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ABSTRACT

Artificially intelligent agents deployed in the real worldmust be able

to reliably cooperate with humans (as well as other, heterogeneous

AI agents). To provide formal guarantees of successful cooperation,

we must make some assumptions about how these partner agents

could plausibly behave. Realistic assumptions must account for

the fact that other agents may be just as adaptable as our agent

is. In this work, we consider the setting where an AI agent must

cooperate with members of some target population of agents in a

finitely repeated two-player general-sum game, where individual

utilities are private. Two natural assumptions in this setting are 1)

all agents in the target population are individually rational learners,

and 2) when paired with another member of the population, with

high-probability the agents will achieve the same expected utility

as they would under some Pareto-efficient equilibrium strategy

of the underlying stage game. Our theoretical results show that

these assumptions alone are insufficient to select an AI strategy

that achieves zero-shot cooperation with members of the target

population. We therefore consider the problem of learning such a

cooperation strategy using observations of members of the target

population interacting with one another, and provide upper bounds

on the sample complexity of learning such a cooperation strategy.

Our main result shows that, under the above assumptions, these

bounds can be much stronger than those arising from a łnaivež

reduction of the problem to one of imitation learning.
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1 INTRODUCTION

Imagine a hospital deploying an AI assistant to help their surgeons

plan and execute complex surgeries. For instance, the AI assistant

can take the role of a second surgeon in complex procedures that

benefit from a two-surgeon approach [15]. When first deployed,

the AI agent is unlikely to have comprehensive knowledge of the

population consisting of its potential partners (i.e. the surgeons

working in the hospital). Differences between human surgeons,

such as preferences, capabilities, and internal statesÐincluding

surgical experience, familiarity with specific procedures, or even

mental focus under pressureÐcan critically impact cooperation. A

successful AI agent should be able to adapt its strategy to each

human surgeon it partners with. The central question of this paper

is how to efficiently learn such adaptive and cooperative meta-

strategies from a dataset of cooperative interactions between the

members of the target population.

To illustrate, consider experience level. An experienced surgeon

may prefer a fast strategy to reduce surgery duration, improving

post-op recovery time. Conversely, an inexperienced surgeon may

prefer a slower, cautious strategy. Here a strategy refers to the

policy an agent follows in a single collaborative surgery. Our goal

is to learn an adaptive meta-strategy that maps from the history

of interactions (e.g. history of collaborative surgeries performed

so far) to strategies, which allows for the AI agent to adapt to the

needs of its current human partner over time.

It is possible to learn a good AI strategy for individual partners

using past surgical data through imitation learning (e.g. [16]). How-

ever, learning a good meta-strategy through imitation becomes

impractical as task complexity, partner diversity, and task duration

increase. Imitation learning here would mean learning a function

mapping from histories of multiple surgeries to new surgical strate-

gies. To do so, the AI agent would require datasets that capture

long-term interactions between human surgeons and cover the

full range of surgeon and patient profiles. Additionally, in high-

stakes environments like surgery, imperfect imitation may lead to

unacceptable failure modes, resulting in the AI agent’s role being

terminated.

The problem setup. To formalize the above intuitions, we model

the interaction between the AI agent and the individual members of

the population as a repeated, two-player, general-sum matrix game

with private types. Each agent’s type is their private information,

where different types of agents have distinct payoff functions. Types

embed behavioural differences amongst the agents through payoffs,

inducing general-sum games between partners with different types,

∗Author order is alphabetical.
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even though they are collaborating on a task that requires teamwork

(e.g., no-conflict games [1] or ad-hoc teamwork [27]). Each stage

game represents a complete interaction between two agents. For

instance, in the case of our surgery example, a single stage game of

the repeated game corresponds to a complete surgery.

Contributions. We present a novel definition called a socially

intelligent population, where the member agents are (1) Consistent,

meaning an individual will perform at least as good as its best

pure strategy in hindsight and (2) Compatible in pairs, meaning

they achieve performance comparable to a Pareto-optimal Nash

equilibrium (PONE). The former, also called the no-regret property,

is often seen as a minimal requirement for rationality, whereas the

latter has been used to describe successful cooperation by Powers

and Shoham [21]. Our main contribution is an upper bound on

the sample complexity for learning cooperation meta-strategies

in socially intelligent populations. While consistent partners (as

defined in section 3) do not guarantee success for imitation learning,

we demonstrate that compatibility within the population makes

imitation feasible. However, the lower bound on sample complexity

grows exponentially due to the need to account for histories. We

derive an upper bound in Theorem 5.3 showing that for socially

intelligent partnersÐwho are both consistent and compatibleÐit

is possible to learn cooperation meta-strategies more efficiently

than through imitation alone. A consequence of the lower bound

in Theorem 4.5 is that, even when the target population can be

assumed to be socially intelligent, without additional information

about this population we cannot find a strategy that can reliably

cooperate with members of this population. We therefore consider a

more realistic interpretation of the zero-shot coordination problem,

where the AI agent must cooperate with an entirely new partner

(whose private type is unknown), but has observations of other

members of the population, so it can learn the strategies (perhaps

better thought of as łmeta-strategiesž) that these agents use to

coordinate with new partners.

Outline. In section 2, we discuss the intuition of our approach

and themotivations behind it. Then in section 3, we define ourmulti-

agent setting and provide background on consistency (in the form

of Hannan-consistency) and external regret. We introduce a novel

definition of compatibility in definition 3.2, inspired by Powers

and Shoham [21]. Section 3.3 introduces our definition of social

intelligence and presents a realistic class of agents that meet this

criterion. In section 4, we frame the learning problem as minimizing

altruistic regret and derive lower bounds on its sample complexity.

Finally, in section 5, we present our upper-bound result, showing

that a strategy we call imitate-then-commit can leverage the social

intelligence of the population to learn cooperative strategies more

efficiently.

2 MOTIVATION

Socially intelligent populations. Our focus in this paper is on

populations where members have established conventions that

enable effective cooperation. For instance, two surgeons can plan

and execute a complex surgery together efficiently, even if they

have not worked together before, because they share a common

set of conventions learned through similar education. This can be

Fast Balanced Cautious

Fast (4, 2) (5, 4) (3, 3)

Balanced (5, 4) (6, 6) (4, 5)

Cautious (3, 3) (4, 5) (7, 7)

Table 1: Payoff matrix for a repeated two-player game with

an experienced surgeon (row) and inexperienced surgeon

(column). The best cooperative outcome is achieved when

experienced surgeon slows down tomatch the inexperienced.

seen as the members of the population being compatible with each

other. In addition, each member should individually satisfy a base

level of rationality. Our definition of social intelligence formalizes

these intuitions.

