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Abstract

1. Manually coding behaviours from videos is essential to study animal behaviour 
but it is labour- intensive and susceptible to inter- rater bias and reliability 
issues. Recent developments of computer vision tools enable the automatic 
quantification of behaviours, supplementing or even replacing manual annotation. 
However, widespread adoption of these methods is still limited, due to the lack of 
annotated training datasets and domain- specific knowledge required to optimize 
these models for animal research.

2. Here, we present YOLO- Behaviour, a flexible framework for identifying visually 
distinct behaviours from video recordings. The framework is robust, easy to 
implement, and requires minimal manual annotations as training data. We 
demonstrate the flexibility of the framework with case studies for event- wise 
detection in house sparrow nestling provisioning, Siberian jay feeding, human 
eating behaviours and frame- wise detections of various behaviours in pigeons, 
zebras and giraffes.

3. Our results show that the framework reliably detects behaviours accurately and 
retrieve comparable accuracy metrics to manual annotation. However, metrics 
extracted for event- wise detection were less correlated with manual annotation, 
and potential reasons for the discrepancy between manual annotation and 
automatic detection are discussed. To mitigate this problem, the framework can 
be used as a hybrid approach of first detecting events using the pipeline and then 
manually confirming the detections, saving annotation time.
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1  |  INTRODUC TION

Ever since the popularization of video cameras, animal research-

ers have been using videos to capture the behaviours of animals in 
captivity and in the field. Further propelled by user friendly video 
annotation tools like BORIS (Friard & Gamba, 2016), taking videos 
of animals and subsequently annotating for specific behaviours 
have become essential parts of data collection pipelines in animal 
behaviour. However this approach is time consuming (Chan, Liu, 
et al., 2024) and can be susceptible to low observer reliability and 
repeatability (Tuyttens et al., 2014). To solve these problems, ad-

vances in computer science have leveraged large video datasets to 
create computer vision- based solutions to automate the quantifica-

tion of behaviours from animal videos, leading to a significant shift 
in the scale and efficiency of extracting behaviours from video data 
(Couzin & Heins, 2022; Mathis & Mathis, 2020).

There are a few general approaches for automatically quan-

tifying animal behaviours from videos. We summarize published 
open- source toolboxes, along with their training data requirements, 
advantages, and disadvantages in Table 1. The first approach starts 
with 2D or 3D keypoint estimation on animals in a video frame, then 
uses supervised (Goodwin et al., 2024; Wittek et al., 2022) or unsu-

pervised (Graving & Couzin, 2020; Hsu & Yttri, 2021) methods to 
quantify behaviours using predicted keypoint information. Keypoint 
estimation of animal body parts from videos has recently been 
popularized with the development of tools including DeepLabCut 
(Lauer et al., 2022; Mathis et al., 2018), SLEAP (Pereira et al., 2022) 
and DeepPoseKit (Graving et al., 2019), allowing fine- scaled body 
postures of animals to be measured precisely. However, keypoint 
estimation methods are often limited to captive settings (but see 
Chimento et al., 2024; Joska et al., 2021; Waldmann et al., 2024; 

Wiltshire et al., 2023), and obtaining large keypoint ground truth 
datasets is often labour intensive.

The second approach is to directly input video frames into 
neural networks, and output observed behaviours. With recent 
benchmark datasets like animal kingdom (Ng et al., 2022), KABR 
(Kholiavchenko et al., 2024), PanAf20k (Brookes et al., 2024) or 
MammalNet (Chen et al., 2023), there is a growing trend of di-
rectly using video input for behavioural classification, even 
though the accuracy of such methods is often low (e.g. 50%–60%; 
Kholiavchenko et al., 2024, table 1). Some open- source tools also 
leverage optical flow and feature extractors of video sequences 

for behavioural quantification (Bohnslav et al., 2021; Harris 
et al., 2023), but their use may be limited to controlled labora-

tory settings with single animals. Finally, a method for behaviour 
classification in more visually noisy scenes is to first isolate an an-

imal in the video frame with a bounding box or mask, then input 
the cropped animal into a neural network classifier to classify be-

haviours (Lei et al., 2022; Yang et al., 2019). For example, tools 
like LabGym (Goss et al., 2024; Hu et al., 2023) first extract the 
contours of animals of interest, then generate a movement pat-
tern image for behavioural classification. While these methods are 
promising, such approaches require among others segmentation 
masks and behavioural annotations of sequences as training data, 
which can be laborious to collect.

Computer vision methods have been shown to be useful for 
quantifying behaviours in different species, but there is a lack of 
agreement on the most effective method for any given dataset and 
study system. Yet, especially under a rapidly changing climate and 
biodiversity crisis, it is more important than ever to leverage devel-
opments in computer vision to aid data collection on fundamental 
behavioural monitoring (Christin et al., 2019; Tuia et al., 2022), in-

cluding individual level behaviours such as feeding rates, visit rates 
or activity budgets, up to population level metrics. Such advances 
are not only important for deepening our understanding of bio-

logical systems, but to also gain insight into species conservation, 
and importantly increase the efficiency and wealth of data that 
can be collected and processed (Dell et al., 2014; Weinstein, 2018). 
However, while computer vision tools can be highly capable, they 
are often effective only in very specific contexts. These contexts are 
defined by unique characteristics such as the experimental setup, 
camera angles, lighting conditions, subject size and occlusions, all of 
which influence the suitability of a given method. Moreover, most 
frameworks require large amounts of effort to collect training data, 
and sophisticated workflows to achieve automated behavioural cod-

ing (e.g. first training a keypoint model, then fitting an unsupervised 
algorithm, followed by training a supervised classifier; see Hsu & 
Yttri, 2021). Consequently, the domain- specific nature of current 
open- source computer vision algorithms poses a significant barrier 
to their widespread adoption by biologists and psychologists.

