
This is a repository copy of City-scale residential energy consumption prediction with a 
multimodal approach.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/223438/

Version: Published Version

Article:

Sheng, Y., Arbabi, H. orcid.org/0000-0001-8518-9022, Ward, W.O.C. et al. (2 more 
authors) (2025) City-scale residential energy consumption prediction with a multimodal 
approach. Scientific Reports, 15 (1). 5313. ISSN 2045-2322 

https://doi.org/10.1038/s41598-025-88603-2

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



City-scale residential energy 
consumption prediction with a 
multimodal approach
Yulan Sheng1,2, Hadi Arbabi2, Wil O. C. Ward3, Mauricio A. Álvarez4 & Martin Mayfield2

The key role of buildings in tackling climate change has gained global recognition. To avoid 
unnecessary costs and time wasted, it is important to understand the conditions and energy usage 
for existing housing stock to identify the most important features affecting energy consumption and 
to guide the relevant retrofit measures. This paper investigated how the spatial, morphological and 
thermal characteristics of residential houses contribute to housing energy consumption. Additionally, 
it presents a rapid assessment tool using minimum data input to answer two main questions: 1) 
What type of properties may need retrofit? 2) What building elements/features may be prioritised to be 

retrofitted? A case study was performed with around 143,000 residential properties in Sheffield. An 
automated machine approach was applied which successfully estimated the energy consumption of 

target buildings with an R2 score of 0.828. Permutation feature importance and partial dependence 
of the features were examined against energy consumption. The results indicate that housing sizes 
and conditions of the external walls are found to be the most important features when estimating the 
energy consumption of residential buildings in Sheffield. Relatively larger and older detached houses 
in neighbourhoods with higher build density may benefit the most from home upgrading projects for 
energy consumption reduction.

Keywords Residential Energy Consumption Prediction, Energy performance certificates (EPC), Partial 

Dependence, AutoML

Background
Residential buildings have become one of the largest consumers of energy around the world1. The recent years 
have witnessed the growing pressure residents feel in paying energy bills, caused in part by the worldwide 
COVID-19 pandemic and the rapid increase in energy prices2. In the UK, the residential sector is the only 
sector that has risen in energy consumption since 2019, while other sectors: transport, industry and services, all 
decreased3. This increasing trend hints at the difficulties the UK government is currently facing in achieving its 
net-zero emissions goals by 2050 to tackle the climate crises.

Incentives have been introduced to mitigate the energy and environmental crisis. The UK government has 
proposed to raise the minimum energy standards for domestic buildings by 2030, especially privately rented 
houses4. According to the English Housing Survey (EHS) for 2022 to 2023, around 52% of existing housing 
stocks will require either retrofitting to meet the new standard or demolishing and reconstructing5.

Comparative studies conducted for retrofit and demolition have concluded retrofitting is more environmentally 
friendly, although it can be relatively expensive. The most common retrofitting measure used, upgrading the 
insulation of the external wall, can cost up to £20,000 per home6. If all the properties in the UK are due to 
be improved to the minimum required standards, the average costs are estimated to be between £91 and £
94 billion5. UK government is investing nearly £4 billion from 2022 to 2026 to support home upgrading and 
retrofitting2. It is thereby important to understand the buildings’ current energy performance to help determine 
optimal retrofit measures to achieve net-zero targets.

This paper developed machine learning models for age and energy consumption prediction and further 
analysed the correlations between each building feature and energy usage to provide guidance on effective 
retrofit measure selection. This paper investigated how the spatial, morphological and thermal characteristics 
of residential houses contribute to housing energy consumption. We also provide a rapid assessment tool using 
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minimum data input to answer two main questions: 1) What type of properties may need retrofit? 2) What building 
elements/features may be prioritised for retrofit to improve energy efficiency?

Related work
When estimating residential energy performance, there are three approaches commonly found in the existing 
literature, either a data-driven approach, a physics-based approach or a hybrid method that combines the 
previous two approaches. Both the physics-based and hybrid approaches rely on detailed information on 
buildings’ thermal characteristics, such as the thermal transmittance of the building material7. They are usually 
applied in relatively small-scale studies focusing on a single building. When access to meter readings and 
buildings’ internal space is limited, a data-driven approach is usually applied to develop statistical or machine 
learning models, based on historical energy consumption data and building morphology. It has been found that, 
in general8,9: 

 1.  Buildings constructed in similar periods tend to have similar building characteristics; and
 2.  Buildings with similar characteristics tend to have similar energy consumption.Each rule suggests one main 

feature affecting the buildings’ energy performance. The first rule indicates the year of construction is im-
portant in energy estimation. One of the potential reasons is that, housing legislation changes regularly to 
comply with the housing needs and environmental concerns at that time and also what might be needed in 
the future. For instance, the Town and Country Planning Act issued in 194710 prioritised developing single 
apartment blocks. The construction sector then develops homes accordingly, hence the second rule10.

