a robot with two motors,

123

Diagrammatic physical robot models

Table 1 RoboSim: connection
between the
software (marXbotSoftware in
Fig. 1) and
physical (BaseModule in Fig. 2)
models, and the variables
characterising the visible
behaviour in the
environment: torque of the two
motors (LMotor.tau and
RMotor.tau) and distance of
obsta-
cles (Proximity[1].distance)

marXbotServices from d-model BaseModule—p-model Environment

move(lv:real,av:real) LMotor.das and RMotor.das LMotor.tau and RMotor.tau

stop() LMotor.das and RMotor.das LMotor.tau and RMotor.tau

obstacle Proximity[1].voltage Proximity[1].distance

named LMotor and RMotor, and twenty-four infrared sen-
sors Proximity. Table 1 indicates that the inputs das of the
motors (defining the desired angular speed for the wheels)
and the output voltage of one of the sensors are used to spec-
ify the operations and event of marXbotSoftware.

Together, the d-model (module) marXbotSoftware in
Fig. 1 and the p-modelBaseModule in Fig. 2 give an overview
of the robotic system. The visible behaviour specified by the
overall model affects and is affected by the environment. It
is characterised by the outputs tau of the motors, recording
the torque it induces, and the input to the sensor that records
the distance to an obstacle. The definition of how the vari-
ous quantities, events, and operations in Table 1 are related
is also recorded in the p-model (see Fig. 8).

With the p-model, we can automatically generate a sim-
ulation using the platform rendered in Fig. 3, and prove the
following property, in terms of quantities related to environ-
ment factors, not software components.

Once thedistancebetween the platform and an obstacle

is less than a value d, after t time units, the values of

tau output by the motors are 0.

In the next section, we describe our novel notation to
define and use RoboSim p-models.

4 RoboSim physical models

Here, we present the RoboSim block diagrams used to spec-
ify p-models, first via examples (Sect. 4.1), and then their
metamodel (Sect. 4.2), and the well-formedness rules that
characterise valid p-models (Sect. 4.3).

4.1 Overview

In this section, we provide an overview of RoboSim block
diagrams focusing on the five main aspects of the nota-
tion: the basic syntactic elements (Sect. 4.1.1); the different
types of blocks (Sect. 4.1.2); the mechanisms for structuring
models and extending the language (Sect. 4.1.3); the connec-

tion between physical and software models (Sect. 4.1.4); and
the facilities for annotating models (Sect. 4.1.5).

A RoboSim block diagram can be used to define a physical
model for a robotic platform (called a p-model as mentioned
above) to capture its physical elements, such as its links, that
is, its rigid bodies, joints, sensors, and actuators, and their
behaviours. A robotic platform in a module can be associ-
ated with a physical description via a connection between
the module and a block diagram. A property of that connec-
tion is a platform mapping, a separate block defining how the
variables, events, and operations of the robotic platform in
the module are realised by the sensors and actuators of the
p-model defined by the block diagram. A platform mapping
contains a mapping for each element (variable, event, and
operation) of the robotic platform in the d-model.

In our example, as said, the operations of the robotic plat-
form marXbotServices (see Fig. 1) are realised by actuators,
and its event obstacle is realised by a sensor (see Table 1).
Figure 2 presents a RoboSim block diagram for a p-model
called BaseModule that we use to describe a possible phys-
ical realisation of marXbotServices. The whole marXbot is
shown in Fig. 3 on the left, and its p-model, which uses Base-
Module, is available.12 On the right, Fig. 3 shows a rendering
for our p-model (just for the base) in Fig. 2.

4.1.1 Diagram elements: blocks and connections

Blocks

A block can represent a p-model as a whole, a link, a joint,
a sensor, an actuator, a body, or a part, itself defined by a
separate block diagram. Different icons identify the various
kinds of blocks in a RoboSim diagram: for a p-model,

for a link, for a joint, for a sensor, for an actuator,

for a body, and for a part. These blocks are described
later in this section.
Connections

Table 2 lists the forms of connections available in block dia-
grams and their representation. The containment relationship

12 http://robostar.cs.york.ac.uk/case_studies/marxbot/

123

http://robostar.cs.york.ac.uk/case_studies/marxbot/

A. Miyazawa et al.

Fig. 2 p-model of the base module of the marXbot [9]

Fig. 3 Real marXbot [9] and the rendering of BaseModule—using
SDF in CoppeliaSim

Table 2 Connections of the RoboSim block diagrams

Connection type Description

Containment Diamond solid line

Flexible connection Dashed arrow

Fixed connection Solid line

is represented by a solid line with a diamond on the side of the
block that represents the containing element. In Fig. 2, Base-
Module contains a link Core, and two parts named LTreel

and RTreel defined later by another p-model called Treel (see
Fig. 7).

A flexible connection between a link and a joint describes
the effect of the joint on the connected link, that is, along with
the specification of the joint, it describes how the connected
link can move relative to the joint’s containing link; a flexible
connection is represented by a dashed line. In Fig. 2, the joints
LHinge and RHinge contained in the link Core have flexible

connections to the links called Wheel in the parts LTreel and
RTreel.

A connection between two links via a solid line defines
a fixed connection. In Fig. 2, there are fixed connections
between the Core and the links Track in LTreel and RTreel.
So, these links are attached, but there is no joint between
them.

4.1.2 p-models

In RoboSim, a block diagram defines a single p-model con-
sisting of a p-model block, and all the blocks are connected
to it, directly or indirectly, via containment, flexible, or fixed
connections. The p-model block is connected to other blocks
defining the elements contained in the platform or part mod-
elled by the diagram. Figure 2, for instance, contains a single
p-model block BaseModule for the robotic platform in our
example.

In every diagram, the containment relationship defines a
tree, where the element represented by a parent block con-
tains (or is composed of) the elements represented by the
children blocks. The root is the unique p-model block.
Links and bodies

A link is a representation of a rigid component, that is, no
motion is possible between the bodies that define the link’s
geometry. Motion is only possible between different links
and is specified by joints. Links are used in the construction
of the model for a platform or part, and may contain joints,
sensors, actuators, and bodies. A link cannot contain other
links or parts.

A body captures the physical properties of a link, but can-
not contain joints, sensors, or actuators. (Bodies, sensors,

123

Diagrammatic physical robot models

and actuators cannot contain any other elements.) We can-
not define connections to or from bodies. Since a body is a
property of a link, it gives a partial view of a component. It is
not a component that can be considered in its own right (and
therefore, be connected to, or contain, others).
Joints

Two links can also be connected via joints. In this case, the
joint is defined to be contained in one of the links, and to have
a flexible connection to the other. In Fig. 2, Core contains
two joints LHinge and RHinge of a Revolute type defined in
the RoboSim library. These joints have flexible connections
to the Wheel links in LWheel and RWheel. Movement of a
joint induces movement on the link to which it is flexibly
connected.

The RoboSim library contains a collection of widely used
joint definitions. It is possible, however, to define a cus-
tomised joint, by defining its behaviour using differential
equations, like it is done for the library joints. The equations
relate inputs and outputs of the joint, possibly in terms of
local variables and constants. (Similarly, we can specify the
behaviour of sensors and actuators.)

To illustrate how the behaviour of a joint can be specified,
we present in Fig. 4 the library definition for Revolute. This
block characterises a joint definition, that is, a design, rather
than a specific realisation of that design. (This is indicated
in the block by the term joint definition at the top next to
the icon.) In the BaseModule p-model in Fig. 2, LHinge and
RHinge are two different realisations of that design as said
above.

The definition of Revolute indicates that it takes as input
the torque tau, and two vectors pV and pA of velocities and
accelerations of the link that contains the joint. These vec-
tors contain both angular and linear components. The joint
outputs three vectors F, fV and fA of forces and torques, veloc-
ities, and accelerations induced on the link flexibly connected
to the joint. The equations that relate these inputs and outputs
are based on a restructuring of the screw theory equations of
motion discussed in [46]. They use constants also declared in
the Revolute block and functions. Standard functions, such
as ScrewAxis, are defined in the RoboSim library, but func-
tions can also be defined as part of a model; we omit the
definitions of functions in the library here.

The values of the constants may or may not be defined.
For example, in Fig. 4, the value of the constant AXIS in the
block Revolute is not defined. In a realisation, it is possible
to define a value, as illustrated in Fig. 2 where AXIS is given
value (0,1,0) in both LHinge and RHinge.

Joints can contain sensors and actuators. In Fig. 2, the
joints LHinge and RHinge contain motors specified by the
actuator blocks LMotor and RMotor further discussed next.
Sensors and actuators

Sensors and actuators are components used to, respectively,
obtain information from the environment and produce an

effect on the environment; they are the primary means of
interaction between a robot and its environment. The physi-
cal behaviours of sensors and actuators can be defined using
differential equations. In Fig. 2, for example, we have Prox-

imity sensors, which are realisations of an infrared sensor
definition IR in the RoboSim library (omitted here). In the
definition of IR, we have a single equation. The input is the
distance between the sensor and an obstacle in the environ-
ment. That input can be provided, for example, by a model
of the environment (in a simulation). The output is a voltage
that reflects that input. The equation that relates voltage and
distance can be obtained, for example, by curve fitting based
on experiments with the sensor.

The motors LMotor and RMotor in Fig. 2 are realisations
of the actuator definition SpeedControlMotor. This block is
part of the library, as indicated in Fig. 4. In SpeedControl-

Motor, we specify the desired angular speed das as input,
and the torque T produced as output. The system of equa-
tions is an adaptation of the model in [49]. The variables
are the motor torque Tm, the back electromotive force Vemf,
the torque due to viscous damping Tf, the voltage V supplied
to the motor by the embedded controller, the current i, and
the angular position theta, speed av, and speed error e. The
constants include the viscous damping b of the motor, the
electromotive force constant Ke, the motor torque constant
Kt, the electric resistance R, the electric inductance L, and the
PID constants Kp, Ki and Kd.

The values of the constants are neither defined in Speed-

ControlMotor nor in its realisations LMotor and RMotor. So,
although used just to define the behaviour of the motors, these
are constants of BaseModule as a whole. Because they are
declared locally in a block, though, they can only be used in
that block. In general, constants whose values are not deter-
mined in the model are implicit parameters of that model.
When generating a simulation or carrying out a verification
by model checking, the values of these constants need to be
defined. They can be, for example, subject to design-space
exploration to define, via simulation perhaps, the values that
best fit the application.

If an actuator affects the robotic platform or part defined
by the p-model itself, or, similarly, if a sensor collects infor-
mation about elements of the p-model, it is necessary to
capture this relationship by labelling the containment rela-
tionship with an equality. In Fig. 2, the input tau for LHinge
is equated to the output T of the actuator LMotor, and simi-
larly for RHinge and RMotor. This captures the fact that the
output of the motor affects the behaviour of the joint.

4.1.3 Structuring mechanisms

Parts

A block diagram that defines a part, rather than a complete
platform, also contains a block that specifies the p-model

123

A. Miyazawa et al.

Fig. 4 Library elements

Fig. 5 Annotation and annotation templates

for the part. The possibility to define p-models for parts
allows us to define for reuse particular combinations of links,
joints, sensors, actuators, and bodies, possibly via the use of
parts defined themselves by further diagrams. Via a library
of p-models for parts, as well as of pre-defined links, joints,
sensors, actuators, and bodies, we can extend the RoboSim
notation to suit the needs of particular areas of application.

A p-model for the part in Fig. 6 (used in Fig. 2), containing
a track and three wheels, is shown in Fig. 7. This p-model
Treel contains links Track and Wheel, each with a body.

A p-model block (for a part or platform) can also declare
constants for use in the definition of attributes of other blocks
in the diagram. In Treel, there are constants for the HEIGHT,
WIDTH, and DEPTH of the Track, also used to define the
length and radius of the Wheel body, which is a Cylinder.
The values of such constants can be fixed in a p-model, but,
like in our example, can be left open like for any other con-
stant defined in the blocks.

If a connection is to or from a part, whose links and joints
are therefore defined in a separate block diagram, the link
or joint inside the p-model for the part that is really con-
nected must be identified. This is done by annotating the
part-side of the connection with the name of the link or joint
in the part. For example, the connections between the revo-

Fig. 6 Rendering of top view of Treel produced by CoppeliaSim

lute joints LHinge and RHinge in Fig. 2 and the parts LTreel
and RTreel are labelled with the connecting link Wheel of the
part (defined in the diagram for Treel in Fig. 7). Connections
between two parts are labelled on both sides.
Frames of reference and poses

A p-model block has position (0,0,0) and orientation (0,0,0)

as its (implicit) frame of reference, used to define the pose of
the elements in the p-model by labelling their containment
connections.

A pose determines a position via x , y , and z coordinates,
and an orientation, that is, roll, pitch, and yaw, all using

123

Diagrammatic physical robot models

Fig. 7 p-model of a treel (track + wheel)

the SI units. For example, in Fig. 7, the Track of the Treel

is positioned so that it is displaced on the z-axis by half
of its overall HEIGHT, but has the same orientation of the
Treel. The third Wheel is displaced by half of its depth and
turned on its side (see Fig. 6). Although we adopt SDF and
URDF conventions, such as the use of roll-pitch-yaw Euler
angles, extending our tools and techniques to support mod-
elling using alternative conventions is relatively simple (with
only minimal and localised impact on the metamodel and
model transformation techniques presented in the sequel).
Nevertheless, the use of a different representation may create
difficulties in the interpretation of the analysis and simulation
of the models.

Going down the containment hierarchy, the position and
orientation of the Track block implicitly determine a frame
of reference for the blocks that are contained in it. The
position and orientation of its bodies (Top, FrontWheel,
BackWheel, and Bottom) are defined with respect to that
implicit frame of reference. In general, throughout the hier-
archy of the containment relationship, the pose of a child
block is defined in relation to the frame of the parent block
as a label of the containment connection. (If the child block
has the same pose, the label can be omitted for simplicity.)

When Treel is used to create the parts LTreel and RTreel in
Fig. 2, their poses are specified in the containment relation-
ship. The orientation of RTreel is unchanged, but LTreel is
rotated PI radians around the x-axis. So, the Wheel is always
facing outwards. The parts are also translated up (both 2.5cm
on the z-axis) and sideways (-3 cm and 3 cm on the y-axis).
The overall effect is the composition of the two poses, that
is, the pose of Wheel with respect to Treel, and the pose
of LTreel and RTreel with respect to BaseModule, with the
innermost pose applied first (see Fig. 3).
Multiplicities

If a p-model contains several elements of the same kind,
for instance, several sensors with the same properties, we

Fig. 8 Property of the connection between SimCMovement and the
block diagram for marXbot

can use indexation when defining containment. For example,
the BaseModule in Fig. 2 contains 24 IR sensors distributed
around its Core. The containment relationship between these
blocks, therefore, has an index i, whose values vary between
0 and 23 as defined in the declaration of i. As shown, the
index can be used to define the position and orientation

of each element. It can also be used in the definition of the
equations, if any, of the contained block.
Library and fragments

As we have said before, the RoboSim library includes defini-
tions for joints, sensors, actuators, and p-models (for parts).
It is also possible to include in the library model fragments,
composed of several blocks, but not defining a (well-formed)
p-model. When a fragment is used in a p-model, all its blocks
and connections are directly included. This is in contrast with
the use of a p-model, which, we recall, is via a part block that
declares a name for a part defined by that p-model.

For example, Fig. 4 shows a fragment ActuatedJoint,
which describes an electrically actuated joint formed by a
revolute joint and a motor. This fragment does not define a
physical model, since a joint does not have a body. It is also
not a valid p-model, where joints cannot occur disconnected.
The fragment, however, is useful to define, for example, the
p-model in Fig. 2.

4.1.4 Platformmappings

As mentioned, the association between the d-model and the
p-model of a robotic platform must define how the variables,
events, and operations of the d-model are realised by ele-
ments of the p-model. In Fig. 8, references to the RoboSim
module (d-model) in Fig. 1 and to the p-model in Fig. 2 are
connected via a platform mapping block, where three inner
mapping blocks define the event and operations of the d-
model.

123

A. Miyazawa et al.

Fig. 9 Main components of the metamodel for block diagrams for a RoboSim p-model

Mappings for input events have two components. The first
is a predicate that defines when the event occurs in terms of
sensor outputs. In our example, obstacle is an input event
defined by a predicate that determines that an obstacle is
present when the voltage output by the Proximity sensor
of index 1 is greater than or equal to 3.0. If the input event
communicates values to the software, these values are defined
in the second component of the mapping. This is an action
that assigns, to the inputs, values determined by an expression
involving the outputs of the sensors.

Whether an output event occurs or not is determined by the
software. If it does, the event mapping includes an action that
assigns, to inputs of the actuators, values that may depend on
communicated outputs. So, a mapping for an output event
defines its effect on the actuators.

The operation mappings are defined by actions or dif-
ferential equations. An action may assign directly to inputs
of actuators. Assigning expressions typically depend on the
parameters of the operation, if any. In our example, stop() is
defined by assigning 0 to both LMotor.das and RMotor.das.
The move(lv,av) mapping is defined by four equations that
relate the inputs LMotor.das and RMotor.das of the motors,
and the parameters lv and av of move(lv,av). For concise-
ness, the equations can use local variables and constants. In
our example, these are dsl, dsr, and axisLength.

