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A B S T R A C T

The Total Intensity Measure (TIM) approach offers an innovative solution for quality control by combining 
ratings of individual sensory characteristics into a single measure using the Many-Facet Rasch Model (MFRM). 
While the traditional Difference-From-Control (DFC) test is simple and useful for comparing products against a 
standard, it requires significantly more samples when examining a larger number of products unlike in attribute 
difference tests. This study aims to determine if the TIM method can serve as an alternative to the DFC method 
when comparing samples against a control. An untrained panel (n = 67) evaluated three UK commercial brands 
of Jaffa cakes using attribute difference and DFC tests. Assessors evaluated samples in triplicates according to 
each test’s procedure on two different days. Friedman tests on the DFC scores compared to Rasch-produced 
measures of the combined attributes both showed significant differences between samples (P < 0.01). Pair
wise comparisons with a control (α = 0.01) for the DFC showed only one brand was different from the control, 
while the TIM showed that both brands were different from the control. Additionally, the Many-Facet Wright 
map showed the degree to which each attribute contributed to the overall difference. Of the five attributes 
evaluated, Sweetness and Orange flavor contributed the most followed by Cocoa flavor. Milky flavor and Salt
iness did not contribute significantly, highlighting that while all attributes were assessed, only certain ones had a 
notable impact on the overall product differences. The proposed method is potentially beneficial to sensory 
analysts in obtaining better diagnostic information to support decisions about product differences.

1. Introduction

For quality control and quality assurance purposes (such as shelf life 
testing, product benchmarking, or accessing batch-to-batch differences), 
several researchers (Costell, 2002; Muñoz et al., 1992; Rogers, 2017) 
suggest the difference-from-control (DFC) test as one of the best methods 
to employ. It is simple to use and has the unique feature of assessing, not 
only the existence of an overall difference between product samples but 
also the magnitude of the differences relative to a product standard (a 
carefully selected control or reference sample). This quantitative 
assessment gives the DFC an advantage over other overall difference 
tests like the Triangle and Duo-Trio tests, which only provide binary 
data indicating whether a sample is different or not. Additionally, rather 
than requiring assessors to skim through multiple samples simulta
neously to detect a difference (as in the Triangle test), evaluating sam
ples in comparison to a control is less cognitively demanding, reducing 
the complexity of the test. However, the use of reference samples pre
sents a challenge in itself, inducing expectation bias, as assessors may 

unconsciously anchor their ratings to perceived intensities in the refer
ence sample (Lawless & Heymann, 2010; Rogers, 2017).

Although the DFC test provides a quantitative assessment to support 
product difference decisions, it shares a limitation with other overall 
difference tests in that it does not reveal the specific attributes causing 
the perceived differences. Several studies have addressed this by 
incorporating additional methods with the DFC. Rogers (2017) suggests 
including a comment section to gather insights into the possible cause of 
perceived differences. Compusense (2020), in their white paper on 
quality control with the DFC, demonstrated the use of follow-up check- 
all-that-apply (CATA) questionnaires to improve manufacturers’ chan
ces of identifying product faults, and Higgins and Hayes (2020) com
bined CATA questions and an open-ended comment box to further 
characterize differences in beer samples. However, the depth of insights 
obtained remains limited, as only qualitative data is generated regarding 
the presence or absence of an attribute, failing to capture nuances about 
which attributes were perceived more strongly as responsible for the 
product differences.
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Attribute rating (AR) tests, on the other hand, require assessors to 
rate the perceived intensities of specific attributes, yielding quantitative 
data. It is a valuable aspect of descriptive sensory profiling tests used to 
quantify the identified sensory characteristics of a product using attri
bute intensity rating scales. However, descriptive sensory profiling can 
be time-consuming and expensive due to its complexity. Assessors must 
generate a sensory lexicon (a comprehensive list of sensory attributes 
relevant to the product category) and undergo continuous training to 
ensure and maintain their sensory acuity and consistency.

The need to accelerate new product development and deliver faster 
innovations that meet consumer expectations has resulted in the 
development of rapid sensory profiling methods. The Rate-all-that-apply 
(RATA) test, for instance, can use untrained assessors or consumer 
panels to rate the intensities of only the sensory attributes they perceive 
to be present in the samples based on a predefined list of sensory de
scriptors. It is essentially an AR test providing quantitative data and has 
been reported to improve sample discrimination compared to CATA 
(Ares et al., 2014; Reinbach et al., 2014).

The AR test offers another advantage over the DFC: samples are 
evaluated independently, rather than in comparison to a control. In 
contrast, comparing samples to a control means the DFC can be 
resource-intensive, requiring a larger number of samples when testing 
multiple products. Assessors may experience fatigue from tasting 
numerous samples during a single test session. Even when samples are 
evaluated across multiple sessions, it still demands additional time 
commitment. However, unlike the DFC, AR tests cannot directly quan
tify an overall difference between samples; instead, insights on product 
differences need to be captured through complex multivariate statistical 
analysis.

A Rasch approach can address some of the limitations of the DFC test 
by requiring fewer samples and statistical analyses without compro
mising diagnostic information. In this approach, consumer panels rate 
the intensities of predefined attributes. Next, a Many-Facet Rasch Model 
(MFRM) is fitted to combine these attribute ratings and estimate a latent 
variable representing the overall difference in intensity as has been done 
previously for overall liking assessments (Ho, 2019). The resulting Rasch 
measures are then used for univariate statistical analysis to determine 
overall differences between samples and a prescribed control. An addi
tional benefit is that information related to which attributes contribute 
more to the measure of overall differences can be determined.

Rasch analysis is a statistical method used for analyzing categorical 
data in surveys or assessments. Its goal is to measure unobservable or 
latent variables (such as ability or overall attitudes) using a combined 
set of items (like questions in a survey). The probability of a correct 
response to an item is modeled as a logistic function of the relative 
distance between a person’s location and an item’s location on a com
mon linear scale (Bond et al., 2021; Boone et al., 2014). In this context, 
Persons refer to the objects of measurement (such as respondents in the 
survey) while items correspond to the questions in the survey. For sen
sory evaluation, consider persons as the samples being evaluated and 
items as the questions in the sensory evaluation questionnaire.

The Many-Facet Rasch model (Linacre, 1994) extends the Rasch 
model allowing for simultaneous analysis of multiple facets that repre
sent different sources of variability such as different samples, attributes, 
and assessors (raters). With this approach, responses from sample rat
ings can provide more diagnostic detail about each sample’s perfor
mance, each assessor’s behavior (particularly regarding the use of the 
rating scale), the intensity of each sensory attribute, and how much it 
contributes to the sample performance, and the functioning of the rating 
scale used for evaluating the samples; all within a single analysis. 
Several studies (Alvarez & Blanco, 2000; Faye et al., 2013; Ho, 2019; 
Thompson, 2003) have demonstrated the potential of Rasch modeling in 
the sensory evaluation of foods. A detailed description of the Rasch 
models and how they are interpreted in a sensory evaluation setting can 
be found in (Ho, 2019). Additionally, readers seeking a deeper under
standing of the principles behind the family of Rasch models can refer to 

Bond et al. (2021); Boone et al. (2014); and Eckes (2023).

