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New class detection in network traffic

classification using confidence information

embedded cascade structure

Haotian Lu, Yuning Dong, Zhiyuan Wu, Hua-Liang Wei, Guanming Lu

Abstract—Network traffic classification plays an important
role in network management. With continued emergence of
new applications, classifiers need to deal with unknown classes
in an open set environment. However, the available open set
flow recognition methods cannot well balance the performance
of new class detection and the fine-grained classification of
known classes. Moreover, these methods could pursue high
accuracy at the cost of the classification speed. To address
these problems, this paper proposes an unknown network
traffic detection method based on confidence (difference) and a
cascade structure, by analyzing the confidence distributions of
both the known and new classes. The proposed method works
as follows. Firstly, it uses a cascade structure to detect new class
samples (having high confidence) which are difficult to identify
using existing methods; secondly, it employs the maximum
confidence difference to classify the new and known classes.
In order to better detect new classes with high confidence,
an algorithm is designed to select the pseudo-negative samples
from the unlabelled dataset with an adaptive threshold. The
proposed method is evaluated on real-world datasets. The
results show that compared with the state-of-the-art methods,
the proposed method can significantly improve the overall
accuracy and the classification latency is also greatly reduced.

Index Terms—open set flow recognition; confidence differ-
ence; new class detection; unlabelled dataset; network traffic
classification.

I. INTRODUCTION

Network traffic classification (NTC) is very important

for network management, such as quality of service (QoS)

assurance and network resource allocation [1]. With the rapid

development of the Internet and multimedia technologies,

the number of network traffic classes is increasing, and new

types of network applications are emerging continuously.

Most existing methods pretrain classifiers on closed dataset

[2]–[5], but due to a lack of knowledge of new applications,

these methods cannot be directly applied to unknown traffic

scenarios. Machine learning (ML) approaches, including

deep learning (DL), generally require a large number of

labeled samples. However, in real network scenarios, the

labeled samples of unknown classes are not available. The

flow recognition containing unknown classes is called open

set flow recognition (OSFR) [6]. The OSFR requires a

classification model that can not only classify the known

classes, but also identify new classes without any auxiliary

information [7].

A. Motivation and challenges

Generally, the previous network traffic classification ap-

pear to be designed within the confines of a static dataset

scenario, where the data classes of the overall framework

are known in advance. As illustrated in Fig. 1(a), the three

triangles positioned on the left, middle and right delineate

the regions corresponding to the three known classes, and

the green circles, trapezoids and triangles correspond to

known classes 1, 2 and 3, respectively. It is evident that a

classifier trained on a closed-set can only correctly classify

known classes. However, the two kinds of unknown class

samples (yellow four-pointed stars and red pentagrams) with

distinct confidence differences are arbitrarily assigned to

different known class regions. This discrepancy arises from

the classifier lacking any prior knowledge of the unknown

classes, resulting in the failure to identify them.

To achieve OSFR, some of the existing methods use

single-class sample classification [8] (without negative sam-

ples) for detecting new classes. Such methods can detect

new classes, and group all known classes into one class, but

they cannot perform fine-grained classification. To address

this problem, Yang et al. [9] proposed building a single-class

classifier for each known class, which does not seem to work

well.

In [10] and [11], a collective decision-based OSFR (CD-

OSFR) model built on HDP (Hierarchical Dirichlet Process)

was proposed, which does not require a classification thresh-

old, and can automatically reserve space for new classes.

However, CD-OSFR does not make full use of the labeled

information of known classes, but only divides the training

data into different groups. The performance of such a method

still needs to be improved for new class detection and

classification. In addition, collaborative clustering is used

in the testing phase, which is time-consuming.

Another way is to generate negative samples by adver-

sarial learning in an unsupervised/semi-supervised manner

using adversarial sample generation-support vector machine

(ASG-SVM) [12]. These negative samples generated are

close to but not in the known classes. The detection of

unknown classes is performed in a supervised way by

training a support vector machine (SVM) classifier for each

known class. Comparatively, the adversarial sample genera-

tion by ASG-based approach performs better in improving

the detection rate for new classes. Nonetheless, as shown

in Fig. 1(b), those classifiers trained in open environments
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 :Known classes 1,2,3

(a) Close-set methods in OSFR.

   :Unknown class samples with low CfDmax

(b) Conventional methods in OSFR.

:Unknown class samples with high CfDmax

(c) CCS-UTD(Ours) in OSFR.

Fig. 1. Comparison of classification boundaries. In (a), the classifier trained on closed-set datasets separates three known classes (green circles, trapezoids,
and triangles) into three regions (three triangles on the left, middle and right). It is evident that these methods fail to classify the two unknown classes
(yellow four-pointed stars and red pentagrams) which are randomly assigned to the regions of known classes. In (b), some traditional OSFR methods can
partition some easily distinguishable unknown class samples into new regions (the blank area in the figure), but there are still unknown class samples
with high CfDmax that have not been correctly classified. In (c), CCS-UTD can identify most unknown class samples with high CfDmax and place them
in new regions, further improving the accuracy of classification.

achieve certain success in distinguishing between known and

unknown classes. Although the ASG-based approach can

improve classification accuracy to some extent by generating

fake new class samples close to the known class boundary,

it has some limitations: 1) The generation time of negative

samples is relatively long; 2) The classification performance

still needs improvement. The challenge lies in the identifi-

cation of the unknown class samples closer to the boundary

of a known class (red pentagrams), leading to a limited

classification space for unknown classes. Consequently, this

constraint results in the misclassification of some unknown

class samples.

To address the shortcomings of current methods, this

paper develops a confidence information-embedded cascade

structure, aiming at better detecting samples of novel classes

that are easily confused with the samples of known classes.

Specifically, through multiple screenings of training data and

the introduction of two discriminators, the corresponding

boundaries of each class shrink (as illustrated in Fig. 1(c)),

which makes the classification space for unknown classes

more open. As for the issue that the ASG process takes

longer time, we design a novel algorithm to select pseudo-

negative samples from unlabelled flow data that is readily

available or easier to obtain from real-world networks, so as

to achieve both higher new class detection rate and shorter

preprocessing time.

B. Contributions of this article

In this paper, we propose a new OSFR method to perform

online detection of new classes and fine-grained classifica-

tion of known classes. With this method, by analyzing the

confidence distribution patterns of known and new classes,

the maximum confidence difference (CfDmax), i.e. the value

difference between maximum and minimum confidences of

the output labels, is used to distinguish between the known

and new classes. For the known classes, the fine-grained

classification is performed based on the confidence informa-

tion of the random forest (RF) model. For the instances of

new classes that cannot be detected by a CfDmax threshold,

a binary classifier is designed to detect them. This binary

classifier is trained using two types of data: one is the known

class sample, and the other is the sample with maximum

confidence difference higher than the threshold among the

screened negative samples.

