
This is a repository copy of An effective solution for drug discovery based on the Tangram
meta-heuristic and compound filtering.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/223442/

Version: Published Version

Article:

Cruz, N.C., Puertas-Martín, S., Redondo, J.L. et al. (1 more author) (2023) An effective
solution for drug discovery based on the Tangram meta-heuristic and compound filtering.
Informatica, 34 (4). pp. 743-769. ISSN 0868-4952

https://doi.org/10.15388/23-infor535

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

INFORMATICA, 2023, Vol. 34, No. 4, 743–769 743
 2023 Vilnius University

DOI: https://doi.org/10.15388/23-INFOR535

An Effective Solution for Drug Discovery Based on
the Tangram Meta-Heuristic and Compound
Filtering

Nicolás C. CRUZ1,∗, Savíns PUERTAS-MARTÍN2,3,
Juana L. REDONDO2, Pilar M. ORTIGOSA2

1 Department of Computer Engineering, Automation and Robotics, University of Granada, Spain
2 Department of Informatics, University of Almería, ceiA3 campus, Spain
3 Information School, University of Sheffield, United Kingdom

e-mail: ncalvocruz@ugr.es, savinspm@ual.es, jlredondo@ual.es, ortigosa@ual.es

Received: May 2023; accepted: October 2023

Abstract. Ligand-Based Virtual Screening accelerates and cheapens the design of new drugs. How-
ever, it needs efficient optimizers because of the size of compound databases. This work proposes
a new method called Tangram CW. The proposal also encloses a knowledge-based filter of com-
pounds. Tangram CW achieves comparable results to the state-of-the-art tools OptiPharm and 2L-
GO-Pharm using about a tenth of their computational budget without filtering. Activating it discards
more than two thirds of the database while keeping the desired compounds. Thus, it is possible to
consider molecular flexibility despite increasing the options. The implemented software package is
public.

Key words: virtual screening, shape similarity, meta-heuristic, knowledge-based filtering, parallel
computing.

1. Introduction

1.1. Overview

The drug discovery process is a major challenge in the real-world scenario of today, where
different factors play a role (Hughes et al., 2011). This implies that developing new drugs
costs, on average, more than 1 billion USD and can take between 12 and 15 years at all
stages (Sumudu and Leelananda, 2016; Ban et al., 2017). To speed up this process and re-
duce costs, there is a continuous process of designing and implementing new techniques
from traditional medicine (Fu et al., 2017) to High Throughput Screening (HTS) infras-
tructures (Zeng et al., 2020).

In this context, Virtual Screening (VS) is a relevant in silico technique in drug dis-
covery that can help identify potential drug candidates with high efficacy and safety pro-

∗Corresponding author.

744 N.C. Cruz et al.

files (McInnes, 2007). In fact, VS has helped bring to market compounds such as riton-
avir, nelfinavir, saquinavir (Kanhed et al., 2021) or plasmepsin inhibitors (Meissner et al.,
2019). There are two types of VS methods depending on the information obtained from
compounds: Structure-Based VS (SBVS) and Ligand-Based VS (LBVS). SBVS methods
(Maia et al., 2020) require knowledge of the structure of the target protein, which to obtain
involves a set of challenges (Parois et al., 2015). Consequently, in most cases LBVS are
the only methods that can be applied because they do not require knowledge of the 3D
structure of the target molecule (Hamza et al., 2012).

LBVS methods are used to identify molecules in a database similar to another refer-
ence compound. To do so, they compare the structural and physicochemical properties
(descriptors) of the reference molecule with those of compounds in the database, which
may contain millions of compounds. Considering the latter, the computational efficiency
of mathematical models that describe molecular descriptors is crucial. Despite the rel-
atively low cost per evaluation, evaluating descriptors for thousands for a molecule, and
subsequently for millions of molecules, can quickly become unaffordable in terms of time.
Therefore, there is a need to prioritize descriptors that are computationally efficient to en-
able efficient screening of large numbers of molecules. Shape similarity has been identified
as a descriptor of choice due to its ability to detect potential drug candidates that may have
different chemical structures but similar shapes, which may mean that they exhibit similar
biological activities (Carracedo-Reboredo et al., 2021; Kumar and Zhang, 2018), as well
as its low computational cost. Consequently, shape similarity will be the descriptor used
in this work to compare the quality of the different algorithms.

Finally, the flexibility of the molecules has to be also taken into account in LBVS
problems (Rapaport, 2004). Although literature works have mainly considered molecules
as rigid objects, the reality is that molecules vary their interatomic distances and angles
between atoms, giving rise to conformations, i.e. the same molecule with different inter-
atomic distances and they potentially have different behaviours with other compounds and
proteins. Consequently, flexibility must be taken into account when applying LBVS as it
allows solutions to be found that would otherwise not be possible. The simplest example
would be to find two identical molecules with different conformations: if conformations
are not explored, no matter how good the search algorithm is, it will never find such a
compound, or at least not with the desired percentage of similarity. On this basis, every-
thing looks good for flexibility. However, the reason why it is not considered is that it
increases computational calculations enormously as hundreds of different conformations
can be generated from each molecule. To deal with this, filters are often applied to discard
compounds before generating the conformations in order to avoid a large number of com-
parisons that would not return a promising result (Ellingson et al., 2014; Poongavanam
et al., 2021). However, this is influenced by the quality of the filter, as compounds that
a priori do not seem to be good candidates can be discarded. In this work, we are going
to use the software OMEGA (Hawkins et al., 2010) for the generation of conformations
because of its widespread use in the literature and to facilitate future comparisons. Re-
garding the filters to discard compounds, we have included our own system, to be used as
desired, in order not to consume too many computational resources.

Drug Discovery with a New Tangram Optimizer and Compound Filtering 745

1.2. Related Works

Identifying compounds with similar shapes is a computationally demanding problem due
to two main reasons: First, there is a vast number of molecules to analyse, up to millions.
Secondly, finding the position of maximum overlap between every pair of molecules for
the comparison to be descriptive is hard. Consequently, an exhaustive search is not feasi-
ble, and local search methods are frequent (Wang et al., 2020; Ahmed et al., 2018). Sim-
ilarly, heuristics and meta-heuristics are often employed to achieve satisfactory solutions
with reasonable computational effort (Lindfield and Penny, 2017; Salhi, 2017).

One of the most recent proposals among population-based meta-heuristics is Op-
tiPharm (Puertas-Martín et al., 2019; Puertas-Martín et al., 2022). It offered several ad-
vantages over the state-of-art 3D alignment optimization methods ROCS (Software et al.,
2008) and WEGA (Yan et al., 2013). Specifically, it outperformed them in the quality
of solutions and execution time while also being highly configurable. An even more re-
cent population-based algorithm is 2L-Go-Pharm (Ferrández et al., 2022). It improved
the quality of the OptiPharm solutions and reduced the number of function evaluations
required. These methods were designed to be able to explore the entire search space both
broadly and deeply, thus avoiding being confined to a local minimum. This feature is par-
ticularly useful for complex molecules with numerous degrees of freedom, as it allows for
a comprehensive exploration of the search space.

Both OptiPharm and 2L-Go-Pharm are population-based algorithms that apply differ-
ent techniques to a population to explore the optimal solution. OptiPharm uses the concept
of species associated with a radius that decreases as the iterations progress (Jelasity et al.,
2001). In contrast, 2L-Go-Pharm uses a 2-level design in which the first one tries to de-
tect solutions that have the potential to be local or global optima, and in the second level,
these solutions are guided to the peaks. As population-based methods, they have high ex-
ploration capabilities (Lindfield and Penny, 2017; Salhi, 2017) and are intrinsically com-
patible with parallel computing (Boussaïd et al., 2013; Sudholt, 2015; Storn and Price,
1997). On the other hand, they generally have multiple parameters to tune that signifi-
cantly affect the search performance (Jones and Martins, 2021; Rao et al., 2012). Besides,
they generally need numerous objective function evaluations to ensure remarkable and
stable results (Costa and Nannicini, 2018; Cruz et al., 2022a). Accordingly, OptiPharm
expects four parameters, and its robust configurations start from computational budgets
of 200 000 (2L-Go-Pharm, 150 000) objective function evaluations (Puertas-Martín et al.,
2019), yet it can benefit from parallel computing (García et al., 2023) as an evolutionary
method.

1.3. Contributions

The main contribution of this work is presenting the optimization algorithm Tangram CW.
It is especially suitable for addressing shape similarity-based LBVS problems with rigid
and flexible molecules. Nevertheless, the method is decoupled from the objective function
and does not compute derivatives. Hence, it can be studied for different objective func-
tions (problems) and can be classified as a black-box derivative-free optimizer (Costa and

746 N.C. Cruz et al.

Nannicini, 2018). The algorithm is a new version of the proposal made by the authors in
(Cruz et al., 2022b) and that showed promising results with a reduced consumption of
function evaluations. The changes, which make the algorithm very effective for the prob-
lem at hand, are related to the division of the search space and the definition of variables
that wrap around their bounds. It only expects two parameters: the total number of func-
tion evaluations and those consumed by the local search component every time. They can
be directly related to the exploration and exploitation facets of search methods (Jones and
Martins, 2021; Van Geit et al., 2008), i.e. reaching new regions of the search space and
obtaining the best point out of the known ones, respectively.