Despite the importance of building age in inferring building energy consumption, no easily accessible complete 
database is often available8. Existing studies have attempted to infer building age from its physical features9,11.8 
proposed a methodology to predict the year of construction using map data and historical satellite images. Their 
machine learning model used random forests and achieved 77% prediction accuracy8. However, their model was 
trained based on a relatively small number of properties (1,096) in Nottingham to predict 5 aggregated age bands 
covering a rather wide time span. The test samples they used were also derived from a single neighbourhood, 
which tends to have similar building features and construction age.

The second rule, the relationship between building characteristics and energy consumption, provides insight 
into how housing features can be used to estimate energy using the data-driven approach. Existing literature has 
experimented with a wide range of different data inputs providing such information, including data either in 2D 
or 3D, e.g. LiDAR point cloud12, text-based13 or image-based14,15. One widely used is the Energy Performance 
Certificate (EPC). EPC is an official document of buildings’ energy performance required for every property in 
the UK, similar to the Energy Star score in the USA and Diagnostic de Performance Energétique in France16. It 
follows the Standard Assessment Procedure (SAP) which calculates a rating representative of the overall building 
energy performance. The SAP can be considered a simplified physics-based approach in the form of a worksheet. 
It calculates a score based on the building specifications, such as the floor area, the standard U-values of the 
material used, and the average regional temperature, to a scale of 0 to 10017. The scores are then converted to the 
EPC rating, ranked from G, the least efficient, to A, the most efficient17.15 developed a workflow that uses existing 
EPC data to predict buildings’ energy ratings when such information is not available. Their best-performing 
machine learning model has achieved 88% accuracy in predicting building EPC ratings for properties in Ireland. 
However, there are issues with EPCs that the above studies did not take into consideration. For instance,18 have 
summarised that there are around 1.6 million properties found to be associated with multiple valid EPCs in the 
system. The study carried out by19 also revealed that the records in EPCs can be subjective to the inspectors. In 
their evaluation of 29 houses assessed by multiple inspectors, nearly two-thirds of the properties received ratings 
that differed across two EPC bands, underscoring the critical limitations in the EPC records. However, the EPC 
is one of the most comprehensive publicly available databases for studies related to residential properties.

Machine-learning based data-driven approach is one of the popular methods adopted by existing studies 
to estimate buildings’ energy performance8,9,13,20. However, these models were usually designed using data and 
algorithms chosen based on researchers’ knowledge or the ones previous studies have used, which may not 
be suitable when local contexts change. The analysis followed in these existing studies also lacked in further 
exploration of how individual building feature correlates to energy usage, which can be the key to determining 
the most cost-effective retrofit measure.

This paper attempts to address these gaps by applying Automated machine learning (AutoML) to estimate 
the year of construction and energy consumption of residential buildings. Publicly available data was used to 
extract multi-modality features representing buildings’ spatial, morphological and thermal characteristics. The 
effects of building features towards energy consumption were further examined using a series of permutation 
feature importance (PFI) and partial dependence plots (PDP). The results provide a hint on what the most 
essential features are for energy consumption estimation when data is limited, what are the essential housing 
characteristics that should be considered for selecting target homes for retrofitting and what changes in material 
or insulation condition may be altered to improve home energy performance.

Main contributions of the work
This paper investigated the ranking of housing features in correlation to the building age and energy consumption 
prediction, based on a systematic approach utilising open-sourced data and autoML. This work aims to answer 
two main questions: 1) What type of properties may need retrofit? 2) What building elements or features may be 
prioritised to be retrofitted to reduce energy consumption? These are answered by:

• Identifying the most important features for building age and energy consumption estimation;
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• Investigating the marginal effects of most important features on building age and energy consumption to 
guide retrofit measure selection.The paper is structured as follows. Section 2 provides a detailed description 
of what data has been utilised and what pre-process has taken place in this work. Due to the nature of open-
source data, the limitations of the used data are listed, followed by how these limitations may hinder the 
overall model performance. Section 3 presents the methodology this study followed, detailing how the data 
is aggregated and sub-sampled, how an autoML system is implemented, and how robustness is tested using a 
comparative study. A case study was conducted based on residential properties in Sheffield with results and 
discussion offered in the following section 4.

Data
This paper mainly used data from two sources: Ordnance Survey (OS) and EPC. The map data is used to describe 
the spatial and morphological characteristics of the houses, while the EPC provides information relating to 
housings’ material and insulation conditions. The following sections will explain the procedures of the data 
collection and pre-processing conducted before model development.

Spatial and morphological data
The spatial and morphological data this paper used is the OS MasterMap Building Height Attribute products21. 
Table  1 has listed all the features extracted and used to describe the buildings’ morphology.

Variables 1, 3 and 4 are values provided in the OS MasterMap, while the rest are calculated using ArcGIS. 
Variables 2 and 6 are calculated using the field calculator in Arcmap. Variables 5 and 6 are metrics adapted to 
describe the complexity of the building shape. Normalised Perimeter Index (NPI) is a shape metric measuring 
the roundness. An NPI value further departed from 1 suggests the building has a more complex shape22. Three 
properties are highlighted in Figure 1 as an example. Property A is a primary school in Sheffield, while B and C 
are terraced houses that can be commonly found in the UK. Each property has been marked with its area, total 

Fig. 1. Illustration of example map data.