1.1. Aim of the Study

This study proposes a method that measures overall sample differ
ences using a set of sensory attribute ratings which can be combined into 
a single Total Intensity Measure (TIM) with the Many-Facet Rasch Model 
(MFRM). The aim was to evaluate whether the TIM approach could be 
equally as effective as the DFC test when measuring overall differences 
between products and comparing differences against a control product. 
Where, the TIM method provides the added benefit of showing the 
relative contribution of each attribute to the overall difference and so 
would provide analysts with better diagnostic information regarding 
attributes that are driving product differences.

2. Materials and methods

2.1. Samples

Jaffa cakes were used for the study. These are sponge cakes with 
three layers: a sponge base, an orange-flavored jam center, and a 
chocolate topping. This sample choice was based on selecting a product 
with similar taste attributes (orange flavor, chocolate flavor, sweetness, 
saltiness, and milky flavor) as samples used in a previous study (Gill 
et al., 2024) and how findings relate to a larger study on measuring 
sensory differences using Rasch modeling. The samples were also 
required to be similar in visual appearance and texture but taste 
different, as taste attributes were the focus of the study.

Three samples, comprising one premium and two store-brand Jaffa 
cakes, were selected based on informal tasting sessions conducted by the 
research team, as well as back-of-pack label information. These samples 
were purchased from major supermarkets in the United Kingdom and 
differed in their nutritional and ingredient composition, including 
cocoa, orange flavoring, milk, salt, and sugar contents, as assessed from 
the label information. While the store brands were very similar in 
appearance, the premium brand had a slightly different shape (Fig. B1). 
One of the store-brand samples was selected as the reference for the DFC 
test. The samples were stored in odor-free, airtight, plastic containers at 
room temperature (20 ± 3 ◦C) until they were ready to be presented.

2.2. Participants

Ethical approval was granted by the University of Leeds Faculty of 
Environment ethics committee before commencing the sensory study.

Participants (n = 67) included residents of Leeds, mostly staff and 
students from the University of Leeds who were recruited through 
emails, advertisement posters and word of mouth referrals. They were 
screened based on the following criteria: between 18 and 65 years old, 
with no chronic health conditions, no allergies or food intolerances to 
the ingredients in the Jaffa cake samples, were not on any routine 
medication (except contraceptives) nor on a restricted diet, were neither 
pregnant nor lactating, and their availability to attend two 1-hour-long 
sensory test sessions, within one month and with a minimum of four 
days between sessions.

While a trained panel is typically ideal for quality control testing 
scenarios, an untrained panel was used in this study to explore how the 
TIM approach performs in varying levels of sensory expertise. In a pre
vious yet-to-be published study where the performance of trained (n =
7) and untrained assessors (n = 24) was compared, Rasch quality control 
metrics revealed some assessors in the untrained panel with qualities (e. 
g., consistency across replicates) indicating potential for trained-level 
performance. The intention was to investigate whether the perfor
mance patterns observed in the prior study could be replicated with a 
broader group of untrained assessors. The final untrained panel 
comprised 43 females (64 %) and 24 males (36 %) aged between 18 and 
54 years old. All participants gave informed consent and were 
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incentivized for their participation.

2.3. Sensory evaluation

A randomized complete block design (RCBD) and William’s Latin 
Square, as described by Næs et al. (2010), were used for the sensory 
experiments to account for order effects and other possible sources of 
variation. Each assessor participated in two separate sessions, one for 
the DFC test and another for the AR test, with a minimum interval of 4 
days between each session. To minimize expectation biases (Lawless & 
Heymann, 2010), half of the participants completed the AR test session 
first, while the other half started with the DFC test. Attendance was 
balanced for the time of day and for which of the two tests they first 
completed. In each session, three samples were presented: for the AR 
test, samples were presented monadically (one at a time), while for the 
DFC, the samples were presented in pairs consisting of a test sample and 
the reference sample. Each sample was evaluated three times, making a 
total of 9 evaluations for AR and 18 for the DFC. All samples were served 
at room temperature (20 ± 3 ◦C) on 15 cm white paper plates labeled 
with random 3-digit codes. The reference sample for the DFC was 
labeled “R.” Sensory evaluation was conducted in individual booths 
under white light at the sensory laboratory of the School of Food Science 
and Nutrition, University of Leeds. Data were collected using RedJade 
sensory software. (Redjade Software Solutions, 2023).

2.3.1. Testing procedures
The Difference-from-control (DFC) test followed the procedure 

described by Meilgaard et al. (2016). Assessors were informed that some 
coded test samples might be the same as the reference and were 
instructed to taste each sample by taking a semi-circle shaped (half) bite. 
This instruction was necessary because Jaffa cakes are designed with the 
layer of orange-flavored jam centrally positioned on one side of the 
sponge base, which is then covered with a layer of chocolate. Without 
this guidance, assessors might only take a bite from the edge, missing the 
orange-flavored center and compromising the uniformity of the sample 
evaluation. They were instructed to first taste the sample labeled “R”, 
then taste the coded test sample, assess the overall difference between 
them and rate the size of difference perceived. Assessors used a labeled 
7-point categorical difference scale (0–6), where 0 = no difference, 1 =
barely detectable difference, 2 = slight difference, 3 = moderate dif
ference, 4 = large difference, 5 = very large difference, and 6 =
extremely different, to rate the size of differences between a coded test 
sample and the reference sample (R).

For the Attribute Rating (AR) test, assessors rated the perceived in
tensities of five taste attributes: orange flavor, sweetness, cocoa flavor, 
milky flavor, and saltiness. As mentioned in section 2.1. Samples, these 
attributes were selected based on a preliminary study involving a 
product with a similar taste profile, where a trained panel from a global 
chocolate manufacturing company identified these attributes for 
orange-flavored chocolate spreads. The same attributes were used in this 
study to explore the method with a different product. Assessors were 
asked to taste each sample and rate how strong each of the five attributes 
were. All the attributes were presented on the same page of the ques
tionnaire, but the order was randomized for each sample and assessor, as 
suggested by Ares et al. (2014) attempting to reduce errors of habitua
tion, logic and halo effect (Lawless & Heymann, 2010). An 8-point 
categorical intensity scale ranging from 0 to 7 with labels adapted 
from the Labeled Magnitude Scale (Green et al., 1996) was used. The 
intensity labels were 0 = none, 1 = barely detectable, 2 = weak, 3 =
moderate, 4 = strong, 5 = very strong, 6 = extremely strong, and 7 =
strongest imaginable oral sensation. The inclusion of the “none” label 
represented the 0 point on the LMS, while adding “extremely strong” 
seemed an appropriate intensity rating between “very strong” and 
“strongest imaginable sensation” for use in a labeled categorical scale 
where there is no continuous line to mark intensity estimates, unlike the 
LMS. Additionally, the term “extremely” has been used in other 

category-ratio intensity scales, such as the Borg scale and its modifica
tions (Borg, 1982; Borg & Kaijser, 2006).

Assessors were provided with a cup of water to cleanse their palate 
between sample evaluations and given breaks between replicates (5 min 
for the DFC and 10 min for the AR test) to minimize sensory fatigue and 
memory bias, respectively.