General-sum games. In our setting, agents with different types

will have distinct payoff functions due to different behavioural

propensities. Consider the example given in Table 1 for a pair of

experienced and inexperienced surgeons. Even though the surgery

is a cooperative task, the agents have non-identical payoffs due

to differences between their types (i.e. experience level). Here, the

general-sum aspect models the potential failure of coordination

between the agents due to their private types. If the row player is

experienced and mistakenly thinks its partner is also experienced,

it will choose the fast approach, leading to the sub-optimal cooper-

ation outcomes. However, if for instance the agents learned each

other’s types through repeated interactions, they can both choose

the cautious approach towards the optimal cooperation outcome

(Cautious, Cautious).

Our approach proposes that the AI agent initially mimics the

behaviour of a teammember over a short horizon, gathering enough

information to infer its partners’ types, while behaving as expected

from a member of the team. For instance, the AI agent can start by

imitating the average behavior of a human surgeon from the dataset,

gradually inferring the human partner’s type. This preliminary

imitation might not be immediately efficient for the specific partner,

but as long as it remains human-like, it is more likely to be tolerated.

Once the partner’s type is inferred, the AI agent can transition to a

type-conditioned strategy that is well-aligned with its partner. This

approach would ensure that the partner is more likely to engage

with the AI agent as a trusted collaborator, avoiding early-stage

friction that might otherwise lead to the termination of the AI

agent’s involvement. Our formalization of the repeated two-player

general sum matrix games setting is motivated from the notion

of replicator dynamics [3, 25] in evolutionary game theory. The

replicator equation represents the proportion of each type in a

population as the difference of the fitness of a population for that

type to the average fitness across all types. The replicator dynamics

construct helps to understand the type of the two agents sampled

for our repeated two-player general sum matrix games.

Our theoretical results apply to various real-world scenarios

where the goal of an AI agent is to learn how to cooperate with

self-interested agents with private types such as humans. Most

importantly, our AI agent itself is not necessarily self-interested,

since its goal is to assist or cooperate with partners coming from

a population. However, the partners it is trying to cooperate with
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are self-interested. Our framework offers efficient bounds for learn-

ing viable cooperation meta-strategies based solely on observed

interactions between the members of the population. We provide

further motivating examples of populations and use cases in the

supplementary materials 1 like customer support chatbots, legal

assistants, software development assistants, AI health coach and

human-robot cooperation in a factory.

3 PRELIMINARIES

Repeated two-player matrix games with private types. First, we

define a class of repeated two-player matrix games with private

types with the tuple G = (I,A,Θ,𝐺,𝑇 ) where I = {1, 2} is the set

of agents, A is the set of 𝑁 pure strategies available to both agents

(called actions henceforth), Θ is a space of types, 𝐺 is a function

that maps an agent type 𝜃 ∈ Θ to a payoff matrix 𝐺 (𝜃 ) ∈ R
𝑁×𝑁 ,

and 0 < 𝑇 < ∞ is a fixed number of stages. Let 𝜽 = (𝜃1, 𝜃2) denote

a joint type for both agents. Then, a specific instance of a game

from this class is given by G(𝜽 ) = (I,A,𝐺 (𝜽 ), 𝜽 ,𝑇 ) such that

𝐺 (𝜽 ) = [𝐺 (𝜃1),𝐺 (𝜃2)
⊤] is its payoff matrix.

Throughout the paper, we will assume that a joint type 𝜽 directly

induces the game G(𝜽 ), and the class G is fixed. Then in a single

episode, the agents play G(𝜽 ) for 𝑇 stages. We let 𝑎1𝑡 and 𝑎
2
𝑡 denote

the actions chosen by agents 1 and 2 in stage 0 < 𝑡 ≤ 𝑇 . For

mixed strategies𝜎, 𝜎′ ∈ Δ(A), we let𝐺 (𝜎, 𝜎′;𝜃𝑖 ) = 𝜎
⊤𝐺 (𝜃𝑖 )𝜎

′. We

overload 𝑎1𝑡 and 𝑎
2
𝑡 to also denote the mixed strategies that assign

all probability mass to actions 𝑎1𝑡 and 𝑎2𝑡 , such that 𝐺 (𝑎1𝑡 , 𝑎
2
𝑡 ;𝜃1)

and 𝐺 (𝑎1𝑡 , 𝑎
2
𝑡 ;𝜃2) are agent 1 and 2’s realized payoffs at stage 𝑡 .

We also assume that without the loss of generality, for all 𝜃 ∈ Θ,

𝐺 (𝑎1𝑡 = 𝑎, 𝑎2𝑡 = 𝑎′, 𝜃 ) ∈ [0, 1],∀𝑎, 𝑎′ ∈ A. In other words, payoffs

are always bounded in [0, 1] .

Let H𝑡 = (A × A)𝑡 be the set of histories of length 𝑡 (with

H0 = {∅}), and let H≤𝑡 =
⋃𝑡

𝑠=0H𝑠 be the set of all histories

of length at most 𝑡 . The meta-strategy space Π for an agent is

then the space of mappings 𝜋 : Θ × H≤𝑇−1 ↦→ Δ(A), where

Δ(A) is the set of probability distributions over the action set. As

a functional of types, a meta-strategy 𝜋 (𝜃, ·) maps a type 𝜃 to a

behavioral strategy [26, Chapter 5.2.2] that maps histories of play to

action distributions, such that 𝑎𝑖𝑡 ∼ 𝜋𝑖 (𝜃𝑖 , ℎ𝑡−1). We denote agent

𝑖’s expected total payoff for following meta-strategy 𝜋 against 𝜋 ′

as

𝑀𝑖 (𝜋, 𝜋
′;𝜃, 𝜃 ′) = E

[
𝑇∑︁
𝑡=1

𝐺 (𝑎𝑖𝑡 , 𝑎
−𝑖
𝑡 ;𝜃𝑖 )

����� 𝜋𝑖 = 𝜋, 𝜋−𝑖 = 𝜋 ′,
𝜃𝑖 = 𝜃, 𝜃−𝑖 = 𝜃

′

]
(1)

where the expectation is with respect to the strategies.