 

No. Variables Description

1 Total floor area Area of the building footprint (a)

2 Perimeter Total length of building polygon outline (p)

3 Relh2 Relative height from ground to the base of the roof

4 Relhmax Relative height from ground to the highest part of the building

5 NPI Normalised Perimeter Index (NPI) calculated by 
2

√

aπ

p

6 Vxcount Number of vertices in building polygon

7 Builtrate Ratio between all property footprint and postcode area

Table 1. List of features based on OS MasterMap, with brief descriptions of what they represent of and how 

they are calculated.
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perimeter length and the calculated NPI. By comparing these values, it can be seen that, buildings with more 
irregular shapes have smaller NPI values. On the other hand, B and C are the same type of houses, so similar 
values are found for NPI and building perimeter because they are more similar in building shapes.

Energy performance certificates
In this study, the EPC is used to provide variables relating to buildings’ energy performance. The UK government 
provides an online database for users to access and download EPC records as spreadsheets23. However, 
as discussed in Section 1.2, studies show that multiple EPC records can be found associated with the same 
property18. This study examined the downloaded EPC, if the property address or reference number occurred 
multiple times, it means that the property is associated with multiple EPC records. These redundant EPCs are 
filtered based on when the record was created. The single latest-issued EPC is used as the data input.

Overall, the EPC contains 92 categories offering building-related information from three perspectives: spatial 
and reference information to identify where the property is (e.g. Unique Property Reference Number (UPRN) 
and address); the current property characteristics and energy performance; and potential characteristics and 
energy performance if recommended retrofit implemented. Therefore, a data selection process is essential to 
filter unnecessary information and avoid high costs in time and computational power. The selected variables and 
their brief descriptions are listed in Table  2.

Variables 8 to 12 are features describing the general characteristics of the buildings, while variables 13 
to 17 provide more detailed descriptions of the conditions of specific building elements. Variable 18 is the 
completed dataset of ageband combining EPC recorded and predicted year of construction. The original energy 
consumption recorded in the EPCs is measured in kW h/m2 per year. The total floor area for each house is taken 
into consideration here to produce variable 19, which is used as the ground truth data for training the energy 
prediction model. This is to allow future validation with other sources of data, such as smart meter readings and 
national statistics.

As discussed in the literature review, EPC data can present certain issues. These issues may be caused by the 
fact that the records were created by multiple inspectors and the use of different versions of EPC guidelines over 
time, particularly inconsistencies and abnormal entries are found for the categorical variables used in this paper. 
To address these issues, a two-step processing approach was implemented. The first step is to replace blank or 
abnormal entries. For example, if the entry is marked as ‘INVALID!‘ or ‘NO DATA‘, these entries are combined 
as ‘unknown‘. This process also ensures the records only contain English records.

The second step is reorganising the categorical data (variables 13-19). Similar descriptions in the categories 
are found and merged. For instance, “some double glazed” and “partial double glazed” used to describe the 
window insulation conditions are combined into one category.

Once the data from OS and EPC are prepared separately, they are matched using the Unique Property 
Reference Number (UPRN). The UPRN is a reference system commonly found in the UK geospatial data such 
as the OS map data. It was recently introduced to EPC in November 202124, which enables this paper to match 
the map data with its corresponding EPC. The combined dataset is then used for training the machine learning 
models for age and energy prediction, which will be explained in the methodology section.

Methodology
This section presents the development of supervised machine learning models for age and energy prediction. The 
overall workflow is illustrated in Figure 2. The first model trains an autoML to predict construction age bands 
for properties with no age specified in the EPC. This step ensured the data for energy consumption prediction is 
complete. The second model then predicts energy consumption based on properties’ morphological and thermal 
characteristics.

Age bands aggregation and subsampling
The ground truth data used in training the age prediction model is the age band recorded in the EPC, variable 19 
in Table 2. The EPC has 12 age bands in total: before 1900; 1900-1929; 1930-1949; 1950-1966; 1967-1975; 1976-