Another relevant contribution of this work is a knowledge-based filter of compounds.
Other algorithms, such as OptiPharm, rely on pre-defined position vectors representing
promising solutions. They mainly improve the quality of the solutions obtained but do not
allow discarding any compound in advance. In other words, although every compound in
the considered database will be compared to the query or reference one in these descriptive
positions, most will differ significantly from the beginning. Accordingly, this work defines
an optional component that ranks every compound at these positions and discards those
exhibiting low values considering a user-given tolerance. This aspect can be critical when
working with flexibility, as databases increase so much in size that explorations graze
infeasibility despite parallel computing. This tool is separated from the proposed optimizer
and can be used independently.

Finally, the problem-level parallelization, i.e. how compounds are accessed, is consid-
ered from the beginning of the design of the proposed solution. Again, it is independent of
the optimizer and the compound filter. Focusing on this side simplifies the management
of parallel hardware, ensures relevant workloads, and is independent of the paralleliza-
tion capabilities of the chosen optimizer. The implemented software package is publicly
available in Cruz et al. (2023).

The rest of the paper is structured as follows: Section 2 explains the proposed method-
ology from the compound positioning model and the objective function to the parallel
database exploration workflow, the compound filter, and the designed optimizer. Section 3
describes the experimentation carried out to assess the proposal. Finally, Section 4 draws
conclusions and proposes future work.

2. Materials and Methods

This section describes the application framework of LBVS using the shape similarity met-
ric and the proposed solution. Firstly, we define the Gaussian-model used to evaluate the
similarity between two molecules. After that, the section describes the parallel exploration
of compound databases for rigid and flexible molecules, the optional knowledge-based fil-
ter, and the proposed optimizer.

2.1. Positioning Model

As introduced, comparing two molecules requires applying a rotation and translation to
one of them. In this work, such modification is defined by 10 variables in total. The first

Drug Discovery with a New Tangram Optimizer and Compound Filtering 747

7 define the rotation and the last 3 the translation. The first group of parameters can be
divided into three sub-groups, the first parameter defines the rotation that is applied on the
axis generated by the two 3D points generated with the following six parameters. Finally,
the translation uses 3 parameters to be able to move the molecule on any axis.

These parameters are constrained to speed up the process and to avoid generating po-
sitions where there is no overlap. The rotation parameter is contained in the range [0, 2π].
The points defining the rotation axis are created inside the box containing the molecule to
be rotated. And finally, the ranges for the translation parameters are calculated by taking
the difference in size between the two molecules and keeping the larger value for each
axis. For a more detailed description of the procedure, the reader is recommended to read
the original paper (Puertas-Martín et al., 2019).

2.2. Shape Similarity Metric

The shape similarity between two compounds is calculated by obtaining the overlap be-
tween their atoms using the Gaussian-model. This model is widely used in the literature
for its trade-off between solution quality and performance, and it takes the concept of the
Gaussian function and assimilates it to the density distribution function of an atom. It is
used by other popular software such as ROCS (Software et al., 2008), WEGA (Yan et

al., 2013), OptiPharm (Puertas-Martín et al., 2019) and 2L-GO-Pharm (Ferrández et al.,
2022) in different versions.

To obtain the shape similarity between an A and a B molecule, we use the model
defined in Yan et al. (2013) which incorporates a weight associated with each atom, thus
improving the model. The similarity value is given by the following expression:

V
g

AB =
∑

i∈A,j∈B

wiwjv
g

ij , (1)

where wi and wj are weights corresponding to the atoms i and j , respectively. Those
weights are computed using the following formula:

wi = vi

vi + k
∑

j �=i v
g

ij

, (2)

where k = 0.8665 is a universal constant, and vi is the volume of the atom i, which is

calculated using the volume of the sphere as in Yan et al. (2013), vi = 4πσ 3

i

3
, σi being the

radius of the atom. Finally, v
g

ij is a product of Gaussian functions:

v
g

ij =
∫

gi(r)gj (r)d�r =
∫

pe
−
(

3pπ1/2

4σ3
i

)2/3

(r−ri)
2

pe
−
(

3pπ1/2

4σ3
j

)2/3

(r−rj)2

d�r, (3)

where p is a parameter controlling the softness of the Gaussian spheres, i.e. the height of
the original Gaussian function, and σ is the radius of the atom. The values associated with
these parameters are empirical values obtained from the original work (Yan et al., 2013).

748 N.C. Cruz et al.

Note that the maximum value of the function in (1) depends on the number of atoms
of the analysed molecules. Consequently, these values must be normalized to compare
the results. For this, a standard in the literature is to use the Tanimoto similarity (Cereto-
Massagué et al., 2015; Rogers and Tanimoto, 1960), which returns a value in the range
[0, 1], where 0 means that there is no similarity between the two molecules, and 1 implies
that the two molecules are identical.

T cS = V
g

AB

V
g

AA + V
g

BB − V
g

AB

. (4)

2.3. Database Exploration Procedure

2.3.1. Standard LBVS Search Process

In this context, one can define a search for similar compounds from the reference or query
compound and the database to scan. Algorithm 1 describes the main steps of a basic LBVS
seek process. Its fundamental parameters are the information of the reference compound
(query) and the database to explore (database). In practical terms, the database refers
to a directory containing a file with the details of every compound. Their identification
depends on their file name. For example, one of the files in the dataset later used at exper-
imentation is ‘DB00014.mol2’. The third parameter defines the comparison criterion, i.e.
the Tanimoto similarity (T cS), which represents the function to maximize in optimization
terms. Along with them, the process also expects the optimization method for putting ev-
ery candidate compound in the most descriptive comparison position (optimizer), whose
parameters are omitted for simplicity, and how many promising compounds to track (his-

toLength). The latter aspect is interesting because further considerations may promote
some compounds over others, even with lower ranks. Hence, it is advisable to provide
experts with multiple options.

The procedure starts with loading the information of the query compound at line 1,
i.e. a matrix with the details of every atom (matQ). This is used to compute the weighting
(wQ) and overlap (ovQ) factors at lines 2 and 3, respectively. As the query is fixed, there is
no need to repeat the specific computations, which can be obtained once and stored. After
that, at line 4, the query is sought and excluded from the database. Otherwise, any robust
search will always return the query itself as its most similar compound. However, readers
should note that omitting the self-exclusion allows testing the robustness of proposals, as
they should find the same compound sought. The preliminary stage ends by initializing
the ordered list that will contain the most similar compounds found.

The search, which is defined between the lines 6 and 14, repeats the same process
for every compound in the database. Specifically, it loads the matrix with the information
of the atoms defining the current candidate (matC), which lets us compute its specific
weighting (wC) and overlap (ovC) factors, at lines 7, 8, and 9, respectively. Along with
the equivalent information from the query, they define the evaluation context for comput-
ing the Tanimoto similarity that the optimizer will try to maximize for every candidate
compound during the search. Their explicit aggregation is shown at line 10, where the

Drug Discovery with a New Tangram Optimizer and Compound Filtering 749

Algorithm 1: Standard process for exploring a compound database:

Input: Compound: query, Database: database, Criterion: T cS , Optimizer:
optimizer, Int: histoLength

// Pre-comuting fixed data and self-exclusion

1 matQ = database.ReadInternals(query);
2 wQ = ComputeWeights(matQ);
3 ovQ = GetOverlap(matQ, wQ, matQ, wQ); // Self calc.

4 database = database.Exclude(query);
5 foundCompounds = ∅; // Result

// Search:

6 for candidate ∈ database do

7 matC = database.ReadInternals(candidate);
8 wC = ComputeWeights(matC);
9 ovC = GetOverlap(matC, wC, matC, wC);

10 context = {matQ, wQ, ovQ, matC, wC, ovC};
11 bounds = GetBounds(matQ, matC); // Optimization bounds

12 [pos, val] = optimizer.Optimize(context, bounds, T cS);
13 foundCompounds.Append(candidate, pos, val, Limit = histoLength);

14 end

15 return foundCompounds;

variable context is defined. After that, the bounds for every positioning variable are com-
puted based on the limits in the coordinates found in the specific information of the query
and candidate compounds. This computation is shown at line 11.

The critical and most computationally demanding part of every iteration of the search
is at line 12. It launches the chosen optimizer to find the best comparison position of
the candidate compound. This procedure will always try to find the position (pos) that
results in the highest value (val), i.e. the Tanimoto similarity, T cS . Its goal is to ensure
that the ultimate selection of compounds is descriptive. At line 13, the solution found
for the candidate compound, i.e. positioning vector and associated value, is considered
for inclusion in the resulting list (foundCompounds). Every compound has an optimal
position and value, but the latter can be very low. Thus, the ‘Append’ keeps in the list only
the histoLength best ranked, which can be implemented as an ordered insertion. That list
is finally returned at line 15 for the expert to further study the selection done.

2.3.2. Parallelization Strategy

The search process described in Algorithm 1 is mainly embarrassingly parallel (Trobec et

al., 2018). More specifically, the initialization stage is common and fixed. The search ulti-
mately becomes a loop that takes every compound in the database and places it as well as
possible using the optimizer. Positioning a compound, which is the most computationally
demanding part, does not depend on the others. Hence, a parallel implementation of this
search only needs to split the iterations of the loop into concurrent execution units.