To overcome these limitations, we present the YOLO- Behaviour 
framework, an automatic behavioural detection and classifica-

tion tool based on the common object- detector YOLOv8 (Jocher 
et al., 2023). An object detector is a class of models in computer 

4. We provide detailed documentation and guidelines on how to implement the 
YOLO- Behaviour framework, for researchers to readily train and deploy new 
models on their own study systems. We anticipate the framework can be another 
step towards lowering the barrier of entry for applying computer vision methods 
in animal behaviour.

K E Y W O R D S

animal behaviour, behavioural recognition, computer vision, machine learning
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TA B L E  1  Comparison of existing methods with YOLO- Behaviour.

Method

Annotations 

required

Types of models that 

require training Case study types

Number of animals with 

behaviour detected 

simultaneously

Type of 

input to 

model Pros Cons Citation

DeepEthogram Frame- wise 
behaviours in video

Optic flow extractor
Image feature extractor
Sequence model

Lab Single Video Optical flow captures 
temporal information
GUI for annotation 
and training

Multiple training steps
Single animal

Bohnslav 
et al. (2021)

DeepAction Behaviours of short 
video clips

Classification model Lab Single Video GUI for labelling and 
training

Single animal
MATLAB based (not 
open sourced)

Harris 
et al. (2023)

LabGym Frame- wise 
behaviour in videos

Categorizer model Lab Single Video GUI for labelling and 
training
Captures movement 
changes to classify 
behaviours

Require detailed 
behavioural 
annotation
Require static camera

Hu 
et al. (2023)

LabGym2 Segmentation 
masks
Behaviour of short 
sequences for each 
individual present

Detector model
Categorizer model

Lab + field Multiple Video Multiple animals
Works with field data
Can identify social 
behaviours

Require mask 
and behavioural 
annotation

Goss 
et al. (2024)

SIMBA Keypoints
Frame- wise 
behaviour

Keypoint estimation 
model
Random forest classifier

Lab Multiple Video GUI for labelling and 
training
SHAP values for 
interpretability

Require multiple 
frameworks 
and workflow, 
including keypoint 
and behavioural 
annotation

Goodwin 
et al. (2024)

YOLO- Behaviour (Ours) Bounding box of 
behaviours in single 
frames

Object detection model Lab + field Multiple Single 
frames

Simple training data, 
easy to train
Fast inference speed
Multiple animals

Model uses single 
frames, requires 
visually distinctive 
behaviours

Current paper
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vision that aims to localize an object within an image, by predicting 
a bounding box around a given object and its class. We leverage this 
model type to detect visually distinct behaviours in static frames, by 
providing training data of bounding boxes around behaviours within 
an image. The simplicity and robustness of the framework allows 
for widespread training and deployment by biologists with minimal 
training data and coding expertise, as demonstrated by the five case 
studies across study systems and taxa, which includes event- wise 
detection in (1) house sparrow (Passer domesticus) nestling provision-

ing, (2) Siberian jay (Perisoreus infaustus) feeding, (3) humans (Homos 

sapiens) eating; and frame- wise detections in (4) foraging pigeons 
(Colomba livia) as well as (5) roaming zebras (Equus quagga and E. 

grevyi) and giraffes (Giraffa camelopardalis). Furthermore, we provide 
detailed code and documentation to facilitate its implementation in 
new study systems. We hope the simplicity of the proposed pipeline 
can promote the adoption of computer vision in animal researchers, 
thereby reducing the time required for manual coding in behavioural 
research and species monitoring.

2  |  MATERIAL S AND METHODS

We first describe the datasets we used to evaluate the YOLO- 
Behaviour framework, and the ways we categorized the datasets 
for evaluation. Next, we describe the pipeline, from training to 

post- processing and to optimization. Finally, we introduce the 
methods for evaluating the pipeline in terms of its ability to 
detect events accurately, retrieve coded behavioural metrics and 
comparison with an existing tool.

2.1  |  Datasets

We tested the robustness and generalization ability of YOLO- 
Behaviour by applying the method across five study systems across 
various taxa (Figure 1). Table 2 shows details of each dataset used, 
behaviours coded and size of training validation and test sets. We 
refer to the supplementary methods for detailed justification and 
description of each study system and data manipulation procedures. 
For each case study, we defined three dataset types, which differ 
slightly from conventional data splitting procedures. (1) Training im-

ages: annotated images used for training the YOLOv8 models. (2) 
Event validation set, a small number of videos for optimizing hyper- 
parameters and detailed evaluation of detection accuracy. (3) Coded 
behavioural metrics dataset, the largest dataset available to evalu-

ate how the method can estimate coded behavioural metrics (e.g. 
feeding or visit rate), when compared with human annotation. All 
annotations from the training set are publicly available, except for 
the human dataset, which will not be available due to privacy and 
ethical concerns.

F I G U R E  1  Case studies used to test the YOLO- Behaviour framework. Predictions of the YOLO model is overlayed onto each case 
study, with the predicted bounding box, class and model confidence. (a) House sparrow (Passer domesticus) provisioning videos collected 
on Lundy Island, UK. (b) Siberian jay (Perisoreus infaustus) feeding videos collected in Swedish Lapland. (c) Human (Homo sapiens) eating 
dataset, collected in Konstanz, Germany. Presented image is a sample, actual used images cannot be published due to data privacy. We have 
written consent by the shown subject to use the image for demonstration purposes. (d) Homing pigeons (Colomba livia) behaviours collected 
in Möggingen, Germany, based on the 3D- POP dataset. (e) Giraffes (Giraffa camelopardalis) behaviours collected in Mpala research centre, 
Kenya, part of the KABR dataset.
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TA B L E  2  Details of datasets used in the current study.