No. Variables Description

8 Property type Type of property (e.g. house)

9 Built form Type of built-form (e.g. detached)

10 Transaction type Status in the housing market (e.g. marketed sale)

11 Number habitable rooms Number of rooms in the property

12 Number heated rooms Number of rooms that are able to be heated in the property

13 Roof description Type of roof and its insulation conditions (e.g. pitched)

14 Walls description Type of walls and its insulation conditions (e.g. filled cavity)

15 Floor description Type of floor and insulation conditions (e.g. solid, insulated)

16 Lighting description Percentage of low energy lighting used

17 Main fuel Type of main fuel used for central heating (e.g. mains gas)

18 Ageband Construction age grouped in 12 bands (e.g. before 1900)

19 Energy consumption All energy consumed using fuel and electricity (kWh per year)

Table 2. List of data extracted from the EPC, with brief descriptions and example classes in categorical data.
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1982; 1983-1990; 1991-1995; 1996-2002; 2003-2006; 2007-2011; 2012 on-wards. These age bands are classified 
following the changes in regulation for building construction, which mainly are amendments for the conservation 
of fuels and power17. The way the age bands are classified suggests it may not be the best representation of how 
buildings’ physical shapes and designs change over time. Relatively lower prediction accuracy is expected when 
conducting the age detection. However, this is the only open-sourced data that can be found offering adequate 
spatial coverage and level of detail for property age. There are other age data, such as the products from Verisk25, 
which interprets building age from imagery, but classified the age in a very generic way (i.e. historic, postwar 
and modern).

Although the uneven distribution can be considered as a representation of the number of properties 
constructed in the real world, it can negatively affect the performance of machine learning models. Machine 
learning models usually try to maximise the prediction accuracy by assigning more weights to classes with 
more occurrences26. To reduce the bias caused by the imbalanced distribution, age bands with fewer records are 
aggregated into one class, as explained in section  2.2, and then a simple random sampling method is used to 
randomly select 4,000 properties from each age band for prediction.

Automated machine learning
After initially processing the raw input data, the workflow then proceeds to the next stage to train and perform 
prediction using autoML. The autoML approach can be considered a complete “black box”. It offers a combined 
algorithm selection and hyper-parameter optimisation tool to reduce the costs of machine learning model 
development27. It takes care of raw data input from the beginning to the final step, offers a tool that reduces 
development costs, and at the same time ensures optimal estimation accuracy28,29. A wide range of open-source 
autoML tools is available to choose from.30 analysed six recent autoML libraries: Auto-Sklearn, AutoGluon, H2O 
AutoML, rminerAutoML, TPOT and TransmogrifAI. Their performance were tested and compared on binary 
and multi-class classification and regression-based machine learning tasks using thirteen benchmark datasets. 
Small differences in prediction accuracy were found among the inspected tools, 3% to 16% difference for binary 
classification tasks, 4% to 8% for multi-class classification, and only 1% difference was found when training with 
all regression data30. Such little difference suggests that the selection of the autoML tool will have limited impacts 
on the overall prediction accuracy.

Auto-sklearn
Auto-sklearn was selected as the automated model development tool for this study. Auto-sklearn is an autoML 
tool developed based on Scikit-learn, a popular Python library offering a wide range of machine learning 
algorithms27. As illustrated in Figure 3, Auto-sklearn can be considered as a pipeline with three main steps. The 
first step is meta-learning, where the input data is compared with pre-stored benchmark data27. Algorithms that 
performed well on benchmark data that is similar to the user inputs are selected as target algorithms. The second 
stage then trains, fine-tunes and evaluates all target algorithms. The Bayesian optimisation simultaneously 
calculates the correlations between the hyper-parameter settings and the prediction accuracy. This correlation 
is the main criterion the Auto-sklearn used for algorithm selection. The pipeline also tests whether building an 
ensemble of multiple algorithms will achieve better prediction performance.

Two models were separately trained using Auto-sklearn, a classification model for age band prediction, and a 
regression model for energy consumption prediction. To minimise the effects of multi-collinearity, the input data 
were divided into two sets based on the rules stated in Section 1.2. Building age bands were predicted primarily 
based on the spatial and morphological features of buildings, and energy consumption was predicted with more 
thermal-related features. When training, all the input data was randomly split, 80% is used for training and 20% 
for testing. The trained model performance on the new dataset was examined using the testing data.

The performance of all the trained algorithms was evaluated. Model accuracy score and F1-Macro score were 
used for the age classification model. The accuracy score calculates the proportion of predicted labels that exactly 

Fig. 2. The designed workflow this study follows, including data inputs (OS and EPC), information extraction 
and pre-processing, model training by autoML and outputs.
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matched with the “true” labels31. The most optimal algorithm for age band prediction was then used to predict 
the construction year band and complete the information for houses without age bands recorded. Regression 
models for energy consumption prediction were evaluated by R2 and the mean absolute percentage error.

Comparison study between Auto-sklearn and traditional ML pipeline
This work also conducted a comparison study as a robustness test to examine whether Auto-sklearn outperforms 
a traditional machine learning pipeline, one algorithm selection and fine-tuning are conducted in separate steps. 
Similar to how Auto-sklearn behaves, the input data was preprocessed. Numeric data, variables 1-7, 11, 12, 16 
and 19 (in the energy prediction model), was normalised to be unit invariant. Categorical data, variables 8-9, 
13-15, 17 and 18, was processed using the one-hot encoding. This encoding process converts each class in the 
categorical data into separate features in a binary format. If the sample falls into this feature, then 1 is marked, 
otherwise 0.