Like output events and operations, variables of a d-model
are abstractions for inputs to actuators. So, a mapping block
for a variable assigns, to an input of an actuator of the p-
model, an expression involving that variable and, possibly,
configuration variables and constants of the actuator.

4.1.5 Annotations

Joints, sensors, and actuators can be annotated with extra
information (typically, to inform their translation to SDF
or another domain-specific language). In Fig. 5, we give an
example of an annotation for Revolute, as indicated by a
dashed line connecting the Revolute block to an annotation

block. This joint is that in Fig. 4, partly elided for conciseness.
Annotations play no role in the mathematical (CyPhyCircus)
semantics of the p-model. They are, however, useful to
improve the automation of the simulation generation.

As another example, we observe that the equation defin-
ing the sensor IR does not identify a particular sensor. The
equation is a general characterisation of the expected sen-
sor behaviour, which can be realised by a sonar, a lidar, or
a camera, for example. Since SDF does not cater for equa-
tional definitions, an annotation is useful to indicate the kind
of sensor that should be used in an SDF document. Later in
Sect. 5, we describe our approach to translation to SDF.

Annotations instantiate a template. In Fig. 5, the annota-
tion for Revolute is an instance of the template also called
Revolute (although these names do not need to match) in
Fig. 5. An annotation template defines the parameters whose
values can be specified in an annotation that instantiates that
template. For example, a Revolute annotation has a single
parameter axis, which is an instance of another templateAxis.
Dashed arrows indicate that the template at the source uses
the template at the target. A template can optionally provide
default values for the parameters, which can be overridden
in actual annotations.

In an annotation, we can use the constants and variables
of the annotated element. For example, in the annotation for
Revolute in Fig. 5, the value of the xyz parameter is given

123

Diagrammatic physical robot models

by the constant AXIS of Revolute. The axis parameter in the
annotation records information about the axis in the param-
eters xyz, initial position, dynamics, and limit as defined in
the template Axis in Fig. 5. For example, it states that the axis
has initial position PI, but the values of limit and dynamic

are the default given in the template. So, limit and dynamic

are omitted in the instantiation. The constant PI is defined in
the library.

This annotation, and others in the RoboSim library, reflect
information that is required in an SDF document to specify
a revolute joint. That library is used in our translation from
RoboSim to SDF (see Sect. 5). The possibility of defining
templates, however, means that annotations are not funda-
mentally tied to SDF. It is possible, for example, to create
and use another library of annotation templates tailored to
URDF, or to the needs of a particular simulator.

Next, we describe the metamodel of p-models.

4.2 Metamodel

Figure 9 gives an overview of the metamodel of a RoboSim
block diagram. Further details are provided in Figs. 10-14.
The main element of a p-model is an object of the class
PModel. It defines any number of parts, links, and constants,
and the latter listed as an attribute in the PModel block.

A Link describes a physical realisation, as opposed to a
definition, of a link. It contains information specific to its use
in the artefact represented by the PModel. For example, a
pose is an attribute of Link. In contrast, a link definition can
be realised in several diagrams or several times in a diagram,
with different poses. Each realisation is represented by a dif-
ferent Link, with its own fixed connections, bodies, sensors,
actuators, and joints.

Figure 10 gives more details. Link is a subclass of the
abstract class Realisation shown on the left. (The inheri-
tance relationship between Link and Realisation is omitted
in Fig. 10.) Other subclasses of Realisation, not shown in
Fig. 10, include Joint, Sensor, Actuator, Part, and Body.

Realisation has an (inherited) attribute name, optional
attributes pose and index, and two abstract subclasses. A
Realisation can be either a ReferenceRealisation, described
via a reference to a Definition via the attribute def, or a Local-
Realisation, including thedefinition itself, in an attribute also
called def, but that composes the LocalRealisation. A Def-

inition is an element with a name. Realisation and its two
abstract subclasses ReferenceRealisation and LocalRealisa-

tion define a mechanism by which we can specify a physical
element in a p-model either via a reference to an independent
(library)Definition (that is, an object of class ReferenceReal-
isation) or via a local Definition (that is, a LocalRealisation).

Link inherits from Realisation the attributes name, pose,
and index. The Link subclasses named ReferenceLink and
LocalLink are as expected subclasses of ReferenceRealisa-

tion and LocalRealisation (but this is not shown in Fig. 10.)
For a ReferenceLink and a LocalLink, the definition is
a LinkDefinition (omitted in Fig. 10), which encapsulates
inertial information. This is enforced by well-formedness
conditions in Sect. 4.3. LinkDefinition is a subclass of Defi-
nition.

Figure 9 also shows that a Link can contain fixed con-
nections of class FixedConnection. Each connection is to
another link. A well-formedness condition ensures that a link
is not connected to itself. If the FixedConnection is contained
in a Part, rather than a Link, the extra attribute sourceLink

identifies the link in the Part being connected. The connec-
tion can also be to a Part identified by the attribute part,
rather than directly to a link. In this case, link identifies a link
in the Part model.

A Part identifies a p-model, that is, an object of class
PModel itself. It includes instantiations of any constants of
the referenced PModel. For example, in Fig. 2, the Part that
introduces LTreel instantiates the constants HEIGHT, DEPTH,
and WIDTH of the p-model Treel in Fig. 7.

The metamodel for Joint is similar to that for Link in
Fig. 10; a Joint is a realisation of a JoinDefinition. A Joint can
contain a flexible connection, of class FlexibleConnection.
The attributes of FlexibleConnection include a link. Even if
the FlexibleConnection is to a part, the connection identifies
a link in the model for the part. The connection is associated
with the joint that contains it. A FlexibleConnection can also
be contained in a Part. In this case, the attribute joint of the
connection identifies a joint in that part.

A Link and a Joint can contain actuators and sensors.
Like Link and Joint, the classes Actuator, Sensor, and
Body represent realisations of an ActuatorDefinition, a Sen-
sorDefinition, or a BodyDefinition. The metamodels for
Actuator and Sensor are similar to that for Link in Fig. 10.

The metamodel of Body is also similar to the metamodel
of Link, but the definition of a body (BodyDef) includes
extra properties specific to rigid bodies, such as friction,
bounce, and geometry. These properties are not included in
the metamodel for joints, sensors, and actuators because they
are specified explicitly via a set of equations, which can be
directly enriched to model aspects such as damping and fric-
tion.

For example, the equations of the Revolute joint in Fig. 4
can be extended to account for damping and friction. Damp-
ing can be modelled as in the SpeedControlMotor via a
damping constant b, which is used to define a torque taub via
the equation taub = -b*v. Friction can be included by con-
sidering friction models of shaft joints that incorporate the
joint axial force (fFN), the joint radius (fR), and the friction
coefficient (mu), which are assumed to be constants and used
to estimate the opposing frictional torque taufd as follows.

taufd = mu*fFn*fR*(sgn(v)) + b*v

123

A. Miyazawa et al.

Fig. 10 Metamodel for Link blocks

Fig. 11 Metamodel for Body blocks

Here, sgn is a function that calculates the sign of its input.
Finally, the equation that defines the total torque tau can be
modified as follows.

tau==transpose(F)*A-taufd

This flexibility allows the development of libraries of defini-
tions targeting a variety of approaches, such as those in [46]
and [25, 26].

On the other hand, SensorDef, ActuatorDef, and Joint-

Def, besides inheriting from Definition, inherits also from
DynamicDevice as shown in Fig. 12. A DynamicDevice can
have its behaviour specified by equations that relate inputs

and outputs potentially using local variables (locals) and
constants (recall Fig. 4).

VariableList represents the declaration of one or more
variables, which may have a modifier to indicate that they
are constants. This class is part of the d-model meta-
model [20]. Equally, the Expression language is similar to
that of RoboSim d-models, but includes derivatives, integrals,
and the possibility to define SI base and derived units.

The metamodel for Annotations is in Fig. 13. An Annota-

tion always refers to a template, providing instantiations for
its parameters. AnAnnotationTemplate definesparameters

123

Diagrammatic physical robot models

Fig. 12 Metamodel for DynamicDevice

directly or via extensions of other AnnotationTemplates.
A parameter is an object of the class AnnotationParame-

ter (omitted in Fig. 13). Examples of parameters are given in
Fig. 5 on the right; for instance, axis is a parameter of Revo-
lute. Its declaration gives its name and type. In some cases,
we give a default value; see, for instance, xyz in Axis.

An AnnotationInstantiation can be either an Annota-

tionValueInstantiation or an AnnotationTemplateInstanti-

ation. The former simply identifies a parameter and defines
a value for it. An AnnotationTemplateInstantiation defines
a collection of instantiations for a parameter whose type is
a template: this is a TemplateParameter. For example, in
Fig. 5, axis is a TemplateParameter of Revolute. Its instan-
tiation on the left of Fig. 5 defines instantiations for xyz and
initial position.

An Annotation can be optionally included in any Anno-

tatedElement. This is an abstract class whose concrete
subclasses include definitions and references to sensors actu-
ators and joints.

The metamodel for a PlatformMapping is shown in
Fig. 14. It relates a dmodel (of class RCModule of the d-
model metamodel) to a pmodel, and might declare variables
for common use of the Mappings. A PlatformMapping

can have collections of variableMappings, inputEventMap-

pings, outputEventMappings, and operationMappings.
They include instances of the appropriate subclass of the
abstract class Mapping.

In any Mapping, we can declare local variables, and use
equations or actions to define a variable, event, or oper-
ation. The concrete subclasses of Mapping identify one
such element; for instance, an OperationMapping identi-
fies the operation that it defines. The class OperationSig

is from the d-model metamodel. In addition, an event may
have a parameter representing the values it communicates.
This is taken into account in InputEventMapping and Out-

putEventMapping. Finally, a predicate indicates when and
input event happens. Event, EventParameter, and State-

ment are from the d-model metamodel.
Full details of the metamodel, including the classes omit-

ted here, are in [51].

4.3 Well-formedness conditions

Not every object of a metamodel class represents a valid
component of a RoboSim block diagram. For example, a p-
model with a joint that is (flexibly) connected to a link that
is not contained in that p-model does not represent a valid
physical artefact. We have specified 39 well-formedness con-
ditions that rule out such p-models. They identify the valid
p-models that can be translated to SDF and given a mathemat-
ical description. Many conditions are expected of a standard
block diagram notation, and include well-typedness and
obvious scope rules. Our additional 39 conditions are spe-
cific to RoboSim or related to constructs specific to RoboSim.
We note, however, that issues related to physical restrictions,
such as overlapping bodies and pose compatibility, are left
to be checked by simulators and physics engines.

We describe and justify all our conditions below. The com-
plete set is in [51].
p-model

Only one condition applies to a p-model.

PM1 A PModel has to contain at least one part or link, that

is, at least one of the attributes parts or links has to be

non-empty.

Without links or parts, there can be no physical presence,
or even an abstraction of a physical presence. As already
explained, joints have to be contained in a link, and sensors
and actuators have to be contained in a link or joint. So, parts
and links are the key elements to be included.
Links and bodies

As mentioned previously, we need well-formedness con-
ditions to ensure that the right type of Definition is asso-
ciated with each type of Realisation. For links, these well-
formedness conditions are below.

L1 The value of def of a LinkReference must be of type

LinkDef.
L2 The value of def of a LocalLink must be of type LinkDef.

In addition,Definitions specified for reuse must have a name,
but those included in a p-model must not have a name, since
the LocalRealisation that includes the Definition already has
a name. For a link, the well-formedness condition is as fol-
lows.

L3 A LinkDef defined directly in a package must have a

name, while a LinkDef defined as part of a LocalLink

must not have a name.

Similar restrictions apply to all forms of Definition, that is,
JointDef, SensorDef, ActuatorDef, and BodyDef. We omit

123

A. Miyazawa et al.

Fig. 13 Metamodel for Annotation

Fig. 14 Metamodel for PlatformMapping

123

Diagrammatic physical robot models

these well-formedness conditions here, but they are all listed
in [51].

Finally, the inertial for a link can be recorded directly in
its definition or in its bodies. It should not be provided in
both, though.

L8 If the inertialattribute is defined in a LinkDef l, then none

of the bodies for a realisation of l, can define inertial as

well.

This ensures that no conflicting or duplicated inertial infor-
mation is recorded.
Joints

We have the following extra condition for joints.

JSA1 The relation in a Sensor or in an Actuator is either an

equality or a conjunction of equalities.

The equalities define the inputs of the sensor or how the
outputs of the actuator are used.
Fixed and flexible connections

We have similar well-formedness conditions for fixed (Fix1–
3) and flexible (Flex1–3) connections. Collectively, they
ensure that connections are between links and joints of the
same p-model. These may be directly included in the p-
model, or links and joints of parts contained in the p-model.
We list here the conditions for FixedConnections.

Fix1 A fixed connection of a Link l is either to a link (dif-

ferent than l) contained in the p-model containing l

or in the p-model that defines a Part contained in the

p-model containing l.

Fix2 A fixed connection of a Part p must have a sourceLink

contained in the p-model that defines p.

Fix3 A fixed connection of a Part p is either to a link con-

tained in the p-model containing p or in the p-model

that defines a Part contained in the p-model containing

p.

The conditions for FlexibleConnection are in [51].
Parts

A part is an instantiation of a p-model in the context of
another. In the instantiation, all constants declared in the
part’s p-model must be given a value (P1), if they do not
have one already (P2).

P1 A part must instantiate all uninitialised constants of the

p-model that defines it.
P2 A part must not instantiate initialised constants of the

p-model that defines it.

Of course, we can define values using constants of the p-
model that uses the parts.

Annotations

For annotations, the well-formedness conditions (omitted
here) just ensure that AnnotationTemplates define a hier-
archical model using the extensions mechanism, and that
the Annotations are well-typed instances of these templates.
Platform mappings

A platform mapping is defined for a p-model for a complete
robotic platform, not just a part. There are three ways in which
elements of a p-model can be connected: via containment,
or via fixed or flexible connections. Containments and fixed
connections are optional, but, for a joint of a complete p-
model, the flexible connection is not optional. So, we have
the following restriction.

PMap1 In the pmodel, every Joint contained in a link of that

PModel has a flexible connection.

Unlike a part, a robotic platform is a complete artefact. So, in
its p-model every joint should be used to connect two links. In
contrast, in a p-model for a part, there is no such restriction.

A similar well-formedness condition considers the joints
in the parts of the p-model. The next two conditions ensure
that the d-model and p-model are properly matched by the
mappings.

PMap3 There is a Mapping for every event and operation of

the dmodel.

This ensures that the abstractions of the d-model are realised
by the p-model. In the case of variables, the presence of a
mapping is not enforced. Variables without such a mapping
are part of a shared memory available to controllers, and are
not realised by the p-model.

PMap4 Every Mapping is for a variable, event, or operation

of the dmodel.

So, the d-model establishes a scope for the platform mapping.
Moreover, the presence or otherwise of a type definition for
an event determines whether a communicated value can be
defined.

PMap5 If, and only if, the event of an InputEventMapping

or OutputEventMapping is typed in the dmodel,

that InputEventMapping or OutputEventMapping

declares a parameter, which must be of that same

type.

In this way, its equations or actions can use or define the
value communicated via the event.

Next, we ensure unicity of definitions.

123

A. Miyazawa et al.

PMap6 In aMapping, there are actions or equations, at least

one, but not both.

These are mutually exclusive forms of specifying how the
d-model components are realised.

Additional conditions ensure that the Mappings estab-
lish the expected connections between the d-model and the
p-model. For instance, the condition for an InputEventMap-

ping is as follows.

PMap7 The equations or actions in an InputEventMapping

can read from the outputs of sensors, local variables

and constants, and it can write to local variables, and,

if the event is typed, its parameter.

This reflects the fact that an input event is an abstract repre-
sentation of a sensor.

Similar conditions restrict the read and write accesses
of the other Mappings, taking into account that output
events, operations, and variables are abstractions for actu-
ators (instead of sensors).

PMap11 The actions cannot call dmodel operations.

This reflects the fact that operations of the d-model should, in
as far as it is possible, correspond to independent abstractions
for facilities to control the robot available in the platform. If
two operations are called in the same cycle of simulation, for
example, their behaviours should not conflict. For example,
we should not call operations to move and stop the robot in
the same cycle of simulation.

The well-formedness conditions have a role in eliminating
invalid models from consideration when generating simu-
lations and mathematical models. They also have a role in
providing modelling guidance. For example, we can han-
dle (that is, generate an SDF document and CyPhyCircus for) a
p-model that does not satisfy PMap1. This well-formedness
condition helps the identification of mistakes when the p-
model is intended to define a complete artefact, not a part.
Another example is L4, which indicates how to capture iner-
tial information. Use of XML-based notations like SDF, for
instance, does not provide this sort of guidance. Next, we
compare and relate RoboSim and SDF.

5 Mapping to SDF

In this section, we first give a brief overview of SDF in
Sect. 5.1, and then contrast the features of RoboSim block
diagrams and SDF in Sect. 5.2. Finally, in Sect. 5.3, we
present our model transformation technique to translate
(well-formed) RoboSim block diagrams to SDF documents.

