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Abstract—As the population rapidly ages, Alzheimer’s disease
(AD), the most common form of dementia, urgently requires
the identification of reliable structural brain biomarkers and
the development of effective therapeutic strategies. Multiple
multi-task learning (MTL) paradigms have been developed to
enhance model generalization by sharing information between
tasks to predict AD progression and accurately identify MRI-
associated biomarkers. Unlike previous MTL approaches that
consider only a single kind of cognitive score to predict the
complicated AD progression over time, we have developed an
innovative MTL method to deal with various cognitive scores
simultaneously, with each focusing on different aspects of patient
cognition. To effectively capture the intricate associations among
different cognitive scores at multiple time points, we first propose
an Adaptive Multiple Cognitive Objective Temporal (AMCOT)
task-relationship binding penalty mechanism. This mechanism
adaptively reveals temporal correlations between various cogni-
tive scores at different time points and uses these relationships
to predict cumulative disease progression accurately. To select
the most informative MRI features in AD progression, we
consider integrating the sparse group Lasso into our model.
Our algorithms are designed to handle large datasets efficiently.
Empirical evaluation on the Alzheimer’s disease dataset shows
that our approach significantly outperforms existing state-of-the-
art algorithms in both overall and individual task performance.
Additionally, we applied stability selection techniques to identify
stable MRI biomarkers and analyzed their temporal patterns to
gain insights into AD progression. The implementation source can
be found at https://github.com/XuanhanFan/MTL-AMCOT-BB.

Index Terms—Alzheimer’s Disease, disease progression, cogni-
tive score,multi-task learning, Adaptive Multi-Cognitive Objec-
tive Temporal Task, identification of biomarkers

I. INTRODUCTION

Alzheimer’s Disease (AD) [1] is a widespread neurodegen-

erative disorder marked by severe dementia. The International

World Alzheimer’s Disease Report [2] states that 75% of

dementia cases remain undiagnosed. With an aging global

population, the number of individuals with dementia could rise
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to 152.8 million by 2050. Early intervention is vital as AD is

irreversible and currently incurable, yet definitive diagnosis

often depends on invasive procedures like brain biopsies or

autopsies, hindering early diagnosis and treatment. Research

into AD biomarkers and developing predictive models is

essential. Various cognitive scoring tools, such as the Clinical

Dementia Rating Scale-Sum of the Boxes (CDR-SB) [3], the

Mini-Mental State Examination (MMSE) [4], the Alzheimer’s

Disease Assessment Scale-cognition sub-scale (ADAS-Cog)

[5], and the Rey Auditory Verbal Learning Test (RAVLT)

[6], are crucial for assessing cognitive function and daily

activities. These instruments, combined with AD-related MRI

biomarkers [1], play a critical role in early diagnosis and

progression prediction.

Advanced machine learning techniques are increasingly

applied in modelling MRI features and cognitive scores to

enhance AD research through disease classification, survival

analysis, and regression modelling. Traditional single-task

regression methods often neglect correlations across multiple

future cognitive assessments despite AD’s consistent pathol-

ogy over time. Multi-task learning (MTL) [12] addresses this

by analyzing multiple cognitive assessments across different

time points, capturing intrinsic correlations especially in cases

where feature numbers exceed sample sizes, thereby boosting

model performance. While significant strides have been made

in using MTL for predicting disease progression, challenges

persist in accurately identifying and modelling these task

correlations effectively.

Physicians utilize cognitive tests and MRI scans to evaluate

patients’ cognitive status and tailor treatment plans, espe-

cially for AD. Acknowledging the need for comprehensive

assessment, we introduced a novel MTL model that harnesses

correlations across multiple cognitive states over time. Our

model, which uses an adaptive multi-target temporal task

matrix approach as depicted in Fig.1, merges various cognitive

and temporal aspects to enhance prediction accuracy. This



Fig. 1. The AMCOT method flowchart integrates measurements of target scores and temporal smoothness. During the temporal-target mapping phase, we
merge temporal smoothness and correlations among various targets at different times to create a temporal-target correlation matrix. The mapping of target
correlations is depicted in Fig 2.

approach aligns cognitive scores with disease progression at

multiple points, improving both the predictive accuracy and

interpretability of our findings.

We summarize our contributions as follows:

• Adaptive MTL Framework: The MTL-AMCOT model

we developed adaptively integrates multiple cognitive

scores and temporal data, accurately reflecting AD pro-

gression and outperforming multiple baseline methods i

in accuracy and robustness.

