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Abstract
Symmetry principles are fundamental in physics, and while they are well understood within
Lagrangian mechanics, their impact on quantum channels has a range of open questions. The
theory of asymmetry grew out of information-theoretic work on entanglement and quantum
reference frames, and allows us to quantify the degree to which a quantum system encodes
coordinates of a symmetry group. Recently, a complete set of entropic conditions was found for
asymmetry in terms of correlations relative to infinitely many quantum reference frames. However,
these conditions are difficult to use in practice and their physical implications unclear. In the
present theoretical work, we show that this set of conditions has extensive redundancy, and one
can restrict to reference frames forming any closed surface in the state space that has the maximally
mixed state in its interior. This in turn implies that asymmetry can be reduced to just a single
entropic condition evaluated at the maximally mixed state. Contrary to intuition, this shows that
we do not need macroscopic, classical reference frames to determine the asymmetry properties of a
quantum system, but instead infinitesimally small frames suffice. Building on this analysis, we
provide simple, closed conditions to estimate the minimal depolarization needed to make a given
quantum state accessible under channels covariant with any given symmetry group.

1. Introduction

Symmetry principles have been extensively studied both in classical and quantum theory, and in particular
for Lagrangian dynamics of a quantum system [1]. However, such evolution is a strict subset of the most
general kind of physical transformation that quantum theory permits—quantum channels [2]. This more
general setting not only includes unitary dynamics, open system dynamics, and the ability to vary the
system dimension as it transforms, but it also interpolates between deterministic unitary dynamics and
measurements that sharply collapse a quantum system. How symmetry principles constrain quantum
channels is therefore a crucial question.

The study of quantum entanglement [3, 4] lead to a much broader conception of physical properties in
terms of ‘resources’ relative to a set of quantum channels. This gave a precise way to quantify other
fundamental features such as quantum coherence [5–8], thermodynamics [9–11], non-Gaussianity
[12, 13], magic states for quantum computing [14, 15], and many more [16]. In particular, the theory of
asymmetry provides an information-theoretic means to quantify the degree to which a quantum system
breaks a symmetry [6, 17, 18].

Asymmetry sits at the crossroads between abstract quantum information theory and physical laws, and
quantifies what has been called ‘unspeakable quantum information’ [19, 20]. This information cannot be
transcribed into a data string on paper or in an email, but instead requires the transfer of a system that
carries a non-trivial action of the symmetry group, via a symmetric (covariant) quantum channel. Given
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this, such concepts find application in quantum metrology [21], symmetry-constrained dynamics
[17, 22, 23], quantum reference frames [19, 24–28], thermodynamics [29–31], measurement theory
[32–36], macroscopic coherence [37], and quantum speed-limits [38]. More recent work has seen a
renewed interest in quantum reference frames in a relativistic setting and the problem of time in quantum
physics [39–50], as well as applications in quantum computing and covariant quantum error-correcting
codes [51–57], where the Eastin–Knill theorem provides an obstacle to transversal gate-sets forming a
continuous unitary sub-group [51].

The central question considered in this paper concerns transforming from a quantum state ρ to another
quantum state σ under a symmetry constraint. More precisely, we address the following fundamental
question:

Core question: when is it possible to transform ρA to σB under a quantum channel between systems A and
B that is covariant with respect to a symmetry group G?

This question addresses the fundamental way in which symmetries constrain quantum theory, and turns
out to be surprisingly non-trivial. One might initially conjecture that if we consider the generators {Jk} of
the group representation U(g) = exp[i

∑
k gkJk], and conserve their moments 〈Jn

k 〉 := tr[Jn
kρ] from a given

initial state, then this provides an answer to our core question. However, while this intuition is correct in
the case of unitary dynamics on pure states, it is false more generally [17]. In the case of the rotation group,
for example, it is possible for 〈Jk〉 to both increase and decrease under rotationally symmetric operations
[17, 22].

Given this disconnect between the Noether symmetry principle and the generators of the group as
observables for mixed quantum states, one might therefore conjecture that the problem requires an
additional entropic accounting, and we must supplement our analysis with the von Neumann entropy S(ρ)
of the quantum state (or any general entropies that are a function of the spectrum of the state, such as the
Rényi entropies) to determine the solution. Again, this turns out to still be insufficient, and it has been
shown that even if we consider all moments of the generators and the entire spectrum of the initial state ρ,
this still does not answer our core question [17]. The missing asymmetry ingredient is instead a non-trivial
combination of quantum information and physics specific to the symmetry group.

Recent work [58] has provided a complete set of necessary and sufficient conditions for asymmetry
which fully determine the state interconversion structure with respect to a symmetry group G. However,
these conditions turns out to not be particularly intuitive, and moreover form an infinite set that must be
completely checked. The present work unpacks these conditions, determines the minimal set needed, and
obtains finite sets of simpler conditions that could be used in practical situations.

1.1. Main results of the paper
The complete set of asymmetry conditions in [58] are framed in terms of correlations between a given
quantum system A and a quantum reference frame system R, which is in a local state ηR that transforms
non-trivially under the group action. These correlations are measured via the single-shot conditional
entropy measure Hmin(R|A), which is a central quantity in quantum encryption [59]. However, the problem
is that the complete set of conditions requires this entropy to be computed for all possible reference frame
states ηR, and so the question is whether one can reduce to a much simpler set of conditions for asymmetry
theory.