750 N.C. Cruz et al.

Achieving this kind of parallelization is straightforward using tools offering high level
of abstraction, such as the ‘parallel for’ construction of the OpenMP API (Trobec et al.,
2018) and the ‘parfor’ loop of MATLAB (Cruz et al., 2022a). The former also allows
adjusting the scheduling to minimize load unbalancing and idle execution units, as the
iterations involving candidate compounds with numerous atoms take longer. Regardless,
this aspect could be neglected assuming a uniform distribution of compound sizes in the
database.

However, there is a critical point to consider for a proper parallel implementation in a
shared-memory environment: The foundCompounds list is a shared variable that cannot
be updated concurrently, or the result is unpredictable (race condition). This problem can
be solved by defining a critical section around line 13, i.e. by ensuring that only one of the
execution units tries to update the shared variable at every time. This situation is frequent
in parallel programming and well supported by tools. For example, OpenMP offers the
‘critical’ construction for this purpose.

Another option is to define a local version of foundCompounds for every execution
unit. This approach requires combining these partial selections before returning the final
one at line 15. The combination must be done sequentially, but its computational cost is
negligible. It is also relevant to highlight that every local version of foundCompounds must
have the same maximum size set to histoLength. Otherwise, if one carelessly divides the
limit by the number of concurrent execution units, the final list is likely to differ from the
sequential execution by omitting some promising intermediate results. The reason is that
one of the execution units could find multiple sub-optimal compounds yet better ranked
than the best ones seen by the others during their exploration. Thus, a shorter size limit
could force them to remove these results from their partial lists.

2.3.3. Modifications to Support Flexibility

As mentioned, Algorithm 1 expects a database with a single file for every different com-
pound. That situation occurs when working with rigid molecules, but it is incompatible
with considering flexible molecules. Since they have bonds that can rotate, covering dif-
ferent positions involves generating multiple files per compound by rotating their flexible
bonds by different angles. They are generated in advance, as a preliminary stage. Intu-
itively, it can be compared to storing multiple pictures of a person from different angles
to find better coincidences with other people. This process, known as generating the con-
formations of molecules (Puertas-Martín et al., 2022), is expected to improve the results
of LBVS by avoiding overlooking some compounds in favour of others. However, it also
results in multiple data files per compound. Fortunately, adapting the standard exploration
procedure to support this situation is straightforward in practical terms.

Specifically, the previous example file ‘DB00014.mol2’ will now be translated
into multiple files with the following naming structure: ‘DB00014_conf1. mol2’,
‘DB00014_conf2.mol2’, and so on, depending on the number of conformations. Rigid
compounds will still have a single representing file, but flexible ones might result in a
few tens or even hundreds. In this context, the modifications of Algorithm 1 start with
postponing lines 1 to 3, as there might not be a single reference to fix. It is also neces-
sary to modify (generalize) the self-exclusion process at line 4. Instead, it should now

Drug Discovery with a New Tangram Optimizer and Compound Filtering 751

scan the files defining the database and produce two lists: one with the compounds to
compare the query with (filtered_database), which includes multiple conformations or
‘versions’ of some of them, and the other with the different conformations of the query
(conformations_list).

Regarding the foundCompound variable at line 5 in the original algorithm, it can be
technically maintained as a plain list. However, it is advisable to redefine it as a structure
in which there will be a field for every possible (‘candidate’) query conformation in the
conformations_list previously defined. In that context, each field will contain the results
of the compound search in the same format as the original method, but separating the
query conformation used for each case. By proceeding this way, the results will provide
the expert with more information. Regardless, their standard interpretation will simply
suggest as the result the compound (referring to its particular conformation) with a better
value for the objective function (also mentioning the conformation considered out of the
conformations_list).

After the previous modifications, the search part is modified to start with an exter-
nal loop that simply changes the query conformation, i.e. for query_conformation ∈
conformations_list do. Its body starts with the former lines 1 to 3, i.e. by fixing the current
query. After that, the original search loop must be included (nested), and iterate through the
compounds in filtered_database. Its result now becomes one of the fields of the modified
foundCompound variable. Thus, the original process is mainly repeated but i) after being
included in an outer-level iterative procedure that changes the (conformation) query, and
ii) iterating through the filtered_database, which does not contain any file for the query
compound but might have multiple ones for each original compound.

Notice that the parallelization strategy can be directly imported to the inner loop, i.e.
in the per-query search, as in the standard approach. It ensures a significant amount of
work for every execution unit. Moreover, although some compounds may have hundreds
of conformations, others may have tens or even just one. Hence, dividing the space of
potential compounds seems a more sensible and scalable option.

2.4. Compound Filter

Either the standard search process or the one dealing with conformations, comparing the
query compound to the rest of the database is computationally demanding. The reason
is the effort made to find the most descriptive relative position between the query and
every candidate, i.e. solving multiple optimization problems. However, although every
optimizer will try to find the best position in every case, most will be useless in the end.
For example, let us consider a database with 2 001 rigid compounds and a computational
budget of 200 000 objective function evaluations per comparison (positioning). Executing
Algorithm 1 for a particular query will take 2 000 × 200 000 = 4 × 10

8 function evalua-
tions, but only histoLength results will be taken. Moreover, if one registered every partial
result, the final rank achieved by the optimizer in numerous candidate compounds would
be very low and far from the best ones.

In this context, it would be useful to discard (ignore from the database) those com-
pounds having very low probabilities of matching the query. In terms of Chemistry,

752 N.C. Cruz et al.

it could be possible to define a preliminary filter considering, for instance, the number of
atoms defining the compound. However, generic criteria may significantly diverge from
the particular magnitude of interest (e.g., Tanimoto’s shape similarity). It also implies
studying other aspects. For this reason, this work proposes to use the same objective func-
tion to identify those compounds whose preliminary assessments are so different from the
best ones that it seems logical to ignore them.

Unfortunately, computing the objective function involves defining a relative position
between the query and candidate compound, i.e. relying on an initial solution for the cor-
responding optimization problem. However, it would not make sense to solve the position-
ing problem in order to avoid doing so. Besides, some of the global optimization methods
used for the target problem, such as OptiPharm and the proposed Tangram algorithm,
are not deterministic. Hence, using them to discard options doubles the uncertainty, and
their choice would be virtually random without investing a significant amount of objec-
tive function evaluations. Aside from these inconveniences, stacking complete optimizers
make tuning the search harder. Therefore, the proposal of this work is to preliminary rank
compounds after considering a very reduced set of descriptive pre-defined positions.

Specifically, the proposed filter maintains the scheme of Algorithm 1 with two main
modifications. The first is replacing the call to an external optimizer by directly study-
ing four pre-defined solutions, i.e. positioning vectors, for the query and every candidate
(potentially filtered) compound. At this point, the value of every compound is kept, so
the previous ‘Append’ function limiting the records to histoLength cases is not needed.
The value assigned to every candidate compound is the maximum seen considering the
referred four positions. Some readers might wonder why not to use the average, but pre-
liminary experimentation demonstrated that it was more effective to register the best. In
the end, it is a best-effort approach, and if some of the four positions are particularly bad
in spite of being a promising candidate compound, its rank is inappropriately degraded.
Regarding the four positions, as introduced, they are the ones used by OptiPharm to ini-
tialize its population: no movement, and an exclusive rotation of 180◦ in the X, Y, and Z
dimension, respectively. As detailed in Puertas-Martín et al. (2019), these four positions
refer to the most descriptive parts of the search space.

The second and last change represents the real filtering procedure. More specifically,
after having preliminary explored the database and recorded the maximum value for every
compound at one of the four initial positions, it is necessary to select a subset of them.
The proposed filter offers two options for this purpose depending on a single parameter,
qnt (from quantity). If qnt is an integer greater than 1 (logically, without exceeding the
number of available compounds), the filter sorts the preliminary values and selects the
best qnt. Conversely, if qnt is a value in the range [0, 1) ∈ R, the filter sets the best-ranked
compound as the reference, best_prel_val. Then, it picks those whose preliminary value
is worse than the best up to a degradation percentage qnt, i.e. the compounds valued equal
or greater than (1 − qnt) ∗ best_pre_val.

The described procedure should be launched to explore and reduce the size of the input
database after removing the query or reference compound and before starting the complete
(optimization-based) search, e.g. between lines 4 and 5 of Algorithm 1. This filter will only

Drug Discovery with a New Tangram Optimizer and Compound Filtering 753

execute four objective function evaluations per compound, and can be executed in parallel,
too. This process is also compatible with parallel computing. Similar to Algorithm 1, the
most direct approach is to parallelize the loop focused on assessing every compound,
i.e. computing independent the preliminary values and storing them at the corresponding
indices.

2.5. Tangram CW

2.5.1. Background

The Tangram algorithm presented in Cruz et al. (2022b) is a black-box minimization meta-
heuristic defining a reduced set of exploration rules, using (but not linked to) the SASS
stochastic hill-climber for local optimization. Tangram, which expects two parameters at
most, requires a normalized search space in which every search or decision variable is in
the range [0, 1]. Normalization simplifies implementation and avoids issues with variables
of different scales (Snyman and Wilke, 2005). Thus, it sees the following target problem:

minimize
x

f (x)

subject to 0 � xi � 1, i = 1, . . . , N.
(5)

where f is a N -dimensional objective function, i.e. f : [0, 1]N → R. The term x refers
to any input in [0 − 1]N belonging to the N -dimensional unit hypercube [0, 1]N , which
defines the search space. As the problem definition only consists of variable bounds and
an objective function with unknown mathematical formulation and properties, it can be
classified as a black-box optimization with box constraints (Costa and Nannicini, 2018;
Jones and Martins, 2021).