The main contributions of this paper are as follows.

(1) An unknown network traffic detection method us-

ing the confidence information-embedded cascade structure

(CCS-UTD) is proposed, which can effectively detect new

class instances while maintaining the fine-grained classifica-

tion accuracy of known classes. Especially the introduction

of cascade structure can effectively screen unknown class

instances that are normally difficult to identify by existing

methods and thus greatly improve the performance of new

class detection.

(2) The confidence distribution patterns of known and

new classes are analyzed, and a scheme to recognize the

known and new classes using the maximum confidence

difference information is designed. Meanwhile, a general

threshold selection approach is proposed, which can provide

a more accurate threshold to better distinguish known and

new classes in different datasets.

(3) An algorithm is developed to select the pseudo-

negative samples from the unlabelled flow data, which can

not only make use of the easily available unlabelled flow

data, but also greatly reduce the time of generating pseudo-

negative samples for model training.

(4) To verify the performance of the proposed method,

it is evaluated on five real network datasets, and compared

with the state-of-the-art methods. The results show that the

proposed method significantly outperforms the compared

methods.

The rest of the paper is organized as follows: Section II

reviews the relevant works on open set recognition. Section

III presents the proposed method in detail, including the

model framework, the principles of design and the specific

implementation of the method. Section IV demonstrates the

Page 2 of 15

https://mc.manuscriptcentral.com/tnse-cs

Transactions on Network Science and Engineering

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



TABLE I
MAIN NOTATIONS

Symbol Description

Acc Accuracy
CasStru Cascade structure
Cfmax Maximum confidence level
CfDmax Maximum confidence difference
FE Feature extraction
FS Feature selection
HDP Hierarchical Dirichlet Process
KnownC Known class
NewC New class
NTC Network traffic classification
OSFR Open set flow recognition

experiments to compare our method with the state-of-the-

art methods, and shows the results. Section V concludes the

paper.

For convenience of description, the main notations used

in this paper are summarized in Table I.

II. RELATED WORK

Currently, the methods based on ML [13] and DL [14]

have become the mainstream NTC approaches because they

do not need the information of port numbers and can be

used for encrypted flows [15]. Chen et al. [16] proposed the

concept of a flow bunch and developed a clustering method

to process encrypted traffic. However, current methods still

have limitations in the open set environment. Wu et al.

[17] considered the issue of class imbalance in NTC, but

ignored the emergence of new classes. In recent years, the

OSFR has received more and more attention and becomes

a hot topic in the field of machine learning at present. The

current ML/DL-based OSFR methods commonly use SVM,

adversarial learning or deep learing.

A. OSFR based on SVM

In OSFR, because the constructed hyperplane of SVM

model tends to ignore the new classes, the new classes are

often misclassified into known classes during the decision

process. To solve this problem, researchers have proposed

many SVM algorithms for OSFR by constraining the space

occupied by the known classes [7], [18], [19].

The 1-vs-Set mechanism proposed by Scheirer et al. [18]

is based on an SVM algorithm with linear kernel functions,

which constrains the space occupied by the known class

information to reduce the open space risk and cope with the

single-class identification problem in an open environment.

To achieve the multi-class recognition in an open environ-

ment, a Weibull-calibrated SVM (W-SVM) was proposed

using the CAP model and EVT theory for probability

estimation in [19]. It addresses the effect of openness on

threshold selection.

B. OSFR based on adversarial learning

Wang et al. [20] integrated the generative adversarial

network (GAN) with semi-supervised learning to achieve

fine-grained NTC. Neal et al. [21] expanded the training

set samples with the help of GAN to generate the pseudo

open set samples. These samples are close to but do not

belong to the known classes. Yang et al. [12] proposed an

adversarial sample generation approach that can generate

not only negative samples, but also positive samples of the

known classes when there are few samples of the known

classes.

C. OSFR based on deep learning

Chen et al. [22] employed a metric-based approach with

a Siamese network (SEEN) to identify known and unknown

traffic. A data skew-based classification method for TLS

application unknown traffic (DSCU) [23] was proposed

recently and created a classification space for unknown

classes with its own constructed skew data. Le et al. [24]

proposed an adaptive classification and updating method,

constructing their own boundaries for each known class to

achieve accurate identification of unknown flows in open

network environments. Zhang et al. [25] designed a deep

learning-based traffic clustering solution to classify unknown

network traffic. Similar to our work, the classifier output is a

vector of confidence scores that is further used in the traffic

discriminator. For incoming traffic, if its score falls below a

threshold, it is classified as an unknown flow; otherwise, it is

recognized as a known flow. However, its classification space

constructed using a single threshold is not accurate enough,

resulting in misclassification of known and unknown classes.

Thilini et al. [26] used well-regularized deep learning model

to improve classification results of previous methods and

developed a method based on k-logit neighbor distances (k-

LND) for OSFR.

Although the above methods are effective in OSFR to

a certain extent, they still have some shortcomings, as

summarized in Table II. To address these shortcomings, a

new method is proposed in this paper, which uses a binary

classifier trained with pseudo-negative samples to detect new

classes according to the maximum confidence difference,

and exploits the maximum confidence to further classify the

known classes.

TABLE II
COMPARISON OF EXISTING OSFR METHODS

Methods Advantages Disadvantages

SVM-based
[7,18-19]

Simple structure

Classification
accuracy (Acc) needs

improvement

Adversarial learning,
[12,21-22]

Good performance of
new class
detection

Longer training and
inference time

DL-based
[23-27]

Higher overall
classification Acc

DL models
are more complex
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III. METHODOLOGY

A. Framework

The framework of the proposed method consists of two

parts: the training phase and the testing phase, as illustrated

in Fig. 2 and Fig. 3, respectively.

RFS

Unlabeled 

flows

OC-SVMk

k

H1H1

H1H2

Train
Train

Unlabelled 

flows
No

Drop

Yes

  (CfDmax )

Legends   Known flows      Unknown flows with high CfDmax

 Combination of        and FlowsUnknown flows

CfDmax
Adaptive 

threshold 

ATS

Initial 

threshold 

0

ATS  Adaptive threshold selection

Validation 

dataset

Fig. 2. Training phase of the CCS-UTD framework.

1) Traning phase: At the training phase, certain unla-

belled samples are selected as the pseudo-negative samples

of new class. These pseudo-negative samples are obtained

by screening the unlabelled dataset for twice: 1) k single

class support vector machines (One Class-SVM, OC-SVM)

designed for k known classes are used to filter out the known

classes; 2) an RFS (RF updated for S iterations) model is

applied to filter the samples whose CfDmax are higher than

an adaptive threshold α. The process of determining this

threshold is illustrated in the upper half of Fig. 2. First,

the CfDmax distribution is calculated using a validation

dataset to obtain an initial threshold α0. Subsequently, an

adaptive threshold selection method is employed to get the

best CfDmax threshold α for the current dataset. In the lower

half of Fig. 2, H1 is a binary classifier trained by the pseudo-

negative samples of new classes with CfDmax values greater

than α; the RF multi-classifier H2 is trained by samples from

the known classes.