5.1 SDF

SDF is an XML format to describe elements such as robotic
platforms, physical objects, and environments for robotic
simulators. SDF embeds domain knowledge via XML tags
used to describe elements and their attributes; the root ele-
ment is described by the tag <sdf>. Figure 15 shows an
excerpt of the SDF specification for the robotic platform on
the right in Fig. 3. The complete document has 1322 lines
and is available.13

Each element may have zero or more optional or manda-
tory child attributes and elements. Table 3 exemplifies some
of the elements of the SDF format that can be used for spec-
ifying a robotic platform. The <sdf> element has a child
attribute, calledversion, which describes the version num-
ber of the SDF format used. The <sdf> element can also
have a child element tagged <model>, which specifies a
physical object or robot. A <model> tag requires the def-
inition of a name. As an example, the name of the model
element in Fig. 15 is “BaseModule".

A <model> may have zero or more <link> elements,
with a mandatory name attribute. A <link> may have
several child elements such as <pose>, <collision>,
<visual>, and <sensor>, for instance. We describe the
SDF tags as needed.

SDF elements may have a local coordinate frame. For
those, we can describe their pose (that is, position and ori-
entation) by defining the translation and rotation of their
local frame relative to a reference frame. This can be the
frame of any other element. We write <pose>x y z r p

w</pose> for a pose definition where x, y, and z specify
the translation of the position (in metres) between the local
and reference frames, and r, p, and w (roll, pitch, and yaw)
are Euler angles (in radians) that define the rotation between
those frames. By default, the pose of an element is defined
with respect to the frame of its parent. As an exception, the
<pose> of a <joint> is, by default, with respect to the
frame of its <child> link.

In Fig. 15, the <pose> of 1-Wheel defines that its z
coordinate is (approximately) 0.06 m above the z coordinate
of the <pose> of BaseModule. The model <pose>

definition puts it 0.025 m up with respect to the frame of the
world in which BaseModule is used. (This refers to the
centre of the wheel, and so ensures that the robot is on the
floor, not into it.)

A <link> can have zero or more <collision> ele-
ments, so that it can compose individual shapes with different
physical properties to define more complex shapes. The
<collision> element of a <link> has an obligatory
name attribute. For example, 1--Wheel is a collision
defined in Fig. 15 to describe a cylinder for 1-Wheel.

13 http://robostar.cs.york.ac.uk/case_studies/marxbot/

123

http://robostar.cs.york.ac.uk/case_studies/marxbot/

Diagrammatic physical robot models

Table 3 Some of the elements and attributes of the SDF format that can be used for specifying a robotic platform

Element Child attribute Child element

<sdf> version <model>

<model> name <pose>, <link>, <joint>

<link> name <pose>, <collision>, <visual>, <sensor>

<collision> name <pose>, <geometry>, <laser retro>, <surface>

<geometry> <box>, <cylinder>, <sphere>, <mesh>

<sensor> name, type <pose>, <camera>, <gps>, <ray>, <sonar>

<joint> name, type <pose>, <parent>, <child>, <axis>, <axis2>, <sensor>

A<collision> has one obligatory<geometry> ele-
ment that describes the shape of the collision object. A
<geometry>may have optional elements indicated by tags
such as <box>, <cylinder>, <sphere>, and <mesh>.
In Fig. 15, the <geometry> element of 1--Wheel has a
<cylinder> whose radius is approximately 0.025 m. A
<collision>may also have an element<laser retro>

for describing the intensity value returned by a laser sen-
sor, and an element <surface> for specifying the physical
properties of the shape surface, such as friction.

Finally, a <link> can have a <sensor>, which has
mandatory name and type attributes. SDF supports several
types of sensors. In addition, configuration data of a specific
type of sensor is recorded in specific tags such as<camera>,
<gps>, <ray>, and <sonar> inside the <sensor> tags.
A <sensor> can have its own <pose>.

A <model> may contain <joint> elements. SDF
supports some types of <joint>, such as revolute,
prismatic, ball, screw, universal, and fixed. In
Fig. 15,6-Hinge is a revolute joint. A<joint> names
a <parent> and a <child> <link>. The <joint> is
fixed to the parent <link>, and defines the movement of
thechild<link>. Besides a<pose> and a<sensor>, a
<joint>may have elements based on its type. For exam-
ple, if a type has one or more degrees of freedom, such as
the prismatic or revolute2, we can use <axis> and
<axis2> to specify the unit vector along the axis of rotation
and translation.

Next, we compare RoboSim and SDF.

5.2 RoboSim versus SDF

In this section, we in addition indicate a number of ways
in which the design of RoboSim improves on that of SDF
so that RoboSim p-models are much more concise, readable,
reusable, and useful artefacts than SDF documents. The main
distinctive features of RoboSim p-models are its diagram-
matic nature and the possibility of defining block behaviours.
RoboSim is not a front-end for SDF, although it has an asso-
ciated technique to generate SDF documents automatically

to facilitate simulation (see Sect. 5.3). Notably, from a p-
model, we can generate automatically a mathematical model
that uses the equations and other information in the diagram
to enable reasoning (see Sect. 6).

In SDF, containment is captured implicitly: All the ele-
ments of a model are contained in the component it implicitly
defines. If a nested model is defined, the effect is including
its elements in the complete model. There is no require-
ment for the nested model to represent a self-contained
component. It may, for instance, include a disparate set of
elements, such as, a camera, a joint, and a nose. An attribute
of a link, namely must be base link, can be used to
identify a robotic platform, but there is no requirement for
the existence of a link with such attribute. Moreover, this
attribute does not capture containment, which is a hierar-
chical relationship. In contrast, RoboSim adds structure to
models to improve readability and encourage reuse via novel
mechanisms: parts, indexing, parametrisation, referencing,
fragments, and library definitions.

SDF elements can define and name a frame of reference.
The pose of an element can then be defined in terms of any
such frame. In RoboSim, implicit definitions of frames of
reference based on the containment relationship minimise
the amount of definitions needed, and eases understanding.
With the pose as an attribute of the containment relationship,
associated with a realisation, rather than a definition, of an
element, reuse of definitions in libraries is easier.

Links cannot be connected directly in SDF, but can be
connected by fixed joints. RoboSim removes the need for
this artifice; three forms of connections (containment, flex-
ible, and fixed) allow clearer and explicit modelling of the
relationships between elements of the model.

SDF has support to specify links with properties of
microphones, speakers, and batteries. There is no notion of
actuator. In contrast, in RoboSim, a library of blocks defines
equations for sensors and actuators with such properties [51].
Moreover, new sensors and actuators can be defined by spec-
ifying their behaviour equationally.

To summarise, RoboSim is not a graphical front-end for
an XML notation, but SDF and other similar notations are

123

A. Miyazawa et al.

Fig. 15 Sketch of SDF document for BaseModule in Fig. 2 that is
automatically generated by RoboTool

very useful. Next, we describe how we support verification
by simulation via automatic generation of SDF documents.

5.3 Automatic translation from RoboSim to SDF

Translating a RoboSim p-model to SDF is time-consuming
and error-prone if not automated, especially for complex
models. In this section, we describe rules that map block
types in RoboSim into SDF elements and their attributes. In
total, we have 42 model transformation rules given in [51],
where we also present a metamodel for SDF. The implemen-
tation of these rules (described in Sect. 8) allows automatic
translation from RoboSim p-models to SDF documents. This
significantly facilitates the automation of testing via simula-
tions by reducing the need for manual intervention for setting
up simulations.

The translation addresses several challenges. In general,
all the structuring mechanisms used in the p-model are
captured by explicit descriptions of corresponding SDF ele-
ments. There is no notion of parts in SDF, so the translation of
a p-model that uses instances of parts uses the translation of
the p-models for those parts. For indexed elements, the SDF
definitions are replicated, since again indexation is not part of
SDF. Equations are disregarded in the translation to SDF, but
annotation templates and their instantiations are considered
instead to improve automation. The poses of all elements are
calculated and given explicitly with respect to one frame of
reference. These include the poses for elements in parts and
for indexed elements. Similarly, unique SDF names for all
elements are identified.

The overall translation is defined by Rule 1. Each rule
defines a function, by declaring its name, the name and type
of its arguments, its return type, and a body that specifies an
SDF term of the return type. In Rule 1, the function defined
is [[]]PMODEL. It takes as argument a p-model pmodel: an
element of the RoboSim metamodel class PModel. Another
argument, cvals, is a function mapping uninitialised constants
used in pmodel to their values, given as input to a translation.
The final argument, ppm, defines a value for the pose (as
a tuple of six real numbers) of the p-model in a scenario
of interest. The example in Fig. 15 is the result of apply-
ing Rule 1 to the p-model in Fig. 2 giving as parameter the
pose (0.0,0.0,0.025,0.0,0.0,0.0). In this case, all constants are
given a value in the p-model.

The result of [[]]PMODEL is an SDF document describing
a robotic platform, which represents an element of the SDF
metamodel class SDFRoot. A (simple) SDF metamodel is
omitted here and can be found in [51]. The body of a rule
describes a value of the return type using a simple metano-
tation to indicate conditionals and calls to functions defined
by other rules. The terms of the SDF document generated by
the rule, that is, resulting from an application of its function,

123

Diagrammatic physical robot models

Rule 1. p-model

[[pmodel : PModel]]
cvals,ppm

PMODEL :

(Variable �→ Val) × PoseVal �→ SDFRoot =

<?xml version="1.0"> (1)

<sdf version="1.6"> (2)

<model name=id(pmodel)> (3)

<self_collide>true</self_collide> (4)

<pose>ppm</pose> (5)

[[pmodel.links]]
cvals,lps,id(pmodel)

LINKS (6)

[[joints]]
cvals,lps,id(pmodel),id(pmodel)

JOINTS (7)

[[fixed connections]]
cvals,id(pmodel),id(pmodel)

FIXEDS (8)

[[pmodel.parts]]
cvals,lps,id(pmodel)

PARTS (9)

</model> (10)

</sdf> (11)

where

joints = projectJoints(pmodel.links)

fixed connections = projectFixed(pmodel.links)

origin = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0)

lps = normLP(pmodel.links, pmodel.parts,

origin, cvals, id(pmodel))

are distinguished by the use of teletype font. Other terms,
written in grey, are part of the metanotation.

For clarity, in the body of the rules, we describe the
SDF elements using the XML notation adopted in SDF doc-
uments. This strengthens their correspondence with their
implementations (see Sect. 8), which is via model-to-text
transformations. The SDF metamodel, however, used to type
the rules, has supported the definition and validation of a
compositional set of rules.

In the body of Rule 1, lines (1) and (2) define the first
two lines of the SDF documents that we generate from any
p-model. They specify the XML and SDF versions used. We
use version 1.6 for SDF because it is the latest supported
by CoppeliaSim. The approach to translation we describe
is, however, of general value and useful even in developing
translations for URDF, for instance.

In line (3), the grey font used to write id(pmodel) indicates
that this is a term of the metanotation, and so it should be
replaced by the unique name of the model. This name is the
result of applying the function id to pmodel. The function id

can be applied to any named element of RoboSim to obtain
its unique identifier.

Line (4) defines that the value of the element <self
collide> is set to true. By default, SDF assigns a false
value to this element. If set to true, all elements in the model
can collide with one another except those that are connected
by a joint. This is the right behaviour for a physical object.

Line (5) defines a<pose> for the model using the param-
eter ppm. We recall that, in the RoboSim models, the implicit

frame of reference of the p-model is given by position
(0.0,0.0,0.0) and orientation (0.0,0.0,0.0). Using <pose>, we
position the p-model as required, but keep the implicit frame
of reference for the SDF elements.

In Fig. 15, the link 1-Wheel corresponds to the Wheel

link in the p-model for LTreel (see Figs. 2 and 7). Its pose
results from the composition of the pose of LTreel in Base-

Module with that of Wheel in the p-model Treel.
In lines (6) to (9), functions defined in other rules,

explained below, are used to determine the translation of the
links, joints, fixed connections, and parts of pmodel. The
joints and fixed connections are those that are contained in
the links of pmodel, identified by the simple projection func-
tions projectJoints and projectFixed (omitted here). Flexible
connections are translated as part of the translation of the
joints and parts that contain them. Fixed connections, how-
ever, are encoded in SDF using (extra fixed) joints, and so
are translated separately by a function [[]]FIXEDS .

The functions applied in lines (6), (7), and (9) have,
besides cvals, an extra argument lps defined in the where

clause of Rule 1. This is a mapping that associates the
identifier of each link in pmodel, that is, each link directly
contained in pmodel or contained in a part of pmodel, with
its pose, defined with respect to the frame of pmodel. For our
example, lps defines a pose for Core, and for the Wheel and
Track links in LTreel and RTreel.

With lps, we can translate the joints and parts, as well as
the links, independently, as defined in Rule 1. The translation
of links (line (6)) considers each link directly included in the
pmodel. Their poses could be calculated independently, but,
for uniformity, they are included in lps. For our example, lps

gives pose (0.0 0.0 0.057 0.0 0.0 0.0) for Core as already
indicated in the p-model.

Similarly, in the translation of joints, as defined in line (7),
we consider each joint of the p-model. In this case, however,
the pose of each joint needs to be defined in the SDF docu-
ment with respect to the frame of the link to which the joint is
flexibly connected. So, in our example, to translate the joint
LHinge, we need the pose of the link Wheel inside LTreel. In
line (7), this information is passed on to [[]]JOINTS in lps.
For our example, lps includes the pose (0.0 0.06 0.025 -1.57
-0.0 0.0) for the Wheel inside LTreel. This corresponds to
the result of the composition of the poses of the Wheel with
respect to Treel and of LTreel with respect to BaseModule,
as previously explained.

The translation of a part (line (9)) is in many ways similar
to that of a p-model, and so lps is also required as an argu-
ment of [[]]PARTS . Translating a fixed connection (line (8))
does not require the argument lps because the poses of links
connected by a joint that does not move do not matter.

Another argument for all functions used in lines (6) to
(9) is the identifier id(pmodel) of the pmodel; it is used to
determine identifiers for all elements in pmodel. For exam-

123

A. Miyazawa et al.

ple, these identifiers can be qualified names defined based
on the containment relationship. For instance, BaseMod-

ule::LTreel::Wheel identifies one of the two Wheel links in
BaseModule. In Fig. 15, we have elided the qualification of
the names for conciseness, but have used unique identifiers
instead.

For joints and flexible connections, the translation requires
two identifiers to construct qualified names: the first for the
container (p-model or part) of the joints or connections, and
the second for the container of the links to which they are
connected. In Rule 1, both are id(pmodel), since this is the
rule for the platform p-model, which contains all elements.
In general, as illustrated later in this section, when translat-
ing a part, the container of the links to which the joints or
connections of the part are connected may be different.

The value of lps is the result of a normalisation, captured
by the function normLP defined in Rule 2, applied to all links
pmodel.links and parts pmodel.parts of the pmodel. There
are three extra arguments to normLP. First, we have the pose
of the p-model that contains the links and parts in its two
first arguments; in Rule 1, it is origin, the frame of reference
of the p-model also defined in the where clause. Next, we
have the value cvals of the constants, which may be used in
defining the poses. Finally, we have the name of the p-model,
id(pmodel) in Rule 1, used to uniquely identify the links in
the resulting mapping lps.

In Rule 2, just sketched here, the mapping characterised
by normLP is the union (∪) of four mappings. We show
the first two, which consider the links l in the set ls given as
argument. In the first mapping, we consider the case in which
l does not have an index (l.index = null). So, the mapping
associates the identifier id(l, nc) for that link, in the context
of the model with identifier nc, to its pose. We note that id is
an overloaded function that may take as an extra argument an
identifier for a container element, here nc, to determine the
unique identifier of its first argument. The (standard) function
transformPose determines the pose of l, via a transformation
that takes into account the pose ppose of the enclosing p-
model given as argument. The pose of l is l.pose and may
refer to the constants in the argument cvals.

The second mapping is for links l with an index. For each
possible value i of the index, we add an element to the map-
ping that records a pose for an extra link. The possible indices
are determined by a function [[]]EXP that evaluates the set
l.index.range defining the index. The standard definition of
expression evaluation captured in [[]]EXP is omitted here. In
the mapping, the identifier for the link id(l, nc, i) considers
the value i. In the pose calculation, the constant mapping
cvals is enriched (operator ⊕) to record the value i for the
index id(l.index), which can be used in l.pose.

The next two similar omitted mappings are for links inside
a part p in the argument set ps.

In Rule 1, line (6), a function [[]]LINKS defined in Rule 3
is applied to the set pmodel.links of Link elements. The result
is a set of SDFLink elements describing links in an SDF
document as determined by the function [[]]LINK. For each
link l in the argument set ls, [[]]LINK takes as extra arguments
its name and pose. If l is not indexed, as said, its name id(l, nc)

identifies l in the p-model or part nc where it occurs. If l

is indexed, it actually represents a collection of links, one
for each value i of the index. The names of the links in this
collection are given by id(l, nc, i). The poses are all identified
by lps. This rule, together with Rule 2 (used to define the
value of the argument lps), capture the meaning of indexing
of links.

In line (7) of Rule 1, a function [[]]JOINTS is applied to the
joints in pmodel. They are characterised in the where clause
by applying the function projectJoints to pmodel.links. The
joints j identified are those in a Link l in this set that have
a flexible connection to another link, that is, for which
j.flexible �= null. Because of the well-formedness condition
PMap1, in a p-model for a robotic platform, the joints that
are not connected to a link are inside a part, which has the
connection to the link. Such junctions are translated to SDF
in the translation of the part. The characterisation of a joint
j in projectJoints is by a pair including j and its containing
link l. The definition for [[]]JOINTS is similar to Rule 3 for
links.