Dataset type Dataset name Study species Location Coded behaviours

Training 

images

Event validation 

set

Coded behavioural 

metrics dataset Citation

Event- wise Detection Sparrow 
provisioning

House sparrows (Passer 

domesticus)
Lundy Island, UK Male Out

Female Out
In
Around

1505 1506 videos (7 s 
long)

779 videos (1.5 h each) Chan, Liu, 
et al. (2024)

Event- wise Detection Jay feeding Siberian jays (Perisoreus 

infaustus)
Swedish Lapland, 
Sweden

Eat 1567 5 videos (~30 min 
each)

260 videos (~30 min 
each)

~

Event- wise Detection Human 
collective eating

Humans (Homo sapiens) Konstanz, Germany Eat 2216 10 videos 
(~15 min)

64 videos (~15 min) ~

Frame- wise Detection 3D- postures of 
pigeons (3DPOP)

Homing pigeons 
(Colomba livia)

Möggingen, Germany Walking
Head- up
Head- down
Grooming
Bowing

1587 5 videos, 271,485 
frames

59 videos (1–2 min 
each)

Naik 
et al. (2023)

Frame- wise Detection In- situ dataset 
for Kenyan 
animal behaviour 
recognition 
(KABR)

Giraffes (Giraffa 

camelopardalis), Plain 
zebras (Equus quagga), 
Grevy's zebras (Equus 

grevyi)

Kenya Walk
Graze
Browse
Head- up
Groom
Trot
Run

1400 972 videos, 
285,130 frames

184 videos (mean 52 s) Kholiavchenko 
et al. (2024)

 2041210x, 0, Downloaded from https://besjournals.onlinelibrary.wiley.com/doi/10.1111/2041-210X.14502 by Test, Wiley Online Library on [19/02/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
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All data presented was collected in accordance with relevant 
ethical permits. For the Lundy house sparrow provisioning vid-

eos, no primary data were collected as part of this study. Data 
from the Lundy Island sparrows is collected under a British Trust 
for Ornithology bird ringing permit and with permission from the 
Lundy Company and Field society; most recently: UK Home Office 
(PP7009092 and PP5873078) and BTO (S:6308). Experiments and 
observations that contributed to the Siberian Jay eating datasets 
were approved by Umea ethics board, A23- 20. Bird ringing was done 
under the licence of the Swedish Museum of Natural History. For 
the human eating dataset, data collection was part of the Collective 
Appetite research project in the Centre for the Advanced Study of 
Collective Behaviour and was conducted in accordance with the 
guidelines of the German Psychological Society and the Helsinki 
Declaration. The study protocol was approved by the University of 
Konstanz's Ethics Committee (24/2020). 3D- POP and KABR case 
studies were publicly available datasets, so we refer to the original 
publication for information on the appropriate ethical approvals 
(Kholiavchenko et al., 2024; Naik et al., 2023).

2.2  |  YOLO- Behaviour

The complete YOLO- Behaviour framework can be separated into 
three parts. (1) Data annotation and training: images were anno-

tated and a YOLOv8 model was trained. (2) Post- processing: YOLO 
detections were processed and grouped using a tracking algorithm. 
(3) Optimization: a grid- search algorithm was used on the validation 
dataset to determine the best hyper- parameters for the final pipe-

line. We describe each of the steps in detail below. All code and doc-

umentation to apply the framework to novel systems can be found 
in the following link: https:// github. com/ alexh ang212/ YOLO_ Behav 
iour_ Repo.

2.2.1  |  Data annotation and training

First, random frames were sampled from each dataset, and bounding 
boxes were manually annotated for behaviours of interest, ensuring 
the bounding box encloses a visually distinctive part of the image 
that characterizes the behaviour. For example, in the Siberian jay and 
human eating datasets, the eating behaviour was captured by an-

notating a bounding box around the hand/beak touching the mouth/
food respectively (Figure 1b,c). For the pigeon and zebra/giraffe 
datasets, no manual annotation was done, since bounding boxes and 
behavioural labels were extracted using the dataset provided. We 
refer to supplementary methods for a detailed description of each 
dataset. After frames were extracted and annotated, the data were 
further split into training, validation and test sets using a 70%, 20%, 
10% split. A YOLOv8- large model pre- trained on the COCO data-

set (Lin et al., 2014) was then trained using the Ultralytics python 
package (Jocher et al., 2023), with default augmentation and train-

ing parameters. The default augmentation pipeline includes random 

adjustments to hsv image space, random translation and horizontal 
flip, and mosaic by combining multiple images.