3.1 Consistency

A natural criterion for rationality is that an agent should attempt to

achieve a payoff nearly as large as the best response to its partner’s

average strategy, whichwe refer to as consistency. To account for the

non-stationary behavior of other agents’, we specifically consider

1The supplementary materials for our paper can be found in its arXiv version at
https://arxiv.org/abs/2407.00419

𝐴 𝐵

𝐴 2, 2 0, 0

𝐵 0, 0 1, 1

(a) A fully-cooperative 2x2 matrix game.

𝐶 𝐷

𝐶 2, 2 0, 3

𝐷 3, 0 1, 1

(b) The prisoner’s dilemma game.

Table 2

Hannan consistency [13], which in our finite-time setting simply

requires that an agent have bounded external regret over 𝑇 stages.

The external regret for agent 𝑖 is defined as

𝑅ext𝑖 (ℎ;𝜃𝑖 ) = max
𝑎𝑖 ∈[𝑁 ]

|ℎ |∑︁
𝑡=1

{
𝐺 (𝑎𝑖 , 𝑎−𝑖𝑡 (ℎ);𝜃𝑖 ) −𝐺 (𝑎𝑖𝑡 (ℎ), 𝑎

−𝑖
𝑡 (ℎ);𝜃𝑖 )

}
(2)

where 𝑎𝑖𝑡 (ℎ) denotes the action 𝑖 played at stage 𝑡 within the history

ℎ ∈ H≤𝑇 .

Definition 3.1 (Consistency). For 𝛿, 𝜖,𝑇 > 0, an agent 𝑖 ∈ {1, 2} is

(𝛿, 𝜖,𝑇 )-consistent if, for all types 𝜃 ∈ Θ, and any partner strategy,

we have that 1
𝑇 𝑅

ext
𝑖

(ℎ𝑇 ;𝜃 ) ≤ 𝜖 with probability at least 1 − 𝛿 .

In essence, consistency requires an agent 𝑖 to achieve bounded

external regret regardless of its type or partner. We also define

the expected external regret 𝑅ext
𝑖

(ℎ;𝜃 ) by replacing the 𝑎𝑖𝑡 (ℎ) (the

action 𝑖 played at stage 𝑡 ) with their full meta-strategy 𝜋𝑖 (𝜃, ℎ𝑡 ).

𝑅ext
𝑖

(ℎ;𝜃 ) and 𝑅ext
𝑖

(ℎ;𝜃 ) are related by the inequality

𝑅ext𝑖 (ℎ𝑡 ;𝜃 ) ≤ 𝑅ext𝑖 (ℎ𝑡 ;𝜃 ) +

√︂
𝑇

2
ln

1

𝛿
, (3)

which holds with probability (w.p.) at least 1 − 𝛿 for all 𝑡 ≤ 𝑇

simultaneously (this follows directly from [6, Lemma 4.1]). We

therefore only need to bound 𝑅ext
𝑖

(ℎ𝑡 ;𝜃 ) to provide high-probability

regret bounds.

3.2 Compatibility

Even in a fully cooperative game, the fact that both agents are

consistent does not guarantee that they will achieve an optimal

outcome. In the 2 × 2 game in Table 2a for example, both (𝐴,𝐴)

and (𝐵, 𝐵) are Nash equilibria to which consistent agents could con-

verge, but only (𝐴,𝐴) is optimal. In general-sum games, consistency

may preclude Pareto-optimal outcomes, as in the classic prisoner’s

dilemma game (Table 2b), where the only outcome in which neither

player incurs positive regret is (𝐷,𝐷), which is Pareto-dominated

by (𝐶,𝐶). Therefore, similar to Powers and Shoham [21], we de-

fine successful cooperation in terms of the Pareto-optimal Nash

equilibria (PONE) [18] of a game G(𝜽 ).

Let N(𝜽 ) ⊆ Δ(A) × Δ(A) be the set of Nash equilibria (NE)

of G(𝜽 ). For a fully-cooperative game, N(𝜽 ) will contain all glob-

ally optimal strategy profiles. It may, however, also contain joint

strategies that are highly sub-optimal. Let P(𝜽 ) ⊆ N (𝜽 ) denote

the set of Pareto optimal Nash equilibria. In this work, we say that

a strategy profile ⟨𝜎1, 𝜎2⟩ ∈ P(𝜽 ) if and only if ⟨𝜎1, 𝜎2⟩ ∈ N (𝜽 ),
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and there does not exist ⟨𝜎′1, 𝜎
′
2⟩ ∈ N (𝜽 ) such that 𝐺 (𝜎′1, 𝜎

′
2;𝜃1) ≥

𝐺 (𝜎1, 𝜎2;𝜃1) and𝐺 (𝜎′2, 𝜎
′
1;𝜃2) ≥ 𝐺 (𝜎2, 𝜎1;𝜃2), and𝐺 (𝜎′𝑖 , 𝜎

′
−𝑖 ;𝜃𝑖 ) ≥

𝐺 (𝜎𝑖 , 𝜎−𝑖 ;𝜃𝑖 ) for some 𝑖 ∈ {1, 2}. This means that ⟨𝜎1, 𝜎2⟩ is a PONE

if it is a Nash equilibrium of G(𝜽 ), and it is not Pareto-dominated by

any other Nash equilibrium of G(𝜽 ). Intuitively, if two agents are

individually consistent, and willing to cooperate with each other,

their joint payoff profile should come close to a PONE.We formalize

this intuition as follows:

Definition 3.2 (Compatibility). For 𝛿, 𝜖,𝑇 > 0, two agents 𝜋1 and

𝜋2 are (𝛿, 𝜖,𝑇 )-compatible if, when played together, for any joint

type 𝜽 , w.p. at least 1 − 𝛿 , ∃⟨𝜎∗1 , 𝜎
∗
2 ⟩ ∈ P(𝜽 ) s.t.

1

𝑇

𝑇∑︁
𝑡=1

𝐺 (𝜎∗𝑖 , 𝜎
∗
−𝑖 ;𝜃𝑖 ) −𝐺 (𝑎𝑖𝑡 , 𝑎

−𝑖
𝑡 ;𝜃𝑖 ) ≤ 𝜖, (4)

for both 𝑖 = 1 and 𝑖 = 2.

A pair of agents is compatible if, when paired together, with

high-probability over their path of play ℎ𝑇 there will exist some

PONE that does not 𝜖-dominate their realized payoffs. Note that

this definition is the approximate and finite-horizon version of the

one provided in [21].