2.4. Defining the construct of overall difference as a composite of attribute 
intensity ratings

The theoretical development of measurement instruments for Rasch 
analysis must be carefully developed to capture the parameters of the 
latent variable to be measured (Boone, 2016). For this study, the 
construct modeling framework as described by (Ho, 2019) was adapted 
for defining overall difference as a latent variable estimated from a 
combination of attribute intensity ratings. (See Fig. 1.)

Step 1: How would the theoretical construct of overall difference be 
defined? Sensory attributes that represent the sensory characteristics 
and modalities of the choice sample should be identified and used to 
capture different amounts of the latent variable of Overall difference. A 
minimum of 3–5 sensory attributes are recommended to ensure suffi
cient variability in the data and allow for the Rasch model to effectively 
separate the effects of the different facets.

In this study, the DFC ratings assessed overall product differences. To 
ensure comparability with the AR test, attempts were made to ensure 
that all sensory characteristics, except for taste, were consistent across 
the samples. This was done to minimize the influence of other sensory 
modalities on the perception of overall difference. The intensities of the 
selected taste attributes were hypothesized to represent components of 
the overall difference construct for the Jaffa cake samples.

Step 2: Five taste attributes were selected (orange flavor, sweetness, 
cocoa flavor, milky flavor, and saltiness) and survey questions were 
developed based on those attributes for assessors to rate their perceived 
intensities for each sample. For example, ‘How strong is the orange 
flavor for sample xxx?’ These then constituted the item measures for the 
model.

Step 3: The 8-point category rating scale (described in 2.3.1 Testing 
procedures for the AR test) representing the levels of possible perceived 
intensities was used by the panel of assessors - the raters for the Rasch 
model.

Step 4: Observations were collected as attribute intensity ratings for 
each sample.

Step 5: A MFRM with four facets comprising, assessors (the raters), 
samples (the persons), attributes (the items), and repetition (see …Eq. 
1), was fitted. The resulting TIM were then used for ANOVA and mul
tiple comparison tests.

Step 6: The Rasch model’s Wright map visually represented esti
mates of the location of parameters for each of the four facets alongside 
one another on the common logit scale for the construct. Thus, indi
cating the relative contribution of the sensory attributes on the construct 
of overall difference.

Several Rasch models were fitted to investigate data from the AR and 
DFC tests. The Rasch model equations for TIM and DFC Measures 
(DFCM) used in this study are outlined below. For both test results, one 
model includes all four facets, including the repetition facet for all three 
replicate datasets (TIM1 and DFCM1, …Eq. 1 & …Eq. 3, respectively). 
The other three models exclude the repetition facet and have separate 
models fitted for each replicate dataset (TIM2 and DFCM2 for each 
replicate, …Eq. 2…Eq. 4, respectively).

The DFCM models have no attributes facet hence the absence of the δi 
(parameter) 

(TIM1) ln(Pmnrik/Pmnrik− 1) = βm − θn − ρr − δi − τk (1) 

(TIM2) ln(Pmnik/Pmnik− 1) = βm − θn − δi − τk (2) 
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(DFCM1) ln(Pmnrk/Pmnrk− 1) = βm − θn − ρr − τk (3) 

(DFCM2) ln(Pmnk/Pmnk− 1) = βm − θn − τk (4) 

Where:
Pmnrik= probability that sample (n) is rated (k) for a sensory attribute 

(i) by assessor (m) in session (r).
Pmnrik= probability that sample (n) is rated (k − 1) for sensory attri

bute (i) by assessor (m) in session (r).
βm= degree of leniency or severity of assessor (m) in rating attribute 

intensities.
θn= degree of overall difference based on the total intensity measure 

for sample (n).
ρr = degree of difference between ratings of samples in a replicated 

session/repetition (r)
δi = degree of importance of a sensory attribute (i) to the latent 

variable
τk = points on the latent variable continuum where the samples are 

equally likely to be rated between scale category (k) and category 
(k − 1)

2.5. Data analysis

All statistical analyses were conducted using R version 4.2.1. (R Core 
Team, 2022) while Rasch analysis was conducted using FACETS version 
3.84.1 (Linacre, 2022a) and WINSTEPS® version 5.3.2 (Linacre, 2022b). 
DFC ratings and the attribute intensity ratings were each fitted to the 
MFRM, and then results from statistical analysis of the DFC raw scores, 
DFC Rasch measures, and Total Intensity Rasch measures were 
compared for discriminatory ability and diagnostic detail.

2.5.1. Rasch analysis

2.5.1.1. Fitting the Many-Facet Rasch Model (MFRM). The MFRM con
siders the influence of multiple variables or explanatory factors (facets), 
and models all facets simultaneously on a common interval scale (i.e., 
the logit scale), with the log-odds of the raw score ratings as the 
outcome. The parameters for the facets were estimated using a Joint 
Maximum Likelihood Estimation (JMLE) method in the FACETS soft
ware (Linacre, 2022a), and location estimates for individual elements 
within each facet were plotted on a Wright map.

The Sample facet was non-centered, while the scale was adjusted for 
the other three facets (Assessor, Repetition, and Attribute) so that the 
mean of their parameters was centered at zero (0). This adjustment 
created a common reference point on the Wright map, around which the 
location of the samples relative to the Total Intensity Measure (TIM) was 
explored. Consequently, the location of the samples was adjusted by 
considering the severity of assessors, the intensity of attributes, and the 
intensity ratings in repeated sessions representing the Assessor, Attri
bute, and Repetition facets, respectively.

Following the recommendations of Linacre (2024a), all 4 facets were 
positively oriented on the Wright map such that higher Rasch measures 
generally mean higher ratings for all four facets. This is further illus
trated in section 3.2. Representing the Construct of Overall 
Difference.

2.5.1.2. Global model fit. The global fit of the data to the MFRM was 
examined. An acceptable fit (Linacre, 2022a) is when no more than 5 % 
of absolute standardized residuals is ≥2 and no more than 2 % is ≥3.

2.5.1.3. Rating scale category diagnostics. In Rasch analysis, scale cate
gory diagnostics are implemented to examine whether rating scales are 
functioning effectively. It reveals the operational use of the rating scale 
by assessors, and whether their interpretation of the scale categories 
aligns with the underlying construct measurement theory. This process 
is useful for guiding the revision of scoring materials to improve mea
surement and training procedures (Engelhard & Wind, 2018). When 
indicators for the proper functioning of rating scales are unmet, reme
dial actions to, as much as possible, extract the most reliable measures 
generally involve combining adjacent categories and sequentially 
renumbering the scale categories. Guidelines recommended by Bond 
et al. (2021); Eckes (2023); Ho (2019); Linacre (2002) for optimizing the 
functioning of rating scales have been summarized in Table A1. 
Although some criteria for the proper functioning of rating scales were 
not met in this study, these issues do not impact the conclusions derived 
from the Rasch models. Further discussion on this point can be found in 
the results section- 3.1.2. Rating scale category diagnostics.