2.2.2  |  Post- processing

Once the YOLO models were trained, the models were used to de-

tect behaviours from videos. However, the raw output of YOLO are 
bounding boxes with a given label and position in the frame, which 
is uninformative and can represent multiple behaviours being de-

tected at the same time (e.g. two jays pecking at the food from both 
sides). In addition, the YOLO- Behaviour framework is also suscep-

tible to short bursts of erroneous detections, such that behaviours 
are sometimes misclassified for a small number of frames. To solve 
these problems, we used the tracking algorithm SORT (Bewley 
et al., 2016) to group bounding box detections across spatial and 
temporal scales, by connecting closely detected bounding boxes of 
the same behavioural class as a single track. SORT is a widely used 
multi- object tracking algorithm, which is traditionally used for track-

ing the trajectory of detected objects in a video (e.g. human pedes-

trians walking in a video) and is well known for its short processing 
time and simplicity. Here, instead of tracking objects across the 
screen, we make use of the SORT to group bounding boxes of the 
same class to be classified as a single behavioural event. In this way, 
spatially close behavioural detections across frames can be com-

bined as a single behavioural event, and short incorrect detections 
will not be assigned to any tracks and effectively filtered out. This 
post- processing step is crucial for the flexibility of YOLO- Behaviour, 
as it allows for multiple behaviours that are occurring in different 
parts of the video to be connected and recorded. As the output of 
the post- processing pipeline, users will obtain behavioural events of 
a given behavioural class, with its corresponding duration, start, end 
frames and bounding box locations.

2.2.3  |  Optimization

Finally, the pipeline was optimized by selecting the best hyper- 
parameters using a grid- search algorithm. A grid- search algorithm 
is a brute- force algorithm that searches a user- defined hyper- 
parameter space to find the most optimal parameters. Here, the 
YOLO model was used for inference in the event validation set 
for each study system, and a range of hyper- parameters were 
defined manually. The hyper- parameters include: YOLO confidence 
threshold, which is the confidence threshold for a bounding box 
detection to be considered as a valid detection; minimum duration, 
which describes the minimum frame number of an event; and three 
separate thresholds for the SORT tracking algorithm, including min 
hits (minimum frames to define new track), max age (maximum frame 
gaps to connect two detections) and IOU threshold (intersection over 
union overlap to associate bounding boxes). These hyper- parameters 
influence how multiple behavioural detections are grouped together 
as behavioural events from the SORT tracker. After defining the 
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range of hyper- parameters to explore, we computed the f1- score 
(i.e. summary score that balances precision and recall; see Table 3) 
for every possible combination of parameters, and then selected 
the best combination to be used in the final pipeline. In addition, 
we also determined the best combinations to obtain lowest false 
negative rates for the event detection case studies, and test whether 
the framework can be used in hybrid applications. We selected 
parameters that minimized the false negative rate since that would 
be the model where the most events were captured for further 
manual review. We did not optimize for false negative rates in the 
two frame- wise detection datasets because there is a behaviour 
prediction every frame, such that a hybrid application will entail 
reviewing every frame, which is unrealistic.

2.3  |  Evaluation

2.3.1  |  Event detection

First, we evaluated the reliability of event detection using the event 
validation dataset for each case study. We used the best param-

eters obtained from the grid search algorithm for inference, then 
extracted overall detection accuracy, precision, recall, false negative 

rate and f1- score (Table 3). Given the disparate characteristics of the 
datasets, it was necessary to utilize different definitions of ‘events’ 
for the purposes of evaluation. (1) Sparrow provisioning: each event 
was defined as a behaviour detection within a 7- s long video (see 
Chan, Liu, et al., 2024). (2) Jay feeding: each event was defined as 
2 s windows across the whole video to take into account possible 
human reaction delay when pressing a button in BORIS, compared to 
the frame- by- frame detections of YOLO. Detections were matched 
as whether a feeding event is present or not within each window. 
We also report results for a range of time windows to compare how 
window definition affects evaluation (Table S4). (3) Human eating: 
each event was defined as a 1 s window due to similar delay in human 
reaction when coding in BORIS, and detections were matched if an 
eating event is present within the window. (4) 3D- POP/KABR: Since 
frame- wise annotations are available, each event is defined as a de-

tection in a single frame.
In addition, we evaluated whether the size of the training data-

set will affect the reliability of event detections, by training multi-
ple models using a data subsets representing 20%, 40%, 60% and 
80% of the original training datasets. To determine how accuracy 
improves with increasing dataset size, we assessed the f1- score, pre-

cision and recall of these models using the same event validation 
dataset. Furthermore, we investigated whether the training dataset 

Metric Definition Equation

Accuracy Proportion of predictions that are 
correct overall

TP+ TN

TP+ TN+ FP+ FN

Precision Proportion of model detections 
that are correct, indication of how 
well the model can predict the 
correct behaviour

TP

TP+ FP

Recall Proportion of ground truth labels 
that were detected, indication of 
how well the model can return all 
behavioural events

TP

TP+ FN

False negative score Inverse of recall, proportion of 
ground truth labels that were 
not detected by the pipeline, 
indication of how many events 
were completely missed by the 
pipeline

FN

TP+ FN

F1- score Summary score that balances 
precision and recall

2 ×
Precision ×Recall

Precision+Recall

Inter- class correlation (ICC) Correlation metric to quantify 
inter- rater reliability for continuous 
data, indicative of how well manual 
and YOLO- behaviour agrees with 
each other for event detection

ICC(3, 1) =
�
2
r

�
2
r
+ �

2
c
+ �

2
e

�
2

r
: variance explained 

by class
�
2

e
: variance explained 

by raters
�
2

c
: residual variance 

(error)

Note: TP: stands for true positives (the model correctly predicts that a given behaviour is present), 
TN: true negatives (the model correctly predicts that a given behaviour is absent), FP: false 
positives (the model incorrectly predicts that a given behaviour is present), FN: false negatives (the 
model incorrectly predicts that a given behaviour is absent), respectively. All metrics ranges from 0 
to 1, with higher values representing higher performance.