• Optimization Enhancements: We enhanced the Accel-

erated Proximal Gradient Method (APM) [9] by incorpo-

rating the Barzilai-Borwein (BB) step [20] and line search

to address high iteration numbers and slow convergence

in large-scale AD data, boosting computational efficiency.

• Interpretable and Effective Methodology: Unlike exist-

ing deep learning approaches with limited interpretabil-

ity, our method provides clear insights and effectively

uses multi-target cognitive scores to identify stable MRI

biomarkers over time, offering significant clinical value

for AD biomarker identification.

II. RELATED WORK

Zhou J et al. [16] introduced the TGL model, an MTL ap-

proach for longitudinal disease analysis using a common fea-

ture set across all time points, but not accounting for biomarker

variability. The cFSGL method [23], utilizing a sparse group

Lasso penalty [19], refines this by enabling task-specific fea-

ture selection and maintaining temporal smoothness, indicating

minor score changes over time [16] [23]. Romeo L et al.

[24] developed a spatio-temporal MTL approach with a graph-

based framework for diabetes complications, focusing on local

temporal dependencies. The Longitudinal Stability Adjustment

(LSA) [25] addresses global temporal correlations by integrat-

ing long-term progression data. Zhou M et al. [26] and Liu

X et al. [27] presented AutoTR and an MTL model using

the Laplacian sparse group Lasso, respectively, emphasizing

temporal dynamics without considering multi-cognitive corre-

lations. Conversely, Liang W et al. [28] proposed BGP-MTFL

for exploring multi-task relationships in cognitive scoring,

excluding progression and temporal dynamics.

Deep neural networks, especially RNNs [17] and LSTMs,

effectively process time-series data by capturing long-term

dependencies. LSTMs manage complex multivariate patterns

through gating mechanisms. Yet, traditional missing value

techniques like zero or mean padding can impede performance.

Adaptive imputation models, such as Nguyen et al. [10]

forward-filling with MinimalRNN and Liang W et al. [11] end-

to-end deep MTL framework for progression forecasting, are

addressing these limitations. Despite advancements, the non-

interpretability of deep neural networks [15] remains a signifi-

cant barrier in healthcare. In contrast, traditional MTL methods

provide better interpretability by grouping MRI features by

brain regions, enhancing feature correlation integration and

ROI clarity, and aiding feature selection through various

penalties [21] [33] [34] [18].

III. METHODS

A. Multi-task Learning

In the temporal domain, each cognitive measure score at

a specific time is considered a separate task, creating an

MTL problem with t tasks. For each task i ∈ {1, . . . , t},

there is a set of samples (Xo
i , y

o
i ) where Xo

i ∈ R
ni×p

represents the input data and yoi ∈ R
ni the output data for

cognitive goals o. We denote all input data across t tasks as

Xo = [Xo
1 , . . . , X

o
t ] and all output data as Y o = [yo1, . . . , y

o
t ].

The regression parameter matrices for these tasks are repre-

sented by WO = [wj
1, . . . , w

O
t ] ∈ R

p×(t×O). Each row in

X reflects all characteristics of a patient for the i-th task,

while each column relates to a specific MRI biomarker at

baseline. The model uses a squared loss function defined as

L(Y,X,W ) = 1
2

∑t

i=1

∑O

j=1 ∥X
j
i W

j
i − Y

j
i ∥

2
2.

B. Temporal Domain Task Relationships

In the temporal domain, inter-task relationships correlate

AD progression with time. Progression i is defined as δyi =
yi − yi+1, where yoi is the cognitive score at time i for target

o in set O. Due to the slow, subtle initial progression of

AD, δyi is typically small, indicating temporal smoothness.

We assume minimal differences between consecutive cognitive



Fig. 2. Variation in correlational information between scores on different cognitive objectives at different time points.

scores, correlating these with model variations. The penalty

term for temporal task regularization is defined as follows:

|yoi+1 − yoi | = |Xwo
i+1 −Xwo

i | = |X
(

wo
i+1 − wo

i

)

| (1)

C. Target Score Correlation

To predict AD progression, we use a set of cognitive

target scores O to model different target tasks concurrently.

We normalized cognitive scores to z-scores to address scale

disparities, unifying the data. Using the Pearson correlation

coefficient, we developed a correlation matrix to examine

the relationships among cognitive score tasks, uncovering

notable temporal variations in correlations, depicted in Fig. 2.