F  
Input

 flows H1H1

y1

H1H2
CfDmax>

No

y2

Yes

z(Cfmax based)

Fig. 3. Tesing phase of the CCS-UTD framework.

2) Testing phase: As shown in Fig. 3, the testing phase

consists of a cascade structure: H1 and H2 that uses the

threshold β to further distinguish between known and new

class samples. After feature extraction (FE) of the input

samples, H1 is used to screen out unknown class samples

(y1) whose CfDmax is greater than threshold α. Then H2

further refines the detection of new class by processing the

remaning flows based on the threshold β. Meanwhile, the

fine classification of known classes is completed by H2 based

on the maximum confidence level (Cfmax), denoted z.

Fig. 4. TDR and PR of different model structures.

3) The cascade structure: The cascade structure model

is a core part of this method. For complex open-set traffic

classification problems, a single classifier is often ineffective

to distinguish between new and known traffic types using a

threshold.

For this reason, this paper, by following an idea of gradual

refinement, designs a cascade structure composed of H1

and H2, as shown in Fig. 3. In the testing phase, H1 is

responsible for a first pass classification of input instances,

mainly to screen out NewC samples that are difficult (closer

to the boundary of a KnownC) to identify(y1), and send

the remaining samples to H2. H2 performs: 1) Further

identification of NewC samples (y2) by the threshold β;

2) A fine-grained classification of known classes. In this

way, the proposed cascade structure(CasStru) can execute

in a faster pipeline processing fashion. At the same time,

the H1’s identification capability trained by pseudo-negative

samples with high CfDmax makes it possible to screen

NewC samples that cannot be detected by thresholding,

which in principle enhances the model’s capability to detect

unknown class samples.

To verify the effectiveness of CasStru, we conduct exper-

iments on the MixD1 dataset (See Section IV-A for more

details) by omitting H1 and using only H2 for classifi-

cation based on the CfDmax threshold. Two performance

evaluation metrics, Purity rate (PR) and True detection rate

(TDR) [22], are used, as defined in Eqs.(1) and (2), where

KP is the number of KnownC samples correctly identified,

KN is the number of the KnownC samples which are

misclassified as other known traffic, KU is the number of

KnownC samples misclassified as unknown traffic, UP is the

number of unknown traffic accurately detected, and UN is

the number of NewC samples misclassified as known traffic.

Partial test results are shown in Fig. 4. It can be seen
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from the TDR curve that although a single classifier can

still detect NewC samples, its True detection rate at each

threshold value is significantly lower than that of CasStru,

indicating that more unknown classes are undetected. PR

represents the fine-grained classification results of KnownC

samples. When the threshold β reaches 0.9, the performance

of CasStru is also superior (More details can be found

in following subsections). In a word, the introduction of

the cascade structure is an effective choice, which has the

advantages of both faster classification speed and higher rate

of NewC detection.

PurityRate =
KP

KP +KN +KU
(1)

TrueDetectionRate=
UP

UP + UN
(2)

B. Data preprocessing

1) Feature extraction: To achieve fast online classifica-

tion, the flow data is partitioned into 1-second flow segments.

The first ten packets of each segment are used to compute

the flow features which are then used for classification.

The collected data comprise of six distinct sequences, i.e.,

packet size, packet arrival time, timestamp, packet differ-

ence, uplink rate and downlink rate. Seventeen statistical

features, as described in Table III, are computed for each

sequence.

In order to improve the efficiency of NTC, the con-

ditional frequency feature was introduced by Quan et al.

[27], which is defined as the count of varying combinations

for the (coded) sizes of two adjacent packets occurring

in the upstream or downstream direction. There are 25

downlink and 4 uplink conditional frequency features. The

total number of flow features is 131. As an example, the

downlink conditional frequency CF (i j) for a flow sample

is computed as follows:

CF (i\j) =
∑

flowsample

c(P1(i), P2(j)), i, j ∈ {1, 2, 3} (3)

where, c(P1(i), P2(j)) indicates an event that occurs once

when the coded size of the former packet P1 is i, and that

of the subsequent packet P2 is j.

TABLE III
STATISTICAL FEATURES OF FLOWS (PACKET SEQUENCES)

Serial
number

Feature name
Serial
number

Feature name

1 Average value 6 Minimum value

2 Standard deviation 7
Number of singular
values

3 Kurtosis 8 Mode percentage

4 Skewness 9-17
Percentiles (from 10%
to 90%)

5 Maximum value

2) Feature selection: The online classification requires

feature extraction (FE) to be as fast as possible, so feature

selection (FS) and dimensionality reduction are performed

as follows:

(1) The time complexity analysis of FE is performed to

choose a subset of features whose complexity is no more

than O(n) (n is the number of data packets).

(2) The Pearson correlation coefficient (PCC) is calculated

for each feature with respect to the label and between the

features. For a feature pair having a PCC greater than 0.9,

the feature with lower correlation with the label is removed.

(3) The remaining features are ranked by RF. The optimal

feature subset is obtained by adding features one by one

according to the degree of importance and by observing the

change of classification Acc, so as to find the inflection point

of performance. In the experiments, around 20 features are

finally selected by our method.

C. Initial threshold selection and confidence (difference)

distributions

To determine the initial threshold α0 required for the adap-

tive threshold selection algorithm, we begin by analyzing the

CfDmax distributions of KnownC and NewC samples. The

detailed process will be explained below.

To obtain the confidence that a given sample belongs

to each known class, most current DL-based methods [25]

use softmax activation in the last layer to get a probability

vector. However, most edge devices have limited computing

and storage resources, and may be unsuitable for using

DL models that commonly require much more hardware

resources. In this study, we use RF to analyze the distri-

butions of classification confidence with different patterns.

The confidence distributions of known classes (with samples

of 8 classes randomly selected from MixD1) and unknown

classes (with samples from other 8 classes of MixD1), as

well as the CfDmax distributions, are shown in Fig. 5 and

Fig. 6, respectively.

Fig. 5. Confidence distributions of known and new classes.

Fig.5 indicates that the known classes exhibit a higher

percentage within the lowest confidence interval (0, 0.1] and

the highest confidence interval (0.9, 1.0] compared to the

new classes. From Fig. 6, it can be seen that the known
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Fig. 6. CfDmax distributions of known and new classes.

classes have a significantly higher percentage of CfDmax

within the range (0.9, 1.0] in comparison to the new classes.

Therefore, CfDmax can be used to distinguish the KnownC

from the NewC, and α0 can be set to 0.9.