In this context, Tangram starts by evaluating the centre of the hypercube, which be-
comes the current result. The method also decides to launch its standard mode or its in-
cisive one. The former consists of three consecutive stages, global, division, and local, in
a loop that ends after consuming all the evaluations. The global stage launches the local
search from the current result and makes the maximum step size to cover the whole search
space, which changes the current solution to a new one every time a better candidate solu-
tion is found. The division stage computes and evaluates the midpoint between the current
solution and each corner of the search space. After that, the local stage launches the lo-
cal search from these midpoints, starting with the best ranked, just in case the evaluation
budget runs out before the stage ends. The main loop body ends by replacing the current
solution with the best point reached during the local phase if any of them outperforms
it. The incisive mode is mainly the same but merges the division and local stages. More
specifically, it launches the local search from every midpoint immediately after having
computed it, which makes it impossible to prioritize them but ensures local-sharpened re-
sults when the total evaluation budget is relatively low. For this reason, the incisive mode
is only activated when the total number of function evaluations is lower than the number
of corners, i.e. 2

N , plus the evaluations consumed with the centre and the first global stage.
The results achieved by Tangram with the benchmarks proposed in Costa and Nan-

nicini (2018) for very low computational budgets were competitive. Considering them,

754 N.C. Cruz et al.

along with the common roots and local search component, Tangram was also used to repli-
cate the results of OptiPharm in Puertas-Martín et al. (2019) at shape similarity LBVS.
However, these preliminary results were not competitive, and there was room for improve-
ment.

As the objective function is fast to compute, the number of allowed evaluations can
be significantly greater than expected when designing the original method. Despite this
possible increase in the computational budget, the problem dimensionality results in 2

10 =
1 024 corners, which still makes it hard for the standard method to complete an iteration,
even with the standard budget of 32 evaluations per local search proposed in Cruz et al.

(2022b). Related to this, the search space of this real-world problem seems to require more
effort from the local search component than plain benchmarks, but increasing it further
complicates completing stages of the standard Tangram.

Hence, the proposed version of Tangram will launch the local search from the centroid
of every region defined by the current best solution and its nearest corners. There will be
2N centroids, i.e. 20 in the considered context, which dramatically reduces the effort of
the division and local stages and increases the scalability of the solver. This modification,
which gives the modified optimizer the C (from centroid) in its name, will also allow
providing the local search component with more evaluations. Finally, local searches might
reach the bound of variables, and the standard approach is to saturate exceeding variables.
For instance, if SASS shifts a certain variable from 4.9 to 5.2 and its bound is 5.0, its value
will be fixed to 5.0. For regular variables, such as Euclidean distances, it seems reasonable
to just stick to the problem-specific bounds. However, for those representing angles, as it
occurs with some in the shape similarity LBVS positioning model, it also seems sound to
wrap around the limits as angles do. For example, 355◦ is near 5◦ in the angular space, and
if the local search component considers it beneficial to move in that direction, allowing
that movement looks interesting. This enhanced flexibility, which applies to any problem
with angular variables and was introduced by Ferrández et al. (2022) in this context, gives
the modified optimizer the W (from wrap around) in its name.

2.5.2. Workflow of Tangram CW

Tangram CW, which inherits the background from its ancestor, follows Algorithm 2. The
underlying process remains the same as outlined in the previous section for the original
Tangram. Thus, the algorithm takes the centre of the search space as the initial solution
to alternating a global stage with either i) a division and a local search phase (standard
mode) or ii) a combination of both (incisive mode). For conciseness, let us focus on the
differences with the original algorithm.

Firstly, the number of function evaluations that every local search takes is explicitly
considered a parameter to tune, i.e. localEvals. Related to this, wraps is also a novelty.
It is a vector with the indices of the variables linked to angles, i.e. those to wrap around
if needed. However, wrap should not be considered a parameter to tune but context infor-
mation like the objective function f . Considering the described positioning model, wraps

will be [1] at experimentation, as the only angle is the first variable.
Secondly, at line 1, the statement get_Facets_Of_Hypercube differs from the original

computation of the corners of the search space, i.e. 2
N points. The new one computes the

Drug Discovery with a New Tangram Optimizer and Compound Filtering 755

Algorithm 2: Tangram CW

Input: Function: f : [0, 1]N → R; Int: evals, locEvals; Int[]: wraps

1 PointSet facets[2N] = get_Facets_Of_Hypercube(N);
2 Point result = (0.5, . . . , 0.5) ∈ R

N ;
3 Boolean incisive = False;
4 if evals < (locEvals + 1 + 2N) then

5 incisive = True;
6 end

7 while evals > 0 do

8 result = Global_Phase(result, wraps, radius =
√

N); // Improve or

stay!

9 Point centroids[2N];
10 if incisive = False then

// Division phase

11 for c ∈ centroids do

12 centroids[c] = (
∑

facets[c])+result

|facets[c]|+1
;

13 end

14 centroids = sort(centroids, order = ascending f);
// Local phase

15 for c ∈ centroids do

16 centroids[c] = Local_Phase(c, wraps, radius = |c − result|);
17 end

18 else

// Division & Local phase

19 for c ∈ centroids do

20 centroids[c] = (
∑

facets[c])+result

|facets[c]|+1
;

21 centroids[c] = Local_Phase(c, wraps, radius = |c − result|);
22 end

23 end

24 result = best_Of(result ∪ centroids);

25 end

26 return result;

sets of points that will be used to calculate the centroid of every search region, along with
the current result, at the division stage. Algorithm 3 computationally describes how to
obtain each point set for a normalized search space of N dimensions. As noted, there will
be 2N sets of points, and each will internally consist of 2

N−1 elements that are always
different corners of the unit hypercube. Every corner in the same set shares a common
dimension at least, and they form the facets. Figure 1 shows the sets of points for N =
1, 2, 3. Figure 2 depicts how the groups of selected corners define the facets to compute

756 N.C. Cruz et al.

Algorithm 3: get_Facets_Of_Hypercube

Input: Int: N

1 Point[2N]: corners = [0, 1]N ;
// If N = 2, corners = [(0, 0), (0, 1), (1, 0), (1, 1)]

2 PointSet facets[2N];
3 for i = 1 : 1 : N do

4 indices = Find corners Where i = 1;
// 2

N−1 indices will be selected

5 f acets[2 ∗ i − 1] = corners Selected in indices;
6 indices = Find corners Where i = 0;

// 2
N−1 indices will be selected

7 facets[2 ∗ i] = corners Selected in indices;

8 end

9 return facets;

Fig. 1. Set of facets for computing the division centroids when N = 1, 2, 3.

the centroids of interest in a 2D search space. It implicitly represents the division stage
of the method. Algorithm 2 uses the sets of facets at lines 12, 16, and 20 with the current
result to compute the centroid of the corresponding region.

Thirdly, the mode selection from lines 3 to 6 in Algorithm 2 is conceptually equiva-
lent to that in the original method. However, it takes into account that the new algorithm
takes localEvals per execution of the local search component, and there will be 2N di-
vision points, i.e. centroids. Considering these aspects, the underlying idea remains the
same: launch the incisive mode only if the budget of function evaluations would be fully

Drug Discovery with a New Tangram Optimizer and Compound Filtering 757

Fig. 2. Corners used for computing each centroid in a 2D search space (Division stage).

consumed after assessing the centre of the search space, the first global stage, and the dif-
ferent division points. In other words, when no local search will be executed for the input
computational budget.

Fourthly and lastly, the global stage at line 8 keeps the maximum step (radius) of the
local search component to the diameter of the search space, as in the original Tangram
algorithm. However, this radius is set to the distance between the centroid of every region
and the current solution at local phases (lines 16 and 21). Conversely, the original Tangram
method would have set this value to the distance from the current solution and the midpoint
between it and the corner involved. Independent of the alias ‘global’ or ‘local’, the calls
at lines 8, 16, and 21 in Algorithm 2 refer to the local search component, SASS. This
method is not described due to space limitations, but the interested reader can find detailed
explanation in Lančinskas et al. (2013), Cruz et al. (2022b). That said, bound checking
must be modified to make the variables indexed in wrap to wrap around their opposite
limits, which is trivial.

2.5.3. Final Remarks

The previous explanation of Tangram CW is mainly problem-independent. Adapting the
problem-specific objective function defined in (4) is straightforward. It is only necessary to
normalize the ten input variables so that the function domain becomes the 10-dimensional
unit hypercube. However, as that function returns the overlap degree between the query
and the studied compound, the optimizer should try to maximize it. Tangram CW, like the
original method (and most optimization algorithms) is described in terms of minimization.
Fortunately, converting a maximization problem into a minimization one is trivial. It is
only necessary to multiply the objective function by −1, i.e. maximizing f is equal to
minimizing −f (Cruz et al., 2022a).

It is also relevant to highlight that the incisive mode of Tangram CW is not likely to
be used for this problem. However, it is defined for generality, as it addresses a potentially

758 N.C. Cruz et al.

unwanted situation like the original method. Other applications of Tangram CW in which
very few function evaluations are allowed could benefit from it.