TA B L E  3  Definitions of evaluation 
metrics used in the current manuscript.
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8  |    CHAN et al.

requirement could be reduced if the base model was pre- trained to 
identify animals. For this purpose, we applied the same training data 
proportion intervals with the KABR case study, but fine- tuned the 
MegaDetector model (Beery et al., 2019), a large pre- trained model 
to identify animals from camera trap images, based on an earlier 
YOLOv5 architecture.

2.3.2  |  Extracting coded behavioural metrics

We used the coded behavioural metrics dataset for each case 
study to determine whether YOLO- behaviour is reliable for ex-

tracting behavioural metrics. For event detection case studies, we 
extracted feeding rates from jay eating (seconds spent eating per 
minute per individual) and human eating (food eaten per minute), 
as well as male and female visit rates (visits per hour) for the spar-
row provisioning dataset. For frame- wise detection case studies in 
3D- POP and KABR, we extracted the proportion of time spent on 
each behaviour. We then calculated the Pearson's correlation for 
each case study, as well as intraclass correlation coefficients (ICC3), 
which is used to evaluate inter- rater reliability for continuous vari-
ables (Gwet, 2014). Since ICC assumes data normality and homog-

enous variance (Bobak et al., 2018), we log transformed sparrow 
visit rates and human eating rates, as well as logit transformed pro-

portions from the frame- wise detection datasets and visualizing 
data distributions to ensure these assumptions were met.

2.3.3  |  Comparison with DeepEthogram

Finally, we compared the classification performance and inference 
speed of YOLO- Behaviour with DeepEthogram, an existing open 
source tool for automated behavioural classification from videos 
(Bohnslav et al., 2021). For the comparison, we chose to use the 
KABR dataset, as it provides frame- wise annotations with a single 
behaviour label per frame. We did not include the Siberian jay eat-
ing and pigeon behaviour case studies, as these involve multiple 
behaviours occurring within the same frame. Similarly, we excluded 
the sparrow provisioning and human eating case study, as their an-

notations are limited to randomly sampled frames. To ensure a fair 
comparison, we used the same images that trained our YOLO model 

but used the entire 3 s videos (90 frames) to train DeepEthogram due 
to requirements for short sequences. We trained DeepEthogram- 
medium following the provided training protocols, then evaluated 
both models with the same event validation dataset (Table 2). While 
the datasets used for each framework differ, Deepethogram re-

ceives sequential information, whereas YOLO processes bounding 
box data, we believe this comparison remains valuable for future 
users who are deciding which tool to choose. To calculate the in-

ference speed, we ran each model through a video three times and 
reported the average speed in terms of frames per second. For cal-
culating inference speed, we use a workstation with a 16GB Nvidia 
Geforce RTX 3070 GPU, 11th Gen Intel(R) Core(TM) i9- 11900 H @ 
2.50GHz CPU, and Sandisk 2TB SSD.

3  |  RESULTS

We applied and evaluated the YOLO- Behaviour framework over 
five case studies. All YOLO model training evaluation can be found 
in Table S1, and all datasets and annotation used are available via 
https:// doi. org/ 10. 17617/ 3. EZNKYV (Chan, Putra, et al., 2024). 
Qualitative results can be found in the Video S1.

We found that the YOLO- Behaviour framework is accurate 
across all study systems and case studies in the event validation set 
(Table 4), with an f1- score ranging between 0.62–0.94 and accuracy 
ranging between 0.70–0.98. Figure 2 shows the confusion matrices 
for each case study, also highlighting the high accuracy and consis-

tency of most behaviours detected when using YOLO- Behaviour, 
with some exceptions. Particularly, eating detection for the human 
dataset is relatively low (0.6, Figure 2c), which is likely due to the 
inherent difficulty in distinguishing eating from other hand gestures 
involving the mouth region. In the KABR dataset, the accuracies for 
locomotion- based behaviours (walking, trotting, running) are more 
variable (0.27–0.73), as well as browsing and auto- grooming be-

haviour (0.069, 0.37 respectively, Figure 2e).
When varying the proportion of the total training dataset, we 

observed that the accuracy metrics initially increased with the avail-
ability of more training data, followed by slight plateaus as expected 
(Figures S1A and S2). The human case study was the most sensi-
tive to changing dataset size, with high recall but low precisions at 
low training dataset size, indicative of false positives (Figure S2). For 

TA B L E  4  Evaluation metrics on validation set.

Dataset

Weighted average 

precision

Weighted average 

recall

Weighted false negative 

rate

Weighted average 

f1- score Accuracy

Sparrow provisioning 0.78 0.79 0.21 0.78 0.71

Jay feeding 0.94 0.95 0.05 0.94 0.91

Human eating 0.63 0.60 0.40 0.62 0.98

3DPOP 0.77 0.70 0.30 0.72 0.70

KABR 0.77 0.73 0.27 0.75 0.73

Note: Presented metrics are the class proportional weighted average scores for the behaviour of interest, which excludes ‘not feeding’ for jay and ‘not 
eating’ for human datasets. For a description of each metric and its definition, we refer to Table 3.
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the KABR dataset, fine- tuning YOLOv8 outperforms MegaDetector 
across all data subsets except for the lowest proportion of 0.2 
(Figure S1B). This indicates that leveraging a base model pre- trained 
on animals does not compensate for the architectural advancements 
between YOLOv5 and YOLOv8.

Through the metrics obtained from the coded behavioural met-
rics dataset, we show that the extracted metrics all significantly cor-
relate with manual annotation (Figure 3), with frame- wise detection 
case studies having higher correlations and ICC3 values (Table 5; 

0.78–0.92) compared to event detection (Table 5; 0.49–0.70), corre-

sponding to ‘good’ to ‘excellent’ reliability for frame- wise detections 
and ‘moderate’ to ‘good’ reliability for event- wise detection (Koo & 
Li, 2016). Figure 3 also shows a general under- detection across all 
case studies.