2.5.1.4. Facets model fit. The method described in Ho (2019) was used 
to examine the fit of the assessor, sample, repetition, and attribute facets 
to the MFRM. Values between 0.5 and 1.5 are productive for 

Fig. 1. Framework for the conceptualization of Overall Difference as a latent variable.
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measurement, while values greater than 2.0 “distort or degrade the 
measurement system”. Estimates with outfit mean-square values 
exceeding 2 were considered for removal only if they degraded the 
measure, as Linacre (2024c) reports that these values may be due to very 
few observations.

2.5.2. Statistical analysis
To allow for adequate comparison between the DFC and the pro

posed Total Intensity Measure (TIM) approach for measuring overall 
differences between samples, data from the DFC raw scores, DFC Rasch 
measures, and Rasch measures of the combined attribute intensities (i.e. 
TIM) were fitted to statistical models separately, and all three results 
were compared.

Differences between the mean values of the 3 Jaffa cake samples 
were examined using parametric and non-parametric analysis of vari
ance (ANOVA) models. The R packages MASS (Venables & Ripley, 
2002), car(Fox & Weisberg, 2011), and nortest (Gross & Ligges, 2015) 
were used to fit parametric factorial ANOVA models and to conduct 
residual analysis. For non-parametric analyses, the PMCMRplus package 
(Pohlert, 2023) was used to conduct Friedman tests (Conover & Iman, 
1981) and to conduct pairwise comparisons with a control using the 
frdManyOneNemenyiTest function (Hollander et al., 2014). A Bonferroni 
p-adjustment (Bonferroni, 1936) was specified to control for familywise 
error rates, and the alternative hypothesis was specified as “greater” for 
a one-tailed test.

3. Results

3.1. Fit of data to the many-facet Rasch model (MFRM)

Data from the AR and DFC tests were each fit to the MFRM and 
examined for evidence of their adequate fit to the Rasch model.

3.1.1. Model fit statistics
Table 1 presents a summary of the Rasch model fit statistics for all 4 

facets in the datasets (TIM1 and DFCM1). As described in section 2.4. 
Defining the construct of overall difference as a composite of 
attribute intensity ratings, additional Rasch models with 3 facets 
(excluding the repetition facet) were fitted for each replicate dataset 
from repeated sessions of the AR and DFC tests labeled as TIM2. Reps 
1–3 and DFCM2.Reps 1–3, respectively.

The global model fit for the TIM1 showed the best fit to the Rasch 
model. Assessor fit improved in the models with the repetition facet 
included. This improvement likely occurred because including Repetition 

as an explanatory factor, and averaging ratings across the 3 sessions 
reduced inconsistent ratings within assessors. Assessor fit indices pro
vide estimates of the consistency with which each assessor uses the 
rating scale categories across all facets (Eckes, 2023). While there is 
evidence that some assessors provided inconsistent ratings (as indicated 
by the Outfit mean-square in the Assessor facet), this misfit was not 
sufficient to degrade the measures. The reason is that all other facets 
demonstrated a 100 % fit to the Rasch model. Additionally, the impact of 
a few misfitting assessors on sample and attribute/item estimates is 
negligible (Wright & Linacre, 1994).

3.1.2. Rating scale category diagnostics
Table 2 shows the scale category statistics for the DFC and Intensity 

rating scales. Mean Rasch estimates of the combined raw attribute rat
ings – Total Intensity Measures (TIM) were produced after fitting all 4 
facets (assessor, sample, repetition, and attribute; see 2.5.1. Rasch 
analysis) to the MFRM. Both the 8-category intensity scale for TIM and 
the 7-category difference scale for the DFC measures failed to meet the 
criteria (see Table A1) for category precision in a proper functioning 
rating scale. This suggested that the affected categories were not used 
meaningfully by the assessors to distinguish between samples with 
respect to the respective underlying constructs.

For the TIM Intensity scale, the extreme category 7 (Strongest imag
inable oral sensation) had less than 10 observations. While the DFC scale 
did not meet the criterion for a minimum advancing distance of 0.57 
between Rasch-Andrich thresholds for a 7-category rating scale. Spe
cifically, the threshold distances were 0.23 between categories 1 (barely 
detectable difference) and 2 (slight difference), and 0.26 between cat
egories 5 (very large difference) and 6 (extremely different). However, 
while the criteria for category precision provide useful information for 
measurement inference, they are not essential. Therefore, revising the 
rating scales used in this study was deemed unnecessary, especially 
considering that reusing the scales for measurements across other 
samples with a similar context falls beyond the scope of this study. The 
focus was to explore the use of the MFRM approach for measuring 
overall differences between samples, rather than modifying measure
ment tools to enhance measurement procedures for Jaffa cakes.

3.2. Representing the construct of overall difference

The components of the Many-Facet Wright maps (Fig. 2 and Fig. 3) 
used in this study are outlined below. 

Table 1 
Summary of Rasch model fit statistics for DFC and Total Intensity Measure (TIM) models.

OUTFIT Mean-Square1

Model Global fit2 Assessor Sample Repetition Attribute

Criteria
% StRes 
≤5 % ≥ 2

% StRes 
≤1 % ≥ 3

Total3 % Fit 
0.5–1.54

% Misfit 
>2.05

% Fit % Fit % Fit

TIM1 4.6 (138) 0.3(9) 3015 82 5 100 100 100
TIM2.Rep1 4.5 (45) 0.4 (4) 1005 69 2 100 NA6 100
TIM2.Rep2 4.9 (45) 0.2 (2) 1005 67 8 100 NA 100
TIM2.Rep3 4.3 (43) 0.4 (4) 1005 61 8 100 NA 100
DFCM1 2.8 (17) 0 (0) 603 65 6 100 100 100
DFCM2.Rep1 3.5 (7) 0.5(1) 201 40 10 100 NA 100
DFCM2.Rep2 3.5 (7) 0(0) 201 52 13 100 NA 100
DFCM2.Rep3 4.5 (9) 0 (0) 201 35 13 100 NA 100

1 Outlier-sensitive measure of unweighted mean squares indicating deviation of the estimates of the four facets from predictions of the Rasch model.
2 Percentage (number of observations in brackets) of absolute standardized residuals (StRes).
3 Total number of responses used for the estimation of the model parameters.
4 Outfit Mean-square values between 0.5 and 1.5 are considered productive for measurement (Linacre, 2024c). The same criteria apply to the percentage fit for all 
facets.
5 Outfit Mean-square values >2.0 may degrade the measurement (Linacre, 2024c).
6 NA implies Not Applicable as the Rasch models per replicate did not have a Repetition facet.
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1. First column – common logit scale: shows the measure estimates 
for the four fitted facets in log-odds unit. The mean of measures in a 
logit scale is zero (0).

2. Second column – assessor severity spread: indicates the variation 
in severity among assessors.

3. Third column – sample location: shows the location of the samples 
along the construct based on average attribute intensity ratings (for 
TIM) or DFC ratings.

4. Fourth column – variation in repeated ratings: differences in 
ratings across the three repeated sessions

5. Fifth column – attribute / item contribution: represents the 
relative contribution of attributes/items (for TIM) to the overall 
construct; not applicable to the DFC Wright map.