3. Experimentation and Results

This section starts by explaining the implementation of the proposed solution. The de-
scription covers both software and hardware. After that, it presents the dataset used for
the different experiments. Specifically, the experimentation initially compares the perfor-
mance of the proposed optimizer, Tangram CW, to the state-of-the-art global methods for
shape similarity-based screening OptiPharm and 2L-Go-Pharm. The comparison repli-
cates the benchmarks defined by those methods for rigid compounds and focuses on re-
ducing the computational budget. In this context, the second experimentation stage studies
the effectiveness of the proposed filtering strategy to discard unwanted compounds while
keeping the expected ones. The third and last experimentation phase analyses the effec-
tiveness of the proposed optimizer and compound filter when considering the flexibility of
the compounds in the dataset, which defines the most challenging situation. Aside from
describing how the proposal performs, the study also discusses the general benefits of
considering flexibility despite the practical difficulties, as it is only possible when relying
on highly efficient methods.

3.1. Implementation and Hardware Setup

The proposed solution has been implemented in MATLAB (2018) and C through the
MEX API to accelerate the most computationally demanding parts (Getreuer, 2010; The
MathWorks Inc., 2022). Specifically, the parallel database exploration processes, the com-
pound filter, and the optimizer are written in MATLAB. Conversely, those linked to the
objective function calculation are written in C and compiled as MATLAB Executable
files through the MEX API. This way, the overall procedure is wrapped into the MAT-
LAB environment. As a high-level-of-abstraction language, its use results in concise and
maintainable code that allows modifications easily, especially considering the numerous
toolboxes developed for MATLAB (Cruz et al., 2022a). At the same time, the most com-
putationally intensive part remains written in C and compiled for the architecture to run
more efficiently. To become conscious of the effectiveness of this approach, at preliminary
experimentation, the same virtual screening process was accelerated by 4.11 times after
replacing the initial MATLAB version of the objective function with the C-MEX one in
the development workstation. The implemented software package is publicly available in
Cruz et al. (2023).

Regarding the hardware used, the development workstation features an Intel Core i7
processor with 4 physical cores and 32 GB of RAM running Xubuntu 18.04. Aside from
development purposes, this machine has also been used for the experiments with rigid
compounds. However, for the virtual screening processes dealing with flexible compounds
through the generation of multiple conformations, a node of the cluster of the Supercom-
puting – Algorithms research group from the University of Almería, Spain, is used. It has
2 AMD EPYC Rome 7 642 with 48 cores each (96 in total) and 512 GB of RAM.

Drug Discovery with a New Tangram Optimizer and Compound Filtering 759

3.2. Food and Drug Administration (FDA) Database

The Food and Drug Administration (FDA) (Ciociola et al., 2014) is a federal agency of
the United States Department of Health and Human Services. It is responsible for safe-
guarding and improving public health through the regulation of prescription and over-
the-counter medications. Among the resources that they offer publicly, there is a dataset
containing 1 751 molecules representing safe and approved drugs for use in humans in
the USA. In the current context, it is customary to identify compound pairs in the FDA
database that exhibit a high level of similarity. The background to this is that finding new
compounds can be a valuable approach to drug discovery, as it can potentially lead to a
more effective, safer, and more efficient development of new treatments (Wishart, 2006).

Additionally, the selection of these compounds was used to test the software with flex-
ible compounds. For this purpose, the software OMEGA (Hawkins et al., 2010) was used
with the default configuration and the maximum number of conformations was set at 500.
Consequently, a novel database of 279 756 conformations was generated from the original
1751 through this process.

3.3. Battery of Searches for Rigid Compounds

The performance of the proposal has been first studied by replicating one of the most
descriptive tests considered when introducing OptiPharm and 2L-GO-Pharm. Namely,
the benchmark consists of 40 query molecules from the FDA database, without flexibil-
ity, and considering hydrogen atoms. The latter aspect is highly relevant because some
state-of-the-art tools, such as WEGA, omit hydrogen atoms during the search to acceler-
ate the process, yet it may affect results. Nevertheless, OptiPharm achieved competitive
results considering them. The optimizer used its robust configuration, which provides the
method with a computational budget of 200 000 (200k) objective function evaluations
for every positioning procedure. The reader can find more details about these results in
Puertas-Martín et al. (2019) (Table 5). Later, 2L-GO-Pharm obtained comparable results
after reducing the computational budget to 150k (Ferrández et al., 2022). They define the
ground truth for the proposal, i.e. Tangram CW with and without compound filtering (and
supported by parallel computing at both levels).

The local search method, SASS, uses its default configuration as suggested in Cruz et

al. (2022b) and also done by OptiPharm. The configuration of Tangram CW was adjusted
after preliminary experimentation letting it use from 5 to 20k objective function evalu-
ations and local budgets ranging from 32 to 256. The first problem dimension, i.e. the
only angular rotation, was finally set to wrap around at bounds. The selected configura-
tion defines 20k function evaluations, and every local search takes 128. Hence, Tangram
CW will work with 10% and 13.33% of the computational budgets of OptiPharm and
2L-GO-Pharm, respectively.

Table 1 contains the results achieved for the described test. The first column has the
number of every test for easier referring. The second column shows the name of the query
of the reference molecule. The third one includes its number of atoms (considering those

760 N.C. Cruz et al.

Table 1
Results of Tangram CW (20k evaluations) compared to OptiPharm (200k evaluations)

and 2L-GO-Pharm (150k evaluations) when searching for 40 rigid compounds.

OptiPharm/2L-GO-Pharm Tangram CW

ID Query Atoms Found C. Value Found C. Value

1 DB00529 10 DB09294 0.87 DB09147 0.87
2 DB00331 20 DB09210 0.86 DB09210 0.86
3 DB01352 29 DB00306 0.89 DB00306 0.89
4 DB01365 30 DB00191 0.94 DB00191 0.93
5 DB00380 35 DB01041 0.85 DB01041 0.85
6 DB06216 37 DB00370 0.88 DB00370 0.88
7 DB00693 37 DB01619 0.86 DB01619 0.86
8 DB07615 40 DB00721 0.79 DB00721 0.79
9 DB09219 40 DB01320 0.85 DB01320 0.85
10 DB00674 42 DB01619 0.80 DB01619 0.80
11 DB01198 45 DB00402 0.89 DB00402 0.89
12 DB00887 45 DB00837 0.74 DB00837 0.74
13 DB00246 50 DB01261 0.76 DB01261 0.75
14 DB00381 53 DB01023 0.83 DB01023 0.83
15 DB09237 54 DB01054 0.75 DB01054 0.75
16 DB00876 54 DB09039 0.67 DB09039 0.67
17 DB00254 55 DB00595 0.85 DB00595 0.85
18 DB00351 57 DB04839 0.93 DB04839 0.93
19 DB01196 60 DB00286 0.80 DB00286 0.80
20 DB01621 66 DB01148 0.72 DB01148 0.71
21 DB09236 66 DB01054 0.68 DB01054 0.68
22 DB08903 69 DB00333 0.68 DB00333 0.68
23 DB00632 69 DB00464 0.74 DB00464 0.74
24 DB01419 70 DB06605 0.67 DB06605 0.67
25 DB00320 80 DB00728 0.62 DB00728 0.62
26 DB00728 91 DB01339 0.84 DB01339 0.84
27 DB00503 98 DB00701 0.54 DB01336 0.54
28 DB01232 100 DB00212 0.62 DB00212 0.62
29 DB00309 110 DB00541 0.62 DB00541 0.62
30 DB04786 120 DB00511 0.43 DB00511 0.43
31 DB09114 130 ∗DB08993∗ ∗0.51∗ DB01321 0.52

32 DB06439 137 DB00207 0.59 DB00207 0.59
33 DB01078 140 DB00511 0.58 DB00390 0.58
34 DB01590 151 DB00877 0.56 DB00877 0.56
35 DB04894 152 DB00646 0.54 DB00646 0.54
36 DB00403 167 DB08874 0.47 DB08874 0.47
37 DB00732 169 DB06287 0.48 DB06287 0.48
38 DB00050 194 DB00569 0.49 DB00569 0.49
39 DB06699 221 DB09099 0.51 DB09099 0.51
40 DB06219 229 DB00512 0.44 DB06287 0.44

Mean: – 86 – 0.70 – 0.70

of hydrogen). The fourth column displays the most similar compound found by OptiPharm
and 2L-GO-Pharm for every case. It is followed by the approximated value of the objective
function that they found in the fifth column. This representation assumes that OptiPharm
and 2L-GO-Pharm behave equally to save room, and that is true in 39 of the 40 cases.

Drug Discovery with a New Tangram Optimizer and Compound Filtering 761

However, the result that the latter finds for the thirty-first case is the same as our proposal
in reality. The asterisks warn the reader about this detail. Analogously, the sixth and sev-
enth columns show the most similar compound suggested by Tangram CW and its value
in the position achieved at optimization, respectively. The last row includes the average
of the number of atoms and the value of the results found by the reference optimizers
and Tangram CW in the corresponding columns. The values in bold font highlight ei-
ther a relative victory of a method over the other or an interesting situation, and they are
commented below.

For the sake of completeness, notice that it took approximately 9 hours to complete
the test in the workstation, running in parallel in four cores and without compound fil-
tering. Regardless, as run times are machine-dependent, the focus will stay on function
evaluations.