To validate the universality of this setup approach, we

randomly select 5 combinations of known and new classes

from MixD1 and MixD2 (See Section IV-A for more details)

in Table IV. Then, for different combinations, we measure

the proportions of known and new classes when CfDmax

is between (0.9, 1.0]. As shown in Fig.7 and Fig. 8, the

percentages for known classes are mostly higher than 80%,

while those of new classes are mostly lower than 30%. In

addition, the percentage of known classes is much higher

than that of new classes in the range of (0.9, 1.0] of CfDmax,

which demonstrates the right choice of initial threshold value

0.9.

In conclusion, for the determination of the initial thresh-

old, the key is to identify a range where the number

of KnownC samples significantly exceeds that of NewC

samples, and use the lower bound of this range as the

initial threshold. It is worth noting that the initial threshold

does not need to be highly precise, only an approximate

value is sufficient. Subsequent experiments (Section IV-D)

demonstrate that our proposed adaptive threshold selection

method is robust to the slight deviations of the initial

threshold.

Fig. 7. Distributions of CfDmax between (0.9, 1.0] for different combina-
tions of known and new classes on MixD1.

Fig. 8. Distributions of CfDmax between (0.9, 1.0] for different combina-
tions of known and new classes on MixD2.

D. Adaptive threshold selection

Although the CfDmax distributions can effectively dif-

ferentiate between new and known traffic types, applying a

fixed CfDmax threshold to new datasets may lead to bias

in the classification boundary. To ensure that CCS-UTD

remains robust in identifying traffics in a new network envi-

ronment, an Adaptive Threshold Selection (ATS) approach is

proposed. ATS provides a general threshold selection method

for different scenarios by using weighted operations on the

mean and standard deviation of multiple predictions of the

pseudo new classes samples.

Given the variations in the model’s learning degree for

samples and the inherent uncertainty of samples under differ-

ent traffic characteristics, we design a multi-update scheme

to retrain RF0 (an initial RF model trained by KnownC

samples) and introduce a prediction memory to store rep-

resentative CfDmax values from each update. Specifically,

in addition to unknown flows, there exists a certain number

of known flows filtered by OC-SVM from unlabelled data,

which can be used to update RF0. Then, by calculating the

mean and standard deviation of all representative CfDmax

values in the memory, both the learning status and their

fluctuations of the sample can be effectively reflected.

1

2

3

S

1

2

3

S

k Update

RFi,i=1, ,S

CfDmax
Mean

Std

…
…
…
…

Legends    Known flows from 

Unlabelled flows

Process

Memory

CfDmax

Weighted sum

Fig. 9. Adaptive Threshold Selection

As shown in Fig. 9, ATS consists of three stages: (1) RF

is updated S times using the filtered known classes samples,

generating a series of RF models, denoted as RFi, i=1,

..., S; (2) The pseudo-negative samples with high CfDmax

are screened out from the unlabelled dataset by using the

initial threshold α0, and then perform S predictions on these

pseudo-negative samples with the RFi models to recalculate
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TABLE IV
DIFFERENT COMBINATIONS OF KNOWN AND NEW CLASSES ON MIXD1 AND MIXD2

Dataset
MixD1 MixD2

Known classes* New classes Known classes** New classes

Combination

1 2, 14, 16 5, 6, 7, 12, 13
24, 26, 31,
41, 42, 45

21, 23, 28, 32, 35,
44, 48, 49

2 6, 8, 14, 16 3, 7, 10, 11, 13
23, 25, 28, 36,

43, 44, 47
29, 30, 32, 34, 35, 41,

45, 48, 50

3 3, 8, 9, 16 4, 7, 10, 11, 12
21, 25, 27, 28, 32,

45, 48, 50
23, 26, 30, 33, 34, 41,

43, 44, 49

4 4, 5, 7, 14, 16 3, 6, 10, 11, 12
21, 28, 29, 30, 32,

45, 46, 48
22, 23, 26, 27, 31, 42,

44, 46, 49

5 2, 4, 7, 12, 14 6, 9, 11, 13, 15
28, 29, 32, 34,

36, 47, 50
22, 23, 27, 31, 35, 41,

43, 45, 48

*Correspondence between digital labels and data categories: 1-BitTorrent, 2-Email, 3-Facebook audio, 4-Facebook chat, 5-Ftp, 6-Hangouts audio,
7-Skype audio, 8-Skype file, 9-Skype video, 10-Youtube, 11-douyu 480p, 12-huya 480p, 13-tencent 480p, 14-tencent 720p,
15-youku 720p, 16-douyu 1080p
**: 21-Cridex, 22-Geodo, 23-Htbot, 24-Miuref, 25-Neris, 26-Nsis ay, 27-Shifu, 28-Tinba, 29-Virut, 30-Zeus, 31-Facebook audio, 32-Hangouts audio,
33-SFTP, 34-Skype audio, 35-Spotify, 36-Vimeo41- Distance,42-Flame Sensor, 43-Heart Rate, 44-IR Receiver, 45-Modbus, 46-phValue,
47-Soil Moisture, 48-Sound Sensor, 49-Temperature, 50-Water Level

their CfDmax values. The 10th percentile of the predicted

CfDmax values on these pseudo-negative samples after each

update is stored in memory; (3) Using the stored values

of mean and standard deviation, the adaptive threshold α

that best fits the current dataset is determined by weighted

calculation. The implementation details of the ATS method

are shown in Algorithm 1.

E. Selection of pseudo NewC samples from unlabelled

datasets

From the above analysis (Fig. 5 - Fig. 8), it can be seen

that in the testing stage, H2 can detect new classes with the

threshold β (=0.9). However, as shown in Fig. 8, there are

still a fraction of NewC instances with CfDmax exceeding

0.9, resulting in misclassification.

As mentioned above, H1 is added into the cascade struc-

ture that is trained by the pseudo unknown class samples

selected from the unlabelled datasets in combination with

the KnownC samples. Since gathering unlabelled flow data

is relatively easy from the real networks [28], this study

attempts to choose negative samples from the unlabelled data

to train H1, for the purpose to obtain negative samples with

CfDmax values greater than the threshold α. The specific

process is shown in Algorithm 2.

During the process of selecting adaptive thresholds, while

our primary focus is on setting the parameter α, for the

threshold β used in the testing phase, we recommend β =

α. Subsequent experiments (Section IV-D) will verify this.

Note that the thresholds α and β have distinct uses, though

they may have the same numerical value. In the screening

of unlabelled samples, any sample whose CfDmax is higher

than the value of α is classified as a negative sample, and

these samples are similar to but not belong to the KnownC.

On the other hand, during the testing phase, if the CfDmax

of the input sample is higher than β, it is recognized (by

H2) as belonging to the known classes.