In line (8) of Rule 1, [[]]FIXEDS is applied to the
fixed connections characterised in the where clause by
applying projectFixed to pmodel.links. The definition of this
function is similar to that of projectJoints described above.
Finally, in line (9) of Rule 1, [[]]PARTS is applied to the
parts pmodel.parts in pmodel. The rules for [[]]FIXEDS and
[[]]PARTS are similar to Rule 3.

Rule 4 defines [[]]LINK; it characterises anSDFLinkusing
the<link> tag. The name ln of the link given as argument is
identified in line (1). In line (2) the pose is defined using the
argument lpose; here, there is a slight abuse of notation, since
a PoseValue is a tuple, and in SDF, we include a list of num-
bers. The inertial needs to be calculated; if it is given in the
definition of l, that is the (straightforward) result. Otherwise,
it needs to be calculated from the definition of the bodies of
l. In the where clause, we apply a function calculateInertial,
whose standard definition is omitted here, to l to define a
tuple ci with three elements ci.1, ci.2, and ci.3 characterising
the pose ipose, inertia matrix iinertia, and mass imass of the
inertial component. These are used to define on lines (3)–(14)
the pose, inertia, and mass tags for the link’s inertial
tag. The (symmetric) inertia matrix is represented by a tuple
of six elements.

Other elements in link are identified by other func-
tions to specify the link’s bodies ([[]]BODIES), sensors
([[]]SENSORS), and actuators ([[]]ACTUATORS). Their def-
initions are similar to that in Rule 3 for links, applying to

123

Diagrammatic physical robot models

Rule 2. Function normLP

normLP(ls : P Link; ps : P Part; ppose : PoseVal; cvals : Variable �→ Val; nc : Name) :Name �→ PoseVal =

{l : Link | l ∈ ls ∧ l.index = null • id(l, nc) �→ transformPose(l.pose, ppose, cvals)}

∪

{l : Link; i : Value | l ∈ ls ∧ l.index �= null ∧ i ∈ [[l.index.range]]cvalsEXP •

id(l, nc, i) �→ transformPose(l.pose, ppose, cvals ⊕ {id(l.index) �→ i})

}

∪ . . .

Rule 3. Link set

[[ls : P Link]]
cvals,lps,nc

LINKS :(Variable �→ Value) × (Name �→ PoseVal) × Name �→ P SDFLink =

{l : Link | l ∈ ls ∧ l.index = null • [[l]]
cvals,id(l,nc),lps(id(l,nc))

LINK }

∪

{l : Link; i : Value | l ∈ ls ∧ l.index �= null ∧ i ∈ [[l.index.range]]cvalsEXP • [[l]]
cvals,id(l,nc,i),lps(id(l,nc,i))

LINK }

Rule 4. Link

[[l : Link]]
cvals,ln,lpose

LINK :

(Variable �→ Value) × Name × PoseVal

�→SDFLink =

<link name="ln"> (1)

<pose>lpose</pose> (2)

<inertial> (3)

<pose>ipose</pose> (4)

<inertia> (5)

<ixx> iinertia.1 </ixx> (6)

<ixy> iinertia.2 </ixy> (7)

<ixz> iinertia.3 </ixz> (8)

<iyy> iinertia.4 </iyy> (9)

<iyz> iinertia.5 </iyz> (10)

<izz> iinertia.6 </izz> (11)

</inertia> (12)

<mass> imass</mass> (13)

</inertial> (14)

[[l.bodies]]cvalsBODIES (15)

[[l.sensors]]cvalsSENSORS (16)

[[l.actuators]]cvalsACTUATORS (17)

</link>

where

let ci = calculateInertial(l, cvals) •

ipose = ci.1 ∧ iinertia = ci.2 ∧ imass = ci.3

individual elements functions [[]]BODY , [[]]SENSOR, and
[[]]ACTUATOR. A difference is that, for indexed elements,
the argument cvals is enriched to include the value of the
index. This is needed because their poses, whose definitions
typically use the index, still need to be calculated. For bodies,

sensors, and actuators, there is no table like lps in Rule 4. (We
use lps to simplify translation of joints, whose poses in SDF
are defined with respect to the frame of reference of the link
to which it is flexibly connected, not of the link that contains
it. So, the translation of a joint, as explained, cannot be part
of the translation of the link that contains it.)

The translation rules for a joint, a sensor and an actuator
capture the meaning of annotations. We present here Rule 5
for a joint. The parameters of the function [[j : Joint]]JOINT

include, besides the mappings cvals and lps, the link l that
contains j, the names nc and ncc of the containers of l and
of the link to which j is flexibly connected, and the flexible
connection fc for j. We recall that fc may be contained in j or
in a part containing j.

Applying Rule 5 results in a set of SDF joint defini-
tions (that is, elements of SDFJoint) because, if the link l

in which j is contained is indexed, or if the flexible connec-
tion fc for j is contained in an indexed part or connected to
an indexed link, then j actually defines a collection of joints.
As defined in Rule 5, this set contains a joint for each pair
(src, tgt) taken from the sets contLinks, of names of container
links defined by l, and connLinks, of names of connected links
defined by fc.

The set contLinks is defined in the where clause of Rule 5.
It contains just id(l, nc) if l is not indexed (l.index = null).
If l is indexed, then we have a name id(l, nc, i) for each
value i of the index. The set connLinks is also defined in
the where clause using a function expandLinks(fc) omitted
here. It caters for indexation in the part containing fc, if any,
and in the link to which fc is connected, defining a set of link
names, as appropriate.

Thejoint definition in the body of Rule 5 gives itsname
jn and its type jointType. The value of jn, defined in the

123

A. Miyazawa et al.

Rule 5. Joint

[[j : Joint]]
cvals,lps,l,nc,ncc,fc

JOINT :

(Variable �→ Value) × (Name �→ PoseVal) × Link × Name × Name × FlexibleConnection �→ P SDFJoint =

{src : contLinks; tgt : connLinks •

<joint name="jn" type="jointType">

<pose>findPoseWrtToChild(lps(src), lps(tgt), [[j.pose]]cvalsPOSE)</pose>

<parent>src</parent>

<child>tgt</child>

if annotation = null then

<!-- WARNING: Annotation for joint not found. -->

else

[[annotation]]
cvalsJ,nc

AInstantiations

[[j.sensors]]
cvals,nc

SENSORS

[[j.actuators]]
cvals,nc

ACTUATORS
</joint>

}

where

contLinks = if l.index = null then { id(l, nc) }else{ i : [[l.index]]cvalsEXP • id(l, nc, i) }

connLinks = expandLinks(fc)

jn = (if j.index = null then id(j, src)elseid(j, src, cvals(j.index)))

if j ∈ ReferenceJoint

then annotation = getAnnotation(j) ∧ cvalsJ = cvals ⊕ {i : j.instantiations • i.name �→ [[i.value]]cvalsEXP }

else annotation = j.def.annotation ∧ cvalsJ = cvals

jointType = if annotation �= null then j.annotation.template.name.toLowerCase else"revolute"

where clause, is just the name of j as defined by id, if j is
not indexed. Otherwise, id is applied to an extra argument
cvals(j.index): the value of the index of j recorded in cvals.
We recall that the function [[]]JOINTS for sets of joints (see
similar Rule 3 for links) uses cvals to record a value for the
index in the translation of each instance of an indexed joint.

Since SDF does not have a general mechanism to
define the equations of joints, like RoboSim, we require an
annotation to define all but revolute joints. The where

clause defines the jointType. If there is an annotation for
the joint (annotation �= null), its jointType is given by the
name of the annotation template (see Fig. 4). (So, RoboSim
p-models are not tailored to SDF, but we can use the anno-
tation library of templates to customise translation for SDF.
Moreover, we can define libraries for other XML-based nota-
tions.) If the joint has no annotation, we define the jointType

to be revolute by default.

If j is a reference to a joint definition (that is, j ∈ Reference

Joint), rather than a JointDefinition itself, then the annota-
tion can be in the definition or in the reference. The annotation
in the reference, if present, overwrites that in the definition,
if any. In the where clause, the function getAnnotation(j) is
used to define annotation taking this into account. If, j is not
a reference, the annotation is that in the definition of j.

If j is a reference, it may contain instantiations j.instantia−

tions of constants, which are used to define a new mapping
cvalsJ of constants. This mapping enriches cvals by mapping
each constant i.name in an instantiation i to its value i.value.

The tags parent and child identify the container link
src and the connected link tgt. The pose of the joint is
defined with respect to the child link, as required in SDF.
The pose transformation is achieved using the (omitted)
function findPoseWrtToChild, which takes the poses of the
containing and connected links l and fc.link, and the pose of
j. (We recall that j.pose is originally defined in RoboSim with

123

Diagrammatic physical robot models

Rule 6. Part

[[p : Part]]
cvals,lps,pn,nc

PART :(Variable �→ Value) × (Name �→ PoseVal) × Name × Name �→P SDFModelContent =

[[p.model.links]]
cvalsP,lps,id(pn,nc)

LINKS

[[jointsInPart]]
cvalsP,lps,id(pn,nc),nc

JOINTS

[[joints]]
cvalsP,lps,id(pn,nc),id(pn,nc)

JOINTS

[[fixedInPart]]
cvalsP,id(pn,nc),nc

FIXEDS

[[fixed connections]]
cvalsP,id(pn,nc),id(pn,nc)

FIXEDS

[[p.model.parts]]
cvalsP,lsp,id(pn,nc)

PARTS
where

cvalsP = cvals ⊕ {i : p.instantiations • i.name �→ [[i.value]]cvalsEXP }

jointsInPart = {fc : p.flexible; l : Link | fc.joint ∈ l.joints • (fc.joint, fc, l)}

joints = projectJoints(p.model.links)

fixedInPart = {fc : p.fixed • (fc, fc.sourceLink)}

fixed connections = projectFixed(p.model.links)

respect to l, but needs to be defined with respect to fc.link in
SDF.)

If there is no annotation, we include a comment (indi-
cated by <!--... -->) in the SDF document to flag that.
The SDF document generated is valid, and the points where
perhaps it needs to be extended are indicated explicitly. Ide-
ally, however, the extension should be done via annotations,
not by modifying the automatically generated document. If
there is an annotation, the translation of the annotation leads
to the introduction of tags that reflect the default values in its
template and its instantiations. This is handled by the func-
tion [[]]AInstantiations . For example, in Fig. 15, the element
defined by the tag axis and all the child elements of axis
are defined by translation of an annotation (omitted in Fig. 2).

Finally, in Rule 5, the translation of any sensors or
actuators included in the joint is defined using functions
[[]]SENSORS and [[]]ACTUATORS .

The translation of a sensor also uses annotations. Like for
a joint, if a sensor s has no annotation, a warning is pro-
duced. Otherwise a <sensor> is defined: its name sn and
pose s.pose are those of s. The type is defined by the name
s.annotation.template.name of the template.

The translation of actuators is simpler. There is no general
tag for actuators in SDF. The type of the annotation template
defines a name for a tag.

The translation of a part, defined by Rule 6, is similar to
that of a p-model. It is the result of the translation of the
links, joint, and fixed connections of the part, as well as of
any additional parts used to define the part itself.

Applying Rule 6, we get a set of definitions of links, joint,
sensors, and actuators. (These are collectively represented by
the class SDFModelContent in the SDF metamodel.)

The constant mappings cvalsP used in the translation of
the part elements is defined in the where clause of Rule 6.
It extends cvals by adding values i.value for each constant

Fig. 16 Example of SDF encoding of a fixed connection in Fig. 2: that
between LTreel and Core

i.name included in the instantiations of the part p being trans-
lated.

The translation of the joints and fixed connections of p

is defined by [[]]JOINTS and [[]]FIXEDS , like in Rule 1.
These functions, however, are applied to two disjoint sets
of joints and fixed connections. In the sets joints and
fixed connections (defined in the where clause), we have
those contained in the links of the model for p. Like in Rule 1,
they are determined by projection of the components of the
links of the part p.

In contrast, the sets jointsInPart and fixedInPart (also
defined in the where clause) have those that are associated
with a (flexible or fixed) connection fc for the part p, rather
with a link of p. When translating these sets, the identifiers
for the links to which they are connected, passed as argu-
ments to [[]]JOINTS and [[]]FIXEDS , are different. They are
the identifiers id(pn, nc) of the part’s container, rather than
that of the part itself.

For instance, in our example in Fig. 2, we have a fixed
connection that belongs to the part LTreel (and similarly
for RTreel). In its translation, we use arguments BaseMod-

ule::LTreel and BaseModule. The former is the container of
the connection, that is, the part, and the latter is the container
of the link to which it is connected, that is, Core. The result
of the translation is the SDF definition of a joint partially
shown in Fig. 16.

We recall that a fixed connection is encoded in SDF using a
joint of type fixed. Its unique qualified name (elided

123

A. Miyazawa et al.

in the example in Fig. 16) is formed from the qualified names
of the links that are connected. The link in the container part
becomes the parent link of the joint in SDF. In defining
its qualified name, we use the name of the part: the first name
argument given to [[]]FIXEDS in Rule 6. The link to which the
connection is connected becomes the child link. To define
its qualified name, we need to use the second name argument
of [[]]FIXEDS . The definition of the axis is a requirement
of SDF, but has no consequence for a fixed joint. The
translation uses an arbitrary value 0 0 1.

In Sect. 8, we discuss the implementation of all the rules in
RoboTool. First, we consider a different kind of artefact that
can be generated from a p-model: a mathematical description.

6 Mapping to hybrid state-rich CSP

Automatic generation of SDF documents supports analy-
sis via simulation. Here, to complement testing via simula-
tion, we present another model transformation technique to
generate CyPhyCircus models for proof of properties of the
robotic system that takes into account the platform.

As previously said, a p-model and a platform mapping
are components of a RoboSim model, which also includes
a d-model. A semantics for a complete RoboSim model
needs, therefore, to capture the meaning of all these com-
ponents. Nevertheless, the semantics is compositional, and
the different components can be used independently of each
other. The semantics of d-models [19] is already described
in a discrete time variant of CSP, namely tock-CSP [5,
62]. Here, due to the continuous nature of the behaviour
of physical systems, we need to account for both discrete
and continuous behaviour. So, we use a hybrid version of
CSP, called CyPhyCircus [30, 53], to describe the seman-
tics of p-models and platform mappings. The composition of
the d-model’s CSP semantics and the p-model’s CyPhyCircus
semantics is justified via the Unifying Theories of Program-
ming (UTP) [36]. CyPhyCircus is based on the works in [38,
44], but deals with variables and has support for automated
proof in Isabelle [55].

In Sect. 6.1, we describe the structure of the semantics of
a RoboSim model. In Sect. 6.2, we detail the semantics of a
p-model and its platform mapping via model transformation
rules.

6.1 Overview of RoboSim semantics

In CSP, mathematical models are processes. These are mech-
anisms that capture allowed and required patterns of inter-
action. In the case of a CyPhyCircus process, it also captures
the trajectories of real-valued state variables. With CyPhy-

Circus processes, we can model the reactive and continuous
behaviour of a mechanism. Like in CSP, reactions (or inter-

actions) are captured by atomic and instantaneous events.
Processes communicate with each other using such events.

The semantics of a complete RoboSim model has the
structure of processes shown at the bottom in Fig. 17. There
are two processes composed in parallel (‖). The first is
the tock-CSP process that encodes the semantics of the d-
model [19], and the second is a CyPhyCircus process that
specifies the behaviour of the p-model and its interaction with
the process for the d-model, also reflecting the definitions in
the platform mapping.

The hybrid p-model process acts on a set of variables
over time, which, in general, correspond to physical quanti-
ties, such as distance and torque, used as inputs to sensors,
and outputs of actuators and joints. It also uses events to
communicate with the d-model process. Its definition is via
a combination of CyPhyCircus actions in sequence (;) as
depicted in Fig. 17. Action is the CyPhyCircus name for a
state-rich CSP-like process that can, however, use and update
variables, and is local to a CyPhyCircus process, here the p-
model process.

A p-model process first defines the initial values of its
state variables (Initialisation), and then proceeds iteratively,
with each iteration capturing the behaviour of one simulation
cycle. An iteration sends updates to the d-model process via
its input events (Inputs); reads requests from that process via
its output events, variables, and operations, and resets a timer
variable (Outputs); and finally evolves the system of differ-
ential equations for the duration of the cycle (Evolution).

For the RoboSim model in Figs. 1, 2, and 8, the semantics
is shown in Fig. 18 at the bottom. As indicated in Fig. 17,
this is a process, called marXbot here, that composes in
parallel (indicated by the symbols � and �) the d-model
process marXbotSoftware , which gives the semantics of
the RoboSim d-model (Fig. 1), and the p-model process
BaseModule, which actually specifies the semantics of the
p-model itself and its associated platform mapping (Figs. 2
and 8).

We omit the definition of the tock-CSP process marXbot

Software , since its details are not relevant to understand the
semantics of a p-model and a platform mapping. It suffices
to know that d-model processes use events registerRead

and registerWrite to read inputs and communicate out-
puts (including operation calls), and an event tock to repre-
sent the passage of time according to the software’s discrete
clock. So, these events are also used by the p-model pro-
cesses.