6. Rightmost column – rating scale: displays the Rasch-half point 
thresholds as dotted horizontal lines (—————). These thresholds 
mark the end of a category’s interval (Linacre, 2024b), and indicate 
the point where the chance of a sample receiving a higher rating 
starts to exceed the chance of being rated on the lower adjacent 
category (Myford & Wolfe, 2003).

Note that scale category numbers in parenthesis (i.e. 0-None and 7- 
Strongest imaginable oral sensation) identify extreme ends of the scale. 
In Rasch measurements, the latent variable is conceptualized as “infi
nitely long” (Linacre, 2002). Consequently, the lowest and highest cat
egories of the scale are “infinitely wide” to accommodate extreme 
responses by widening the scale as necessary.

As previously stated in 2.5.1. Rasch analysis, all four facets were 
positively oriented on the Wright map. The (+) symbol indicates that 
higher measures on the logit scale correspond with the following. For 
the: 

• Assessor Facet: assessors are more lenient and rated higher scores on 
the rating scale.

• Sample Facet: samples have higher Total Intensity Measure (TIM) or 
DFC measure (DFCM).

• Repetition Facet: samples were rated with higher intensity in a 
repeated session.

• Attribute Facet: attributes have higher average intensity ratings for 
each sample and have a higher contribution to the overall construct.

Fig. 2 and Fig. 3 represent the Many-Facet Wright maps for TIM1 and 
DFCM1 models respectively.

3.3. Total intensity measure (TIM1)

The TIM Wright map (Fig. 2) showed that assessors exhibited varying 
degrees of severity in their use of the intensity rating scale.

On average, attribute intensity ratings for the samples were below 
average (0) on the logit scale, and ratings across the three replicated 
sessions were consistent. Samples located higher on the scale were 
perceived to have higher intensities of the sensory attributes. Similarly, 
the attributes facet revealed the hierarchy of sensory attribute contri
butions to the sample differences. Orange flavor and sweetness were 
perceived as the most intense, demonstrating the highest contribution 
followed by cocoa flavor. Milky flavor and saltiness did not contribute as 
much to the overall difference. The intensity scale represents the category 
range within which the attributes were rated on average. Notably, the 
gaps between adjacent scale categories are not equidistant and tend to 
widen toward the extreme categories. The intensity scale revealed that 
all the samples were rated to have moderate differences in intensities for 
the combined attributes. Pairwise comparison tests against a control 
would determine the existence of significant overall differences between 
Brand A and Brand B compared to the Control, based on their Total 
Intensity Measures (TIM) from the logit scale.

3.4. DFC measure (DFCM1)

The Wright map for the DFCM1 (Fig. 3) revealed varying degrees of 
severity among assessors. Assessor 1011 consistently rated the samples 
using the lower end of the rating scale and emerged as the most severe 
assessor. For the sample facet, the difference from control for Brand A 
was rated higher than that for Brand B. While assessors rated Brand A as 
moderately different from CONTROL, the slight difference rating be
tween Brand B and CONTROL was not significant. It was hypothesized 
that assessors may have considered differences perceived from other 

Table 2 
Summary of scale category statistics for AR intensity and DFC rating scales in Rasch models - TIM1 and DFCM1 (which have all four facets - assessors, samples, 
repetition, and attributes fitted).

Scale Scale Categories Frequency1 Average Measure2 OUTFIT Mnsq3 Rasch-Andrich Threshold

Observed Expected Measure Distance4

INTENSITY
Rating Scale 0 None 148 (5) − 2.26 − 2.03 0.8
8-category 1 Barely detectable 392 (13) − 1.60 − 1.61 1.0 − 2.81 0.97
01234567 2 Weak 641 (21) − 1.00 − 1.08 1.0 − 1.84 0.65

3 Moderate 937 (31) − 0.54 − 0.55 1.0 − 1.19 1.35
4 Strong 583 (19) − 0.13 − 0.1 1.1 0.16 0.82
5 Very strong 239 (8) 0.23 0.25 1.0 0.98 0.65
6 Extremely strong 69 (2) 0.44 0.52 1.1 1.63 1.44
7 Strongest imaginable oral sensation 6 (0)* 0.88 0.73 0.9 3.07

DFC
Rating Scale 0 No difference 69 (11) − 1.43 − 1.44 1.1
7-category 1 Barely detectable difference 131 (22) − 0.82 − 0.83 1.1 − 1.71 1.00
0123456 2 Slight difference 135 (22) − 0.57 − 0.54 0.9 − 0.71 0.23*

3 Moderate difference 146 (24) − 0.26 − 0.26 1.0 − 0.48 0.97
4 Large difference 79 (13) 0.00 0.01 1.0 0.49 0.59
5 Very large difference 31 (5) 0.35 0.27 0.8 1.08 0.26*
6 Extremely different 12 (2) 0.45 0.50 1.0 1.34

1 Total count (percentage distribution in brackets) of observations used in each scale category.
2 Observed average measure (in log odds unit or logits), and expected average measure if data fits the Rasch model.
3 OUTFIT Mean square refers to the outlier-sensitive measure of unweighted mean squares and indicates the deviation of responses from predictions of the Rasch 
model.
4 Absolute difference between Rasch-Andrich threshold measures (in logits) of two adjacent scale categories. Where minimum distance for 8, 7 and 3 category scale =
0.51, 0.57 and 1.4 respectively; maximum difference = 5.0.
*Indicates criteria (Table A1) is unmet.
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sensory modalities, such as appearance and texture, or other attributes 
that were not intended to be captured in the study. Efforts to maintain 
consistency across these attributes during sample selection may not have 
been entirely successful. Brand A had a slight difference in shape 
compared to the other samples (Fig. B1), which some assessors may have 
noticed. This is consistent with feedback from assessors after the study, 

who mentioned that they could easily identify Brand A due to their 
frequent consumption and familiarity with Jaffa cakes.

In the repetition facet, average DFC ratings increased in successive 
repeated sessions, with the third session showing the highest DFC rat
ings. This increase may be owing to assessors probably experiencing 
fatigue and some context bias from tasting numerous samples during the 

Fig. 2. Many-Facet Wright map for TIM1. The first column “Measr” represents Rasch model measures on the logit scale. The four facets are displayed from left to 
right: 1001–1072 represent unique assessor IDs for 67 assessors in the assessor facet; Brands A and B represent the test samples, and Control refers to the reference 
sample in the sample facet. Numbers 1–3 indicate replicate evaluations in the repetition facet, and attributes are listed in the attribute facet. The rightmost column 
illustrates the functioning of the AR intensity rating scale, with horizontal lines marking half-point thresholds, where the probability of a sample receiving a higher 
rating begins to exceed the likelihood of being rated in the lower adjacent category.
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Fig. 3. Many-Facet Wright map for DFCM1. The first column “Measr” represents Rasch model measures on the logit scale. The four facets are displayed from left to 
right: 1001–1072 represent unique assessor IDs for the 67 assessors in the assessor facet; Brands A and B represent the test samples, and Control refers to the reference 
sample (R) in the sample facet. “Rep.” denotes the repetition facet, with numbers 1–3 indicating replicate evaluations, and “item” refers to the single difference from 
control question use to evaluate the samples. The rightmost column illustrates the functioning of the difference rating scale for the DFC, with horizontal lines marking 
half-point thresholds, where the probability of a sample receiving a higher rating exceeds the likelihood of being rated in the lower adjacent category.
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test. Like the TIM Wright map, the gaps between adjacent scale cate
gories are not equidistant and tend to widen toward the extreme cate
gories (the interval range for end categories (0) and (6) is not fully 
captured on the Wright map).