We then compared YOLO- Behaviour with an existing open- 
source tool DeepEthogram, on the KABR dataset and found that 
the accuracy metrics are generally comparable between the two 

methods, even though YOLO- Behaviour being slightly more accu-

rate (Table 6). In addition, the inference speed for YOLO- Behaviour 
was also faster compared to DeepEthogram (52.4 fps vs. 35.9 fps).

Finally, we tested whether the YOLO- Behaviour framework can 
be used in a hybrid approach by optimizing for low false negative 
rates instead of f1- score. We found that the method can obtain low 
false negative rates between 0.05–0.14 (Table 7), showing that only 
around 5%–15% of the overall events will be missed. Particularly in 
the human eating case study, the precision is 0.26, which shows that 
the model is full of false positives that can be manually corrected in 
the hybrid framework.

4  |  DISCUSSION

In the current study, we presented the YOLO- Behaviour framework, 
a simple to implement and flexible framework for automated 

F I G U R E  2  Confusion matrices of per- class classification accuracy across five case studies. Confusion matrices are designed to visualize 
discrepancies between predicted and annotated classes, helping to identify if certain classes are more frequently mislabelled than others. In 
each panel, the x- axis represents the predicted classes, and the y- axis represents the labelled classes. The numbers indicate the proportion 
of labelled data predicted as each behaviour, with correct predictions shown along the diagonal. Proportions were generated from the 
validation set of each case study, using parameters optimized for f1- score using a grid search algorithm. (a) House sparrow provisioning, (b) 
Siberian jay eating, (c) human eating, (d) pigeon behaviours from 3D- POP and (e) zebra and giraffe behaviours from KABR. Pixel art of each 
animal generated using Dall- E 3.
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10  |    CHAN et al.

coding for basic animal behaviours from videos. We illustrated the 
robustness of the framework with the high detection accuracy across 
a large range of study systems and video types. The framework is 

easy to train and implement, with the full documentation and user 
guidelines for applying to a new system available here: https:// 
github. com/ alexh ang212/ YOLO_ Behav iour_ Repo.

F I G U R E  3  Correlations of the coded behavioural metrics across five case studies. Metrics were extracted from the coded behavioural 
metrics dataset of each case study. The y- axis showing automatic rates from YOLO and the x- axis showing rates from manual or labels 
from corresponding datasets. Black line in each plot represents the 1:1 correlation line. (a) Correlation of visit rates (visits per hour) in the 
sparrow provisioning dataset, separated by male and female visit rates. (b) Correlation of feeding rate (seconds spent feeding per minute per 
individual) in the Siberian jay dataset. (c) Correlation of eating rate (food eaten per minute) of the human eating dataset. (d) Correlation of 
the proportion of time spent for five separate behaviours in the pigeon 3D- POP dataset. (e) Correlation of the proportion of time spent for 
seven separate behaviours in the giraffe/zebra KABR dataset. Pixel art of each animal generated using Dall- E 3.

Dataset Metric

Pearson's 

correlation ICC3

Sparrow provisioning Visits per hour 0.51 0.46

Jay feeding Seconds spent feeding per minute per 
individual

0.50 0.49

Human collective eating Food eaten per minute 0.70 0.69

3DPOP Proportion of time per behaviour 0.92 0.92

KABR Proportion of time per behaviour 0.78 0.77

Note: Metrics for each case study were extracted from the coded behavioural metrics dataset. We 
refer to Table 2 for description of the datasets and Table 3 for the definition of ICC3. All Pearson's 
correlation values were significant (p < 0.05).

TA B L E  5  Pearson correlation and 
intraclass correlation (ICC3) values for 
coded behavioural metrics across five 
case studies.
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Using the YOLO- behaviour framework, we contributed to efforts 
towards quantifying behavioural metrics across five diverse study 
systems. For example, in the Lundy house sparrow system, we ob-

tained parental provisioning rates for more than double the sample 
size compared to manual annotated data (Chan, Liu, et al., 2024), al-
lowing for stronger basis to discover the drivers and consequences of 
parental care behaviour, including indirect genetic effects (Schroeder 
et al., 2019) or its fitness outcomes (Schroeder et al., 2013). In 
Siberian jays, the method can be applied across the huge backlog of 
videos to gain insight into the co- feeding behaviour of this family liv-

ing species where groups also can include unrelated non- breeders 
(Griesser, 2003; Griesser et al., 2015), to reveal the mechanisms facil-
itating the evolution of breeding systems and cooperation (Drobniak 
et al., 2015). In the human eating dataset, while the current dataset 
was obtained from a specific experiment, future data collection can 
benefit from the framework to reduce annotation time. Finally, while 
the 3D- POP and KABR datasets were used from computer vision 
datasets to demonstrate the ability for the framework to do frame- 
wise detections, the framework shows promise for larger scale de-

ployment to quantify activity budgets of animals from drones (Koger 
et al., 2023; Schad & Fischer, 2023) or from citizen science data.