In the parallelism that defines a complete system, such as
that defining the process marXbot , the parallel d-model and
p-model processes communicate (synchronously) internally.
The visible behaviour is the passage of continuous time, and
the evolution of the inputs to the sensors, and outputs of the
actuators and joints. The parallelism definition establishes
that the processes communicate on the events registerRead ,

123

Diagrammatic physical robot models

Fig. 17 Structure of the semantics of a complete RoboSim model

registerWrite, and tock (indicated between the symbols �

and �). Their repeated mention after the symbol \ indicates
that such communications are internal (hidden), that is, inter-
actions with the parallel process as a whole cannot be via
these events. They are just for communication between (the
mathematical models of) the control software (d-model) and
the robotic platform (p-model).

The process BaseModule for our example is sketched in
Fig. 18; we describe its definition in detail. Instead of being
defined in terms of other processes, a p-model process is
defined by declaring, between begin and end keywords, a
state and a main action that defines its behaviour. The state
is declared in a clause state. The main action comes at the
end, between a • and the end.

The state clause names a CyPhyCircus block, called
schema, like the similar construction of the Z notation [67].
The state schema is defined separately to declare the private
and visible state variables of the process. In our example, it is
named BaseModuleState. In that schema, the private vari-
ables include a timer variable that records the time elapsed
in each iteration, the inputs of actuators and joints, and the
outputs of sensors. These variables are private to the p-model
process (see Fig. 17), so their values are not visible to other
processes. For example, inputs of actuators are for communi-
cation from the platform mapping to the p-model. In Fig. 18,
we show, for instance, the variables for the inputs (tau, pV,
and pA) of the Revolute joint LHinge (see Fig. 4).

The state schema also declares the visible variables.
These represent the values of the inputs of the sensors,
and the outputs of the actuators and joints. Their declara-
tion uses the visible modifier. In Fig. 18, the definition of

BaseModuleState shows the declaration of some of these
variables. We show, for example, the declaration of the vari-
able LMotor T for the output of the LMotor, and of the
variable Proximity0 distance representing the input to the
sensor of index 0.

The types of the variables in the state of a p-model process
are defined using standard types like R (real numbers) or
sequences of R (seq R) to represent vectors and matrices.
They are, however, functions over time. A variable v of type
T corresponds to a function of type R≥0 → T .

The local variables declared in all blocks of the p-model
and platform mapping are also declared in the p-model pro-
cess, together in a separate schema: BaseModuleLocal in the
example. In Fig. 18, we show the variables to represent local
variables of LHinge (theta, v, and a) and of the move block
of the platform mapping.

The constants declared in all blocks (of both the p-model
and platform mapping) are defined locally in the process as
well. In Fig. 18, at the top of the definition of the process
BaseModule, we show the declaration of a few constants for
LHinge. These definitions reflect the library definition for
Revolute and the instantiation of its constants in the reali-
sation LHinge, which defines the value of AXIS. They use
a CyPhyCircus library of definitions in which functions like
ScrewAxis are specified via pre and postconditions.

It is the trajectories of the values of the visible variables
that are specified by the p-model process, as well as the
communications with the d-model process via the channels
registerRead and registerWrite. That specification is given
by the main action in terms of local actions Init (correspond-
ing to Initialisation in Fig. 17), SendToDModel (Inputs

123

A. Miyazawa et al.

Fig. 18 Sketch of the CyPhyCircus model for the marXbot (color figure online)

123

Diagrammatic physical robot models

in Fig. 17), ReceiveFromDModel (to define Outputs), and
Evolve, all defined in the body of the p-model process (Base

Module in the example).
We omit the simple action Init : a sequence of assignments

that define the (initial) values of the private state variables.
In the main action, after Init , we have a recursion defined by
the operator μX •A;X that declares an action A, gives it the
local name X , and calls A recursively once A is finished. In
the main action of a p-model process, A defines the behaviour
of a cycle of simulation. At each step of the recursion, that
action sends input events to the d-model process using the
action SendToDModel and then reads requests from the d-
model using the action ReceiveFromDModel .

When the d-model tock-CSP process completes its com-
putation for the current cycle, one or more tock events signal
that the software (d-model) simulation clock is advancing to
the next cycle. So, in the main action of the p-model process,
ReceiveFromDModel is interrupted (△) by a Wait(cycle)

action. The global constant cycle is a positive natural num-
ber that defines the cycle of the d-model in terms of a number
of time units, that is, tock events. If the d-model defines or
constrains the value of the cycle, the global constant cycle

records that value or constraint. In our example, cycle is 1,
as defined in Fig. 1. The action Wait(cycle) monitors and
accepts cycle tock events, taking over when the first tock

occurs and finishing after the last tock .
Following Wait(cycle), the main action of a p-model pro-

cess resets its own timer , and evolves the system of equations
using an action Evolve to define the trajectories of the visible
variables.

In accordance with the simulation paradigm, the actions
SendToDModel , ReceiveFromDModel , and Wait(cycle)

take no simulation time. The software clock, captured by
tock events, is internal and does not interfere with the contin-
uous simulation time defined by the p-model process. Time
passes, however, duringEvolve. Another interrupt terminates
Evolve as soon as the timer expires, that is, its value exceeds
cycle × tscale. Here, another global constant tscale defines
the correspondence between a discrete time unit and the con-
tinuous time. For instance, if the value of cycle is 5 (time
units), and tscale is 0.5 ms, then the actual cycle of the sim-
ulation is 2.5 ms.

The value of tscale is not defined in a p-model, and can
be left open as in our example, or provided as input to the
automatic generation of the semantics and fixed. The use
of the notion of time units allows model independence with
respect to both simulation and deployment time.

The semantics of the platform mapping is captured
by the actions SendToDModel and ReceiveFromDModel .
SendToDModel communicates to the d-model process infor-
mation about each of the inputs through the CyPhyCircus

registerRead events. SendToDModel determines whether a
RoboSim input event has occurred, and outputs that informa-

tion via registerRead as a boolean. If the input communicates
a value, it is carried by registerRead , too. If there are several
inputs, the information can be sent in any order required by
the d-model. In this case, SendToDModel is an interleaving
of actions that model each of the mappings for input events.

In our example, the single input event of the d-model
is obstacle. So, the definition of SendToDModel is just
ObstacleToDModel , and there is no need for an interleaving.
The conditional that defines ObstacleToDModel is based on
the definition of obstacle in the platform mapping: see Fig. 8.
Depending on the value Proximity1 voltage of the output
of the sensor of index 1, true or false is communicated by
registerRead , along with the name obstacle of the event.
Afterwards, the action terminates (Skip).

The action ReceiveFromDModel is similar. It accepts,
in any order, outputs via registerWrite events. The plat-
form mapping defines their effect. In our example, we have
two operations (move and stop), each defined by an action
MoveFromDModel and StopFromDModel (the latter omit-
ted in Fig. 18). The actions are interleaved (�) to define
ReceiveFromDModel .

An output action is triggered by the occurrence of
a registerWrite event communicating the name of the
event, variable, or operation for the mapping it models. In
the example, MoveFromDModel is triggered by an event
registerWrite.move, carrying also the values lv and av

given as argument in the call to move. Its effect is defined by
a data operation, in the example MoveCall . That action takes
any arguments as parameters, and, in the case of a mapping
specified by equations, is defined by a specification statement
capturing the data update entailed by the equations.

A specification statement first lists the variables that are
updated. In our example, these are the inputs to the motors
LMotor das andRMotor das . Next, the specification state-
ment gives a precondition for the data operation. In the
semantics of a mapping, it is always specified as true. Finally,
the postcondition is given by the set of equations, where
the local variables are quantified. The quantification uses the
schema declaring all local variables, but, of course, only those
actually used in the mapping are relevant. In the example,
these are move dsl and move dsr .

The action Evolve is defined by a Z-like schema that
specifies how the state is modified. The � declaration, in
our example, �BaseModuleState, indicates that this action
modifies the state as specified by a system of differential
equations. In our semantics, the equations are taken from the
p-model blocks, but the local variables are existentially quan-
tified. This definition differs from the specification statement
defining MoveCall , for instance, in that it defines trajectories
for the state variables, rather than a value update.

As already said, the semantics of a RoboSim model can
be calculated by RoboTool. With this model, we can prove
properties specified in terms of the inputs of the sensors, and

123

A. Miyazawa et al.

Rule 1. PMapping

[[pm : PlatformMapping]]name
PMapping :

Name �→ Program

cycle : N; tscale : R

cycle > 0 ∧ tscale > 0 ∧

[[pm.dmodel.cycleDef]]Expr

dmsem

pmsem

process name =̂⎛
⎝

dmproc

�{| registerRead, registerWrite, tock |}�

pmproc

⎞
⎠

\{| registerRead, registerWrite, tock |}
where

(dmsem, dmproc) = [[pm.dmodel]]Module

(pmsem, pmproc) = [[pm]]PModel

outputs of the actuators and joints. As expected, the behaviour
of the embedded software is only perceived through the
behaviour of the platform.

For example, the property indicated at the end of Sect. 3
can be precisely described as follows.

Once Proximity1 distance is less than a value d ,
then, after t time units, the values of LMotor T and
RMotor T are 0.

Now, we can refer to elements of the p-model: variables
that represent the input Proximity1 distance to a sensor,
and the outputs (torques) LMotor T and RMotor T of two
actuators as described above.

In Sect. 8, we describe how we can prove such properties
using RoboTool and theorem provers.

6.2 Semantic rules

Like for the transformation to SDF, we have also defined rules
that specify a p-model CyPhyCircus process. Such a process is
only well-defined for a complete RoboSim model, including
not only the p-model block diagram, but also its associ-
ated platform mapping diagram. For this reason, Rule 1,
which specifies the overall process, defines the function
[[]]PMapping , which actually applies to a PlatformMapping

pm, not just a PModel.
The metanotation used to define the rules here is similar

to that used for the rules in Sect. 5.3. The result of the rules in
this section, however, are elements of the abstract syntax of
CyPhyCircus. Moreover, the target notation is distinguished
not in teletype font, but in italics as usually adopted for the
rendering of CyPhyCircus models.

Rule 2. PModel

[[pm : PlatformMapping]]PModel : Proc × N

(pmsem, pm.pmodel.name)
where

stateDef = StateSchema(pm.pmodel)

localDef = LocalSchema(pm)

pmsem =

processpm.pmodel.name =̂ begin

DeclareConstants(pm)

stateDef

localDef

statepm.pmodel.nameState

DeclSendToDModel(pm)

DeclReceiveFromDModel(pm)

Evolve

�pm.pmodel.nameState

∃ pm.pmodel.nameLocal •

〈eq : allEqs(pm.pmodel) • [[eq]]Expr 〉�

〈 dtimer

dt = 1〉

• Init;

μX •

SendToDModel;

ReceiveFromDModel △ Wait(cycle);

timer := 0;

Evolve △ (timer ≥ cycle × tscale);

Xend

In Rule 1, the result is a CyPhyCircus program. It com-
prises (1) the declaration of the constants cycle and tscale;
(2) the definition of the processes dmsem and pmsem that
capture the semantics of the d-model (pm.dmodel) and of
the p-model (pm.pmodel) in pm; and (3) the definition of
the overall process that puts them in parallel. The declara-
tion of cycle and tscale includes, besides the restrictions
that their values are greater than 0, restrictions on the cycle
potentially included in the d-model, defined by the element
pm.dmodel.cycleDef . This is a Boolean expression, which
is evaluated by the standard semantic function [[]]Exp for
expressions. Its definition is that for RoboSim d-models,
extended do deal with derivatives and integrals, and special
variables like t and myPose, used to denote time and pose
of the element represented by the block. In our example,
the restriction is that cycle = 1. (In Fig. 18, for clarity, we
have simplified the restriction cycle > 0 ∧ cycle = 1 to
cycle = 1.)

The semantics of pm.dmodel is given by the function
[[]]Module defined in [19]. The semantics of pm.pmodel is
given by Rule 2. In both cases, as indicated in the where

clause, we get a pair containing a process and its name. We
use the names dmproc and pmproc in the definition of par-
allelism. The name of that overall process combining the
semantics of the d-model of the p-model is an extra parameter

123

Diagrammatic physical robot models

of [[]]PMapping . To generate the process in Fig. 18, we apply
Rule 1 to the mapping in Fig. 8 with argument marXbot .

In the definition of Rule 2, the result is a pair (pmsem, pm.

pmodel.name) containing a p-model CyPhyCircus process
pmsem, defined in thewhere clause, and its namepm.pmodel.

name, which is the name of the p-model itself. To fully
define pmsem, we use a number of functions defined by other
rules in [51]. In the where clause, functions StateSchema

and LocalSchema define the schemas that declare the state
variables of the p-model process and the variables represent-
ing local variables in the p-model and platform mapping
elements. In our example, StateSchema, applied to Base-

Module, defines the schema BaseModuleState in Fig. 18.
BaseModuleLocal is defined by LocalSchema applied to the
mapping in Fig. 8.

The process psem has the structure already illustrated in
Fig. 18. In Rule 2, its constants declaration, and its actions
SendToDModel and ReceiveFromDModel are defined by
functions DeclareConstants, DeclSendToDModel, defined
below, and DeclReceiveFromDModel in [19]. In the def-
inition of the state clause and in the schema Evolve, the
names of the state and local schemas are taken to be based
on the name pm.pmodel.name of the p-model. In the body
of Evolve, the equations are characterised by a sequence,
delimited by 〈 and 〉. Its last element is the differential equa-
tion that specifies the evolution of the variable timer . It is
concatenated (�) to the sequence of elements formed from
the equations eq taken from the sequence allEqs(pm.pmodel)

of all equations of the p-model. Each equation is translated
by the semantic function [[]]Expr for expressions.

In Rule 3, we give the specification of the function
DeclSendToDModel for a PlatformMapping pm. Here, we
use in the metanotation an indexed interleaving opera-

tor (�). It denotes the actual interleaving of the actions
IA from the set iactions defined in the where clause. In
this set, we have actions [[m]]InputEventMapping that give
semantics to the input event mappings m from the set
pm.inputEventMapping in pm. In our example, we recall,
there is no interleaving, because the set iactions is a single-
ton. In general, like in our example, we expect that there is
at least one input. If, however, there are no inputs, the set
iactions is empty, and the interleaving degenerates to Skip,
the action that terminates immediately.

The function [[]]InputEventMapping is specified by Rule 4.
It defines a CyPhyCircus action named after the event in the
mapping: its name is given by m.event.name. The action is
a conditional on the Boolean expression defined in the predi-
cate m.event.predicate of the mapping. Two additional func-
tions inputEventActionTrue and inputEventActionFalse

define the then and else branches of the conditional. In
our example, the action ObstacleToDModel is defined by
Rule 4.

Rule 3. Function DeclSendToDModel

DeclSendToDModel(pm : PlatformMapping) :

Action

SendToDModel =̂ � IA : iactions • IA

where

iem = pm.inputEventMapping

iactions = {m : iem • [[m]]InputEventMapping }

Rule 4. InputEventMapping

[[m : InputEventMapping]]InputEventMapping :

CSPAction

m.event.nameToDModel =̂

if [[m.event.predicate]]Expr

then inputEventActionTrue(m)

else inputEventActionFalse(m)

The function inputEventActionTrue is defined in Rule 5
for a mapping im. It considers two cases. In the where

clause, p is defined as the parameter of im. If the event for
im is not parametrised, that is, it does not communicate a
value (p = NULL), then the action defined just communi-
cates thenameof the event and true. Thename is also defined
in the where clause. In our example in Fig. 18, the semantics
of the mapping for obstacle in ObstacleToDModel is cov-
ered by this case.

If the event is parametrised, the action is an external
choice (�) over values represented by a variable p.name

named after the parameter. The values are taken from a
set defined by inputEventValues(im). Parametrised events
are defined using, besides a predicate that determines when
the events occur, a set of equations that defines the values
that it communicates. The function inputEventValues(im)

defines these values. If there are several, the external choice
communicates one value chosen arbitrarily (because the
registerRead events are ultimately hidden as shown in
Rule 1). Typically, we expect that there is a single value in
the set inputEventValues(im), so that the choice is actually
degenerate and only that single value can be communicated
via the registerRead event. Our semantics, however, makes
no such assumption. In addition, if the equations define no
values, the semantics introduces a deadlock. So, a deadlock
check of the p-model process can identify such problems.

As mentioned, the omitted rules are available at [51]. In
the next section, we discuss the implementation of our trans-
formation rules.

123

A. Miyazawa et al.

Fig. 19 RoboTool graphical editor

Rule 5. Function inputEventActionTrue

inputEventActionTrue(im : InputEventMapping) :

CSPAction

if p = NULL then

registerRead .name.true −→ Skip

else

� p.name : inputEventValues(im) •

registerRead .name.true.p.name −→ Skip

where

p = im.parameter

name = im.event.name

values = inputEventValues(im)

7 RoboTool

In this section, we present our work extending RoboTool to
implement the RoboSim p-models notation: metamodel and
well-formedness conditions for edition and validation, the
translation to SDF, and the calculation of the semantics. Sec-
tion 7.1 describes RoboTool and the extensions that support
modelling. Section 7.2 describes the implementation of the
SDF translation rules. Finally, Sect. 7.3 discusses the imple-
mentation of the CyPhyCircus semantics of p-models.

7.1 Modelling andValidation

RoboTool14 is a set of Eclipse15 plug-ins implemented using
Xtext16 and Sirius.17 We have used EMF to implement the
metamodel from Sect. 4 to generate a textual editor using
Xtext and a graphical editor using Sirius. The textual notation
is used as an internal representation. A different imple-
mentation of the same metamodel might choose a different
representation.