F. Cascade classification

In the testing stage, H2 trained on the KnownC dataset

detects the NewC instances by CfDmax thresholding, and

Algorithm 1 Adaptive Threshold Selection

Require: Size of memory S, RF0 trained with known class

samples, prediction memory, initial threshold α0

Input: Unlabelled flow dataset U

Output: Adaptive threshold α

1: Obtain known flows M2 by Algorithm 2

2: Obtain subset M of unlabelled data with unknown

classes whose CfDmax > α0 by Algorithm 2

3: # Update RF0 to recalculate CfDmax for M

4: Divide M2 into S subsets:

M2 = {Sub1, Sub2, . . . , SubS}
5: for i = 1 to S do

6: Define Training set Seti = Sub1∪Sub2∪· · ·∪Subi
7: Retrain RFi using RFi−1 as the initial model and

Training set Seti
8: Obtain and store updated model RFi

9: end for

10: Initialize a temporary array: temp

11: for j = 1 to S do

12: for each m ∈ M do

13: Compute CfDmax−m ← calculation using RFj

on m

14: Store CfDmax−m in temp

15: end for

16: Calculate the 10th percentile of temp and store it in

memory

17: end for

18: # Calculate mean and standard deviation in memory to

obtain adaptive threshold α

19: Calculate the mean in memory: mean

20: Calculate the standard deviation in memory: std

21: Adaptive threshold α = mean − std

22: Return α

classifies the known classes using the Cfmax information.

Algorithm 3 describes the cascade classification process.

Note that Ui1 and Ui−1 (for i = 1, 2, . . . , k) are the

positive and negative classes derived from the OC-SVMi
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Algorithm 2 Selection for pseudo unknown class samples

from unlabelled flow datasets

Require: KnownCk (z1, z2, . . . , zk), CfDmax adaptive

threshold α, RF0 trained with known class samples

Input: Unlabelled flow dataset U

Output: Subset M of unlabelled data with unknown classes

whose CfDmax > α, subset M2 of unlabelled data with

known classes

1: for i = 1 to k do

2: Train with KnownC zi to obtain OC-SVMi

3: end for

4: for i = 1 to k do

5: Classify U with OC-SVMi and obtain Ui1 and Ui−1

6: end for

7: M1 = U11 ∪ U21 ∪ U31 ∪ · · · ∪ Uk1

8: for each m ∈ M1 do

9: if m only in U11 ∨ U21 ∨ U31 ∨ · · · ∨ Uk1 then

10: m ∈ M2

11: else

12: m ∈ M3

13: end if

14: end for

15: M4 = U1−1 ∩ U2−1 ∩ U3−1 ∩ · · · ∩ Uk−1

16: M5 = M3 ∪M4

17: RF output confidence set mt = {t1, t2, . . . , tk} for each

sample m in M5

18: Calculate the difference between maximum confidence

and minimum confidence in mt: αm = tmax − tmin

19: for each m ∈ M5 do

20: if αm > α then

21: m ∈ M

22: else

23: Discard m

24: end if

25: end for

26: Return M , M2

classification, respectively.

IV. EXPERIMENTS

A. Datasets

TABLE V
ISCX PARTIAL DATA

Categories Applications #samples

File transfer BitTorrent, Ftp, Skype 1000

Voice calls Facebook, Hangouts, Skype 1000

Mail Email 1000

Chat Facebook 1000

Video Skype, Youtube 1000

Comprehensive experiments are carried out on five real

network datasets: ISCX non-VPN (ISCX) [29], VideD video

dataset, ISCX-Tor [30], USTC-TFC [31] malware dataset

Algorithm 3 Cascade classification algorithm

Require: Mixed flow dataset X; CfDmax threshold β

Output: KnownC label z (z1, z2, . . . , zk); NewC label y

1: FE is applied to the dataset X to obtain the input sample

x

2: H1 classifies x to obtain y1 and x0, where y1 ∈ y

3: H2 outputs the confidence set lt = {t1, t2, . . . , tk} for

each sample l in x0

4: Calculate the difference between maximum confidence

and minimum confidence in lt: βl = tmax − tmin

5: for l in x0 do

6: if βl > β then

7: l ∈ z

8: Find the subscript index j of the maximum

confidence in the confidence set lt of l

9: if j = 1 then

10: l ∈ z1
11: else if j = 2 then

12: l ∈ z2
13: else if j = k then

14: l ∈ zk
15: end if

16: else

17: l ∈ y2
18: end if

19: end for

20: y = y1 ∪ y2

and Edge-IIoTset [32] network security dataset. Data in

the VideD dataset was collected in the campus network of

Nanjing University of Posts and Telecommunications during

2019-2020 using the Wireshark [33] software. Table V ∼
Table IX show the specific information of each dataset. To

verify the generalizability of the proposed method, the ISCX

and VideD datasets are combined to form the hybrid dataset

1 (MixD1). Similarly, a hybrid dataset 2 (MixD2) composed

of Edge-IIoTset, ISCX-Tor, VideD and USTC-TFC datasets,

containing 36 traffic classes, is used to simulate larger traffic

loads.

TABLE VI
VIDED DATASET

Categories Applications #samples

Video live
douyu 480p, huya 480p,

douyu 1080p
1500

Video on
demand

tencent 480p, tencent 720p,
youku 720p

1500

B. Evaluation indexes

The proposed method is evaluated in terms of classifi-

cation accuracy and time efficiency. For the classification

accuracy, four metrics are used, which are the normalized

accuracy (NA) of the open set recognition [7] (which weights

the accuracy for known classes (AKS) and the accuracy
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TABLE VII
ISCX-TOR PARTIAL DATA

Category Applications #samples

File transfer SFTP 1000

Voice calls Facebook, Hangouts, Skype 1000

Music Spotify 1000

Video Vimeo 1000

TABLE VIII
USTC-TFC MALWARE DATASET

Categories Applications #samples

Malware

Cridex, Geodo, Htbot, Miuref,
Neris, Nsis ay, Shifu, Tinba,

Virut, Zeus
1000

for new classes (AUS)), the precision (P ), recall (R) and

F1 score (F1), where P represents the proportion of cor-

rectly predicted positive examples; R is the proportion of

positive samples that are correctly identified; F1 score is

the harmonic mean of P and R. The specific computations

are shown in Eq.(4) - Eq.(9), where, for KnownC i, TPi,

TNi, FPi, and FNi represent the numbers of positive and

negative samples correctly classified, and the numbers of

positive and negative samples incorrectly classified, respec-

tively; TU and FU refer to the numbers of samples of new

classes correctly and incorrectly identified, respectively; λ

is the regularization coefficient, with 0 <λ<1 (it is set to

0.5 in the experiments). The evaluation of time performance

includes the training and inference time.