4.1  |  Evaluation

The framework was first evaluated via the event validation set for 
each case study to determine its accuracy (in terms of precision) 
and its capacity to return manually coded events (in terms of recall). 
Overall, the framework performed well for all study systems with 
exceptions. First, the precision- recall for the human eating dataset 
was relatively low (around 0.6), which can be caused by hand ges-

tures near the participant's mouth region, which is visually similar 
to the eating behaviour. To address this issue, additional training 
data might need to be added, or a hybrid human- in- the- loop method 

can be considered (see below). For the KABR dataset, we identified 
a few behaviours that the framework could not detect accurately. 
The first behaviour concerns locomotion, including run, trot and 
walk, which were difficult to distinguish without temporal context, 
since YOLO is a frame- wise method. For deployment of the model 
to detect these locomotion behaviours, a possible solution can be 
to add a speed threshold to separate the three behaviours, which 
cannot be tested in the current manuscript since the animal subjects 
in the KABR dataset were always centred in frame (Kholiavchenko 
et al., 2024). We note that auto- grooming and browsing behaviour 
was also not well detected using the YOLO- Behaviour framework 
(Figure 2e), which was probably caused by the large variation in pos-

tures/visual appearances of both behaviours in zebras and giraffes, 
making the model unable to generalize beyond the training data.

While precision recall values were high for the Siberian jay 
feeding dataset, we note that we chose a 2 s time window to match 
behaviours, as we observed a large mismatch between human anno-

tation and automated detection. We also report results for different 
time window intervals (Table S3), and we show that all evaluation met-
rics improve up until the 2 s time window, which we assumed was the 
appropriate window. This mismatch can be caused by human reaction 
delay, especially when videos were coded in real time, but can also 
be due to incorrect detections by the model. However, upon visually 
inspecting qualitative results (Video S1), it seems more likely that there 
is a mismatch in frame- by- frame detections between automated and 
human manual annotations. When using the YOLO- Behaviour frame-

work in future research, we emphasize that the time window selected 
during validation will significantly impact classification performance. 
Choosing an appropriate time window is important to avoid artificially 
inflating accuracy metrics. The mismatch between human and auto-

mated analyses will be an important issue to consider when evaluat-
ing future machine learning models for detecting behavioural events. 
Understanding the extent of this problem and exploring ways to ad-

dress it will require further investigation as the field develops.

TA B L E  6  Evaluation metrics on the validation set of the KABR dataset, comparing YOLO- Behaviour with DeepEthogram.

Dataset Framework

Weighted average 

precision

Weighted 

average recall

Weighted average false 

negative rate

Weighted average 

f1- score Accuracy

Average 

inference speed 

(frames per 

second)

KABR YOLO- Behaviour 0.77 0.73 0.27 0.75 0.73 52.40

Deep Ethogram 0.77 0.66 0.34 0.71 0.65 35.9

Note: We refer to Table 3 for definitions of metrics. Average inference speed was calculated by running inference with each framework three times 
and averaging the processing speed in frames per second. The better- performing method for each metric is highlighted in bold.

TA B L E  7  Evaluation metrics from the validation set, optimized by low false negative rates for event detection case studies.

Dataset Average precision Average recall Average false negative rate Average f1- score Accuracy

Sparrow provisioning 0.78 0.87 0.13 0.82 0.71

Jay feeding 0.94 0.95 0.05 0.95 0.91

Human collective eating 0.26 0.86 0.14 0.40 0.94

Note: Metrics were optimized for low false negative rates instead of f1- score during the grid search algorithm, to test whether the framework can be 
used as a hybrid method.
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We also examined how the size of the training dataset size influ-

ences model accuracy and found that f1- scores, precision and recall 
consistently increased as training data size grew across case stud-

ies. The human eating dataset was the exception, with an increasing 
f1- score and precision, but decreasing recall. This indicates that as 
training dataset size increases, the model were able to detect eat-
ing more accurately albeit detecting less of the events. Across case 
studies, the analysis further suggests that model accuracy could 
potentially improve with additional training data, as evidenced by 
the steady rise in f1- score between proportions of 0.6–1.0, particu-

larly in the KABR case study (Figure S1A). Interestingly, fine- tuning 
a MegaDetector model improved accuracy only for the smallest 
dataset, comprising 20% of the original data size. While fine- tuning 
a model pre- trained on animals would theoretically reduce the 
amount of data required to achieve comparable accuracy, our results 
indicate that the advancements in model architecture from YOLOv5 
to YOLOv8 are the primary drivers of the observed improvements in 
prediction accuracy.

Next, we used the coded behavioural metrics dataset to test 
whether the YOLO- Behaviour framework can be used to extract 
behavioural metrics. Overall, we found high correlations and ICC 
values for both pigeon and zebra/giraffe frame- wise detections, but 
lower values for the other event- wise detection case studies. For 
human eating detection, this was expected due to the low evalua-

tion metrics from the event- wise validation, and the low correlation 
can be the effect of misidentification of the eating behaviour itself. 
However, for the jay eating and sparrow provisioning datasets, we 
found low correlation albeit high precision- recall metrics from the 
event validation. For the jay dataset, this can be attributed to a mis-

match between manual annotation of feeding behaviour in BORIS 
and the automatic method, and for the sparrow dataset, this can be 
caused by the many observers who annotated the dataset over the 
years that can result in inconsistent visit rates. We also note that 
there is a general under- detection of coded behavioural metrics ex-

tracted by YOLO- behaviour across datasets, meaning false negative 
rates (missed detections) were a stronger contributor to the low ac-

curacy, which can potentially be improved with additional training 
data. Finally, we acknowledge that the correlation and ICC values 
might not be directly indicative of how well the YOLO- Behaviour 
framework can predict coded behavioural metrics, and additional 
evaluation like hypothesis testing (see Chan, Liu, et al., 2024) could 
be useful to further validate the method.