This analysis prompted the creation of an adaptive temporal

correlation matrix that dynamically captures the evolving

interrelations among cognitive scores over time.

ci,jτ =
cov(yiτ , y

j
τ )

σyi
τ
σ
y
j
τ

(2)

where i, j ∈ O. yin represents the cognitive scores for the

n samples of task i, the scores for other tasks are approx-

imated by the correlation coefficients c(i, j) as shown by:

yin ≈ c(i, j) · yjn. Based on these correlation coefficients,

we construct multiple target correlation matrices at time τ ,

denoted as Mτ .

Mτ =











c1,1τ −c1,2τ · · · −c1,oτ

−c2,1τ c2,2τ · · · −c2,oτ

...
...

. . .
...

−co,1τ −co,2τ · · · co,oτ











(3)

D. Temporal-Target correlation and AMCOT Penalty

We created a task relationship matrix R using temporal

smoothness and target association matrices, as detailed in

Algorithm 1. Through the target time correlation matrix,

we can more effectively monitor and evaluate the condition

changes and cognitive decline rate of AD patients. Therefore,

we have the following AMCOT penalty ∥ℜ∥:

∥ℜ∥ = ∥WR∥

=|
T
∑

τ=1

(W i −M (i,j)
τ ·W j) +

T−1
∑

τ=1

(Wτ+1 −Wτ )| (4)

E. One Novel MTL Method

The L1-norm promotes sparsity in the coefficient ma-

trix. Extending this, the L2,1-norm, defined as ∥W∥2,1 =
∑

j

√

∑

i w
2
i,j , where wi,j represents the matrix element at

row i and column j, aids in selecting common biomarkers

across all tasks. We introduce a novel MTL framework with

AMCOT penalty (MTL-AMCOT) defined as follows:

min
W

1

2

t
∑

i=1

O
∑

j=1

∥Xj
i W

j
i − Y

j
i ∥

2
2 + λ1

O
∑

j=1

∥W j∥1

+ λ2

O
∑

j=1

∥W j∥2,1 + λ3∥ℜ∥1.

s.t.ℜ = WR. (5)

Where λ1, λ2, λ3 are fine-tuned parameters.

IV. OPTIMIZATION ALGORITHMS

In this section, we develop an optimization algorithm that

improves upon the APM approach using a two-point step

gradient method to solve the objective function of MTL-

AMCOT.

A. The APM-Based Algorithm

We use the APM. Due to its fast convergence as a class of

first-order methods [13], APM has been widely used to solve

MTL problems. Its form is as follows:

min
W

L(W ) = f(W ) + g(W ), (6)

Where f(W ) is a smooth convex function and g(W ) is a

non-smooth convex function. APM is built on two sequences,

the search point {Sk} and the approximation point {Wk}.

Sk is a linear combination of Wk−1 and Wk. Since g(W )
is a non-smooth convex function, we need to solve for the

approximation point. The approximation point Wi is given by:

So
k+1 = W o

k + αk(W
o
k −W o

k−1) (7)

W o
k+1 = π(So

k − ηk∇f(So
k)) (8)

where αk is the momentum factor and π(V ) is the proximal

operator of V , with ηk representing the step size. Updating

ηk in the APM depends on specific conditions to ensure



feasible domain convergence. The appropriate ηk must satisfy

the following inequality:

f(Wk) ≤
O
∑

j=1

fη(W
j
k , S

j
k) (9)

= f(Sk) + ⟨∇f(Sk),Wk − Sk⟩+
1

2ηk
∥Wk − Sk∥

2
F .

However, the update process can elevate computational

costs. A key step in our APM-based [22] algorithm involves

calculating the proximal operator that integrates three non-

smooth penalty terms, reformulated as follows:

π(V j) = argmin
W

O
∑

j=1

1

2
∥W j − V j∥2F + λ1

O
∑

j=1

∥W j∥1

+ λ2

O
∑

j=1

∥W j∥2,1 + λ3∥ℜ
T ∥1. (10)

where V j = S
j
i − 1

ηk
f ′(Sj

i ). In Eq. 10, each row of W is

obviously independent.

Incorporating the BB step size into the APM, we dynami-

cally adjust the step size ηk based on changes in the gradient.

Define sk−1 = Wk−Wk−1 as the difference between solutions

from consecutive iterations, and gk−1 = f ′(Sk) − f ′(Sk−1)
as the gradient difference. To optimize ηk, it is calculated as

follows to minimize the norm ∥∆s− ηk∆g∥
2
:

ηk =
⟨sk−1, gk−1⟩

⟨gk−1, gk−1⟩
(11)

Alternatively, to minimize ∥ηk∆s−∆g∥
2
:

ηk =
⟨sk−1, sk−1⟩

⟨sk−1, gk−1⟩
(12)

To prevent abnormal extremes in step size due to erratic

gradient changes, ηk is constrained within specified bounds:

ηBB = min(max(ηk, ηmin), ηmax) (13)

where ηmin and ηmax are the predetermined limits for the step

size, ensuring stability and efficiency in convergence.