NA = λAKS + (1− λ)AUS (4)

AKS =

∑k

i=1
(TPi + TNi)∑k

i=1
(TPi + TNi + FPi + FNi)

(5)

AUS =
TU

TU + FU
(6)

P =
TP

TP + FP
(7)

R =
TP

TP + FN
(8)

F1 =
2 ∗ P ∗R

P +R
(9)

C. Experimental environment

The experiments are performed on a Dell Vostro 14-5480

laptop with Windows 10 operating system, Intel i5-5200U

CPU@2.20GHz CPU, and 8GB RAM. The 5-fold cross-

validation is used in the experiments, with 80% samples

randomly selected from the total samples as the training

set, and the remaining 20% as the test set. OC-SVM is

implemented using LIBSVM [34]; the number of trees in

RF is set to 100, and min samples leaf is 1.

TABLE IX
EDGE-IIOTSET DATASET

Categories Applications #samples

Network
security

Distance, Flame Sensor,
Heart Rate, IR Receiver,

Modbus, phValue,
Soil Moisture, Sound Sensor,

Temperature, Water Level

1200

D. Effects of different initial threshold values

In the ATS algorithm, the initial threshold is an im-

portant factor. To better evaluate the performance of the

model with varying initial thresholds, several KnownC and

NewC combinations are randomly selected from both MixD1

and MixD2. Specifically, Combination 1 includes 6 known

classes and 6 new classes, while Combination 2 consists of

6 known classes and 5 new classes. Table X and Table XI

list the results obtained from different data combinations and

initial thresholds.

TABLE X
CLASSIFICATION RESULTS USING DIFFERENT INITIAL THRESHOLDS ON

MIXD1

α0 0.7 0.8 0.85 0.9 0.95

α/β 0.816 0.863 0.895 0.925 0.943

KnownC
F1 0.898 0.905 0.919 0.9393 0.923
P 0.895 0.920 0.978 0.9816 0.985
R 0.925 0.913 0.909 0.893 0.878

NewC
F1 0.856 0.895 0.911 0.9382 0.897
P 0.898 0.903 0.912 0.901 0.883
R 0.793 0.894 0.922 0.979 0.969

NA 0.932 0.941 0.971 0.986 0.966

TABLE XI
CLASSIFICATION RESULTS USING DIFFERENT INITIAL THRESHOLDS ON

MIXD2

α0 0.7 0.8 0.85 0.9 0.95

α/β 0.798 0.848 0.869 0.882 0.918

KnownC
F1 0.786 0.809 0.849 0.854 0.827
P 0.827 0.859 0.876 0.898 0.902
R 0.889 0.871 0.853 0.826 0.81

NewC
F1 0.808 0.819 0.825 0.832 0.817
P 0.823 0.815 0.826 0.804 0.798
R 0.771 0.808 0.813 0.865 0.858

NA 0.856 0.897 0.903 0.919 0.898

As mentioned in Section III-C, the optimal initial thresh-

old for MixD1 and MixD2 is 0.9. From Table X and Table

XI, it can be observed that when the initial threshold α0 devi-

ates from 0.9, the adaptive threshold α converges toward the

optimal threshold under the guidance of the ATS algorithm

and thus the decrease in NA does not exceed 6%, which

demonstrates the robustness of ATS to slight deviations.
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Regarding the impact of α0 on the classification performance

of known and new classes of CCS-UTD, increasing α0

improves the precision of KnownC but results in a decline

in recall. In contrast, for the new classes, increase of α0

will generally tend to increase recall but decrease precision.

This is because the CfDmax of the KnownC is mainly

distributed between (0.9, 1.0], while the CfDmax of the

NewC is relatively evenly distributed in all intervals. When

the threshold is increased to 0.9, fewer KnownC samples

will be misclassified into new classes, and more new classes

will be detected.

For the threshold β in the testing phase, it is suggested to

use the same value as α. Specifically, the binary classifier

H1 is used to detect the NewC samples with CfDmax

greater than β. The NewC samples with β <CfDmax <α

cannot be detected during the classification process if α >β.

Conversely, if α <β, H1 may misclassify more KnownC

samples into new classes. Table XII and Table XIII provide

a comparison of the classification performance for different

values of α and β. According to the comparisons, if α

>β, the recall of NewC decreases, while when α <β, the

recall of KnownC drops. The overall classification accuracy

is optimal when α = β.

TABLE XII
CLASSIFICATION EFFECTS OF INCONSISTENT THRESHOLDS ON MIXD1

α/β 0.9/0.8 0.8/0.9 0.9/0.9

KnownC
F1 0.9188 0.9098 0.9313
P 0.9016 0.9786 0.9786
R 0.9367 0.8500 0.8883

NewC
F1 0.9000 0.9193 0.9362
P 0.9321 0.8671 0.8976
R 0.8700 0.9783 0.9783

NA 0.9270 0.9820 0.9836

TABLE XIII
CLASSIFICATION EFFECTS OF INCONSISTENT THRESHOLDS ON MIXD2

α/β 0.9/0.8 0.8/0.9 0.9/0.9

KnownC
F1 0.8455 0.8418 0.8483
P 0.8201 0.8933 0.8916
R 0.8453 0.8136 0.8130

NewC
F1 0.7915 0.8036 0.8297
P 0.8191 0.7905 0.8001
R 0.7473 0.8576 0.8632

NA 0.8685 0.9066 0.9137

E. Comparison of different methods

Fig.10 and Fig.11 present the comparisons of the classifi-

cation results of the proposed method CCS-UTD with three

other methods of CD-OSFR [10], ASG-SVM [12] and k-

LND [26] on MixD1 and MixD2. Table XIV illustrates the

time performances of these methods.

It can be seen from Fig.10 and Fig. 11 that on different

datasets, the F1 score and NA indexes for KnownC and

NewC obtained by CCS-UTD are significantly better than

those obtained by other methods. According to Table XIV,

CCS-UTD also has the shortest training and inference time.

Note that the k-LND method [26] defined the logit layer

output as the class center and named it Mean Activation

Vector (MAV). They assumed that a sample from a known

class would be distant from MAV of the neighbors of

its class, in addition to being closer to its own MAV,

which improves the closed-set and open-set classification

accuracies. However, as can be seen from the Fig.10 and

Fig. 11, although the F1 score of k-LND is close to that of

CCS-UTD, its P is particularly low, that is, its false positive

rate is high, which indicates that its classification boundary

is too loose. In contrast, CCS-UTD not only maintains the

highest F1 and NA scores, but also improves the P of known

classes by nearly 20% compared to k-LND. This shows that

our method successfully separates most of NewC samples

that are similar to KnownC samples into a new classification

space, which effectively avoids misclassification of known

and unknown classes.

Compared to CD-OSR, by using CCS-UTD, the F1 score

is improved by around 8-10% and 8-9% for KnownC and

NewC, respectively, and NA index is improved by 10-11%.

This improvement may be attributed to the fact that CD-OSR

does not fully utilize the label information of the KnownC. In

other words, CD-OSR relies on the HDP automatic cluster-

ing, and does not strictly classify samples into corresponding

classes based on their labels. Thus, the samples of different

labels may be clustered into the same class, or the samples

having the same label clustered into different classes during

the training process. In contrast, CCS-UTD takes advantage

of the label information explicitly, and applies it to the

classification pipeline. Concerning the time performance,

CD-OSR needs longer training and inference time as it

is bound by HDP’s inherent complexity, thus resulting in

higher computational cost.