Figure 19 shows a snapshot of RoboTool with the block
diagram from Fig. 2 open. The RoboTool window has four
areas: model explorer (top-left), outline (bottom-left), graph-
ical editor (top-right), and properties/problems (bottom-
right). The graphical editor supports two types of block
diagrams: p-models and platform mappings, as described in
Sect. 4.2.

The area for the graphical editor itself is divided into two
parts: the diagram canvas (left) and the tool palette (right).
Block diagrams are constructed in the diagram canvas using
tools from the palette; additionally, diagrams can be edited by
double-clicking (for example, to edit names and poses), or by
right-clicking elements and selecting actions from the menu.
The well-formedness conditions described in Sect. 4.3 and

14 www.cs.york.ac.uk/circus/RoboCalc/robotool/
15 www.eclipse.org
16 www.eclipse.org/xtext
17 www.eclipse.org/sirius

123

www.cs.york.ac.uk/circus/RoboCalc/robotool/
www.eclipse.org
www.eclipse.org/xtext
www.eclipse.org/sirius

Diagrammatic physical robot models

type compatibility in expressions and statements are auto-
matically verified.

The checking of the well-formedness conditions is imple-
mented using the Xtext validation mechanism. Each condi-
tion is associated with one or more validation rules imple-
mented by a method written in Java or Xtend18 and annotated
with @Check. Figure 20 shows the implementation of the
condition L8 for links (see Sect. 4.3).
L8 first identifies the LinkDefinition ldef of its Link

argument l covering the cases in which it is a ReferenceLink
or a LocalLink. Next, the Boolean linkHasInertial

records whetherl includes aninertial (ldef.inertial
!= null). The condition aBodyHasInertial records
whether any of the bodies of l defines an inertial. For that,
first, with l.bodies we get the collection of Body ele-
ments of l. The map method takes a lambda expression
and returns a new collection formed from the results of
applying that lambda expression to each object of the orig-
inal collection. In the example, the first use of map gives
the collection of BodyDefinitions for the elements br in
l.bodies. The second call to map gives a collection of
Boolean values b.inertial != null, for each Body-

Definition b. With filter, we keep just the occurrences
of true. Finally, aBodyHasInertial, records whether
this collection has at least one element (size > 0). After-
wards, L8 checks whether both linkHasInertial and
aBodyHasInertial are true, and if they are, it produces
an error using the method error. This method takes a
textual description of the error, a literal that indicates the
element of the abstract syntax tree to which the error should
be attached (in this case, ldef) and an identifier for the type
of error.

The close correspondence between the well-formedness
conditions and the rules implemented in Xtext provides vali-
dation for both the language and our conditions. Violation of
such rules not only produces error information, but also pre-
vents the generation of simulations and CyPhyCircus models.
Adding or removing validation rules to cater, for instance,
for different semantic models or applications (like code gen-
eration) is simple.

7.2 Simulation

RoboTool implements the model transformation rules of
Sect. 5 as Xtend methods to calculate an SDF document for
a p-model block diagram. As an example, Fig. 21 shows the
Xtend implementation of Rule 1 from Sect. 5.3.

The implementations of the rules are essentially Xtend
renderings of their definitions in Sect. 5.3, but we describe
a few superficial differences. First, the rules are imple-
mented as model-to-text transformations. So, they all return a

18 A dialect of Java (www.eclipse.org/xtend/)

string: CharSequence, rather than an element of the SDF
metamodel. In each rule, the where clause is implemented
via local variables defined at the start of the implementa-
tion. The metanotation is Xtend, but given its simplicity,
the differences are minor. The target language constructs are
encoded in Xtend as strings enclosed in triple quotes, with
in-line meta-expressions identified by the use of guillemets
(«»). Finally, there are some small variations regarding types.
The function type is Map in Xtend. Moreover, methods like
toSet and asString ensure type compatibility, as we
handle collections as sets in our formal rules, and use strings
to implement identifiers.

In summary, the implementation in Xtend validates our
technique to generate SDF documents, because it matches the
definitions of the rules and functions closely. Also, RoboTool
has enabled the construction of several examples, and their
validation via the use of CoppeliaSim (and Gazebo) to depict
the platform defined by the SDF documents automatically
generated. The consideration of these examples by hand is
virtually infeasible given the size of the SDF documents
defined.

Figure 22 presents the result of loading the SDF document
generated for our running example (BaseModule in Fig. 2) in
CoppeliaSim. The main panel shows the rendering presented
in Fig. 3, but with blue lines indicating the direction of each
of the sensors. On the left, a scene hierarchy shows the ele-
ments in the scene: a camera, some lights, the floor, and other
elements reflecting CoppeliaSim’s interpretation of our SDF
document. The rendering shows what the camera captures,
given its position and the light. At the bottom, a command
line accepts code written in Lua [37]19; we can, for example,
inspect the elements of the scene, including those defined in
SDF. In Fig. 22, the command starts a simulation using the
scene. Above, a log gives information about the code exe-
cution. In Fig. 22, the log informs that the simulation has
terminated.

Since, as already mentioned, a p-model may be defined
in terms of constants whose values are not given, the SDF
generator asks for a value for these constants. This means we
can easily generate multiple SDF documents by varying the
values of constants, and it is particularly useful for the use
of the simulation in the context of evolutionary robotics and
design-space exploration.

Some aspects of the implementation of the SDF docu-
ment generator needed to be tailored to CoppeliaSim. (So,
we envisage that other very similar generators may become
useful to deal with different simulators.) For example, qual-
ified names can become long, and CoppeliaSim imposes a
limit on the size of element names. RoboTool creates coded
short and still unique names for the elements, and produces,

19 http://lua.org

123

www.eclipse.org/xtend/
http://lua.org

A. Miyazawa et al.

Fig. 20 Implementation of the well-formedness condition L8 for links

Fig. 21 Implementation of p-model to SDF transformation Rule 1

alongside the SDF document, a table that maps the qualified
names to the coded names (and vice versa).

In addition, we have used SDF 1.6, the latest version sup-
ported by CoppeliaSim. The more recent SDF 1.7 comes
with semantics for the frame element, and supports cus-
tom elements and attributes. As already said, RoboSim, for
clarity, fixes the frame of reference for poses using the con-
tainment relationship, and our translation does not make use
of ad hoc frame elements. So, this change has no impact on
our translation. The possibility to define custom elements
and attributes also has no impact, but this facility may make
RoboSim annotations even more useful, since they are not
tied to any SDF element.

7.3 Verification

The CyPhyCircus generator is also a faithful implementation
of our rules described in Sect. 6.2 as Xtend methods. The
output for a well-formed p-model is a model file in the folder
cpc-gen. The models produced can be used without extra

information being provided by the user. For instance, our p-
models allow uninitialised constants in a p-model connected
to a platform mapping, allowing the effective modelling of a
family of p-models, which can then be analysed to identify,
for instance, restrictions over these constants that guarantee
a particular property holds.

To facilitate proof, there are several tools that can be
used for automatic simplification and solution of equations.
Maxima [69] and Maple [1], for instance, are popular tools
for symbolic solution. We have enriched RoboTool with a
facility for symbolic reasoning developed using the SymPy
Python library, which allows us to integrate the assembly and
solution of equations alongside the parsing of the symbolic
p-models.

This tight coupling between the modelling tools and
solvers enables more complete solutions to kinematic equa-
tions by allowing model information to be available for
more informed equation parsing, simplification, and solution.
SymPy is very mature, is used in the SfePy and SageMath
scientific libraries, and can handle complex calculus expres-

123

Diagrammatic physical robot models

Fig. 22 CoppeliaSim—loading and using our automatically generated SDF document

sions, Taylor series expansions, and general higher-order
linear ordinary differential equations with constant coeffi-
cients [39].

For each p-model element containing an equation, its input
and output variables, and its local variables and constants,
are hierarchically extracted from the native XML p-model
(representing the metamodel in Sect. 4) into the Python
workspace. Variables used in equations are not restricted to
a pre-defined set of variables and internal meanings. This
allows the solver to handle physical relationships that are
abstract and different from conventional robot kinematics.
We can also obtain solutions for first- and second-order ordi-
nary differential equations of the most well-known ODE
forms used in kinematics.

In the next section, we describe a few example of use of
p-models developed using RoboTool.

8 Case studies

In this section, we present examples to illustrate our three
main areas of contribution: modelling and validation, sim-
ulation, and verification. Section 8.1 describes the use of
p-models for several examples. In Sect. 8.2, we show how we
can leverage p-models to improve automation in the devel-
opment of simulations. Finally, Sect. 8.3 demonstrates the
use of the semantics of p-models in conjunction with that of
d-models to support the verification of properties of interest.

8.1 Modelling and validation

Regarding the use of RoboSim for modelling and evalu-
ation, we are concerned with demonstrating expressivity to
capture common forms of robotic platforms. A full usabil-
ity study with practitioners, however, is out of scope. On the
other hand, RoboTool has been used to support the mod-
elling of a variety of examples, including two large models
described briefly here.

The implementation of the metamodel ensures that the
p-model and platform mapping notations are well-formed;
in that it is described according to the widely used Eclipse

Modeling Framework (EMF) metamodel. Furthermore, as
already mentioned, the validation rules implemented in our
prototype are in one-to-one correspondence with the well-
formedness conditions described here and in [51]. So, tests
of RoboTool are evidence of the suitability of these condi-
tions. We have a base of over 120 examples20 that cover all
the constructs of the notation, and six larger case studies,
some developed with external collaborators, two of which
are presented here.

Each of the 120 examples focuses on a particular con-
struct of the p-model notation. We arrive at 120 p-models to
cover combinations of a construct with various cases of oth-
ers involved in its definition. For instance, when considering
a link, we have models for the various kinds of blocks to

20 https://github.com/UoY-RoboStar/pmodel-examples

123

https://github.com/UoY-RoboStar/pmodel-examples

A. Miyazawa et al.

Fig. 23 Firefighter: robotic platform and Gazebo rendering of the generated SDF document

Fig. 24 p-model of the Firefighter UAV

which they may be connected. The 120 p-models exercise all
constructs of the notation, but cannot always be simulated in
a meaningful way. The larger case studies, on the other hand,
are for real robots. Three of them have not been written by a
developer of the notation. Moreover, they cover a drone, two
different robotic arms, and three different ground robots.

Below, we present two of the larger case studies: the
robotic platforms for a firefighter UAV and a robot arm used
for robot-assisted dressing.
Firefighter UAV

This case study is an unmanned aerial vehicle, shown on
the left in Fig. 23, designed to fight fires.21 This example is
inspired by the Challenge 3 from the MBZIRC 2020 compe-
tition,22 where multiple robots cooperate to extinguish fires
in a building. Our robot approaches the building using its
known GPS location, and upon fire detection, directs water to
extinguish it. We have defined a RoboChart model that spec-
ifies the control software in terms of the services provided
by an abstract robotic platform, and a RoboSim p-model that
describes the details of this robotic platform and how its ser-
vices are realised in terms of sensors, actuators and joints.

Figure 24 shows the p-model that specifies the UAV; it
declares a number of constants (for example, hubThickness,
of type real and value 4.67cm) and it has two parts: drone,
which is an instance of the p-model M600, and payload,

21 https://robostar.cs.york.ac.uk/case_studies/firefighting-UAV/index.
html
22 https://www.youtube.com/watch?v=S0Ok2cnselU

an instance of the p-model Payload. These parts are posi-
tioned in such a way that the drone is at the centre, and the
payload is attached to the bottom of the drone.

Figure 25 presents the p-model for the drone part in
terms of its frame, three other parts (LeftLeg, RightLeg, and
RotorArm), and a link Hub that houses three sensors: a bat-
tery monitor CurrentBattery, an inertial measurement unit
IMU, and a global positioning system GPS.

Figure 26 illustrates the definition of the event bat-

teryInfo of the RoboChart model in terms of the sensor
CurrentBattery of the p-model. In this definition, the value
communicated through the event batteryInfo is defined as a
record Battery, where the percentage attribute is set to the
output opercentage of the sensor CurrentBattery.

The Gazebo rendering of this p-model, based on the SDF
document generated, is on the right in Fig. 23. The complete
model is available.23

The two top-level parts of UAV reflect a separation of con-
cerns between the M600 and the custom Payload developed
by our collaborators. The M600 p-model, whose definition
is informed by a CAD design, is parametric, allowing, for
example, instantiations with different numbers of rotor arms.
The Payload p-model uses components of the RoboSim
library to model servos and the depth and RGB cameras,
whose calibration matrices have been obtained for the spe-
cific hardware used. The platform mapping exploits rich data
types and nondeterminism to capture assumptions of the
application at a high level of abstraction, for example, the
maximum speeds of the drone.
Discussion. Overall, the UAV p-model consists of 43 blocks,
of which 5 are indexed, yielding an equivalent total of
62 blocks. Indexation alone has saved us from defining
another 19 (very similar) blocks, while the automatic gen-
eration of SDF in seconds has enabled an iterative approach
to modelling and validation. While we have found that a
good understanding of relative frame orientations is key to
correctly position blocks in space, the results obtained by
simulating the SDF in Gazebo have allowed rapid valida-

23 https://github.com/hlsa/Verifiability-Node/tree/main/Models/
FirefightingDrone/RoboSIMModel

123

https://robostar.cs.york.ac.uk/case_studies/firefighting-UAV/index.html
https://robostar.cs.york.ac.uk/case_studies/firefighting-UAV/index.html
https://www.youtube.com/watch?v=S0Ok2cnselU
https://github.com/hlsa/Verifiability-Node/tree/main/Models/FirefightingDrone/RoboSIMModel
https://github.com/hlsa/Verifiability-Node/tree/main/Models/FirefightingDrone/RoboSIMModel

Diagrammatic physical robot models

Fig. 25 p-model of the drone component of the Firefighter UAV

tion and iteration. In a matter of the couple of minutes that
it takes to load the SDF document in Gazebo, carry out a
visual inspection of the graphical display, fix the p-model,
and regenerate the SDF, we can improve the model. In this
way, we have, for example, found that in an earlier version
of the model, two rotor arms were erroneously positioned
at the same coordinates. Additionally, issues related to the
positioning of links in the gimbal and inaccurate assignment
of masses were identified during modelling.

Overall, RoboSim abstractions have been useful to deal
with a rather large model in a concise and structured way.
The facilities of the notation have also allowed us to record
simulation assumptions often left implicit. On the other hand,
in spite of the simplified and uniform approach to defining
frames of reference, there is still significant effort involved
in getting their coordinates right. The availability of support
for rapid rendering is very useful, but it may be the case that
actual animation of the platform is needed to reveal some
modelling mistakes.
Robot-assisted dressing

This case study is a robotic arm that assists a potentially
physically impaired user to put on a coat. The need for daily
assistance with dressing is a reality for over 80% of nurs-
ing home occupants. Since this puts pressure on the limited
capacity of care systems, the development of robotic solu-
tions has been explored. Our case study is based on the system
from [6] and the safety assessment results from [21]. The

robotic platform is a Franka-Emika robotic arm24 with a cus-
tom gripper device for grasping a garment while dressing a
user.

We have defined a RoboChart model that specifies the
control software and a RoboSim p-model that models the
robotic arm and how the services used by the software relate
to the sensors, actuators and joints of the robot. The d-model
consists of one controller with six top-level state machines
capturing different submodules of the system. The p-model
(omitted here due to its size) captures the nine degrees-of-
freedom Franka-Emika arm as nine links connected by eight
revolute joints. Additionally, each link has a force sensor and
each joint is actuated using a motor. The custom gripper is
placed at the end of the arm alongside a six-axis force sensor.
Figure 27 presents the Gazebo rendering of the p-model for
the generated SDF. The complete p-model is available.25

Discussion. Overall, the p-model consists of 50 blocks.
Despite the complexity of the model, RoboTool was able
to generate the SDF model in under a second, allowing for
rapid validation of the model in Gazebo. We found the overall
structure of the RoboSim p-model to be a clear representa-
tion of the kinematic chain making up the arm, elucidating
the underlying kinematics and the roles of each sensor and
actuator. We have been able to utilise standard actuator and
sensor types provided by the RoboSim library to generate

24 https://franka.de/
25 https://github.com/hlsa/Verifiability-Node/tree/main/Models/RAD

123

https://franka.de/
https://github.com/hlsa/Verifiability-Node/tree/main/Models/RAD

A. Miyazawa et al.

Fig. 26 Event specification in the platform mapping of the Firefighter
UAV

Fig. 27 Rendering of the p-model of the robot-assisted dressing arm

the equations of the arm based on the specific parameters
provided by the manufacturer. This high level of abstraction
allowed us to rapidly tailor different variants of the model
to match robot arms produced by different vendors in order
to reproduce different robot-assisted dressing systems. The
main limitation has been the need to specify absolute posi-
tions for each link of the arm, while relative joint coordinates
may be an appealing representation of robotic arm poses.
Final considerations

Our notation imposes some restrictions, such as the format
for the specification of orientations. On the other hand, it is
general and flexible in other aspects, such as the specifica-
tion of behaviour, and the allowed patterns of connections
between elements, which includes closed kinematic chains.
The techniques chosen to exploit our models may, however,
impose restrictions. For instance, if translating p-models to
URDF, closed kinematic chains cannot be directly supported.
When translating p-models to SDF, on the other hand, we
do not have this limitation, but must ignore the specified
behaviours of joints, sensors and actuators and are forced to
rely on whichever behaviours are encoded in the simulation
platform.