We then compared the performance and inference speed of 
YOLO- Behaviour with that of DeepEthogram (Bohnslav et al., 2021) 
on the KABR dataset. Overall, accuracies in terms of precision re-

call and f1- score were comparable between the two methods, 
though YOLO- Behaviour was consistently more accurate, and pro-

cessed videos faster. The difference in accuracy was surprising, 
as DeepEthogram uses video sequences and optical flow input to 
parse temporal movement information, while YOLO only relies on 
single frames. However, comparing the confusion matrix of the 
DeepEthogram output (Figure S3), the predictions seem to be more 
consistent across classes compared to YOLO, so the accuracy values 

of YOLO- Behaviour might be inflated by good prediction of certain 
classes. We also note that we chose DeepEthogram- medium for its 
balance between accuracy and speed, though accuracy might be fur-
ther improved with the different architecture choice. Nevertheless, 
the comparison was conducted with the aim of providing insight 
into how the methods relate to one another, rather than for com-

prehensive benchmarking, due to the unavoidable differences in 
training data. Due to the flexibility and uniqueness of the presented 
YOLO- Behaviour, most current open- source tools could not support 
the type of dataset presented here (multiple individuals, multiple 
behaviours), making further comparisons difficult. We suggest that 
researchers to carefully consider the type of video and behavioural 
data they have, before considering which open- source tool to select.

4.2  |  Hybrid applications

In cases where automated detection accuracy might be low and in-

sufficient for a certain study system, we also tested whether the 
YOLO- Behaviour framework can be used as a pre- processing step in 
a hybrid approach. Instead of optimizing for f1- score, we optimized 
for low false negative rates using grid search and found very low false 
negatives across all event detection datasets. For example, in the 
human eating dataset, we retrieved low false negative rates (0.14) 
and high recall (0.86) by trading off low precision (0.26). Hence, by 
first using YOLO- behaviour to extract events then manually confirm 
whether the detections were correct, we can potentially reach up 
to 0.86 precision in human eating detection, compared to the 0.63 
precision when using the framework in a fully automated manner. 
While some manual annotation is still required, this hybrid approach 
would further reduce annotation time with the assurance that ex-

tracted behavioural events are accurate. In the provided code, we 
also provide example code to run the pipeline with a human–in- the- 
loop approach.

4.3  |  Limitations

The YOLOv8 model used in the current framework only takes a sin-

gle frame as input, which might not be able to reliably detect behav-

iours that have a temporal aspect, like the locomotion behaviours 
in KABR. Unlike other methods, the framework does not capture 
fine- scaled kinematics that might require posture estimation, nor 
complex behavioural sequences like courtship behaviour (Janisch 
et al., 2021). However, we do note that the current framework was 
still able to detect walking and bowing behaviours in the pigeon 
dataset reliably, likely due to other visual cues (e.g. leg up, puffed 
up neck). For behaviours that have an important temporal compo-

nent, other methods that take video input (Bohnslav et al., 2021; 

Rodríguez- Moreno et al., 2019), or first do posture estimation 
(Mathis & Mathis, 2020) might be considered. Still, we note that 
compared to the 86.7% per- instance accuracy reported in the origi-
nal KABR publication (Kholiavchenko et al., 2024) using a temporal 
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based X3D method, the current YOLO- Behaviour framework still 
managed to recover similar accuracies (72%, Table 3), Whether this 
difference in accuracy is important for quantifying behaviours will 
depend on the specific use case.

Finally, as with any deep learning model, the need for training 
data must be carefully considered. While the case studies presented 
in this paper utilized minimal training data (~1000–1500 images), 
the framework may perform less effectively when the behaviour 
of interest is rare and represented by only a few instances. In such 
cases, alternative approaches like few- shot object detection models 
(Köhler et al., 2023) maybe more appropriate. However, compared 
to methods that first do posture estimation and then behavioural 
recognition, our current framework significantly reduces the amount 
of required training data. This is achieved by relying solely on the 
behavioural annotations within a frame, rather than detailed posture 
annotations and time- series annotations of behavioural sequences 
(e.g. Hu et al., 2023; Wittek et al., 2022).

We also emphasize that, in practice, any object detector model 
can also be used in the same way to quantify behaviour, but we chose 
YOLO here because of the ease of use and robustness. Moreover, 
the annotation effort required with our approach is considerably 
lower than traditional manual annotations methods, especially for 
long- term datasets like the sparrow provisioning or Siberian jay eat-
ing case studies. For example, previous research demonstrated that 
each 90- min sparrow provisioning video takes on average 65.4 min 
to manually annotate (Chan, Liu, et al., 2024). Given a backlog of 
~2000 videos that have not been analysed, this would have taken 
2180 annotation hours, or 54.5 forty- hour work weeks, or around 
a year of full- time labour to annotate, making manual annotation 
impractical. In contrast, assuming it takes 10 s to annotate a single 
frame with a bounding box, annotating 1500 images used in this 
study would take approximately 4 h. This highlights the substantial 
time efficiency of YOLO- Behaviour for the coding of events in large 
streams of behavioural video data.

5  |  CONCLUSIONS

In conclusion, we presented the YOLO- Behaviour Framework, a sim-

ple, flexible and robust method for automating video classification 
of simple behaviours. We demonstrated the efficiency of the pipe-

line in five distinct case studies and highlighted that the framework 
works well across a wide range of behaviours and videos. With the 
increased use of deep learning and machine learning for measuring 
behaviours in animals, we hope the framework can be another step 
towards lowering the barrier to train and deploy these methods and 
replacing time- consuming manual annotation in the field of behav-

iour research.
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