Fig. 10. Comparison of classification performances of different methods
on MixD1.
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Fig. 11. Comparison of classification performances of different methods
on MixD2.

Compared with ASG-SVM, CCS-UTD demonstrates an

improvement of approximately 13-14% in F1 score for

KnownC, 3% in F1 score for NewC, and 2-5% in NA index.

Although ASG-SVM outperforms CCS-UTD in detecting

new classes than in sub-classifying known classes, it gen-

erates negative samples akin to each KnownC, leading to

lower recall rates for the known classes. In addition, ASG-

SVM trains one SVM classifier for each KnownC using

both positive and negative samples, thus requiring training

multiple SVMs, leading to longer training time. In the testing

stage, only when all trained SVMs recognize an instance as a

negative one, will ASG-SVM classify it as a NewC sample,

resulting in longer inference time.

F. Real-time applicability

Most DL-based NTC models contain tens of thousands

of parameters, resulting in model sizes ranging from a few

MB to several hundred MB, and normally need dedicated

computational hardware such as GPU. However, many edge

devices commonly have limited storage of only a few MB,

and limited computation power, which makes it challenging

to accommodate medium to large-scale models [16]. Our

approach with an RF model only requires a memory of a

few hundred KB and common CPU, that is affordable for

most network edge devices. Moreover, the packet forwarding

rate of common edge routers is usually around a few million

packets per second (Mpps) [35]. As shown in Table XIV,

for the training time, CCS-UTD is much shorter than other

methods; for the inference time, our method can process a

flow segment of 10 packets in around 0.04 ms on average,

achieving a throughput of 0.25 Mpps, which roughly aligns

with the computational capabilities of common edge routers.

With its notably low classification latency, the proposed

CCS-UTD demonstrates significant potential for deployment

in real-world network traffic classification systems. In com-

parison, k-LND reduces model parameters through model

quantization. However, its packet processing time is still

TABLE XIV
COMPARISON OF TIME PERFORMANCES OF DIFFERENT

METHODS ON 2 MIXED DATASETS (AVE. MS/SAMPLE)

Method Training Time Inference Time

CCS-UTD 0.0788 0.0415
ASG-SVM 34.8650 2.0129
CD-OSR 7.4768 0.3887
k-LND 0.913 0.0806

twice as long as that of our method, which implies higher

hardware requirements for the device. Meanwhile, ASG-

SVM and CD-OSR require devices with even higher compu-

tational resources, making them unsuitable for deployment

on resource-limited edge devices.

G. Sensitivity analysis

Table XV explores the impact of the length S of pre-

diction memory on NewC detection. Overall, the adap-

tive threshold method exhibits similar NA on the MixD2

dataset across different memory lengths, indicating a low

sensitivity to changes in S. Therefore, when handling new

data distributions, adjusting this parameter does not need

to be prioritized. As shown in Table XV, CCS-UTD can

achieve the best performance when S=15. Generally, while

a longer memory length provides a more comprehensive

assessment of confidence information, an excessively long

memory may fail to accurately reflect the current status of

samples and causes additional storage costs. On the contrary,

if the memory length is too short, it is difficult to effectively

capture fluctuations in CfDmax. Therefore, setting S=15

allows ATS to enhance flexibility and efficiency while being

more adaptable to high traffic loads.

Next, we present the experimental CfDmax values and

corresponding NA indexes in intervals of different percentiles

based on the CfDmax distributions (in the range of its min.

value of 0.665 and max. value of 1). As show in Table XVI,

at the 1st percentile, CfDmax is significantly lower than in

other intervals, with a comparatively low NA. In contrast, NA

reaches its peak at the 10th percentile, while the changes in

CfDmax thereafter are relatively small. Therefore, we select

TABLE XV
NA FOR DIFFERENT MEMORY LENGTHS S

S 2 4 10 15 20 50 100

NA 0.914 0.913 0.905 0.919 0.909 0.913 0.914

TABLE XVI
NA FOR DIFFERENT PERCENTILES

Percentile 1% 10% 20% 40% 60%

CfDmax 0.74 0.88 0.96 0.99 1

NA 0.818 0.919 0.891 0.88 0.88
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TABLE XVII
NA UNDER DIFFERENT η IN ADAPTIVE THRESHOLD

mean
+ η*std

η -5 -2 -1 0 1 2

NA 0.915 0.914 0.919 0.914 0.916 0.912

the 10th percentile of each update as the representative value

and store it in memory.

The proposed ATS determines the adaptive threshold α

through linear combination operations, where the key factor

is the weight η of the standard deviation. It can be seen from

the Table XVII that NA is the highest when η is -1. This is

because this setting effectively reduces the uncertainty in

predictions while measuring the learning status of samples

after multiple updates, thereby enhancing the stability of

ATS. Further experiments with varying levels of noise in

unlabelled dataset (Section IV-I) demonstrate that this ap-

proach also improves the robustness of CCS-UTD to noises

in the dataset.

H. Ablation experiments

1) Algorithm module: In order to further evaluate the

proposed model, ablation experiments are conducted on

three additional datasets. Here we mainly focus on the

comparisons of the micro-F-measure used in CD-OSFR,

where the FN and FP also consider the false unknown

classes and false known classes.

First, for CfDmax, we remove H1 trained by the screened

samples and only use H2 and maximum confidence as

thresholds for the identification of KnownC and NewC

samples. Then, to demonstrate the robustness of adaptive

threshold in different scenarios, we select three datasets

LETTER [36], USPS [37] and PENDIGITS [38] used in

CD-OSFR, and MixD2 dataset containing the most traffic

classes. At the same time, a fixed threshold version of CCS-

UTD, called CCS-UTD-Fix, is also used.

H2-alone, CD-OSFR and CCS-UTD-Fix are used as the

baselines for comparison. As shown in Fig.12, CCS-UTD

obtains the best F1 score on almost every dataset, while H2-

alone performs the worst on every dataset. This is because

using only the maximum confidence as a threshold can

only distinguish some obvious unknown classes and confuse

other unknown classes with known classes. Training H1 with

unlabelled samples selected by CfDmax can enhance the

model’s discriminative ability and allocate better classifica-

tion regions for NewC.

Compared to CCS-UTD-Fix, CCS-UTD using ATS can

find the optimal threshold in each dataset, thus achieving the

best performance. Especially on dataset PENDIGITS, using

a fixed threshold of 0.9 is not fully applicable, resulting in

inferior performance to CD-OSFR.