For the populations we consider, compatibility is a reasonable as-

sumption. In a way, we focus on populations that have evolved over

a long time learning to cooperate with each other. In the case of our

illustrative surgery example (section 1), the population has evolved

dynamically over the course of humanmedical history, learning and

adapting its conventions to enable compatibility. Behaviours that

are not compatible cannot survive in this population, considering

medical professionals must confer to certain rules, guidelines, and

behavioural norms amongst each other.

3.3 Socially Intelligent Agents

We argue that it is natural to model an existing population of coop-

erating agents as a set of approximately compatible, but otherwise

heterogeneous agents. We therefore introduce the more general

idea of a socially intelligent class of agents that are compatible with

any other member of their class:

Definition 3.3 (Social Intelligence). A set C of agents forms a

socially intelligent class w.r.t. Θ if, for some 𝛿, 𝜖,𝑇 > 0, each agent

𝜋 ∈ C is (𝛿, 𝜖,𝑇 )-consistent for all 𝜃 ∈ Θ, and any two agents

𝜋, 𝜋 ′ ∈ C are (𝛿, 𝜖,𝑇 )-compatible over all joint types Θ. An in-

dividual agent 𝜋 is called socially intelligent if it forms a socially

intelligent class {𝜋} with itself.

The consistency requirement ensures that any agent in the popu-

lation always has bounded average regret, whereas the approximate

compatibility means if both agents are from C, with high proba-

bility there will exist some PONE that does not 𝜖-dominate their

path of play. Below we describe a socially intelligent class based on

a pre-agreed handshake protocol. These protocols can be thought

of as handshakes that allow the members of a socially intelligent

population identify each other’s types efficiently.

Handshake protocols. For a type space Θ, we first define a func-

tion 𝑠 that maps from each joint type 𝜽 to a strategy profile in P(𝜽 )

such that 𝑠 (𝜽 ) ∈ P(𝜽 ). We can think of this function as a common

łconventionž the agents in C have settled upon. Since we assume

private types, members of C do not know each other’s type at the

beginning of their interaction. If any type 𝜃 ∈ Θ can be communi-

cated to others in a sequence of 𝑘 < 𝑇 actions, then agents in C

can agree on a handshake protocol. Let the protocol be a map 𝜅

from types to a history-dependent policy. Then, at the beginning of

each episode, both agents will play their corresponding 𝜅 (𝜃𝑖 ) for

𝑘-steps in order to communicate their types.

This handshake protocol is quite general. For example, consider

the illustrative example of two surgeons with different experience

levels from the section 1. When two new agents are paired together,

they might both choose the cautious strategy for the first couple of

surgeries. Over time, surgeon 1 might shift its strategy to balanced

and then to fast, signalling to the surgeon 2 that they are experi-

enced and prefer to be fast. If throughout this period, surgeon 2

sticks to being cautious, this handshake would signal to both that

the surgeon 1 is experienced, while 2 is inexperienced.

After identifying each other through their initial behaviour, the

agents play 𝑠 ((𝜃𝑖 , 𝜃−𝑖 )) for the remaining 𝑇 − 𝑘 steps. The agents

must still ensure (authenticate) their partner does not deviate from

𝑠 ((𝜃𝑖 , 𝜃−𝑖 )) for safety against adversarial łimposter agentsž outside

𝐶 which can still play 𝜅 (𝜃−𝑖 ), posing as a member of 𝐶. Since

playing a PONE jointly will lead to low regret for both, if 𝑖’s regret

exceeds a certain threshold, this would indicate −𝑖 is deviating

from 𝑠 significantly. The threshold can be chosen by the aid of the

following lemma,

Lemma 3.4. For any 𝛿,𝑇 > 0, if both players follow strategy 𝑠 (𝜽 )

at each stage, then with probability at least 1 − 𝛿 we have

𝑅ext𝑖 (ℎ𝑡 ;𝜃𝑖 ) ≤

√︂
2𝑇 ln

2

𝛿
and 𝑅ext𝑖 (ℎ𝑡 ;𝜃𝑖 ) ≤ 2

√︂
2𝑇 ln

4

𝛿
, (5)

which follows from an application of the Azuma-Hoeffding in-

equality (shown in supplementary material section 1.1). Then the

question is what safe strategy should the 𝑖 fall back into, if the rule

is triggered. We base the fallback strategy on the multiplicative

weights [12] update rule, defined as:

𝑠𝑖mw,𝑘 (ℎ𝑡 ;𝜃𝑖 ) ∝ 𝑠
𝑖
mw,𝑘 (ℎ𝑡−1;𝜃𝑖 ) exp

(
−𝜂𝐺 (𝑘, 𝑎−𝑖𝑡−1 (ℎ);𝜃𝑖 )

)
(6)

for 𝑘 ∈ 𝑁 , where 𝑠𝑖mw (ℎ0;𝜃𝑖 ) is the uniform strategy. Define 𝜋mw,𝑇

as the agent that plays 𝑠𝑖mw (ℎ𝑡 ;𝜃𝑖 )with learning rate𝜂 =
√︁
8 ln(𝑁 /𝑇 ).

The expected external regret of 𝜋mw,𝑇 is bounded as

𝑅ext𝑖 (ℎ𝑇 ;𝜃𝑖 ) ≤

√︂
𝑇

2
ln𝑁 (7)

surely [6, Theorem 2.2]. We then define the agent’s overall meta-

strategy 𝜋𝑇,𝜖 as follows:

(1) In first 𝑘 steps, play 𝜅 (𝜃𝑖 ).

(2) If −𝑖’s behaviour in ℎ𝑘 not compatible with 𝜅 (𝜃 ) for any

𝜃 ∈ Θ, switch to 𝜋mw,𝑇 for all subsequent stages.

(3) While 𝑅ext
𝑖

(ℎ𝑡 ;𝜃𝑖 ) ≤ 𝑘 +𝜖 (𝑇 −𝑘) −

√︃
𝑇−𝑘
2 ln𝑁 −1, play 𝑠𝑖 (𝜽 ).

(4) Otherwise, switch to 𝜋mw,𝑇 for all subsequent stages.