V. EXPERIMENTAL RESULT

Our study utilized the Alzheimer’s Disease Neuroimag-

ing Initiative (ADNI) dataset [14], collecting longitudinal

measurements semi-annually or annually up to 48 months.

Focusing on early disease stages, we excluded cases lacking

initial MRI records, removed features failing quality control,

and imputed missing values using mean substitution, resulting

in a dataset of 314 features across six time points. We employ

90% of the data for training and utilize 10-fold cross-validation

to select the regularization parameter. Model performance is

evaluated using root mean squared error (rMSE) for task-

specific regression, normalized mean squared error (nMSE)

for overall performance, and weighted r-value (wR) [7] to seek

lower rMSE and nMSE and higher wR values.

Fig. 3. The convergence situation of using BB step size based on APM
algorithms.

A. Comparison of Accelerated vs. Non-Accelerated Algo-

rithms and Model Analysis

We assessed our algorithm on the ADNI dataset in MAT-

LAB, comparing performance under parameters λ1 = 0.1,

λ2 = 1000, λ3 = 500, and with or without the BB step

size in APM. Figure 3 illustrates that our method hastens

the initial loss reduction and attains closer convergence in the

final stages. We extensively compared our proposed method

with various leading models: RMTL [8], TGL [16], cFSGL

[23], FL SGL [27], LSA [25], AutoTR [26], MinimalRNN

[10], and LSTM [10], across scenarios from baseline (M00)

to M48, detailed in Table I.

Our proposed AMCOT method has shown remarkable per-

formance in predicting cognitive scores. It achieved the lowest

nMSE (0.515 ± 0.018) and the highest wR (0.701 ± 0.010) for

CDRSB scores, significantly outperforming other comparative

methods. AMCOT also excelled in predicting ADAS11 scores,

with the lowest nMSE (0.468 ± 0.036) and the highest wR

(0.733 ± 0.023), proving its superiority over Lasso, Ridge, and

other MTL models. For ADAS13 scores, AMCOT achieved

the best nMSE (0.428 ± 0.008) and the highest wR (0.758 ±

0.006). In predicting MMSE scores, AMCOT obtained the best

nMSE (0.524 ± 0.023) and the highest wR (0.695 ± 0.016),

demonstrating its excellent predictive ability and robustness

with complex data.

Figure 4 shows single-task rMSEs for various models

over time. LSTM and MinimalRNN, though powerful, lack

interpretability and rely heavily on initial cognitive scores,

limiting long-term predictions. Their accuracy declines due

to incomplete datasets and a focus on temporal dynamics

over feature correlations. In contrast, MTL leverages inter-

task correlations and handles incomplete data better. AutoTR

and LSA perform poorly due to their restriction to six-time

points and LSA’s suboptimal task relevance setting (α = 0.2).

RMTL’s inconsistent performance suggests outlier tasks affect

robustness. AMCOT outperforms other MTL methods with

lower nMSE and higher wR, effectively using multiple cogni-

tive scores and temporal tasks. It dynamically adjusts weights

to minimize irrelevant information.

B. Multiple Targets Stabilize Temporal Patterns of Biomarkers

The MTL-AMCOT model integrates multiple cognitive

scores to identify stable biomarker patterns over time, employ-

ing longitudinal stability selection [23]. We identified 25 stable



TABLE I
COMPARISON OF LONGITUDINAL COGNITIVE SCORES PREDICTING MTL METHODS

SCORE Metric TGL cFSGL AutoTR RMTL LSA FL-SGL MinimalRNN LSTM AMCOT (Ours)

CDRSB
nMSE 0.546 ± 0.026 0.535 ± 0.027 0.683 ± 0.017 0.672 ± 0.013 0.798 ± 0.044 0.579 ± 0.020 0.957 ± 0.086 0.956 ± 0.245 0.515 ± 0.018⋆

wR 0.681 ± 0.018 0.688 ± 0.019 0.548 ± 0.019 0.553 ± 0.017 0.523 ± 0.019 0.656 ± 0.016 0.215 ± 0.133 0.226 ± 0.122 0.701 ± 0.010⋆