2) Model selection: In terms of model selection, we

evaluate the fine-grained classification F1 scores (excluding

new classes), new class detection performance (NA), and

training time of KNN [39], XGBoost [40], and RF on

Fig. 12. Ablation experimental results on different datasets.

two mixed datasets. As shown in Table XVIII, in fine-

grained classification (Fine-F1), RF and XGBoost have

similar performance, while KNN performs worse. For new

class detection, RF has a higher NA index than the other

models, demonstrating better new class detection capability.

In terms of training time, due to the fact that KNN’s training

process only requires data storage, its training time is the

shortest, but its testing time is longer. In contrast, XGBoost

has the longest training time.

Further, we evaluate the performance of two deep learning

models, AutoEncoder and CNN1D, on two mixed datasets.

Specifically, we follow the settings of Deep Packet [41] to

convert raw data packets into byte vectors as features. As

shown in Table XVIII, deep learning methods do not show

significant performance advantages over RF and XGBoost

and require longer training time. So, we select the RF model

for this paper.

I. Selection of pseudo-negative samples on noisy datasets

In real-world network environments, noise is unavoidable

when gathering unlabelled data. To evaluate the effect of

noise on NewC detection performance, we add different

levels of Gaussian noise to two mixed real-world datasets

and compares NA performance under both adaptive and fixed

thresholds. Specifically, the added noise level represents the

standard deviation of Gaussian noise, which is proportional

to the feature value of each sample.

As shown in Table XIX, after multiple rounds of updates,

the ATS scheme demonstrates better noise robustness across

all datasets compared to the fixed threshold. With the in-

crease of noise level, the performance degradation rate of

ATS is significantly lower than that of the fixed threshold.

This is attributed to the linear combination of mean and stan-

dard deviation in the ATS algorithm, which comprehensively

considers the learning status and stability of the samples

after each update. Specifically, noise affects the fluctuations

of model predictions for samples, and standard deviation is

one of the key measure of this fluctuation. Intuitively, if the

predicted CfDmax value for a sample remain stable over

multiple updates, it indicates that the model’s knowledge of

the sample is consistent, thus making the prediction more

reliable.
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TABLE XVIII
PERFORMANCE COMPARISON OF DIFFERENT MODELS ON TWO DATASETS

Dataset MixD1 MixD2

Models Fine-F1 NA Training Time(ms) Fine- F1 NA Training Time(ms)

RF 0.94 0.986 0.0767 0.94 0.919 0.0893
XGBoost 0.95 0.935 0.23 0.94 0.88 0.305

KNN 0.81 0.94 0.009 0.77 0.874 0.016
AutoEncoder 0.84 0.851 1.31 0.66 0.801 1.8

CNN1D 0.8 0.842 1.4 0.56 0.788 1.54

TABLE XIX
COMPARISON OF NA BETWEEN ADAPTIVE THRESHOLD AND

FIXED THRESHOLD AT DIFFERENT NOISE LEVELS

Method Adaptive Threshold Fixed Threshold

Noise
level

Dataset

MixD1 MixD2 MixD1 MixD2

10% 0.972 0.918 0.966 0.901

30% 0.96 0.907 0.948 0.884

50% 0.948 0.901 0.933 0.869

70% 0.94 0.892 0.921 0.841

As for the generation of pseudo-negative samples, ASG-

SVM generates negative samples through adversarial learn-

ing (AL), while CCS-UTD chooses negative samples from

the unlabelled data (UL). Table XX compares the two

pseudo-negative sample generation methods by presenting

the classification results of H1 trained with various negative

samples on both datasets.

As can be seen from Table XX, our selection method is

better than the adversarial generation method; it can improve

the F1 score by around 8-9% for the KnownC and by about

5% for the NewC, only at the cost of a slight decrease of

NA index. This is because the negative samples generated by

ASG-SVM are the surrounding boundary data of KnownC,

which are easily confused with the KnownC, while the

distribution of the negative samples chosen by our method

is slightly more random.

Taking MixD1 as an example, a graphical illustration

of different pseudo-negative samples, known classes and

new classes using TSNE [42] is given in Figs 13 and 14.

From the plots, it can be seen that there is no significant

correlation between the KnownC and the distribution of

negative samples by our method; while with the adversarial

method, there is a greater degree of entanglement between

the KnownC and the generated negative samples.

The different classification outcomes can be explained

by the different distributional relationships between the

pseudo-negative samples and the known classes generated

by the two methods. The negative samples generated with

the adversarial method enhance the ability of the method

to detect new classes, but also increase the likelihood of

misclassifying the known classes as new classes, leading

TABLE XX
COMPARISON OF CLASSIFICATION PERFORMANCE USING DIFFERENT

NEGATIVE SAMPLES ON MIXD1 AND MIXD2

Datasets MixD1 MixD2

Method UL* AL UL AL

KnownC
F1 0.9393 0.848 0.854 0.786
P 0.9816 0.985 0.898 0.909
R 0.893 0.751 0.826 0.692

NewC
F1 0.9382 0.882 0.832 0.803
P 0.901 0.799 0.804 0.712
R 0.979 0.99 0.865 0.908

NA 0.986 0.987 0.919 0.914

* UL: unlabelled data, AL: adversarial learning.

Fig. 13. Visualization of known classes (blue circle), new classes (orange
cross), and negative samples filtered from unlabelled data (purple pentagon)
on MixD1.

to higher recall for new classes and higher precision for

known classes. However, this method has lower precision

for new classes and recall for known classes compared to

our method. To sum up, by utilizing the pseudo-negative

samples filtered by our method, it can enhance the ability

of our method to sub-classify known classes, identify new

classes, and greatly reduce the computational cost.

V. CONCLUSIONS

In order to improve the performance of open set flow

recognition, this paper proposes a NewC detection method,

called CCS-UTD, based on confidence (difference) and

a cascade structure. The associated algorithms are imple-
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Fig. 14. Visualization of known classes (blue circle), new classes (orange
cross), and adversarial-based generation of negative samples (purple pen-
tagon) on MixD1.

mented by analyzing the confidence distributions of the

known and new classes, and an algorithm is designed to

filter out the pseudo-negative samples from the unlabelled

dataset. The NewC instances exceeding a threshold are first

detected by a binary classifier. The remaining data is then

distinguished using CfDmax to separate the NewC samples

from the KnownC samples, which are further sub-classified

using Cfmax for known classes. The proposed method is

evaluated on two hybrid datasets consisting of five real net-

work datasets, reaching an overall accuracy higher than 90%.

Compared with the state-of-the-art methods, the F1 and NA

scores of known and new classes are significantly improved

by using our method, and the training and inference time

are greatly reduced.

However, the proposed method has some limitations:

When screening the negative samples, the randomness of

unlabelled data and the threshold condition may restrict the

number of obtained negative samples, thus lowering the

utilization rate of the dataset. Our future work will consider

fast updating of the model and investigating scenarios where

the instances of different new classes appear in the flow

traffic data.
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