The theorem below shows that agents that follow the meta-strategy

above form a socially intelligent class among themselves. All proofs

have been deferred to the supplementary material section 1.
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Theorem 3.5. For any 𝛿,𝑇 > 𝑘 , let 𝜖0 ≥
√︃

2
(𝑇−𝑘 )

ln 2
𝛿
, and let

𝜖1 = 𝜖0 +
√︃

1
2(𝑇−𝑘 )

ln𝑁 + 1
(𝑇−𝑘 )

. Then for 𝜖 = 𝜖1 +

√︃
(𝑇−𝑘 )

2 ln 1
𝛿
,

the 𝜋𝑇,𝜖1 is (𝛿, 𝜖,𝑇 )-socially intelligent.

4 LEARNING TO COOPERATE

Going forward, we will assume that our agent (henceforth referred

to as the łAI agentž) will take the role of agent 1, while the other

agent (referred to as the łpartnerž) will be agent 2. Our goal is to

choose a meta-strategy for the AI agent that can cooperate with a

partner drawn from some target population nearly as effectively as

agents from this population cooperate with one another. For the

class of games G = (I,A,Θ,𝐺,𝑇 ) as defined in section 3, we will

let the target population be a set C of agents forming a (𝛿, 𝜖,𝑇 )-SI

class with respect to Θ. Ideally, we would hope to choose an AI

meta-strategy 𝜋 that can cooperate with C without any additional

information about the strategies in C. Looking at the handshake

protocol example in Section 3.3, we can see that in many cases

a population is likely to use arbitrary conventions to coordinate

their behavior, and intuitively we would imagine cooperation to

be impossible without prior knowledge of these conventions. (We

make this intuition formal in Theorem 4.5).

We therefore consider the problem of learning a cooperative

meta-strategy using prior observations of members of the target

population interacting with one another. We define a social learning

problem by a tuple {G, C, 𝜌, 𝜇}, where C is the target population

(SI w.r.t. Θ), 𝜌 is a distribution over C, while 𝜇 is a distribution

over the joint type space Θ × Θ. We can think of C as the set

of possible strategies that any member of the target population

might follow, while 𝜌 is the frequency of those strategies within

the population. To choose an AI strategy, we leverage a dataset

D = {(𝜃
𝑗
1 , 𝜃

𝑗
2 , ℎ

𝑗

𝑇
) | 𝑗 ∈ [𝑛]} covering 𝑛 episodes of length 𝑇 . In each

episode 𝑗 , two agents 𝜋1𝑗 and 𝜋
2
𝑗 are sampled independently from

𝜌 , and played together under the joint type 𝜽 𝑗 ∼ 𝜇. The AI agent

observes the full history ℎ
𝑗

𝑇
, along with the agents’ types 𝜃

𝑗
1 and

𝜃
𝑗
2 . We denote a specific learning algorithm as a data conditioned

strategy 𝜋 (D).

4.1 Altruistic Regret

We seek an AI strategy that minimizes the regret relative to some

Pareto optimal solution to 𝐺 (𝜽 ). Rather than minimizing regret

in terms of the AI’s own payoffs, however, we seek to minimize

partner’s relative to their (worst case) PONE in𝐺 (𝜽 ). We formalize

this regret with the following definition:

Definition 4.1 (Altruistic Regret). Let (𝜎∗𝑖 , 𝜎
∗
−𝑖 ) denote the PONE

with the lowest payoff for the agent −𝑖 where 𝑖 ∈ {1, 2}. The altru-

istic regret of agent 𝑖 is defined as

𝑅alt𝑖 (ℎ𝑇 ;𝜃−𝑖 ) =

𝑇∑︁
𝑡=1

𝐺 (𝜎∗𝑖 , 𝜎
∗
−𝑖 ;𝜃−𝑖 ) −𝐺 (𝑎𝑖 (ℎ𝑡 ), 𝑎

−𝑖 (ℎ𝑡 );𝜃−𝑖 ). (8)

In practical cooperation tasks, we would expect outcomes that

have low regret for the partner will have low regret for the AI agent

as well.

The cooperation objective for the AI agent can then be formalized

as minimising the altruistic regret. Unlike the definition suggests,

the AI agent must know its own type as well. This is due to the fact

that as seen in the handshake protocols example, if the AI agent

fails to imitate a human of its type or fail to communicate its type

correctly, the partner might switch to a safe strategy.

The goal for the AI agent is to minimize its expected altruistic

regret over partners sampled from 𝜌 and types sampled from 𝜇. The

following lemma shows that we can treat the problem ofminimizing

regret with respect to a heterogeneous population C as that of

minimizing regret w.r.t. a single stochastic strategy.

Lemma 4.2. Let C be a finite set of agents that are (𝛿, 𝜖,𝑇 )-socially

intelligent w.r.t. type space Θ, and let 𝜌 be a distribution over C. There

exists a mixed strategy 𝜌 that forms an (𝛿, 𝜖,𝑇 )-socially intelligent

class, and which is equivalent to playing against partners sampled

from 𝜌 in expectation.

Proof. In a perfect recall game, every behavioural strategy has an

equivalent mixed strategy and vice-versa [2]. Thus 𝜌 can equiva-

lently be defined as a distribution over mixed strategies so that

𝜌 ∈ Δ(Δ(𝑁 )). Then defining 𝜌 (𝑎) =
∫
Δ(𝑁 )

𝜎 (𝑎) 𝑑𝜌 (𝜎) where

𝑎 ∈ [𝑁 ] denotes a pure strategy (i.e. action) completes the proof.

In order to show the joint impact of consistency and compatibility

on the learning problem, we discuss the cases where the population

is either consistent or compatible, but not both.

4.2 Consistency without Compatibility

Assume that C consists of agents that are consistent but not neces-

sarily compatible. The most general class in this case is the class of

all no-external-regret learners (no-regret henceforth). It is a well-

established result that the long-run average of no-regret learning

converges to the set of coarse correlated equilibria. The question is

whether the AI agent can learn to do better than a coarse correlated

equilibrium when paired with a member of C, using only a dataset

D that consists of histories of play for different Coarse Correlated

Equilibria (CCE).

Theorem 4.3. There exists a consistent yet incompatible class of

agents C such that even with an infinite amount of data, in the worst-

case, the AI agent suffers constant altruistic regret.