3.5. Comparing the overall difference between samples

Table 3 summarizes the statistical test results for the TIM and DFCM 
Rasch models, as well as the datasets from DFC RAW scores, along with 
their replicate datasets. Strata and Reliability values from Rasch sepa
ration statistics are also presented. Strata refers to the number of sta
tistically distinct groups distinguishable by the respondents in a 
measurement instrument (Myford & Wolfe, 2003; Wright & Masters, 
2002). A Strata of 1 indicates that the instrument cannot reliably 
distinguish between different levels of the latent variable. 2 Strata shows 
a distinction between high and low levels only. 3 Strata indicate low, 
medium, and high levels of a latent variable while 4 or more Strata 
signify that the instrument can distinguish between 4 or more distinct 
groups. Low Strata statistics may suggest a need to add more discrimi
native items or refine existing ones to capture more of the latent vari
able. On the other hand, the Reliability index indicates whether 
differences found between the samples are due to measurement error. A 
Reliability value <0.50 suggests that differences between measures are 
primarily due to measurement error (Wright & Masters, 1982). This 
could be due to a lack of variation in responses or insufficient items.

All datasets for the DFC Rasch measures revealed statistically sig
nificant distinct levels for the samples, evidenced by Strata values 
greater than 4 and Reliability values close to 1.0. This suggested that 
there was a statistically significant difference between at least one of the 
samples and the control sample based on their DFC ratings in all three 
repeated sessions.

Strata for the samples in TIM varied between repeated sessions. For 
the first two replicate sessions (TIM2.Rep1 and TIM2.Rep2), Strata 
values were less than 2 with Reliability values less than 0.5 suggesting 
that the assessors could not distinguish between the samples based on 
the average attribute intensity ratings. TIM2.Rep3 revealed a distinction 
between high and low levels of intensities for the sample with a Strata 
value of 2 and a Reliability statistic greater than 0.5. However, upon 

averaging across the three repeated sessions, a Strata value of 3 for TIM1 
indicated three statistically distinct levels for the samples, supported by 
a Reliability value closer to 1.0. This suggests that averaging across 
replicated sessions helped reduce inconsistencies in assessor ratings, and 
that the Rasch model accounted for variations in the severity of these 
averaged ratings, thereby improving the discriminatory ability of the 
measurement.

Parametric two-way ANOVA tests also revealed the existence of 
significantly different samples in all the datasets. However, they all 
failed to meet the assumptions for parametric ANOVA models upon 
conducting residual analysis. Non-normality was detected in both the 
TIM and DFCM estimates, and Breusch-Pagan tests revealed that re
siduals for all datasets (DFC RAW Scores, DFCM models, and TIM 
models) were heteroscedastic.

Since all three datasets violated ANOVA assumptions, non- 
parametric rank sums were used for mean comparisons. The Friedman 
tests (with p < 0.01) indicated significant differences between the 
samples, corroborating the findings from the parametric two-way 
ANOVA and Rasch separation statistics. However, since the Friedman 
test is designed for unreplicated data, the replicated measures for all the 
samples were averaged across all assessors before conducting the 
Friedman tests.

Pairwise comparisons using a Nemenyi-Wilcoxon-Wilcox-Miller 
many-to-one test for a two-way balanced complete block design 
showed that for both the DFC RAW and DFCM1, only Brand A was 
significantly different from the CONTROL. TIM results revealed that 
both Brands A and B were significantly different from the CONTROL 
suggesting that perhaps requiring assessors to focus on specific attri
butes revealed differences between perceived intensities of the attri
butes for all the samples.

In relation to Rasch separation statistics, Strata values were higher 
for the DFC Rasch models compared to TIM. Assessors could identify 
more distinct levels of difference for the samples by rating the overall 
difference from the control. These ratings could have been influenced by 
perceived differences other than the taste of the samples. As previously 
discussed in 3.2: DFC Measure (DFCM1), the perceived difference in 
non-taste attributes and familiarity with Brand A may have influenced 
assessors’ DFC ratings, despite attempts to eliminate this effect. In 

Table 3 
Comparison of Sample facet summary statistics for all TIM and DFCM Rasch models (with Repetition facet - TIM1/DFCM1 and without Repetition facet - TIM2/ 
DFCM2) and RAW DFC scores (individual replicates and averaged).

Test/ 
Dataset1,2

TIM Models DFCM Models DFC RAW Scores

TIM2. 
Rep1

TIM2. 
Rep2

TIM2. 
Rep3

TIM1 DFCM2. 
Rep1

DFCM2. 
Rep2

DFCM2. 
Rep3

DFCM1 Rep1 Rep2 Rep3 Averaged 
Reps

Rasch Separation Statistic
Reliability 

Sample

0.45 0.35 0.68 0.83 0.94 0.92 0.97 0.98

Strata Sample 1.53 1.31 2.27 3.31 5.40 5.01 7.86 8.78
ANOVA Residual Analysis (P-values)
Normality
Shapiro- 

Wilks
<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.043 0.071 0.311 0.290

Outlier Test
Bonferroni 0.033 NA NA NA NA 0.243 <0.001 NA 0.026 0.683 0.319 0.034
Constancy of Error Variance
Breusch- 

Pagan
<0.001 0.006 <0.001 0.081 0.070 <0.001 <0.001 0.271 <0.001 0.011 0.002 <0.001

Friedman Test
X2 134*** 134*** 134*** 134*** 134*** 134*** 134*** 134*** 20.39*** 14.21*** 45.80*** 46.72***
Nemenyi Many to One Test (Pairwise Comparisons)
Mean differences
Control- 

Brand A
− 0.19*** − 0.08*** − 0.23*** ¡0.19*** − 1.13*** − 0.92*** − 1.43*** ¡0.82*** − 0.94*** − 1.01*** − 1.39*** ¡1.11***

Control- 
Brand B

− 0.07*** − 0.07*** − 0.08*** ¡0.07*** 0.02 − 0.01*** 0.20 0.05 0.01 − 0.01 0.18 0.06

1 P-value levels of significance: <0.001***, <0.01**, <0.05*; measures with no superscript symbols >0.05.
2 NA implies Not applicable as no outliers were found.
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comparison, low Strata values for TIM suggest that the range of taste 
attributes selected to capture the latent variable of overall difference 
could be refined to be more discriminative. Perhaps a different set of 
taste attributes or even the inclusion of other sensory modalities may be 
helpful in distinguishing better between the samples based on combined 
ratings.