Our case studies cover ground and air robots, and articu-
lated arms. Developing p-models of underwater robots might
shed light on other features of p-models. Moreover, more
complex examples can push the limits of both RoboSim and
RoboTool. Future work will also investigate translation from
CAD models, which focus on mechanical and material prop-
erties, to p-models.

8.2 Simulation

Regarding our contribution to simulation development, we
are concerned with our set of rules, which define the RoboSim
to SDF translation technique. We have sought evidence that
there are enough rules to translate any RoboSim diagram,
that the rules themselves are well-formed, and that the SDF
documents they generate follow the SDF format definition.
We are also concerned with the scalability of SDF document
generation based on the rules. The scalability of the simu-
lations depends on the simulator and physics engine, and it
is not considered here, but we have had no problems in this
regard in our extensive tests.

The adequacy of the rules has been established firstly by
implementing them, thus demonstrating that they are both
amenable to implementation and type correct, and secondly
by a battery of tests. These include all 120 examples men-
tioned in Sect. 8.1 and the six larger case studies. They
have all been translated into SDF using our tool, and the
corresponding SDF models can be found in the associated
pages26,.27 For each example, we have uploaded the result-
ing SDF document in CoppeliaSim, and inspected the result.
This provides evidence that the resulting SDF documents are
well-formed, and the rules capture the physical properties of
the p-model elements appropriately.

Next, we discuss another case study, where the automat-
ically generated SDF document has been used to simulate
and test an industrial application.
Manufacturing robot

This case study is a robotic arm that uses a camera to identify
parts in a conveyor belt, and pick and place them to manu-
facture devices of a given specification. We have developed
a RoboChart model of the control software, a cyclic refine-
ment of the RoboChart model defined by a d-model, and a
p-model that describes the arm in terms of its links, joints,
sensors, and actuators.

Figure 28 shows the p-model Arm containing four
links, Stand, Arm, Forearm, and Gripper, with the first
two connected through an actuated (BaseMotor) revolute
joint (BaseJoint), and the last three links connected by two
actuated prismatic joints. Each of the links includes informa-
tion about their geometric realisation via bodies. Overall, the
p-model consists of 22 blocks, covering the main elements
of a p-model.
Discussion. In general, establishing the position and orienta-
tion of links can be challenging without visual feedback, but
in this particular case study, this task was straightforward due
to the number of components and the limited number of vari-
ations in orientation. Additionally, we have reused the joints

26 https://robostar.cs.york.ac.uk/case_studies/firefighting-UAV/
27 https://robostar.cs.york.ac.uk/case_studies/assisted-dressing/

123

https://robostar.cs.york.ac.uk/case_studies/firefighting-UAV/
https://robostar.cs.york.ac.uk/case_studies/assisted-dressing/

Diagrammatic physical robot models

Fig. 28 P-model of a robotic arm used in the manufacturing robot case study

from the RoboSim library and specified tailored models of
sensors and actuators.

The p-model has been used in conjunction with the d-
model to automatically generate the SDF document and
a simulation of the control software. The result has been
successfully used as a basis to develop and evaluate a test-
ing approach that relies on a variety of models, including
RoboChart and RoboSim models, to generate test scenarios
and evaluate them using simulation. In particular, the SDF28

and software generated have been used to run the test sce-
narios in CoppeliaSim.
Final considerations

CoppeliaSim has a model editor that provides 3D rendering
and so immediate visual feedback. For p-models, we have a
graphical editor and need to generate SDF to obtain visual
feedback. In a 3D editor, it is easy to position elements of
the model, but it requires effort to define those positions pre-
cisely. Being able to input and update the model in a simple
and direct way more than compensated for the extra effort
of generating the SDF and loading it into CoppeliaSim for
visualisation.

Table 4 summarises information about the size of the SDF
documents generated and translation time for our cases stud-
ies in the previous section and for the manufacturing robot.

28 https://robostar.cs.york.ac.uk/case_studies/assembly-line/

8.3 Verification

Here, we are concerned with our set of rules to gener-
ate CyPhyCircus models. We seek evidence that there are
enough rules, that they are well-formed, and define well-
formed CyPhyCircus programs. We are also concerned with
the scalability of the generation of CyPhyCircus programs
and their use in verification. Further work on automation of
verification techniques for CyPhyCircus, however, is needed.
At the moment, we use a mechanisation of CyPhyCircus in
Isabelle/UTP.

The implementation of the semantic rules from Sect. 6
demonstrates that they are amenable to implementation and
type correct. In addition, the use of the CyPhyCircus parser
determines the validity of the mathematical models defined
by the rules for our examples. Finally, a further case study
described here uses the p-model of a mobile robot and the
encoding of its semantics to establish a property of the robotic
system. This case study provides some evidence that the
semantics of RoboSim p-models can be used in the veri-
fication of properties, but, as noted, further work on proof
automation is still needed.
marXbot

The generated CyPhyCircus models are appropriate for
use with the theorem prover Isabelle/UTP [31]. Figure 29
shows the Isabelle/UTP encoding of the actions MoveCall ,
MoveCallFromDModel , and ReceiveFromDModel also
included in Fig. 18. Such encodings can be generated by a

123

https://robostar.cs.york.ac.uk/case_studies/assembly-line/

A. Miyazawa et al.

Table 4 Data on SDF
documents: generated using
version 1.0.0.202409270944 of
the p-model SDF generator in
Eclipse 2021-12 running on
Ubuntu 22.04

Case study p-model blocks SDF document lines Translation time

FirefighterUAV 39 1952 57 ms

marXbot 49 2471 73 ms

Robot-assisted dressing 54 838 41 ms

Assembly Line 21 428 40 ms

Fig. 29 Isabelle/UTP rendering of part of the CyPhyCircus process in Fig. 18

simple text-to-text transformation: we note how close the
Isabelle/UTP notation is to that used in pen-and-paper CyPhy-
Circus.

A few differences are of note. First, Isabelle requires that
definitions be introduced before use. This is not required
by CyPhyCircus (as usual in Z-based notations), and a top-
down presentation is often adopted like in Fig. 18. It is,
however, required that a CyPhyCircus specification can be
rewritten following a define-before-use order. So, the order
of the CyPhyCircus definitions in the semantics of a p-model
does not impose any challenge for producing an Isabelle/UTP
encoding.

Second, each definition of the encoding corresponds to a
term of a Isabelle/UTP theory that must satisfy some healthi-
ness conditions. These need to be provided as lemmas, which
in Fig. 29 are labelled [closure]. Their proof is a fairly
direct application of healthiness-condition closure laws, and
can be automated. (The lemmas all have the same form, and
by unfolding the definition and applying the closure laws, we
get a proof).

To prove a property in Isabelle/UTP, we need to describe
it in terms of a precondition, a postcondition, and a pericon-
dition. A precondition restricts the initial state of the system.
For our example, we have the following precondition.

Proximity0 distance(time) > sensorThreshold and
lvel < maxSpeed

Here, we consider constants sensorThreshold and max

Speed that record the minimum distance of an obstacle before
it can be sensed by the robot, and the maximum speed of the
robot. The precondition requires that the robot does not start
near an obstacle, and never reaches a speed above the limit
maxSpeed . In the initial state, the robot is stationary, but with
this precondition, our result applies from any state in which
the robot may be already moving, as long as it is not right
up against the obstacle already, and does not move too fast.
We recall that lvel is a d-model constant recording the linear
speed of the robot. The state variables, as mentioned, are
functions of time, and we use Proximity0 distance(time)

123

Diagrammatic physical robot models

to refer to the value of Proximity0 distance at a particular
instant time.

A postcondition restricts the behaviour of the robotic
system when it terminates. Typically, and in our exam-
ple, it does not terminate, and so the postcondition is just
false. More interesting is the pericondition, which restricts
the behaviour once the precondition is satisfied. For our
example, the pericondition is below, where we refer to the p-
model process variables Proximity0 distance, LMotor T ,
RMotor t , and an extra variable t of the Isabelle theory to
represent the current time.

For every sample time t0 (multiple of cycle) such that
Proximity0 distance(t0) ≤ sensorThreshold

there is a time t1 such that
LMotor T (t1) =ǫ 0.0,
RMotor T (t1) =ǫ 0.0, and
t0 ≤ t1 < t0 + t

Here, we note that equality =ǫ is parametrised by a tolerance
ǫ. In our proof, ǫ is 10−9. To automate the proof, we ally the
use of Isabelle/UTP 29 with a model checker Flow* [23].30

The encoding of our model in Isabelle/UTP, as well as proof
artefacts that explain how Isabelle/UTP and Flow* are used
in conjunction, are available.31

9 Conclusions and future work

We have presented RoboSim p-models, a novel graphical
notation for the description of physical artefacts: parts and
robotic platforms, and their connection to a control software
model via a platform mapping. Unlike XML-based notations,
RoboSim block diagrams embed concepts that facilitate the
design of readable and reusable models. A large set of
well-formedness rules characterise valid models and pro-
vide guidance for modellers. Still, using RoboTool, we can
automatically obtain SDF documents and process-algebraic
mathematical descriptions of a p-model and associated plat-
form mapping for use with simulators and verification tools.
Adaptation of the work to deal with a variety of simulators
and other XML-based notations is straightforward, given our
precise description of the translation technique via transfor-
mation rules. In particular, adapting our approach to generate
URDF is primarily a technological issue, with a signifi-
cant proportion of the existing model-to-text transformation
potentially reused.

29 Isabelle/UTP version provided by commit
c9122f143509aebc2ca273990a1e7c1a70609628 of repository
https://github.com/isabelle-utp/utp-main.
30 Flow* version 2.0.0.
31 www.cs.york.ac.uk/robostar/case_studies

The definition of a behaviour for the joints, sensors, and
actuators in a RoboSim block diagram provides a natural
point to link RoboSim p-models to models in other notations.
For sophisticated actuators or sensors, instead of explicit
equations, we may want to use control law tools and simula-
tors. For example, Simulink is a widely used tool for which
verification facilities compatible with those of RoboSim are
available [14]. To have the behaviour of a RoboSim block
defined by a Simulink diagram, instead of equations, is
an attractive option. Integration of RoboSim d-models and
Simulink is explored in [54].

While, in general, SDF could be used directly to create
physical models, RoboSim p-models allow the explicit spec-
ification of behaviours, which is not currently supported by
SDF, and is desirable for documentation and required for
verification. When we translate a p-model to SDF and use a
simulator, the physics engine adopted defines the simulated
behaviour. As such, the use of simulations in our approach
relies on existing simulators, and therefore, we do not directly
address the details of how a simulation is run internally; this
is the role of the physics engine. Compatibility with the p-
model equations is not guaranteed, since different engines
embed different assumptions. Moreover, for optimisation,
the behaviour specified in RoboSim may not be adequate
for simulation. With a p-model, however, we have documen-
tation of the expected behaviour, which is in itself a tool to
understand the faithfulness and threats to the validity of the
simulation. Further work is exploring the generation of sim-
ulations using a physics engine that gives transparency in
terms of the equations that it uses.

Compatibility between simulation and mathematical mod-
els can also be affected by annotations. In Fig. 5, for instance,
the value of the xyz attribute of axis can be entirely differ-
ent from the value of the constant AXIS in LHinge. In this
case, the definition of LHinge and the model obtained by
translation to SDF do not match. This feature can be use-
ful to explore various simulations, and we, therefore, do not
enforce compatibility.

Once the values of all constants of a p-model are defined, it
is possible to enforce additional well-formedness conditions.
For example, we can make sure that the value for the trans-

parency of a BodyDefinition is a real value between 0 and
1. Such checks, along with possible checks of compatibility
of values of attributes in the p-model and in the annotations,
are left as future work. As opposed to the well-formedness
conditions presented here and enforced in RoboTool, these
extra checks are dependent on the semantics of SDF.

As said, RoboChart and RoboSim d-models are related: a
refinement relation allows the comparison of RoboChart and
RoboSim d-models, and an automatic refinement strategy
from RoboChart models to RoboSim models is under devel-
opment [16]. Additionally, a new notation, RoboWorld [4]
has been developed to support the abstract specification of

123

www.cs.york.ac.uk/robostar/case_studies

A. Miyazawa et al.

operational requirements and interaction patterns between
robots and the environment. Within the RoboStar framework,
RoboWorld sits at the same level as RoboChart models. As
such, a natural direction for future work is to establish the
relationship between RoboSim p-models and RoboWorld.

The main line for future work, however, is the additional
exploration of verification tools to use CyPhyCircus mod-
els to prove properties of the robots that depend on their
physical bodies. With this, besides generation of low-cost
simulations, RoboSim will enable verification with a higher
level of assurance. Our results show promise in the use of
Isabelle/UTP, a well-established theorem prover, in conjunc-
tion with a model checker to improve automation. We will
investigate how model checking and theorem proving can
be combined to not only optimise the verification, but also
to improve understanding of why proofs fail and how mod-
els can be changed to facilitate verification. Finally, we will
explore additional proof strategies using a variety of model
checkers.

In current work, we are integrating RoboSim and its
sister languages with existing commercial tools for test-
ing and proof, including using p-models to support testing
with hardware-in-the-loop. We are also pursuing indus-
trial demonstrators in an effort to encourage acceptance in
industry of our approach and, perhaps more importantly,
model-based approaches to software engineering.

Overall, in future work, it will be important to compare our
approach to those enabled by other simulators widely used
by roboticists. Full evaluation experiments will be needed to
provide data to evidence the improvements brought about by
RoboSim and its associated techniques.

Acknowledgements Our work is funded by the Royal Academy
of Engineering, grant CiET1718/45, and the UK EPSRC, grants
EP/R025479/1 and EP/V026801/1. We are also grateful to members
of RoboStar (www.cs.york.ac.uk/robostar/) for useful discussions.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Aladjev, V.: Computer algebra system maple: a new software
library. In: International Conference on Computational Science,
pp. 711–717. Springer (2003)

2. Aravind, G., Vasan, G., Kumar, T. S. B. G.,Balajiand R. N., Ilango,
G. S.: A control strategy for an autonomous robotic vacuum cleaner
for solar panels. In: Texas Instruments India Educators’ Confer-
ence, pp. 53–61 (2014)

3. Askarpour, M., Lestingi, L., Longoni, S., Iannacci, N., Rossi, M.,
Vicentini, F.: Formally-based model-driven development of col-
laborative robotic applications. J. Intell. Robot. Syst. 102(3), 59
(2021)

4. Baxter, J., Carvalho, G., Cavalcanti, A. L. C., Rodrigues, F.:
RoboWorld: verification of robotic systems with environment in
the loop. Formal Aspects of Comput. (2023)

5. Baxter, J., Ribeiro, P., Cavalcanti, A.L.C.: Sound reasoning in tock-
CSP. Acta Inform. 59, 125–162 (2022)

6. Bellamy, D. D., Chance, G., Caleb-Solly, P. Dogramadzi, S.: Safety
assessment review of a dressing assistance robot. Front. Robotics
AI 8 (2021)

7. Benhabib, B., Zak, G., Lipton, M.G.: A generalized kinematic mod-
eling method for modular robots. J. Robot. Syst. 6(5), 545–571
(1989)

8. Bi, Z. M., Zhang, W. J., Chen, I.-M., Lang, S. Y. T.: Automated gen-
eration of the D-H parameters for configuration design of modular
manipulators. Robotics Comput. Integr. Manuf. 23(5)(2007)

9. Bonani, M., Longchamp, V., Magnenat, S., Rétornaz, P., Burnier,
D., Roulet, G., Vaussard, F., Bleuler, H., Mondada, F.: The
marXbot, a miniature mobile robot opening new perspectives for
the collective-robotic research. In: IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, pp. 4187–4193 (2010)

10. Bozhinoski, D., Di Ruscio, D., Malavolta, I., Pelliccione, P.,
Crnkovic, I.: Safety for mobile robotic systems: a systematic map-
ping study from a software engineering perspective. J. Syst. Softw.
151, 150–179 (2019)

11. Brambilla, M., Brutschy, A., Dorigo, M., Birattari, M.: Property-
driven design for robot swarms: a design method based on
prescriptive modeling and model checking. ACM Trans. Auton.
Adapt. Syst. 9(4) (2014)

12. Casalino, A., Zanchettin, A.M., Piroddi, L., Rocco, P.: Optimal
scheduling of human–robot collaborative assembly operations with
time petri nets. IEEE Trans. Autom. Sci. Eng. 18(1), 70–84 (2021)

13. Cavalcanti, A. L. C., Barnett, W., Baxter, J., Carvalho, G., Filho,
M. C., Miyazawa, A., Ribeiro, P., Sampaio, A. C. A.: RoboStar
Technology: A Roboticist’s Toolbox for Combined Proof, Simula-
tion, and Testing. Springer International Publishing, pp. 249–293
(2021)

14. Cavalcanti, A.L.C., Clayton, P., O’Halloran, C.: From control law
diagrams to Ada via Circus. Formal Aspects Comput. 23(4), 465–
512 (2011)

15. Cavalcanti, A. L. C., Dongol, B., Hierons, R., Timmis, J., Wood-
cock, J. C. P. (eds): Software Engineering for Robotics. Springer
International Publishing (2021)