Proof. The proof follows from the theorem 5.1 of Monnot and

Piliouras [20] which shows that given any coarse correlated equi-

librium of a two-player normal-form game, there exists a pair of

no-regret learners that would converge to it. Since C can be any

subset of no-regret learners, we cannot exclude those who con-

verge to inefficient CCE. If the class C contains only the agents that

converge to Pareto-inefficient CCE, we cannot hope to learn opti-

mal strategies from any dataset. For example, consider the payoff

matrices given in table 3 for two pairs of types. Here, the payoff of

each agent depends only on its partner. In both games, there exists

only one PONE with payoffs (3, 4). However, every pure and mixed

strategy profile is a CCE in both matrices. In the worst case, we may

have a class of agents C that only converge to the CCE (𝐵, 𝐵) .More

importantly, the behavior of each agent does not need to carry any

information about their type, since each agent’s payoff depends

solely on its partner. When the AI’s strategy is deployed, it will

face a partner drawn from C whose type is unknown, regardless of

the imitation demonstrations dataset. Since we cannot infer type

from behavior any more, there is no way for the AI agent to know
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𝐴 𝐵

𝐴 3, 2 1, 2

𝐵 3, 4 1, 4

(a) The game matrix for types (𝜃1, 𝜃2 )

𝐴 𝐵

𝐴 3, 4 1, 4

𝐵 3, 2 1, 2

(b) The game matrix for types (𝜃3, 𝜃4 )

Table 3: A class of games where an agent’s payoff depends

only on its partner.

which of the two game matrices it is playing. At best, the AI (row

player) can choose one of the two PONE with uniform probability

and commit to it. There is a 0.5 probability that the AI will play the

wrong PONE, incurring constant altruistic regret.

4.3 Compatibility without Consistency

Assume that the members of C are compatible, but not consistent.

We can construct such a class as in Section 3.3, with agents us-

ing a handshake protocol to exchange type information, and then

playing the agreed-upon PONE of the current game. However, if

at any any time an agent deviates from this chosen solution, there

is no restriction on what strategy each agent will follow from that

point forward. The members of C may even employ grim-trigger

strategies that łpunishž any mistake on the part of the other agent

by following a highly sub-optimal strategy. Even if at some point

in the future they could potentially switch back to a cooperative

strategy (i.e., forgive the other agent), this may not occur within

the finite horizon𝑇 . A single mistake at any time on the part of the

AI agent may yield the maximal altruistic regret for the remainder

of the interaction. The AI must therefore learn to imitate at least

one member of C perfectly using the dataset D, and the problem

of learning to cooperate reduces to imitation learning (specifically

the no-interaction setting of Rajaraman et al. [24]).

We can derive a lower bound on the altruistic regret in this

case by considering a game in which there is only a single type

(such that individual payoffs are common knowledge), and each

agent’s payoffs depend only on their own actions. Specifically, the

first 𝑁 − 1 actions each yield a payoff of 1, regardless of the other

agent’s action, while the 𝑁 th action yields a payoff of 0. In this

game we can construct a compatible class C such that, for the first

𝑘 ≤ 𝑇 steps, the agents execute some łauthentication protocolž,

which allows them to identify other agents following strategies in

C. For the first 𝑘 − 1 steps, each agent samples one of the first 𝑁 − 1

actions, with the sequence of actions forming a challenge code that

the other agent must respond to by selecting the correct action at

step 𝑘 . If an agent’s partner fails to provide the correct response

at step 𝑘 , the agent will follow the 𝑁 th action for the remaining

𝑇 − 𝑘 steps, such that it receives no further payoff from that point

forward. Using such strategies, and an approach similar to that

of [24], we can derive a lower bound on the altruistic regret as a

function of the number of samples in the dataset |D|.

Theorem 4.4. Let 𝐾 = |D| be the number of interaction histories

in the dataset. For any 𝑘 < 𝑇 , and any 𝛿, 𝜖 ≥ 0, there exists a class

of games G, and class C of (𝛿, 𝜖,𝑇 )-compatible agents such that,

for any data-dependent meta-strategy 𝜋 (D), the altruistic regret is

lower-bounded as

E
[
𝑅alt𝑖 (ℎ𝑇 ;𝜃−𝑖 )

]
≥
𝑇 − 𝑘

𝑒

𝑁 − 2

𝑁 − 1
min

{
1

2
,
(𝑁 − 1)𝑘−1 − 1

2𝐾 + 1

}
, (9)

where the expectation is taken over ℎ𝑇 , 𝜽 , and D. Then, for small

altruistic regret, the sample complexity grows exponentially in 𝑘 .

Proof sketch. We choose an łauthenticationž function 𝑓 : [𝑁 −

1]𝑘−1 ↦→ [𝑁 − 1] that maps each possible (𝑘 − 1)-step history of

actions to a specific action in [𝑁 − 1]. We then construct a class C

consisting of a single meta-strategy that, for the first 𝑘 − 1 steps

selects its actions so that the initial 𝑘 − 1 step history of its actions

is distributed according to a specific, nearly uniform distribution

𝜇. At step 𝑘 , agent 𝑖 chooses action 𝑓 (ℎ−𝑖
𝑘−1

), where ℎ−𝑖
𝑘−1

is the

sequence of actions chosen by the other agent −𝑖 . So long as agent

−𝑖 response with the correct action 𝑓 (ℎ𝑖
𝑘−1

) at step 𝑘 , agent 𝑖 will

continue to choose actions in [𝑁 − 1]. Therefore, in self-play C will

be (𝛿, 𝜖,𝑇 )-compatible for any 𝛿, 𝜖 > 0.

The AI, however, is unaware of 𝑓 , andmust estimate this function

from D. If the AI’s strategy fails to correctly authenticate at step 𝑘 ,

its partner will switch to the 𝑁 th action, which yields a payoff of

zero, such that the AI will suffer an altruistic regret of𝑇 −𝑘 . Because

𝑓 is deterministic, a meta-strategy found via imitation learning will

correctly authenticate for any history ℎ−𝑖
𝑘−1

found in D, but has a

probability of 1− 1/(𝑁 − 1) of failing to authenticate for an unseen

history. By sampling from a carefully chosen distribution 𝜇, we

can ensure that the probability of encountering an unseen history

is greater than min
{
1
2 , [(𝑁 − 1)𝑘−1 − 1]/(2𝐾 + 1)

}
, which leads

immediately to the lower-bound on the expected altruistic regret.

Note that we can choose any 𝑘 < 𝑇 so as to maximize this lower

bound for any values of 𝑇 , 𝑁 and 𝐾 .