A list of algorithms that have been used by existing studies was selected: linear regression9,20, K-nearest 
neighbours20, random forest8,9,13,20, decision tree20 and gradient boosting20, were tested for both age and energy 
consumption predictions. The same evaluation metrics, F1-Macro and R2 score, were applied for evaluation and 
comparing the performance of models trained using auto-Sklearn.

As shown in Table 3, the traditional pipeline provided a result different from what auto-Sklearn concluded. 
Among the five algorithms, random forest estimators achieved the best performance for both prediction tasks. It is 
also the algorithm that most of the existing studies have applied for residential building energy estimation8,9,13,20. 
The resulted predictions are also less accurate than the Auto-sklearn computes.

Permutation feature importance
Permutation feature importance (PFI) was used to rank how each variable can affect the overall model performance. 
The PFI is calculated by randomly shuffling or permutating each input data. The resulting prediction accuracy 
before and after the shuffling are calculated and compared. The larger difference in accuracy score suggests the 
variable is relatively more important to the model32. Compared with the gini feature importance used in the 
existing study8, the PFI performs better in dealing with categorical variables, especially if they are processed 
with the one-hot encoder. For example, after one-hot encoding procedure, the feature class ‘Property type‘, will 
be expended into four separate variables: property type: bungalow, property type: flat, property type: house, and 
property type: maisonette. The gini feature importance can only provides individual measures on the four sub-
classes; while the PFI is able to store and permute before they are processed with the one-hot encoding system. 
More useful hints on what input data in their original class are necessary for the predictions can be offered.

Age bands classification

Energy 
consumption 
regression

Algorithm Model Score F1-Macro R
2 MAPE

AutoML Gradient Boosting 0.543 0.540 0.828 18.1%

Manual

Linear Regression 0.753 23.9%

K-Nearest Neighbours 0.412 0.583 0.758 19.1%

Decision Tree 0.445 0.901 0.554 22.5%

Random Forest 0.468 0.991 0.776 18.7%

Gradient Boosting 0.446 0.473 0.767 20.9%

Table 3. Comparison among model training scores for all predictions to check the robustness of using 

autoML. Different algorithm and better training accuracy were concluded by applying autoML.

 

Fig. 3. An overview of the Auto-sklearn system. The input data follows the pipeline to construct the most 
optimal model and then perform prediction. The pipeline involves meta-learning, data preparation, feature 
preprocessor, model generation, Bayesian optimisation and ensemble construction.
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Partial dependence
To further investigate how the building features contribute to the prediction of each age band and overall energy 
consumption, partial dependency (PD) are adopted. The PD calculates the average marginal effects a target 
feature has towards the prediction outcomes32–34. For a machine learning model F (. . .) trained with features 
xi, each x produces an estimation result yk , where i = 1, 2, 3 . . . , p and k = 1, 2, 3, . . . , N . The output of this 
machine learning model can be written as ŷk = F (x1,k, x2,k, . . . , xp,k). The PD Φ(x) of target numerical 
variable xj  can be calculated using the following equations, where x̄i represents the average value of ith 
covariate33:

 

Φj(x) =
1

N

N∑

k=1

F (x1,k, . . . , x, . . . , xp,k)

Φj(x) = ajx +
1

N

N∑

k=1

∑

i̸=j

aixi,k

= ajx +
∑

i̸=j

aix̄i

For categorical variables, the PD replaces all the input features with the target feature and then calculates 
the average results32,34. This value suggests when all other elements remain similar, how the average energy 
consumption prediction would change relatively when the variable changes to the target feature.

Case study: residential houses in sheffield
Overview
This paper has conducted a case study focusing on all residential buildings in Sheffield, UK. Following the steps 
explained in the data and methodology sections, EPC records for all residential buildings in Sheffield available 
as of December 2021 were downloaded. All these records were first filtered so every property only contains the 
latest record. Among all EPCs downloaded, there were 23.5% properties found to be associated with multiple 
records which add up to 34.3% EPC records. The resulting dataset comprised 142,756 homes and their associated 
EPC records for the following study. According to the EPC, the residential properties in Sheffield have an average 
energy consumption of around 274.50 kWh/m2 per year or 22219.42 kWh per year, if the footprint for each 
property recorded in the EPC is used for calculation.

As illustrated in Figure   4, before aggregation, the original records from EPCs show that most of the 
residential buildings in Sheffield were developed between 1900 and 1966, and few were built after 2012. There are 
also 10,392 (7.3%) properties whose construction age remains unknown. Without pre-processing, this uneven 
distribution will lead to a biased model. Based on the number of properties each age band contains, and how 
EHS classifies the age band groups5, the age band 1991-1995 and 1996-2002 were combined into the new class 
“1991-2002”; 2002-2006, 2007-2011 and 2012 on-wards were aggregated into the new class “post-2002”. The 
aggregation process ensured all age bands had enough data to follow the sampling process for model training.