16. Cavalcanti, A. L. C., Conserva Filho, M., Ribeiro, P., Sampaio,
A. C.A.: Laws of timed state machines. Comput. J. (2023)

17. Cavalcanti, A.L.C., Miyazawa, A., Payne, R., Woodcock, J.: Sound
simulation and co-simulation for robotics. In: Mazzara, M., Meyer,
B. (eds.) Present and Ulterior Software Engineering, pp. 173–194.
Springer International Publishing, Berlin (2017)

18. Cavalcanti, A. L. C., Ribeiro, P., Miyazawa, A., Sampaio, A. C. A.,
Conserva Filho, M. S., Didier, A.: RoboSim Reference Manual.
University of York (2019). http://robostar.cs.york.ac.uk/notations/

19. Cavalcanti, A.L.C., Sampaio, A.C.A., Miyazawa, A., Ribeiro, P.,
Conserva Filho, M., Didier, A., Li, W., Timmis, J.: Verified simu-
lation for robotics. Sci. Comput. Program. 174, 1–37 (2019)

20. Cavalcanti, A. L. C., Sampaio, A. C. A., Ribeiro, P., Miyazawa, A.,
Conserva Filho, M., Didier, A.: RoboSim Reference Manual. Tech-
nical report, University of York, Department of Computer Science,
York, UK, (2020). http://robostar.cs.york.ac.uk/notations/

123

www.cs.york.ac.uk/robostar/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://robostar.cs.york.ac.uk/notations/
http://robostar.cs.york.ac.uk/notations/

Diagrammatic physical robot models

21. Chance, G., Camilleri, A., Winstone, B., Caleb-Solly, P., Dogra-
madzi, S.: An assistive robot to support dressing—strategies for
planning and error handling. In: 6th IEEE International Confer-
ence on Biomedical Robotics and Biomechatronics, pp. 774–780
(2016)

22. Chen, I.-M., Yeo, S.H., Chen, G., Yang, G.: Kernel for modular
robot applications: automatic modeling techniques. Int. J. Robot.
Res. 18(2), 225–242 (1999)

23. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer
for non-linear hybrid systems. In: Sharygina, N., Veith, H. (eds.)
Computer Aided Verification, pp. 258–263. Springer, Berlin (2013)

24. Ciszewski, M., Mitka, L., Buratowski, T., Giergiel, M.: Modeling
and simulation of a tracked mobile inspection robot in Matlab and
V-Rep software. J. Autom. Mob. Robotics Intell. Syst. 5–11 (2017)

25. De Laet, Tinne, Bellens, Steven, Smits, Ruben, Aertbelien, Erwin,
Bruyninckx, Herman, De Schutter, Joris: Geometric relations
between rigid bodies (part 1): semantics for standardization. IEEE
Robotics Autom. Mag. 20(1), 84–93 (2013)

26. De Laet, T., Bruyninckx, H., De Schutter, J.: Rigid body pose and
twist scene graph founded on geometric relations semantics for
robotic applications. In: 2013 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 2398–2405 (2013)

27. Denavit, J., Hartenberg, R.S.: A kinematic notation for lower-pair
mechanisms based on matrices. Trans. Assoc. Mech. Eng. J. Appl.
Mech. 22, 215–221 (1955)

28. Farrell, M., Luckcuck, M., Fisher, M.: Robotics and integrated for-
mal methods: necessity meets opportunity. In: Furia, C. A., Winter,
K. (eds) Integrated Formal Methods, Volume 11023 of Lecture
Notes in Computer Science, pp. 161–171. Springer (2018)

29. Fleurey, F., Solberg, A.: A domain specific modeling language sup-
porting specification, simulation and execution of dynamic adap-
tive systems. In: 12th International Conference on Model Driven
Engineering Languages and Systems, pp. 606–621. Springer
(2009)

30. Foster, S.: Hybrid relations in Isabelle/UTP. In: 7th International
Symposium on Unifying Theories of Programming, Volume 11885
of Lecture Notes in Computer Science, pp. 130–153. Springer
(2019)

31. Foster, S., Baxter, J., Cavalcanti, A. L. C., Miyazawa, A., Wood-
cock, J. C. P.: Automating verification of state machines with
reactive designs and Isabelle/UTP. In: Bae, K., Ölveczky, P. C.
(eds.) Formal Aspects of Component Software. pp. 137–155.
Springer, Cham (2018)

32. Foughali, M., Berthomieu, B., Dal Zilio, S., Ingrand, F., Mallet,
A.: Model checking real-time properties on the functional layer
of autonomous robots. In: Ogata, K., Lawford, M., Liu, S. (eds)
Formal Methods and Software Engineering, pp. 383–399. Springer
(2016)

33. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe,
A. W.: FDR3—a modern refinement checker for CSP. In: Tools
and Algorithms for the Construction and Analysis of Systems, pp.
187–201 (2014)

34. Giese, H., Schäfer, W.: Model-Driven Development of Safe
Self-optimizing Mechatronic Systems with MechatronicUML. In:
Cámara, J., Lemos, R., Ghezzi, C., Lopes, A. (eds) Assurances
for Self-Adaptive Systems—Principles, Models, and Techniques,
Volume 7740 of Lecture Notes in Computer Science, pp. 152–186.
Springer (2013)

35. Gobillot, N., Lesire, C., Doose, D.: A modeling framework for
software architecture specification and validation. In: Brugali, D.,
Broenink, J. F., Kroeger, T., MacDonald, B. A. (eds) Simulation,
Modeling, and Programming for Autonomous Robots, pp. 303–
314. Springer International Publishing (2014)

36. Hoare, C.A.R., Jifeng, He.: Unifying Theories of Programming.
Prentice-Hall, Hoboken (1998)

37. Ierusalimschy, R., Figueiredo, L.H., Filho, W.C.: Lua—an extensi-
ble extension language. Softw. Pract. Exp. 26(6), 635–652 (1996)

38. Jifeng, H.: From CSP to hybrid systems. In: A Classical Mind, pp.
171–189. Prentice-Hall (1994)

39. Joyner, D., Čertík, O., Meurer, A., Granger, B.E.: Open source com-
puter algebra systems: SymPy. ACM Commun. Comput. Algebra
45(3/4), 225–234 (2012)

40. Kelmar, L., Khosla, P.K.: Automatic generation of kinematics for
a reconfigurable modular manipulator system. In: IEEE Interna-
tional Conference on Robotics and Automation, vol. 2, pp. 663–668
(1988)

41. Kim, S., Peavy, M., Huang, P.-C., Kim, K.: Development of BIM-
integrated construction robot task planning and simulation system.
Autom. Constr. 127, 103720 (2021)

42. Koenig, N., Andrew, H.: Design and use paradigms for gazebo,
an open-source multi-robot simulator. In: 2004 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, vol. 3, pp.
2149–2154. IEEE (2004)

43. Leung, K., Schmerling, E., Zhang, M., Chen, M., Talbot, J., Gerdes,
J.C., Pavone, M.: On infusing reachability-based safety assurance
within planning frameworks for human–robot vehicle interactions.
Int. J. Robotics Res. 39(10–11), 1326–1345 (2020)

44. Liu, J., Lv, J., Quan, Z., Zhan, N., Zhao, H., Zhou, C., Zou, L.: A
calculus for hybrid CSP. In: Ueda, K. (ed) Programming Languages
and Systems, Volume 6461 of Lecture Notes in Computer Science,
pp. 1–15. Springer (2010)

45. Luckcuck, M., Farrell, M., Dennis, L. A., Dixon, C., Fisher, M.:
Formal specification and verification of autonomous robotic sys-
tems: a survey. ACM Comput. Surv. 52(5), (2019)

46. Lynch, K. M., Park, F. C.: Modern Robotics: Mechanics, Planning,
and Control, 1st edn. Cambridge University Press (2017)

47. The MathWorks, Inc: Simulink. www.mathworks.com/products/
simulink

48. Meister, E., Nosov, E., Levi, P.: Automatic onboard and online
modelling of modular and self-reconfigurable robots. In: 6th IEEE
Conference on Robotics, Automation and Mechatronics, pp. 91–96
(2013)

49. Messner, B., Tilbury, D.: DC Motor Speed: System Mod-
eling (2011). http://ctms.engin.umich.edu/CTMS/index.php?
example=MotorSpeed§ion=SystemModeling

50. Michel, O.: Webots: professional mobile robot simulation. Int. J.
Adv. Rob. Syst. 1(1), 39–42 (2004)

51. Miyazawa, A., Cavalcanti, A. L. C., Ahmadi, S., Post, M., Tim-
mis, J.: RoboSim Physical Modelling: Diagrammatic Physical
Robot Models. Technical report, University of York, Department
of Computer Science, York, UK (2020). http://robostar.cs.york.ac.
uk/notations/

52. Miyazawa, A., Ribeiro, P., Li, W., Cavalcanti, A. L. C., Timmis, J.:
Automatic property checking of robotic applications. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp.
3869–3876 (2017)

53. Munive, J. H. Y., Struth, G., Foster, S.: Differential Hoare logics and
refinement calculi for hybrid systems with Isabelle/HOL. In: 18th
International Conference on Relational and Algebraic Methods in
Computer Science, volume 12062 of Lecture Notes in Computer
Science, pp. 169–186. Springer (2020)

54. Murray, Y., Sirevåg, M., Ribeiro, P., Anisi, D. A., Mossige, M.:
Safety assurance of an industrial robotic control system using hard-
ware/software co-verification. Sci. Comput. Program. 216, (2022)

55. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: A Proof
Assistant for Higher-order Logic. Springer, Berlin (2002)

56. Nordmann, A., Hochgeschwender, N., Wigand, D., Wrede, S.: A
survey on domain-specific modeling and languages in robotics. J.
Softw. Eng. Robotics 7(1), 75–99 (2016)

57. OMG: OMG Systems Modeling Language (OMG SysML), Ver-
sion 1.3 (2012)

123

www.mathworks.com/products/simulink
www.mathworks.com/products/simulink
http://ctms.engin.umich.edu/CTMS/index.php?example=MotorSpeed§ion=SystemModeling
http://ctms.engin.umich.edu/CTMS/index.php?example=MotorSpeed§ion=SystemModeling
http://robostar.cs.york.ac.uk/notations/
http://robostar.cs.york.ac.uk/notations/

A. Miyazawa et al.

58. OMG: OMG Unified Modeling Language (2015)
59. Paredis, C.J.J., Brown, H.B., Khosla, P.K.: A rapidly deployable

manipulator system. In: Proceedings of IEEE International Confer-
ence on Robotics and Automation, vol. 2, pp. 1434–1439 (1996)

60. Park, F.C., Bobrow, J.E., Ploen, S.R.: A lie group formulation of
robot dynamics. Int. J. Robotics Res. 14(6), 609–618 (1995)

61. Rohmer, E., Singh, S. P. N., Freese, M.: V-REP: a versatile and
scalable robot simulation framework. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems, vol. 1, pp. 1321–
1326. IEEE (2013)

62. Roscoe, A. W.: Understanding concurrent systems. In: Texts in
Computer Science. Springer (2011)

63. Scherer, S., Lerda, F., Clarke, E. M.: Model checking of robotic
control systems. In: 8th International Symposium on Artificial
Intelligence, Robotics and Automation in Space (2005)

64. Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics:
Modelling, Planning and Control. Springer Publishing Company,
Incorporated (2008)

65. Tola, D., Corke, P.: Understanding urdf: a survey based on user
experience (2023)

66. Vicentini, F., Askarpour, M., Rossi, M.G., Mandrioli, D.: Safety
assessment of collaborative robotics through automated formal ver-
ification. IEEE Trans. Rob. 36(1), 42–61 (2020)

67. Woodcock, J.C.P., Davies, J.: Using Z—Specification, Refinement,
and Proof. Prentice-Hall, Hoboken (1996)

68. Yao, W., Dai, W., Xiao, J., Lu, H., Zheng, Z.: A simulation system
based on ROS and Gazebo for RoboCup middle size league. In:
IEEE International Conference on Robotics and Biomimetics, pp.
54–59 (2015)

69. Žáková, K.: Maxima—an open alternative for engineering edu-
cation. In: IEEE Global Engineering Education Conference, pp.
1022–1025. IEEE (2011)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Alvaro Miyazawa is a lecturer at
the department of computer sci-
ence of the University of York and
a member of the RoboStar Cen-
tre for Software Engineering for
Robotics. Having completed BSc
in computer science at the Uni-
versity of Sao Paulo and doctoral
research at the University of York,
his main research interests are for-
mal semantics and refinement for
domain-specific languages and graph-
ical notations and the develop-
ment of verification strategies to
support high levels of automation

in program verification. He has applied and developed formal tech-
niques in various fields, including systems engineering, safety-critical
real-time systems, and robotics. Currently, his research focuses on
modelling, testing, simulation, and verification for robotics.

Sharar Ahmadi is a research
software engineer at the National
Centre for Atmospheric Science
at the University of Reading, UK.
She formerly worked as a post-
doctoral research fellow in com-
puter science at the University of
Surrey, UK, and prior to that as
a postdoctoral research associate
at the University of York, UK.
She received her PhD in com-
puter software engineering from
the Amirkabir University of Tech-
nology (Tehran Polytechnic), Iran.
For more information, contact her

at s.ahmadi@reading.ac.uk.

Ana Cavalcanti is a professor
at the University of York, UK,
and holds a Royal Academy of
Engineering Chair in Emerging
Technologies. In that role, she is
Director of the RoboStar Centre
on Software Engineering for Robotics.
She previously held a Royal Soci-
ety Industry Fellowship, which pro-
vided her with the ideal opportu-
nity to understand and contribute
to the practice of formal methods
working with QinetiQ. Her main
scientific achievements have been
on the design and justification of

sound refinement-based program development and verification tech-
niques. She has covered theoretical and practical integration with
industry strength technology: concurrency, object orientation, and test-
ing, dealing now with mobile and autonomous robots. She has led the
development and justification of refinement theories, notations, and
techniques, and tools to cope with control systems. Her work provides
support for graphical notations popular with engineers and for main
stream programming languages. It is distinctive in that it has compre-
hensive coverage of practical languages, rather than idealized nota-
tions. It also supports high degrees of automation to enable usability
and scalability. She has chaired the Programme Committee of leading
conferences and been a member of numerous Programme Committees.
Currently, she is the Chair of the Formal Methods Europe Board.

James Baxter is a researcher
in computer science at the Uni-
versity of York and part of the
RoboStar Centre for Software Engi-
neering for Robotics. His research
interests are in the area of soft-
ware engineering and formal meth-
ods. In particular, he is interested
in verification techniques and for-
mal semantics for cyber-physical
systems.

123

Diagrammatic physical robot models

Mark Post received his MSc and
PhD in Space Engineering from
York University in Canada and is
currently a senior lecturer in Intel-
ligent Systems and Robotics at
the University of York in the UK.
His research focuses on adapt-
able, modular, autonomous robots,
and cyber-physical systems for space
and other challenging and distant
environments.

PedroRibeiro is a lecturer in com-
puter science at the University of
York, UK. Previously, he was a
research fellow in the School of
Physics Engineering and Technol-
ogy and before that a research
associate. He completed his PhD
in CS in the area of formal meth-
ods. His research interests span
the breadth of the engineering life-
cycle for robotics, including design
and development of domain-specific
notations and their formal seman-
tics, model-based testing and ver-
ification using automated proof

techniques. He is a member of the RoboStar Centre for Excellence in
Software Engineering for Robotics and a founding member of Formal
Methods Europe’s communications committee.

Jon Timmis is professor of intel-
ligent and adaptive systems and
is the Vice-Chancellor of Aberyst-
wyth University. Jon obtained his
degree and PhD in computer sci-
ence from Aberystwyth and between
2000 and 2024 held academic appoint-
ments at the University of Kent,
University of York, and Sunder-
land University prior to returning
to Aberystwyth in January 2024.
His research interests are in the
modelling and simulation of bio-
logical and robotic systems, along
with biologically inspired systems

including immune system, swarms, and evolutionary robotics. He is a
previous recipient of a Royal Society-Wolfson Research Merit award
and a Royal Academy of Engineering Enterprise Fellowship.

Thomas Wright is a post-doctoral
researcher in Formal Methods at
Aarhus University. He completed
his PhD in the Edinburgh Labora-
tory for Foundations of Computer
Science in 2022 on formal lan-
guages and model checking tech-
niques for biochemical networks.
Since then, he has worked on devel-
oping theorem proving, mode

123

	Diagrammatic physical robot models
	Abstract
	1 Introduction
	2 Related work
	3 RoboSim control software
	4 RoboSim physical models
	4.1 Overview
	4.1.1 Diagram elements: blocks and connections
	4.1.2 p-models
	4.1.3 Structuring mechanisms
	4.1.4 Platform mappings
	4.1.5 Annotations

	4.2 Metamodel
	4.3 Well-formedness conditions

	5 Mapping to SDF
	5.1 SDF
	5.2 RoboSim versus SDF
	5.3 Automatic translation from RoboSim to SDF

	6 Mapping to hybrid state-rich CSP
	6.1 Overview of RoboSim semantics
	6.2 Semantic rules

	7 RoboTool
	7.1 Modelling and Validation
	7.2 Simulation
	7.3 Verification

	8 Case studies
	8.1 Modelling and validation
	8.2 Simulation
	8.3 Verification

	9 Conclusions and future work
	Acknowledgements
	References