4.4 Lower Bound for Socially Intelligent
Populations

Theorem 4.5. Let 𝐾 = |D|. For any 𝛿, 𝜖 > 0, there exists a class of

games G, and class C of (𝛿, 𝜖,𝑇 )-socially intelligent agents such that,

for any data-dependent meta-strategy 𝜋 (D), the altruistic regret is

lower-bounded as

E
[
𝑅alt𝑖 (ℎ𝑇 ;𝜃−𝑖 )

]
≥ Ω

©«
(𝑇 − 𝑘)min

{
1

2
,
(𝑁 )𝑘−2 − 1

2𝐾 + 1

}ª®¬
, (10)

for some 𝑘 ≥ 𝑇𝜖 .

Proof sketch. Similar to the proof for Theorem 4.3, we can define

a class of games in which players must exchange their private types

to be compatible, while at the same time they can implement consis-

tent behavior without revealing anything about their types. We can

construct a socially intelligent class of agents for this class of games.

We can then augment these agents such that they implement a 𝑘-

step authentication protocol (as in Theorem 4.4) before switching

to the socially intelligent meta-strategy if authentication succeeds.

If authentication fails, the agents will switch to some alternative

consistent meta-strategy. So long as 𝑘 − 1 ≤ 𝑇𝜖 , the resulting class
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of agents will be (𝛿, 𝜖,𝑇 )-socially intelligent. As discussed in section

4.2, a consistent meta-strategy may never communicate an agent’s

type. Without knowing its partner’s type, the AI agent may suffer

arbitrarily large altruistic regret at each step, as it cannot identify

the actions that will maximize its partner’s utility.

5 UPPER BOUND FOR SOCIALLY
INTELLIGENT POPULATIONS

Algorithm 1 The 𝑇 -step imitate-then-commit meta-strategy (de-

noted by 𝜋 𝐼𝐶
𝑇

). It is assumed here that the AI acts as agent 1.

1: Inputs: Interaction dataset D, imitation time 𝑇 .

2: Initialize the imitation policy 𝜋1
𝑇
(𝐷).

3: for step 𝑡 = 1, . . . ,𝑇 do

4: Execute action 𝑎𝑖𝑡 ∼ 𝜋
1

𝑇
(ℎ𝑡 ;𝐷)

5: end for

6: for action 𝑗 ∈ 𝑁 do

7: 𝑧 𝑗 =
∑
𝑖∈𝑁 𝑧 (ℎ𝑇 )𝑖, 𝑗

8: for action 𝑖 ∈ 𝑁 do

9: 𝑥 𝑗 (𝑖) = 𝑧 (ℎ𝑇 )𝑖, 𝑗/𝑧 𝑗
10: end for

11: end for

12: Sample 𝑥 = 𝑥 𝑗 with probably 𝑧 𝑗
13: for step 𝑡 = 𝑇 + 1, . . . ,𝑇 do

14: Execute action 𝑎𝑖𝑡 ∼ 𝑥

15: end for

A key idea behind this work is that against a socially intelligent

target population, rather than trying to imitate a member of the

population perfectly throughout the entire episode, the AI agent

only needs to imitate them long enough to learn about its part-

ner’s private type. Once it has this information, the AI agent can

leverage the fact that the partner’s strategy is consistent against

any strategy, and try to łcoercež the human partner into playing a

strategy that minimizes the altruistic regret. We will refer to such

meta-strategies as imitate-then-commit (IC) strategies, which use

the previous observations D to learn an imitation strategy that it

follows for the first 𝑇 < 𝑇 steps of the interaction. In this section

we provide an upper bound on the expected altruistic regret of a

specific (IC) meta-strategy, as a function of the number of episodes

in D, subject to the following assumptions:

Assumption 5.1. For 𝛿0, 𝛿1, 𝜖0, 𝜖1 > 0, and 𝑇 < 𝑇 , we have that

(1) 𝜌 is (𝛿0, 𝜖0,𝑇 )-consistent.

(2) 𝜌 is (𝛿1, 𝜖1,𝑇 )-compatible.

Imitation learning. Under an imitate-then-commit meta-strategy,

the sample complexity is defined entirely by the number of episodes

the AI agent needs to observe to learn a good 𝑇 -step imitation

policy. Fortunately, imitation learning is a well-studied problem,

and we can largely leverage existing complexity bounds. The one

caveat is that in this setting we need bounds on the total variation

distance between the distribution over the partial history ℎ
𝑇
under

the population strategy 𝜌 , and that under the learned strategy.

Given the dataset D, we define the imitation strategy 𝜋1
𝑇
(D) such

that 𝜋1
𝑇
(ℎ;D) is the empirical distribution over agent 1’s actions

for each history ℎ occurring in D, while 𝜋1
𝑇
(ℎ;D) is the uniform

distribution over𝑁 forℎ ∉ D. We also define themarginal imitation

strategy 𝜋1
𝑇
= ED [𝜋1

𝑇
(ℎ;D)], where the expectation is taken over

the sampling of the dataset D itself. We then have the following

bound on the distribution of ℎ
𝑇
under the imitation strategy:

Lemma 5.2. Let 𝑝
𝑇
be the distribution over partial histories ℎ

𝑇
under the population strategy 𝜌 paired with itself, and let 𝑝

𝑇
be their

distribution under 𝜋1
𝑇
paired with 𝜌 . We have that

∥𝑝
𝑇
− 𝑝

𝑇
∥TV ≤ min



1,
𝑁 2(𝑇+1)𝑇 log(𝐾)

𝐾



, (11)

where 𝐾 = |D|.

This upper bound follows directly from that of [24] via Lemma

1 of [8] (see supplementary material section 2.1 for full proof). We

note that the imitation strategy 𝜋1
𝑇
(ℎ;D) marginalizes over agent

1’s private type, and so the AI does not need to know its own type.