Table 4 summarises the basic statistics of the numeric data and their subsets used in predictions, including 
their average, standard deviation (std) and coefficient of variance (CV). The summary of categorical data used 
in this paper is included in the Appendix in the supplementary material. The last four variables in Table 4 are 

Fig. 4. Distribution of construction age recorded in the EPCs before (left) and after aggregation (right).
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only used for energy prediction so no subsamples were generated. The coefficient of variance is calculated as 
the ratio between the std and the mean. Among all the numerical data used in this study, it is not surprising 
to find that, except for the built rate, all the variables have CV less than 1. As more than 70% of residential 
properties in Sheffield are houses, they tend to have relatively similar physical features, the same as the example 
map illustrated in Figure 1. The only variable that has a CV larger than 1 is the built rate indicating a high 
variability in building distribution across Sheffield. For instance, properties in rural areas near the Peak District 
are less densely built compared to those in neighbourhoods closer to the city centre. By comparison, the subsets 
generated using the sampling method can to some extent be considered representative of all the data collected, 
as there is no significant difference between the statistics of original and subsampled data. In comparison, the 
subsets generated using the sampling method can be considered reasonably representative of the entire dataset, 
as no significant differences were observed between the statistics of the original data and the subsampled data.

Results of model training and prediction
Age detection
The age detection model was trained on the processed dataset. The auto-Sklearn detected 37 algorithms that 
might be optimal for predicting building age bands. The most optimal model used a gradient boosting algorithm, 
which trains the model by sequentially adding input variables to the ensemble of decision trees and refitting the 
model based on the errors made by the previously added inputs35.

For the testing data, the most optimal model Auto-Sklearn trained achieved an accuracy score of 0.543 and an 
F1-Macro score of 0.540. The model performance was further evaluated by comparing the predicted age bands 
with their true class in EPC records. As illustrated in Figure  5, the accuracy score suggests that the majority of 
the properties are correctly predicted, especially for the aggregated age bands, for post-2002, 90.10% properties 
were predicted correctly. However, mis-classifications were observed, for instance, only 38% of properties built 
before 1900 were correctly predicted.

One potential reason, as discussed in the data section, is that the age bands are classified based on the changes 
in energy regulations, the errors are to some extent expected. Another possible reason could be that property 
developers tend to design houses that fit into the general architectural styles of neighbouring properties, which 
may not reflect the actual construction period. Additionally, inaccuracies might arise from incorrect labelling 
by the EPC inspectors.

Fig. 5. Heatmap table showing the resulted between the true (columns) and predicted age bands (rows) using 
the random forest classification.

 

Variables

All Samples Subsamples

Mean Std CV Mean Std CV

Total floor area 81.45 38.16 0.47 81.02 40.11 0.49

Perimeter 41.82 26.01 0.62 45.84 32.83 0.72

Relh2 6.33 3.26 0.52 6.78 3.95 0.58

Relhmax 8.17 3.40 0.42 8.73 4.16 0.48

NPI 0.78 0.04 0.05 0.77 0.05 0.06

Vxcount 12.57 7.29 0.58 9.96 5.00 0.50

Builtrate 0.21 0.28 1.33 0.23 0.36 1.57

Number habitable rooms 4.06 1.77 0.44

Number heated rooms 3.96 1.76 0.44

Lighting description 0.53 0.34 0.64

Energy consumption 
(kWh)

22219.42 14149.90 0.64

Table 4. Statistics of numeric data used for model prediction, before and after applying the simple random 

sampling approach.
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Energy consumption prediction
The energy consumption prediction was then conducted after age bands were classified for each housing. 
The age prediction results from the first model were used to train the model. Auto-sklearn determined the 
best-performing algorithm used data preprocessors based on feature type, feature agglomeration as feature 
processors and gradient boosting as the regressor. The trained model achieved a R2 score of 0.828, and a mean 
absolute percentage error (MAPE) of 18.1%. The results suggest that overall, around 82.8% of the test data can be 
explained by the trained algorithm; and the prediction results based on the test data have an average difference 
of 18.1% compared with the ground truth.

Feature importance
The PFI plotted in Figure 6 ranked how important each input feature is in both models towards the prediction. 
The x-axis is plotted in its log form, to offer clearer visualisation for variables with less feature importance.

The features used for the age prediction model are ranked in Figure  6a. The importance rank suggested 
that, the built-up rate is the most important feature when predicting the age bands of residential buildings in 
Sheffield, floor area and property types are also relatively important. Excluding the variable builtrate caused a 
23.9% decrease in model accuracy score, and a 25.6% decrease in F1-Macro score.

The NPI and the number of vertices are found relatively less important. As the example properties illustrated 
in Figure 1, when predicting the age of residential buildings, buildings tend to have little difference in shapes and 
thereby less sparsity in values can be found. Excluding NPI and the number of vertices only caused a decrease in 
accuracy score and F1-Macro by 0.37% and 0.56% respectively. Overall, when data availability is limited, the age 
band of the housing can be estimated by gathering information on the housing size, the building type, and how 
densely the postcode area is developed.