At first glance, the reference optimizers and Tangram CW find the same results in most
cases, covering both the suggested compound and the assessment. In five cases, i.e. 1, 27,
31 (related to OptiPharm only), 33, and 40, Tangram CW suggested different yet equally-
ranked compounds. This situation, promoted when changing the methods, is interesting
as it might catch the attention of analysts over new compounds for later stages of experi-
mentation. Regardless, as mentioned, most records in Table 1 are the same on either side.
There are only four numerical variations in bold (4, 13, 20 (left), and 31 (right)), and they
are negligible in this context, with the resulting averages also being equal. Accordingly,
both sides are equivalent in practical terms.

Nevertheless, it is necessary to remember that the computational budget of Tangram
CW is approximately a tenth of that of the reference methods. More specifically, our opti-
mizer completes the benchmark after consuming 20 000×40×(1 751−1) function evalua-
tions (the subtraction is due to the self-exclusion of compounds). Conversely, replacing the
first term of that expression with either 200 000 (OptiPharm) or 150 000 (2L-GO-Pharm)
significantly increases the computational cost. Additionally, as OptiPharm stands out as
a highly-configurable method compatible with tighter computational budgets, it was also
executed with the same limit as Tangram CW, i.e. 20 000 function evaluations. This con-
figuration resulted in OptiPharm suggesting sub-optimal compounds in 10 out of the 40
cases, i.e. its failure rate raised from 0 to 25%.

Therefore, as intended, the results confirm that the proposed optimizer is significantly
more efficient than the previous global optimization approaches for shape similarity-based
screening, i.e. OptiPharm and 2L-GO-Pharm. This aspect is critical when the databases
increase in size, as when considering flexibility. Aside from that, our optimizer is also
simpler to implement and tune.

3.4. Preliminary Compound Filtering

The aforementioned consumption of function evaluations for the benchmark of rigid com-
pounds has two variable terms, the computational budget per positioning case and the
number of compounds in the database. Tangram CW has already made it possible to
change the former from either 200k or 150k to 20k only. However, the proposed compound

762 N.C. Cruz et al.

Table 2
Effect of compound filtering over the rigid dataset.

qnt = 100 qnt = 250 qnt = 500 qnt = 0.25 qnt = 0.30 qnt = 0.35

Success rate 75% 85% 92.5% 82.5% 92.5% 100%
(30/40) (34/40) (37/40) (33/40) (37/40) (40/40)

Ave. no. of compounds left 100 250 500 205 348 522
(5.71%) (14.28%) (28.56%) (11.71%) (19.87%) (29.81%)

filter can also help us to reduce the latter by minimizing the number of compounds that
pass to a complete optimization-based positioning process. Some readers might consider
1 751 low enough, but it is only a benchmark. Other databases can increase the number
of options significantly. Besides, the chosen benchmark will increase in size from 1 751
to 279 756 after considering flexibility through the generation of conformations, as cov-
ered in the next section. Therefore, it is highly relevant to be able to reduce the number of
compounds to consider during the virtual screening process.

In this context, the knowledge-based filtering strategy has been tested for the previous
benchmark in its two main configurations. Specifically, the filter has been launched to re-
duce the number of rigid compounds from the FDA database i) considering a degradation
threshold with respect to the best ranked and ii) directly selecting a user-given number
of the best. Table 2 contains the results obtained. The first three columns refer to fixed
selections, i.e. the filtering parameter qnt is an integer greater than 1. The options consid-
ered are keeping the 100, 250, and 500 most promising compounds after the preliminary
assessment considering four predefined positioning vectors. Analogously, the last three
columns refer to the other approach, when qnt is a decimal value between 0 and 1 linked
to a degradation percentage from the best preliminary ranked. The first row shows the
success rate considering the 40 cases. Every case is tagged as successful when the best-
ranked compound known from the previous section passes the filter and will be among
the options seen by the optimizer. Otherwise, it is tagged as failed, as optimizers will not
be able to consider the preferred compound. The second row displays the average number
of compounds left after filtering.

It is possible to achieve high success rates despite discarding multiple compounds be-
fore optimization. Even if one keeps the 100 most promising compounds, i.e. the results of
the first column, the expected compound passes 75% of the cases, and it is the most aggres-
sive filtering configuration considered. Let us study the resulting computational effort us-
ing this configuration compared to the previous study that omitted filtering. Without a fil-
ter, the number of function evaluations taken by our proposal to obtain the results of every
case, i.e. every row of Table 1, is 20 000×1 750 = 35 000 000. Completing the benchmark
increases this value to 40 × 34 820 000 = 1.400e9. Conversely, using the qnt = 100 four-
point filtering lowers the per-case consumption to 4 × 1 750 + 20 000 × 100 = 2 007 000

and 2 007 000 × 40 = 8.028e7 for completing the 40 processes, i.e. 5.73% of the compu-
tational effort, as that of filtering is almost negligible if compared to optimization-based
positioning.

Logically, limiting the selection to 100 implies renouncing the best result known 25%
of the cases in this context. Nevertheless, it is possible to find a trade-off. As expected, the

Drug Discovery with a New Tangram Optimizer and Compound Filtering 763

success rates improve as the number of kept compounds increases. As shown in Table 1,
it is possible not to discard any optimal compound and avoid optimizing the position of
more than 70% of the database. Specifically, if the filter is set to keep approximately 522
of the most promising compounds, the success rate is the same as when considering the
whole database, yet working with less than a third of it.

The number of compounds to keep can be defined either explicitly or implicitly. It de-
pends on working with quantities or percentages, respectively, and it is possible to obtain
comparable results. In this context, the reader might wonder about the option to choose.
The recommended approach is to define an explicit quantity when it is critical to control
the computational effort, as when working with conformations. Conversely, if the main
goal is not to discard any promising compound whose ranking can improve after precise
optimization-based positioning, degradation percentages should be preferred.

3.5. Searches for Compounds Considering Flexibility

Based on the effectiveness of Tangram CW and the compound filter, the proposed solution
has been applied to shape similarity-based screening considering flexible compounds. As
mentioned above, this decision implies switching from the 1751 initial compounds to their
conformation-based extension containing 279 756.

This approach makes it possible to compare compounds more accurately and achieve
better results, but the computational effort starts to be hard to handle. For instance,
let us imagine that one user is interested to find the most similar compound to one of
the rigid ones in the current dataset. Roughly speaking, it would be necessary to study
279 755 options. Considering the use of Tangram CW with 20 000 objective evaluations
per placement, the cost is 20 000 × 279 755 = 5.60e9. Assuming every compound to
be relatively small, i.e. less than 30 atoms, and a computational cost of 0.006 seconds
per evaluation in a regular computer, a single row of the rigid benchmark could take
(0.006 × 20 000 × 279 755) seconds. This is more than 9 325 hours, i.e. more than a
year. Logically, this cost can be attenuated with parallel computing, but the assumptions
have also been favourable in terms of the size of the molecules and the run time per evalu-
ation. Hence, every complete search is significantly demanding, even using Tangram CW
and its effectiveness with 20k function evaluations. For these reasons, we have executed
the search for five different cases of those already addressed without flexibility.

Table 3 contains the results of using Tangram CW and the compound filter – the cluster
node previously mentioned as one of the hardware resources. The first column shows the
query or reference compound. After it, the second and third column have the results found
with a rigid-only approach, i.e. as shown in Table 1 with either method, as all achieved
the same optimal result. They are the most similar compound found and its value for the
optimized positioning vector, respectively. After that, the fourth, fifth, and sixth column
contain the results of Tangram CW with a computational budget of 20k and compound
filtering with a fixed quantity of 300 compounds. They are the query compound and the
most similar one found, including the particular conformation between parentheses, its
value, and the run time in hours, respectively. The same scheme is repeated for Tangram

764 N.C. Cruz et al.

Table 3
Results of Tangram CW with 20k evaluations and filtering considering flexibility compared to using rigid

compounds only.

Rigid-only approach Tangram CW (20k) & qnt = 300 Tangram CW (20k) & qnt = 0.35

Target Found C. Value Found C. Value T (h) Found C. Value T (h)

DB00320 DB00728 0.62 DB00320 (30)

&
DB00696 (31)

0.96 0.32 DB00320 (30)

&
DB00696 (31)

0.96 1.83

DB00331 DB09210 0.86 DB00331 (11)

&

DB00149 (7)

0.92 0.05 DB00331 (11)

&

DB00149 (7)

0.92 0.18

DB00380 DB01041 0.85 DB00380 (19)

&

DB01579 (2)

0.90 0.10 DB00380 (19)

&

DB01579 (2)

0.90 1.78

DB00381 DB01023 0.83 DB00381 (141)

&

DB04920 (204)

0.87 2.36 DB00381 (141)

&

DB04920 (204)

0.87 69.93

DB00632 DB00464 0.74 DB00632 (93)

&

DB09031 (442)

0.89 3.16 DB00632 (93)

&

DB09031 (442)

0.89 27.56

CW after changing the filter scheme to a degradation percentage of 0.35. The best values
are in bold font.

The benefits of considering flexibility at virtual screening are evident. The proposed
solution outperforms the results obtained without flexibility in the five cases. It is not only
a matter of positioning accuracy: the preferred compounds also change. For instance, the
first record shows that when ignoring flexibility, the optimizers suggest selecting DB00728
as the most similar to DB00320. The proposal was reasonable for that dataset, and all
the optimizers obtained the same (see Table 1). However, when considering flexibility,
the proposed compound is DB00696 (in its thirty-first conformation). Hence, it is not a
limitation of the optimization engine but of the rigid-only approach. That said, as intended,
the enhanced efficiency of the proposed method makes it feasible to address it with a more
reasonable effort.