4. Discussion

4.1. Measuring overall difference with the MFRM

The Many-Facet Rasch Model (MFRM) has been employed to 
generate estimates from a combination of sensory attributes (the Total 
Intensity Measures - TIM) that measure the latent trait of overall dif
ference between samples. This TIM method was then combined with 
pairwise comparison against a control, enabling the estimation of 
overall product differences relative to a reference sample. The results 
demonstrated that this approach could be equally as effective as the 
Difference-from-Control (DFC) method in comparing differences against 
a control product. It yielded valuable quantitative data capturing 
nuanced differences between products by quantifying and providing a 
hierarchy of sensory attribute contributions to perceived differences. 
Additionally, it allows for comparisons to be made either between in
dividual test products or between the test products and a control using 
the appropriate statistical test. In contrast, the DFC only allows for 
comparisons with a control and never between individual test samples 
(Rogers, 2017). The control sample can be predetermined during 
conceptualization or retrospectively selected, and an action standard 
can be established to guide decisions regarding the implementation of 
product changes.

4.2. Rasch-transformed rating scales

Rasch models allow linear measurement of latent variables using 
ordinal response data. Resulting interval-scaled measures expressed in 
log-odds units (logits) enhance the interpretability of ordinal responses 
from labeled category scales. Wright maps (Fig. 2 and Fig. 3) visualize 
individual scale categories as threshold ranges, indicating the transition 
points between rating categories. Slightly unequal distances between 
adjacent scale categories, which widen toward the extreme ends of the 
scale, are characteristic of category-ratio scales like the Labeled 
Magnitude Scale (LMS) (Green et al., 1993), the Borg Scale (Borg, 1982), 
and the generalized Labeled Magnitude Scale (gLMS) (Bartoshuk et al., 
2005). Rather than requiring assessors to learn complex category-ratio 
scales to choose a single point on the scale describing their perception, 
simpler categorical-labeled ordinal scales can be used. The MFRM can 
then produce similar interval measures. This approach is likely to reduce 
variability in assessor responses (Ho, 2019).

Rating scale category statistics and graphs from Rasch analysis offer 
insights into how assessors interpret and use individual rating scale 
categories in an experiment. An empirical investigation, following 
established guidelines (Table A1), reveals deviations in the interpreta
tion and operational use of the rating scale from the Rasch model’s ex
pectations for the conceptualized latent variable being measured 
(Engelhard & Wind, 2018). This information is valuable for improving 
rating scales by eliminating redundant categories or filling gaps in scale 
categories. It also informs revisions to panel training and measurement 
procedures. From a manufacturer’s perspective, a Rasch approach can 
help design long-term sensory quality programs for specific products 
with an effective rating scale.

Based on the rating scale category diagnostics (as shown in Table 2) 
and the Wright maps, it becomes evident that the assessors rarely uti
lized the extreme ends of the scale when rating the Jaffa cake samples. If 
the intention is to apply these scales across various tests measuring 
overall differences between Jaffa cakes, the insights gained from the 
model’s identification of redundancies in the scale can inform 

improvements to enhance the functionality of the rating scales.

4.3. Monitoring assessor performance

The benefits of the MFRMs in “rater-mediated assessments” (Eckes, 
2023; Engelhard & Wind, 2018) have been reported by several re
searchers (Bond et al., 2021; Boone et al., 2014; Engelhard, 2013; 
Engelhard & Wind, 2018; Linacre, 1994; Myford & Wolfe, 2003). In 
sensory measurements, the expectation that the human assessors func
tion as a unanimous instrument is unrealistic. Individual variability al
ways introduces complexities, regardless of how much training assessors 
receive (Bartoshuk et al., 2005; Meilgaard et al., 2016; Næs et al., 2010; 
Sipos et al., 2021; Stone et al., 2012).

With Rasch measurement, the goal is consistency within individual 
assessors in terms of severity level and the understanding of the rating 
scale, rather than unanimous panel ratings (Linacre, 1994). Quality 
control parameters of the model, such as outlier sensitive measures 
(OUTFIT mean-square), can identify unwanted idiosyncrasies in indi
vidual ratings. Additionally, questionable individual rating patterns can 
be provided as feedback to assessors, encouraging improvement 
(Findlay et al., 2007). Consequently, costs associated with repeated 
assessor training can be reduced.

4.4. Why use a TIM approach?

This study highlights the strengths of the TIM approach in sensory 
quality control. Its flexibility makes it well-suited for targeted evalua
tions, such as identifying quality issues, benchmarking against standards 
or competitors, and exploring differences in specific attributes across 
samples. TIM can work as both an overall difference test and a tool for 
analyzing how individual attributes contribute to those differences 
within a single analysis.

By combining targeted attribute assessments with holistic difference 
estimation, TIM addresses key limitations of traditional methods while 
leveraging their strengths. Unlike the DFC method, which restricts 
comparisons to a control sample, it allows for comparisons between 
individual test products and for comparisons against a control. As it 
relies on attribute rating tests, multiple attributes can be simultaneously 
evaluated, requiring fewer samples than the DFC and fewer tests than 
attribute-specific methods like paired comparisons or n-AFC tests, which 
assess one attribute at a time. This makes TIM a practical and cost- 
effective approach, especially in resource-constrained settings.

The ability of the TIM approach to consolidate attribute intensity 
ratings into a single measure of overall difference using the MFRM al
lows analysts to estimate overall product differences based on attributes 
of interest, capturing meaningful variations between products while 
filtering out non-critical variations that might otherwise distract from 
the analysis. The Wright map enhances this by visually representing the 
relative contribution of these attributes in driving observed differences, 
making it easier to identify specific issues and take targeted action.

With the MFRM, multiple variables such as assessors, attributes, 
products, replicates, order effects, and other factors can be integrated 
into a single, unified model. This eliminates the need for separate sta
tistical analyses, like multiple ANOVAs to assess individual assessor 
performance or multivariate techniques like PCAs to explore product 
relationships. Instead, TIM operates on a unidimensional construct, 
assuming that all factors can be measured on the same Rasch logit scale. 
The built-in Rasch quality control metrics allow for the simultaneous 
monitoring of each variable, ensuring that they align with the model 
expectations.

In Rasch analysis, each assessor’s ratings are treated individually, 
and their level of severity (the tendency to rate higher or lower 
compared to others) is accounted for in the model. By simultaneously 
estimating both the difficulty of the items (i.e., attribute intensities) and 
assessor severity, the model allows for more accurate comparisons 
across assessors with different standards, removing the need for 
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extensive training on complex rating scales. Assessors can rate according 
to their own consistent standards, as long as these are consistent across 
evaluations. Additionally, the model converts ordinal data into interval- 
scale data, enabling the effective use of categorical rating scales for 
rating intensity, provided assessors are trained to understand where 
attribute intensities fall on the scale for the specific products being 
evaluated.

While TIM offers significant advantages, it is not meant to replace 
traditional sensory methods. Instead, it serves as a complementary tool, 
providing unique benefits when deeper, more focused insights are 
needed. Although assessors still require some training and product 
sensory specifications need to be defined, TIM has the potential to 
streamline processes by monitoring attribute contributions to product 
differences, assessor performance, consistency in ratings across evalua
tions, and the functionality of rating scale categories within a single 
analysis. This delivers actionable data for both product diagnostics and 
assessor selection and training, making TIM a valuable addition to 
sensory quality control methods.