Figure 6b ranked how the input data affect the model performance when estimating energy consumption for 
Sheffield. The total floor area is the dominating feature in this estimation, followed by building materials, which 
is also the most common retrofit target. Excluding total floor area from model training led to a 15.3% decrease 
in R2 score and a 26.0% increase in MAPE value.

On the other hand, the type of property and number of habitable rooms are less important in estimating 
housing energy consumption, excluding these features only resulted in 2.80% decrease in R2 score and 3.26% 
increase in MAPE. Houses’ age bands ranked seventh among all features, which indicates that it has relatively 
less impact on energy consumption prediction.

Partial dependence
Age detection
According to the feature importance calculated in the last section, the built rate is the key feature when estimating 
housing age. Figure 7 illustrates the complex relationships between the built rate and each age band in Sheffield. 
The trendlines showing positive correlations are highlighted while negative correlations are light-coloured. In 
general, postcode areas with a built rate of less than 30% tend to have a combination of houses built in different 
eras. If the area has a built rate higher than 30%, houses in the area are more likely built before 1900 or between 
1950 and 1966.

Energy consumption prediction
The partial dependence plots in Figure 8 show how each building feature affects energy consumption. The charts 
are ordered according to their ranked permutation feature importance. For features referring to the building 
fabric: walls, floors, and roofs, separate charts are produced to indicate whether insulation is installed and the 
corresponding energy consumption variations.

Fig. 6. PFI for variables used in the two machine learning models, x-axis in log form. (a) is for age detection 
and (b) is for energy consumption prediction.
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The dominant feature ranked by PFI in Figure  6b is the total floor area of the house. A positive linear 
relationship can be found between house sizes and energy consumption, as shown in Chart 8a. In other words, 
in general, larger houses in Sheffield usually have higher energy consumption. A similar correlation can be 
found for the number of habitable rooms in chart 8o, as it is also an indicator of how large the property is, its 
importance is weakened in the overall energy prediction and ranked lowest in the calculated PFI. On the other 
hand, the number of heated rooms in chart 8g has less impact on the model prediction accuracy. The energy 
consumption firstly slightly decreases when more rooms can be heated in the property, then stays relatively 
stable. As this number only refers to the number of rooms with heating facilities, it does not necessarily suggest 
the number of heatings in use, thereby the energy consumption does not change significantly.

The building fabric is the next key feature in estimating housing energy consumption. How different types 
and conditions of housing material may affect housing energy consumption are intensively researched36,37. 
Charts 8b, 8c, 8e, 8f, 8j, 8k, 8l, and 8m provided a comparison to show how different material used for each 
building element may affect the energy consumption in Sheffield.

Closer inspection of Figure  8b and Figure  8c shows that, in general, insulated walls perform significantly 
better in energy saving than uninsulated ones. Without insulation, houses with walls built in timber frame, 
granite or whin or cob may have less energy consumption. Although all uninsulated walls should be upgraded 
to reduce heat loss, houses built with cavity walls and sandstone or limestone walls may witness a relatively 
significant reduction in energy consumption.

The overall energy consumption can also be reduced significantly by applying insulations to the roof and 
floor. Among the five types of roofs in Figure 8e, without insulation, pitched roofs tend to have higher energy 
consumption. After insulation, different roof types are likely to perform similarly. For the floor, floors connected 
to unheated space or suspended should be prioritised for retrofitting.

The energy consumption of residential buildings in Sheffield also has a positive relationship with the 
proportion of low-energy lights and energy-effective windows. In general, more low-energy lights installed, and 
better window material (e.g. double and more glazing) used means less energy consumption.

How different heat sources may affect energy consumption are compared in Figure  8d. According to the 
chart, houses that use electric heaters tend to have the highest energy consumption in Sheffield, while houses 
with different kinds of heat pumps use less energy. One interesting finding is that boilers were found consume 
less energy than air source heat pump and electric heaters. This finding is to some extent contradictory to 
existing studies, where boilers are usually found to be less energy efficient38. This observation may be a result of 
how the heating systems are recorded in the EPCs. Most certificates only contain records of the primary heating 
source, as the category name “MAINHEAT DESCRIPTION” suggests23. For instance, properties with multiple 
heating options may only list one of them as the primary source, because they are more frequently used or 
more prominently installed in specific areas of the property (e.g., bedrooms or smaller spaces). It is important 
to note that this prediction does not evaluate the efficiency of heating sources but rather the total aggregated 
energy usage. Therefore, this ranking may be suggesting that people living in boiler-installed accommodations in 
Sheffield consume less energy comparing to others. This interpretation could be misleading for retrofit decisions, 
and will be addressed further in the discussion section.

Charts for the remaining housing features: the built form in Figure 8h, the age band in Figure 8i and the 
property type in Figure 8n, may provide preliminary guidance on the potential housing that should be targeted 
for home upgrade projects. Together with the relationship shown in Figure 8a, the model suggests that larger and 
older detached houses in Sheffield consume more energy, and may be prioritised for retrofit.