ADAS11
nMSE 0.486 ± 0.021 0.477 ± 0.021 0.516 ± 0.026 0.526 ± 0.032 0.607 ± 0.039 0.523 ± 0.019 0.482 ± 0.110 0.493 ± 0.139 0.468 ± 0.036⋆

wR 0.724 ± 0.012 0.729 ± 0.012 0.708 ± 0.015 0.695 ± 0.019 0.655 ± 0.021 0.695 ± 0.014 0.718 ± 0.084 0.716 ± 0.183 0.733 ± 0.023⋆

ADAS13
nMSE 0.461 ± 0.023 0.453 ± 0.022 0.498 ± 0.013 0.505 ± 0.008 0.595 ± 0.018 0.492 ± 0.014 0.484 ± 0.092 0.490 ± 0.131 0.428 ± 0.008⋆

wR 0.737 ± 0.014 0.742 ± 0.014 0.720 ± 0.005 0.707 ± 0.005 0.664 ± 0.006 0.715 ± 0.010 0.722 ± 0.066 0.720 ± 0.183 0.758 ± 0.006⋆

MMSE
nMSE 0.551 ± 0.023 0.540 ± 0.025 0.594 ± 0.029 0.596 ± 0.027 0.692 ± 0.033 0.600 ± 0.014 0.740 ± 0.126 0.708 ± 0.202 0.524 ± 0.023⋆

wR 0.676 ± 0.014 0.685 ± 0.015 0.659 ± 0.014 0.642 ± 0.021 0.600 ± 0.017 0.640 ± 0.010 0.508 ± 0.138 0.510 ± 0.158 0.695 ± 0.016⋆

RAVLT i
nMSE 0.600 ± 0.020 0.581 ± 0.017 0.615 ± 0.022 0.611 ± 0.021 0.715 ± 0.021 0.638 ± 0.014 0.616 ± 0.116 0.623 ± 0.176 0.576 ± 0.038⋆

wR 0.637 ± 0.014 0.650 ± 0.012 0.634 ± 0.014 0.625 ± 0.018 0.568 ± 0.013 0.604 ± 0.011 0.669 ± 0.074 0.676 ± 0.175 0.653 ± 0.027⋆

Note: bold font is used to mark the best result for the average of each indicator, while a star indicates that the indicator has a better generalization in the

case of a better average.

Fig. 4. The average root Mean Squared Error (rMSE) compared to the baseline model is presented. Our method (AMCOT) involves multiple target cognitive
scores. Therefore, when comparing single-target score tasks, we focus on optimizing the single-target scores.

Fig. 5. The stability vectors of the 25 stable MRI features generated by AMCOT. Longitudinal stability selection was performed by combining ten target
scores. The larger the value, the more stable the feature.

Fig. 6. AMCOT uses stability selection to choose the brain maps with the highest ROIs. (a) - (d) are the selected cortical ROIs, and (e) - (g) are the selected
subcortical ROIs.

biomarkers across all targets and time points, particularly in

the entorhinal cortex, hippocampus, inferior lateral ventricle,

and middle temporal gyrus (see Fig. 5). Notable features

include the volume and thickness of the left hippocampus

and bilateral thickness of the entorhinal cortex. The left

hippocampus volume [31], linked to early AD memory loss,

and dysfunction in the entorhinal and inferotemporal cortices,

are correlated with memory and cognitive decline. Enlarged in-



ferior lateral ventricles serve as sensitive markers for MCI and

AD progression. Additionally, research on cerebrospinal fluid

(CSF), including findings that young CSF [30] may restore

memory in aged mice, highlights potential therapeutic benefits.

These biomarkers are validated across multiple studies [29]-

[31]. Figure 6 illustrates stable MRI features identified by

the AMCOT model from various anatomical perspectives,

including medial and lateral views of both hemispheres, and

sagittal, coronal, and horizontal orientations. The colored areas

denote ROIs with high stability confirmed through longitudinal

analyses across multiple target scores.

VI. CONCLUSION

In this paper, we explore AD progression prediction using

baseline MRI features and cognitive scores at five future

time points, introducing the MTL-AMCOT model designed to

capture associations in a Multi-Cognitive Objective-Temporal

Domain matrix. This model, incorporating sparse group Lasso,

outperformed several baselines across cognitive targets in the

AD dataset. To address non-smooth and biconvex functions,

we employed an efficient APM optimization with the Barzilai-

Borwein step size, reducing iterations and aiding hyperparam-

eter tuning. In the future, we will explore applying AMCOT

to other neurodegenerative diseases, such as Parkinson’s dis-

ease, and non-neurological conditions, such as depression, to

validate its broad applicability and effectiveness.
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