Focusing on the results of our proposal, i.e. the right side of Table 3, the run times
confirm two aspects already mentioned. Firstly, comparing compounds may take signif-
icantly different run times depending on their number of atoms and the existing options.
Secondly, and related to the latter aspect, fixed-size filtering minimizes the impact of this
potential problem. For instance, the process for DB00381 as the query took 2.36 hours
when qnt = 300, but it raised to 69.93 hours when qnt = 0.35. Thus, it remains the pre-
ferred option when dealing with the flexibility of compounds (conformations), as intro-
duced. Besides, it is also relevant to highlight that both virtual screening approaches run
independently. Despite this situation, the proposed method found the same compounds
and assessments. Therefore, the shape similarity-based virtual screening method shows
significant robustness.

Additionally, although it has not been highlighted due to its conceptual simplicity,
notice that the common parallel database exploration component defines the backbone of

Drug Discovery with a New Tangram Optimizer and Compound Filtering 765

the whole process. Considering that the computing platform has almost 100 cores to use,
not exploiting it could multiply the run times by up to a factor of 100, which becomes
critical in this context.

4. Conclusions and Future Work

In virtual screening for computer-aided drug discovery, shape similarity is one of the most
used metrics. It requires finding the optimal comparison position between compounds,
which is addressed as an optimization problem. Since compound databases are massive
and this problem must be solved multiple times, local optimization algorithms are gener-
ally used. This strategy implies prioritizing computational speed over exploration capabil-
ities. OptiPharm and 2L-GO-Pharm are two recent methods that apply global search strate-
gies. However, their potentially high consumption of function evaluations and sophisti-
cated tuning is their main deterring factor, especially for working with flexible molecules,
as the potential computational cost increases dramatically.

This work has proposed and tested a stack for addressing shape similarity-based vir-
tual screening. It has covered the design of a parallel process for exploring databases of
compounds, a new global optimization algorithm, and a knowledge-based filter of com-
pounds. The last two components represent the main contributions. The optimization al-
gorithm, called Tangram CW, is based on a recent meta-heuristic known as Tangram,
which needs few function evaluations and is simple to tune. It modifies the division of
the search space to work with centroids rather than midpoints and allows defining vari-
ables that wrap around their bounds. The knowledge-based compound filter goes through
the input database and ranks each compound after studying four descriptive positions.
The user can decide with a single parameter whether to choose a fixed selection of the
most promising or those whose initial value falls within a user-given degradation factor,
which is self-adaptive. This filtering procedure only consumes four function evaluations
per candidate compound and saves thousands for every discarded one.

The proposal has been first tested with a benchmark covering the shape similarity-
based screening for 40 compounds from a database with 1 751 ones. Tangram CW
achieves comparable results to the state-of-the-art methods OptiPharm and 2L-GO-
Pharm. However, their computational budget was 200 000 and 150 000 function evalua-
tions, respectively, while Tangram CW needed 20 000. In this context, the compound filter
was also tested. On average, it allowed discarding more than two thirds of the compounds
while keeping the expected ones for the optimizer to find them. The rigor of filtering can
be easily controlled for prioritizing either the computational cost or the quality of the re-
sults. It was also possible to reach success rates greater than 90% after ignoring four fifths
of the compounds.

Based on these results, the combination of Tangram CW and the compound filter has
been tested to perform virtual screening with flexible compounds. This goal required gen-
erating the conformations of those in the database, which enlarged the dataset from 1 751
compounds to 279 756. In this context, five cases from the previous benchmark were re-
peated. Thanks to the light consumption of function evaluations of Tangram CW, the com-
pound filter, and the implicit support of the parallel exploration procedure, it was possible

766 N.C. Cruz et al.

to finish all the cases in a reasonable time. Besides, the facts that the selected compounds
differ from the rigid context and the values are significantly higher confirm that support-
ing flexibility is preferable over not doing so. The proposal of this work advances in this
line by offering a simple-to-tune yet effective and efficient stack for virtual screening.

For future work, there are two lines to extend the present study. Firstly, more rigid and
flexible benchmarks will be considered. Secondly and lastly, new virtual screening metrics
will be added to assess the effectiveness of our proposal when considering a different
objective function.

Acknowledgements

The authors would like to thank Professor Leocadio González Casado from the University
of Almería for his suggestions about the original Tangram method.

Funding

This work has been supported by Grant PID2021-123278OB-I00 funded by MCIN/AEI/
10.13039/501100011033 and by “ERDF A way of making Europe”; and by projects
PDC2022-133370-I00 and TED2021-132020B-I00 funded by MCIN/AEI/ 10.13039/5011
00011033 and by European Union Next GenerationEU/PRTR. N.C. Cruz is supported by
the Ministry of Economic Transformation, Industry, Knowledge and Universities from the
Andalusian government (PAIDI 2021: POSTDOC_21_00124). Savíns Puertas Martín is a
fellow of the “Margarita Salas” grant (RR_A_2021_21), financed by the European Union
(NextGenerationEU).

References

Ahmed, L., Georgiev, V., Capuccini, M., Toor, S., Schaal, W., Laure, E., Spjuth, O. (2018). Efficient iterative
virtual screening with Apache Spark and conformal prediction. Journal of Cheminformatics, 10, 8. https://
doi.org/10.1186/s13321-018-0265-z.

Ban, F., Dalal, K., Li, H., LeBlanc, E., Rennie, P.S., Cherkasov, A. (2017). Best practices of computer-aided
drug discovery: lessons learned from the development of a preclinical candidate for prostate cancer with a
new mechanism of action. Journal of Chemical Information and Modeling, 57, 1018–1028. https://doi.org/
10.1021/acs.jcim.7b00137.

Boussaïd, I., Lepagnot, J., Siarry, P. (2013). A survey on optimization metaheuristics. Information Sciences,
237, 82–117.

Carracedo-Reboredo, P., Liñares-Blanco, J., Rodríguez-Fernández, N., Cedrón, F., Novoa, F.J., Carballal, A.,
Maojo, V., Pazos, A., Fernández-Lozano, C. (2021). A review on machine learning approaches and trends in
drug discovery. Computational and Structural Biotechnology Journal, 19, 4538–4558.

Cereto-Massagué, A., Ojeda, M.J., Valls, C., Mulero, M., Garcia-Vallvé, S., Pujadas, G. (2015). Molecular fin-
gerprint similarity search in virtual screening. Methods, 71, 58–63.

Ciociola, A.A., Cohen, L.B., Kulkarni, P., Kefalas, C., Buchman, A., Burke, C., Cain, T., Connor, J., Ehrenpreis,
E.D., Fang, J., Fass, R., Karlstadt, R., Pambianco, D., Phillips, J., Pochapin, M., Pockros, P., Schoenfeld,
P., Vuppalanchi, R. (2014). How drugs are developed and approved by the FDA: current process and future
directions. American Journal of Gastroenterology, 109, 620–623.

Drug Discovery with a New Tangram Optimizer and Compound Filtering 767

Costa, A., Nannicini, G. (2018). RBFOpt: an open-source library for black-box optimization with costly function
evaluations. Mathematical Programming Computation, 10, 597–629.

Cruz, N.C., González-Redondo, A., Redondo, J.L., Garrido, J.A., Ortigosa, E.M., Ortigosa, P.M. (2022a). Black-
box and surrogate optimization for tuning spiking neural models of striatum plasticity. Frontiers in Neuroin-

formatics, 16, 1017222. https://doi.org/10.3389/fninf.2022.1017222.
Cruz, N.C., Redondo, J.L., Ortigosa, E.M., Ortigosa, P.M. (2022b). On the design of a new stochastic meta-

heuristic for derivative-free optimization. In: Computational Science and Its Applications–ICCSA 2022 Work-

shops: Malaga, Spain, July 4–7, 2022, Proceedings, Part II, pp. 188–200. Springer.
Cruz, N.C., Puertas-Martín, S., Redondo, J.L., Ortigosa, P.M. (2023). Source code for ‘An effective solu-

tion for drug discovery based on the Tangram meta-heuristic and compound filtering’. https://github.com/
cnelmortimer/Cruz_et_al-INFOR23_Code. Online: 27-Oct-2023.

Ellingson, B.A., Geballe, M.T., Wlodek, S., Bayly, C.I., Skillman, A.G., Nicholls, A. (2014). Efficient calcu-
lation of SAMPL4 hydration free energies using OMEGA, SZYBKI, QUACPAC, and Zap TK. Journal of

Computer-Aided Molecular Design, 28, 289–298.
Ferrández, M.R., Puertas-Martín, S., Redondo, J.L., Pérez-Sánchez, H., Ortigosa, P.M. (2022). A two-layer

mono-objective algorithm based on guided optimization to reduce the computational cost in virtual screening.
Scientific Reports, 12(1), 12769.

Fu, X., Mervin, L.H., Li, X., Yu, H., Li, J., Mohamad Zobir, S.Z., Zoufir, A., Zhou, Y., Song, Y., Wang, Z.,
Bender, A. (2017). Toward understanding the cold, hot, and neutral nature of Chinese medicines using in
silico mode-of-action analysis. Journal of Chemical Information and Modeling, 57, 468–483.