Discussion
This paper presented a robust model development approach with AutoML application. The comparison with 
traditional machine learning pipelines and the resulting R2 score of 0.828 further emphasised the efficiency 

Fig. 7. Partial dependence plot of built rate (x-axis) against the possibility of being built in the target ageband 
(y-axis).
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and reliability of AutoML. This application suggests that AutoML could serve as a practical tool for practitioners 
aiming to develop rapid and scalable energy prediction models.

The findings from the two models have important implications for rapid assessment for retrofit strategies. The 
key features influencing model performance identified in Figure 6, i.e. Built rate for property age description, 
Total floor area and Walls description for energy consumption prediction, emerge as critical predictors and 
should be prioritised in data curation to enhance the robustness and reliability of predictions in related research 
and applications.

The partial dependence plots in Figure 8 explored the relationship between building materials, insulation, 
and energy consumption for residential properties in Sheffield. Significant reductions in energy consumption 

Fig. 8. PDP for the marginal effects of building features (the x-axis) towards residential energy consumption 
in kWh (the y-axis) in Sheffield.
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can be seen when insulations are present. Comparisons between different materials and heating sources also 
inform the optimal choices to reduce energy consumption. In this study for Sheffield, the analysis revealed that 
larger houses and older detached properties are more likely to consume more energy (Figure 8i,  8a, and  8n), 
and also highlights the potential of targeted retrofit programs focusing on external walls and roofs to yield 
maximum efficiency gains (comparison from Figure 8c and  8b, Figure 8f and  8e). This finding corresponds with 
the recent statistics provided in the National Energy Efficiency Data-Framework (NEED)39, where at the national 
level, NEED found that “Median domestic electricity and gas consumption is higher for larger properties and 
increases with adult occupancy.”, and insulations for solid walls and cavity walls would provide the highest and 
consistent savings in gas consumption.

Figure 8. (continued)
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Limitation and recommendations
Despite this paper has strengths in providing timely research for all the residential buildings in Sheffield, 
the reliance on Energy Performance Certificate (EPC) data introduces potential inaccuracies in multiple 
perspectives. The primary limitation is the inconsistencies in the process of producing such certificates. The 
fact that the records are subjective to the EPC inspectors can significantly affect the interpretability of results. 
For example, in this paper, the record in “MAINHEAT SOURCE” leads to a contradictory finding with existing 
research. Future studies may consider using additional sources of data as validation for the records in EPC, such 
as images and 3D models of the building. The current trends of developing digital twins also offer opportunities 
for more comprehensive databases to be built for more reliable studies.

Additionally, the study mainly incorporated publicly available data, future studies could consider including 
behavioural factors, such as occupant energy usage patterns, as it can significantly impact consumption. The 
finding that properties with boilers consume less energy than other more energy efficient heating sources in this 
paper may be a result of different occupant behaviour. This limitation restricts the ability of the model to provide 
a holistic understanding of energy demand. One approximate data that can be used to reflect different occupant 
behaviour is the smart meter data. While access to smart meter data is strict, future work could acknowledge 
the impacts and explore the importance of occupant energy usage behaviour by assessing the difference between 
official statistics, such as EHS and NEED.

Since the primary focus of this paper is to capture the aggregate energy consumption of residential properties, 
energy usage in kWh was chosen as the prediction output, future research could incorporate energy intensity 
metrics (in kW h/m2) to normalize energy usage by property size. This would be particularly valuable when 
assessing the efficiency of heating sources, addressing potential biases and providing more accurate insights 
into the relationship between heating systems and overall energy performance, supporting more targeted and 
effective retrofit decisions.

Conclusion
This paper examined how spatial, morphological and thermal characteristics of residential houses contribute 
to housing age and energy consumption prediction, by applying an automated approach in machine learning 
model development. The trained model achieved a R2 score of 0.828 in predicting residential building energy 
prediction. The permutation feature importance plots offered hints in the essential information required for each 
model when data availability is limited to perform prediction. That means, when SAP calculation is not available, 
this approach can be followed to obtain a relatively accurate understanding of the building energy consumption 
using variables with higher rank of feature importance: housing size, material and conditions of the external 
walls, and also the main fuel used.

The inclusion of permutation feature importance and partial dependence analyses provided an explainable 
framework for understanding feature contributions. The analysis highlights the importance of addressing larger, 
older detached properties with insulation upgrades for walls, as the model results suggest these would yield the 
most significant reductions in energy consumption.

The limitations of this work were acknowledged, especially the reliance on EPC data, which introduced biases 
to the model. Future research can be conducted to explore potential additional or alternative data sources to 
describe the building’s thermal and physical conditions. For example, photos of the target properties and 3D 
building models. Including data describing energy intensity and energy user behaviour in future research would 
also further enhance the robustness of energy prediction and support the development of more comprehensive 
retrofit strategies. This study lays the groundwork for leveraging machine learning in energy efficiency studies 
and highlights pathways for energy consumption reduction.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request. Basic statistics are included in the manuscript as appendix in the supplementary 
material.
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