4.5. Limitations of the study

In this study, the TIM approach was used to assess overall differences 
between samples and a prescribed control based on a combination of 
attribute intensity ratings, addressing the limitations of assessor fatigue 
and the resource-intensive requirements of the DFC. However, since the 
comparison was made between the overall difference results from the 
DFC and those from Rasch-combined taste attribute ratings, the selec
tion of test products and attributes did not fully account for differences 
that might have been perceivable during the DFC test.

As an overall difference test, the DFC allows assessors to either 
differentiate samples based on the most prominent perceived attribute 
difference, or average across all perceived attributes before making a 
distinction. As a result, some assessors may have considered additional 
sensory aspects beyond taste attributes in rating the Jaffa cake samples, 
yielding differing results to that of the TIM. The former was the case for 
Brand A, influenced by assessors’ familiarity and possibly appearance 
and being rated as significantly different from the control, while Brand B 
was not.

In contrast, the AR test focused solely on taste attributes, leaving 
potential variations in other sensory characteristics unaccounted for. 
Consequently, the total intensity measure (TIM) was estimated based on 
only these taste attributes and overall intensity differences across all 
samples were rated as moderate on the latent variable. This narrow 
focus may have increased the risk of a “Type 1 error” in the TIM 
approach, identifying differences that might not fully represent overall 
product perception, or “Type 2 error” for the DFC whereby some as
sessors may have missed meaningful differences in the samples because 
they used a cognitive strategy of focusing on the most prominent attri
bute difference from the reference sample “R” which may not have been 
included in the AR test. Incorporating a broader range of attributes or 
integrating other sensory modalities could have reduced these potential 
errors, improved measurement accuracy, and strengthened the com
parison between TIM and the DFC.

However, the TIM approach is advantageous when it is necessary to 
focus assessors on pre-selected, relevant attributes - those most likely to 
vary due to process changes, ingredient modifications, or product life
cycle stages, while reducing the risk of assessors basing their ratings on 
irrelevant or non-critical attributes. To enhance future comparisons of 
the TIM and DFC approaches, it is recommended that all attributes that 
would be perceivable in an overall assessment of the test samples, as 
done in the DFC, be included in the Attribute Rating (AR) test to ensure a 
more comprehensive evaluation. This can be achieved by conducting 

preliminary sensory tests to identify and guide the choice of attributes, 
ensuring a more robust comparison between the two approaches.

4.6. Conclusion

As always, the objective of a sensory test should inform the choice of 
the testing method. If the goal is to quantify how sensory attributes 
contribute to differences between products, the Total Intensity Measure 
(TIM) approach proves efficient. Statistical tests for pairwise compari
sons with a control enable the measurement of overall sample differ
ences using Total Intensity Measures (TIM), akin to the approach 
employed in the DFC.

However, “rater-mediated assessments” like sensory evaluations, 
should be iterative as noted by Engelhard and Wind (2018). Empirical 
results should inform future experimental designs, rating scale devel
opment, and assessor training procedures. The location of facet pa
rameters on a Wright map depends on the assessors’ intensity ratings for 
the specific attributes being assessed in a product. Consequently, 
whether more lenient or more severe in assigning ratings, individual 
assessors within a panel must maintain consistency in their ratings, 
effectively acting as individual experts. Rasch analysis addresses indi
vidual variations in the severity of ratings, provided there is a good fit 
between the model and the data. From a quality control standpoint, the 
TIM approach is ideal for establishing and enhancing sensory quality 
programs, especially when specific attributes of interest are well- 
defined, and quantitative assessments of these attribute contributions 
to perceived differences would guide product development and opti
mization decisions. Sensory lexicons from previous descriptive analyses 
may aid in identifying those relevant attributes.

This study demonstrated that a Rasch approach to measuring overall 
difference using a combination of sensory characteristics (TIM) can 
serve as an equally effective alternative to the DFC, with added benefits 
of evaluating targeted sensory attributes and revealing the relative 
importance of each attribute on the product differences. Further studies 
will explore the potential of MFRM in examining assessor performance 
during sensory evaluation.
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Appendix A. Appendix

Table A1 
Guidelines for assessing effective rating scale1.

Criteria Description Implication

Item Polarity Scales should be oriented in the same way as the latent variable, so that 
higher ratings imply more of the latent variable. This is essential for the 
description of the samples and for measure stability, measure accuracy, and 
inference about the different samples.

The Point Biserial Measure (PT measure) correlation should not be negative 
as this means that items do not align with the theoretical expectation of 
how the latent variable should be measured. Affected items should be 
rescored.

Category Frequency There should be at least 10 observations in each scale category. This is 
essential for measure stability.

Category thresholds may be estimated poorly making it difficult for 
categories to describe distinct locations on the latent variable. Combine 
adjacent categories and renumber the categories in sequence to resolve.

Category Frequency 
Distribution

Frequency distribution of scale categories should be unimodal and tend 
toward a uniform distribution.

Intermittent low-frequency categories within the distribution may indicate 
irregular scale usage and the presence of redundant categories. To resolve, 
combine adjacent categories and renumber the scale categories in 
sequence.

Observed Average 
Measures

Computed as the average of the combined measure statistics of all the facets 
involved in producing scale category ratings. It should monotonically 
increase as the scale categories advance. Essential for measure accuracy and 
description of the samples.

Higher average measures will indicate ratings in higher scale categories 
and vice versa. A disordered category should be combined with adjacent 
categories.

Category model fit Scale category outfit mean-squares indicate the deviation of average 
measure from the expected measures if data fit the Rasch model. Essential 
for measure accuracy.

Category outfit mean-square statistics with values above 2.0 indicate that 
the category has been used in a different context than is expected.

Ordering of category 
thresholds

Rasch-Andrich thresholds should advance monotonically up the scale 
categories. Graphical probability curves produced should have distinct 
peaks, resembling a range of hills.

As scale categories increase along the latent variable, each category, in 
turn, should be the most probable choice. Disordered thresholds may 
indicate that a category has been skipped as one advances along the 
variable or that the category has a very low frequency.

Distance between 
category 
thresholds

The minimum distance between Rasch-Andrich thresholds is calculated2 as 
1.4, 1.1, 0.81, 0.70, 0.57, 0.51, and 0.45 logits for 3, 4, 5, 6, 7, 8, and 9 
category scales, respectively. The increase between thresholds should not 
exceed 5.0 logits.

Too close categories may be less distinctive than intended, while categories 
too far apart represent performance that is much wider than intended and 
introduces gaps in the variable leading to loss of information.

1 Bond et al. (2021); Eckes (2023); Ho (2019); Linacre (2002)
2 Central distance =ln(x/(m − x + 1). For x =1, … m, where m = n-1 for a n-category scale

Appendix B. Sample Appearance

Fig. B1. Photo of Jaffa cake samples showing variation in appearance. Brand A exhibits greater variation in shape compared to Brands B and C. Note that the labels 
“Brand A,” “Brand B,” and “Control” are used here only to mask the actual brand names. During the study, all samples were labeled with random 3-digit codes.
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Data availability

The data for this study is available upon request through the Uni
versity of Leeds Restricted Access Data Repository (RADAR) at 
https://doi.org/10.5518/1484
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