García, J.S., Puertas-Martín, S., Redondo, J.L., Moreno, J.J., Ortigosa, P.M. (2023). Improving drug discovery
through parallelism. Journal of Supercomputing, 79, 9538–9557. https://doi.org/10.1007/s11227-022-05014-
0.

Getreuer, P. (2010). Writing Matlab C/MEX code. Technical report, Matlab FileExchange.
Hamza, A., Wei, N.N., Zhan, C.G. (2012). Ligand-based virtual screening approach using a new scoring func-

tion. Journal of Chemical Information and Modeling, 52, 963–974.
Hawkins, P.C.D., Skillman, A.G., Warren, G.L., Ellingson, B.A., Stahl, M.T. (2010). Conformer generation with

OMEGA: algorithm and validation using high quality structures from the protein databank and Cambridge
structural database. Journal of Chemical Information and Modeling, 50, 572–584.

Hughes, J.P., Rees, S., Kalindjian, S.B., Philpott, K.L. (2011). Principles of early drug discovery. British Journal

of Pharmacology, 162, 1239–1249.
Jelasity, M., Ortigosa, P.M., García, I. (2001). UEGO, an abstract clustering technique for multimodal global

optimization. Journal of Heuristics, 7(3), 215–233.
Jones, D.R., Martins, J.R.R.A. (2021). The DIRECT algorithm: 25 years later. Journal of Global Optimization,

79(3), 521–566.
Kanhed, A.M., Patel, D.V., Teli, D.M., Patel, N.R., Chhabria, M.T., Yadav, M.R. (2021). Identification of poten-

tial Mpro inhibitors for the treatment of COVID-19 by using systematic virtual screening approach. Molecular

Diversity, 25(1), 383–401.
Kumar, A., Zhang, K.Y.J. (2018). Advances in the development of shape similarity methods and their application

in drug discovery. Frontiers in Chemistry, 6, 315. https://doi.org/10.3389/fchem.2018.00315.
Lančinskas, A., Ortigosa, P.M., Žilinskas, J. (2013). Multi-objective single agent stochastic search in non-

dominated sorting genetic algorithm. Nonlinear Analysis: Modelling and Control, 18(3), 293–313.
Lindfield, G., Penny, J. (2017). Introduction to Nature-Inspired Optimization. Academic Press, London, UK.
Maia, E.H.B., Assis, L.C., De Oliveira, T.A., Da Silva, A.M., Taranto, A.G. (2020). Structure-based virtual

screening: from classical to artificial intelligence. Frontiers in Chemistry, 8. https://doi.org/10.3389/fchem.
2020.00343

MATLAB (2018). Version R2018b (MATLAB 9.5). The MathWorks Inc., Natick, Massachusetts.
McInnes, C. (2007). Virtual screening strategies in drug discovery. Current Opinion in Chemical Biology, 11,

494–502.
Meissner, K.A., Kronenberger, T., Maltarollo, V.G., Trossini, G.H.G., Wrenger, C. (2019). Targeting the Plas-

modium falciparum plasmepsin V by ligand-based virtual screening. Chemical Biology & Drug Design, 93,
300–312.

Parois, P., Cooper, R.I., Thompson, A.L. (2015). Crystal structures of increasingly large molecules: meeting the
challenges with CRYSTALS software. Chemistry Central Journal, 9, 30.

768 N.C. Cruz et al.

Poongavanam, V., Atilaw, Y., Ye, S., Wieske, L.H.E., Erdelyi, M., Ermondi, G., Caron, G., Kihlberg, J. (2021).
Predicting the permeability of macrocycles from conformational sampling – limitations of molecular flexi-
bility. Journal of Pharmaceutical Sciences, 110, 301–313.

Puertas-Martín, S., Redondo, J.L., Ortigosa, P.M., Pérez-Sánchez, H. (2019). OptiPharm: an evolutionary algo-
rithm to compare shape similarity. Scientific Reports, 9(1), 1–24.

Puertas-Martín, S., Redondo, J.L., Garzón, E.M., Pérez-Sánchez, H., Ortigosa, P.M. (2022). Increasing the ac-
curacy of optipharm’s virtual screening predictions by implementing molecular flexibility. In: Bioinformat-

ics and Biomedical Engineering, IWBBIO 2022, Lecture Notes in Computer Science, Vol. 13347. Springer,
Cham. https://doi.org/10.1007/978-3-031-07802-6_20.

Rao, R.V., Savsani, V.J., Vakharia, D.P. (2012). Teaching–learning-based optimization: an optimization method
for continuous non-linear large scale problems. Information Sciences, 183(1), 1–15.

Rapaport, D.C. (2004). The Art of Molecular Dynamics Simulation. Cambridge University Press, Cambridge,
UK.

Rogers, D.J., Tanimoto, T.T. (1960). A Computer Program for Classifying Plants. Science, 132, 1115–1118.
Salhi, S. (2017). Heuristic Search: The Emerging Science of Problem Solving. Springer, Cham, Switzerland.
Snyman, J.A., Wilke, D.N. (2005). Practical Mathematical Optimization. Springer, Cham, Switzerland.
Software, O.S., Software, I.O.S., Software, O.S. (2008). ROCS. Santa Fe, NM. http://www.eyesopen.com.
Storn, R., Price, K. (1997). Differential evolution-a simple and efficient heuristic for global optimization over

continuous spaces. Journal of Global Optimization, 11(4), 341.
Sudholt, D. (2015). Parallel evolutionary algorithms. In: Kacprzyk, J., Pedrycz, W. (Eds.), Springer Handbook of

Computational Intelligence, Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-
3-662-43505-2_46.

Sumudu, P., Leelananda, S.P. (2016). Computational methods in drug discovery. Beilstein Journal of Organic

Chemistry, 12, 2694–2718.
The MathWorks Inc. (2022). Matlab Documentation. The MathWorks Inc., Natick, Massachusetts, United States.

https://www.mathworks.com/help/matlab/.
Trobec, R., Slivnik, B., Bulić, P., Robič, B. (2018). Introduction to Parallel Computing: From Algorithms to

Programming on State-of-the-Art Platforms. Springer, Cham, Switzerland.
Van Geit, W., De Schutter, E., Achard, P. (2008). Automated neuron model optimization techniques: a review.

Biological Cybernetics, 99, 241–251.
Wang, J., Zhang, X., Omarini, A.B., Li, B. (2020). Virtual screening for functional foods against the main pro-

tease of SARS-CoV-2. Journal of Food Biochemistry, 44(11), e13481.
Wishart, D.S. (2006). DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic

Acids Research, 34, 668–672.
Yan, X., Li, J., Liu, Z., Zheng, M., Ge, H., Xu, J. (2013). Enhancing molecular shape comparison by weighted

Gaussian functions. Journal of Chemical Information and Modeling, 53, 1967–1978.
Zeng, W., Guo, L., Xu, S., Chen, J., Zhou, J. (2020). High-throughput screening technology in industrial biotech-

nology. Trends in Biotechnology, 38, 888–906.

Drug Discovery with a New Tangram Optimizer and Compound Filtering 769

N.C. Cruz is a post-doctoral researcher at the Department of Computer Engineering, Au-
tomation, and Robotics of the University of Granada, Spain. After studying for a bachelor’s
and master’s degree in computer engineering, he obtained his PhD in computer science
at the University of Almería, Spain, in 2019. He is a member of the Supercomputing-
Algorithms Research Group at that institution. His research focuses on numerical opti-
mization through meta-heuristics and high-performance computing applied to different
problems, such as design and control of solar power tower plants, neural model tuning,
and optimization of mechanisms.

S. Puertas-Martín is a post-doctoral researcher at the Department of Informatics of the
University of Almería, Spain. He is also doing a research stay at the Information School
of the University of Sheffield in the United Kingdom. He obtained his PhD in computer
science at the University of Almería in 2020. He is a member of the Supercomputing-
Algorithms Research Group at that institution. His research interests are drug discovery,
global optimization and high-performance computing.

J.L. Redondo is a full professor at the Department of Informatics of the University of
Almería, Spain. She obtained her PhD in computer science from the University of Almería
in 2008. She is a member of the Supercomputing-Algorithms Research Group at that in-
stitution. Her research interests include high-performance computing, global optimization
and applications.

P.M. Ortigosa is a full professor of architecture and computer technology at the Univer-
sity of Almeriá, Spain. She received MSc degrees in physics and electronic engineering
from the University of Granada in 1994 and 1996, respectively, and a PhD in computer
science from the University of Málaga in 1999. She is a member of the Supercomputing-
Algorithms Research Group at the University of Almería. Her research focuses on high-
performance computing, metaheuristic global optimization, computational intelligence,
deep learning, and the application to several real problems. Recently she has been work-
ing on the Internet of Things.

	Introduction
	Overview
	Related Works
	Contributions

	Materials and Methods
	Positioning Model
	Shape Similarity Metric
	Database Exploration Procedure
	Standard LBVS Search Process
	Parallelization Strategy
	Modifications to Support Flexibility

	Compound Filter
	Tangram CW
	Background
	Workflow of Tangram CW
	Final Remarks

	Experimentation and Results
	Implementation and Hardware Setup
	Food and Drug Administration (FDA) Database
	Battery of Searches for Rigid Compounds
	Preliminary Compound Filtering
	Searches for Compounds Considering Flexibility

	Conclusions and Future Work