Imitate-then-commit strategy. For historyℎ
𝑇
∈ H

𝑇
, we let 𝑧 (ℎ

𝑇
) ∈

Δ(𝑁 × 𝑁 ) denote the empirical joint strategy played up to and in-

cluding step𝑇 . We show that, given 𝑧 (ℎ
𝑇
), it is possible to construct

a mixture 𝜈 over mixed strategies 𝑥 ∈ Δ(𝑁 ) such that, in expecta-

tion over 𝜈 , the partner’s payoff under their best response to 𝑥 ∼ 𝜈

will be at least as large as their payoff under 𝑧 (ℎ
𝑇
). The IC strategy

described in Algorithm 1 follows 𝜋1
𝑇
(ℎ;D) for the first𝑇 steps, and

then commits to a mixed strategy 𝑥 for he remainder of the inter-

action. We then have the following upper bound on the altruistic

regret achievable with an imitate-then-commit strategy:

Theorem5.3. Given that Assumption 5.1 holds for 𝜌 , if the AI follows

𝜋 IC (D) (Algorithm 1) as agent 1, its altruistic regret satisfies

E

[
1

𝑇
𝑅alt1 (ℎ𝑇 , 𝜃2)

]
≤ 𝛿 (𝐾) + 𝜖1 + 𝛿1 +

𝑇 −𝑇

𝑇
(𝜖0 + 𝛿0), (12)

where 𝐾 = |D| and 𝛿 (𝐾) is defined as

𝛿 (𝐾) = min



1,
𝑁 2(𝑇+1)𝑇 log(𝐾)

𝐾




(13)

and where the expectation is taken over ℎ𝑇 , 𝜽 , and D.

Proof sketch: By Lemma 5.2, we can learn an imitation strategy

such that the corresponding distribution over ℎ
𝑇
and 𝑧 (ℎ

𝑇
) is close

to that under 𝜌 in self-play. As 𝜌 is compatible, both agents’ payoffs

under 𝑧 (ℎ
𝑇
) must be close to those under some PONE. Finally, we

can construct a mixture 𝜈 for agent 1 such that agent 2’s payoffs

under its (approximate) best-response are almost as large as those

under 𝑧 (ℎ
𝑇
) (see supplementary material section 2.2).

6 RELATEDWORKS

Ourwork is closely related to the previous targeted learningmodel [7,

21, 22],which defines similar compatibility and consistency criteria.

The notion of targeted optimality [7] include convergence to learn-

ing an approximately best response in a multi-agent model with

high probability in a tractable number of steps against a population

of memory-bounded adaptive agents. The main difference with our
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work is that targeted learning only requires consistency against a

specific target class of partners, which generally would not include

the agent itself, or other adaptive agents. We require socially intel-

ligent agents to be consistent against all possible partner strategies.

We also require that cooperation and consistent learning occur over

a fixed time horizon𝑇 , rather than asymptotically. These differences

mean that a hypothetical łuniversally cooperativež agent might be

able to leverage the consistency of its partner to achieve cooper-

ation without a prearranged convention. łUniversal cooperationž

in a population is relevant for specific populations as described in

our illustrative examples like surgeons in a hospital, workers in a

factory etc. In these settings it is reasonable to assume that most

agents will be able to cooperate with each other professionally,

since if a member fails to do this, they would be not be a member of

that population. Furthermore, our model allows agents in the popu-

lation to possess highly conflicting preferences, and our definition

of cooperation only requires that agents identify mutually bene-

ficial joint strategies when these exist. Socially intelligent agents

can be modeled as individually rational learners [17] to achieve

Pareto-efficient joint behavior. Our research builds on this work by

considering a learning setting where the agent when paired with

any member of the population will achieve at least the same utility

with high probability as the Pareto-efficient approach.

The problem of training agents to be able to cooperate with

previously unseen partners is sometimes referred to as ad hoc team-

work [19, 27] or zero-shot coordination [14], especially in the context

of multiagent reinforcement learning. Many approaches in rein-

forcement learning train cooperative policies that are robust to

possible strategies that a human or an AI agent can follow [5]. A

lot of these methods build a łpopulationž of partner strategies and

maximizes the diversity of this population in order to train the AI’s

policy against it [10, 28]. Other approaches assume that there is

no prior coordination between the agents [14] to learn rational

joint strategies while estimating the agents’ mutual uncertainty

about one-another’s strategies [30]. Ad-hoc multiagent coordina-

tion can be helpful to learn cooperation among AI agents with the

łother-playž algorithm [14] that finds such a strategy as a solution to

the corresponding label free coordination problem [30]. A possible

approach to solve these problems can be self-play [31] where the

agent can optimize themselves by playing with past iterations of

themselves in order to estimate the strategies of unseen partners.

However, the "self-play" approach can learn cooperative strategies

which can "over-fit" [29] to one another in the population of agents.

A key goal of Ad hoc coordination (teamwork) and aligned research

in zero-shot coordination work has been to avoid this type of over-

fitting [9]. Our problem domain is closely related to both ad hoc

teamwork or zero-shot coordination, since we consider training an

agent to cooperate with previously unseen partners, and assume no

control over the partner. Even though population-based training

approaches to ad hoc teamwork are common, they focus on fully

cooperative environments such as Dec-POMDPs, where the main

issue is creating a diverse enough population to train with [23].

We consider partners that are self-interested, and do not assume

identical payoffs.

Finally, in the case of Hannan-consistent partners, our problem

setting is closely related to strategizing against and learning to ma-

nipulate no-regret learners [4, 11]. This line of work studies whether

an optimizer agent can achieve better payoff than CCE against no-

regret learners by learning to enforce a Stackelberg equilibria on

them. Their emphasis is on online learning and the optimizer’s

payoff, while we focus on the offline setting and cooperation.

7 CONCLUSION

We provide formal guarantees for successful and reliable coopera-

tion of AI agents with populations of socially intelligent agents. We

present a novel definition of social intelligent populations based on

the assumptions that 1) members of the population are individually

rational, and 2) pairs of members can achieve performance compa-

rable to a Pareto-optimal Nash equilibrium.We formalize the notion

of consistency and compatibility of agents in repeated, two-player,

general-sum matrix games with private types. Our theoretical guar-

antees are in the offline cooperation setting where the agent has

to cooperate with unseen partners in the population to strategise

against and manipulate no-regret policies for which we formalize

the idea of altruistic regret. We prove that the assumptions on its

own are insufficient to learn zero-shot cooperation with partners of

the socially intelligent target population. We provide upper bounds

on the sample complexity needed to learn a successful cooperation

strategy along with lower bounds on when the multi-agent cooper-

ation setting is needed with respect to the populations’ trajectories,

the state space and the length of the learning episodes. The bounds

in these settings of the agent actively querying the MDP without

knowing the transition dynamics of the population or the agent

observing the populations’ transition dynamics are much stronger

than the bounds that can be derived by naively reducing the cooper-

ation problem to one of reinforcement learning. These complexity

analysis and formally proven bounds can be helpful to sustainably

model the alignment problem of AI agents.
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