The main results of this work are as follows:

(a) We prove that it suffices to consider any closed surface ∂D of reference frame states ηR that contains the
maximally mixed state in its interior.

(b) We prove that under ε-smoothing a finite number of reference states suffice to determine those states
accessible under G-covariant channels.

(c) We show that reference frames infinitesimally close to the (symmetric) maximally mixed state suffice to
fully specify the partial order induced on quantum states in the resource theory of asymmetry. This
turns out to imply that the question of state interconversion under G-covariant channels is completely
determined by a single entropic minimality condition evaluated at the maximally mixed state.

(d) We derive O(d2) closed conditions to estimate the minimal depolarization noise needed to make any
given output state σ accessible from a state ρ under G-covariant channels. These essentially take the
form

log ‖σλ
j ‖1 − D2(ρλj ‖G(ρ)) � f (d, p), (1)

where σλ
j , ρλj are asymmetry modes with respect to the group [60], and f(d, p) is a function dependent

on the output system dimension, its irrep structure, and the level of depolarization. The function
D2(X‖Y) is a generalization of the sandwiched α = 2 Rényi divergence [61, 62].

2



New J. Phys. 24 (2022) 053023 R Alexander et al

Results ((a)–(c)) show that the structure of reference frame states that determine the asymmetry
properties of a system has a range of freedoms. In particular, result (c) is surprising because it is contrary to
what is expected from previous work on this topic. Previously, it was natural to conjecture that in order to
specify the asymmetry of a state one should make use of reference frame states that encode a group element
as distinguishably as possible. Finally, result (d) exploits the general structure analysed to provide sufficient
conditions, which could find application in describing symmetry-constrained quantum information in
concrete settings.

2. Symmetry constraints and relational physics

Quantum entanglement [4] is usually understood as associated with a pre-order �e on quantum states,
defined by a class of quantum channels called local operations and classical communications (LOCC). The
set of states that can be generated under LOCC are called separable states, and any other state is then said to
have non-trivial entanglement. The pre-order is defined as ρ �e σ if and only if we can transform from ρ

into σ via an LOCC channel. This provides the resource-theoretic formulation of entanglement.
This general perspective on properties of quantum systems can be used in our core question on

transforming between quantum states under a symmetry constraint. Specifically, we can identify a
symmetry ordering � on quantum states, defined now by ρ � σ whenever it is possible to transform from ρ

into σ via a quantum channel that respects a given symmetry group G. The symmetry pre-order then
defines what it means for one quantum state to be more asymmetric than another with respect to the
group G.

We can make this precise in the following way. Given a quantum system A, with associated Hilbert space
HA, we denote by B(HA) the space of bounded linear operators on HA. A symmetry group G acts on the
system via a unitary representation U(g) on HA. States of A are positive, trace-one operators ρ ∈ B(HA),
and at the level of the density operator ρ the symmetry group acts as Ug(ρ) :=U(g)ρU(g)†. A quantum
channel E : B(HA) → B(HB) is a completely-positive, trace-preserving map [2] that sends states of an
input system A to states of some output system B. A quantum channel E is then said to be symmetric, or
G-covariant, with respect to a group action if E(U(g)ρU(g)†) = U(g)E(ρ)U(g)† for all g ∈ G and all states
ρ of the input system. Expressed purely in terms of composition of channels this amounts to

[Ug , E] = 0 for all g ∈ G. (2)

We then have that ρ � σ when there is a G-covariant channel E such that σ = E(ρ). Moreover, a
measure of the system’s asymmetry is any real-valued function M on quantum states such that if ρ � σ

then it must be the case that M(ρ) � M(σ).
A number of measures of asymmetry have been developed, such as relative entropy measures [28, 63],

the skew-Fisher information [17, 18, 64], and the purity of coherence [31]. Any such monotone M(ρ)
provides a necessary condition for a transformation to be possible. However, what is a harder question is
whether one can determine a sufficient set of monotones. Any such set of measures would encode all the
features of the quantum system that relate to the symmetry constraint.

Very recently [58] just such a complete set of measures has been found, in terms of single-shot entropies.
The monotones appearing in these relations are the quantum conditional min-entropies [59], which are
defined, for some state ΩRA on a bipartite system RA, as:

Hmin(R|A)Ω := − log inf
XA�0

{tr[XA] : 𝟙R ⊗ XA � ΩRA},

where the infimum ranges over all positive semidefinite operators XA on Hilbert space HA. For any state ρA

a complete set of measures is then given by

Hη(ρ) := Hmin(R|A)G(η⊗ρ), (3)

where ηR is an arbitrary quantum state on an external reference frame system R, and the single-shot entropy
is evaluated on the bipartite state

G(ηR ⊗ ρA) :=

∫
dg Ug(ηR) ⊗ Ug(ρA). (4)

In terms of transformations between quantum states under a G-covariant channel, we now have the
following result:

Theorem 1 ([58]). Let A, B, and R be three quantum systems with respective Hamiltonians HA, HB and HR

and dimensions dA, dB and dR. Furthermore, let the reference system R be such that dR = dB and HR = −(HB)T.
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The state transformation ρA → σB is possible under a G-covariant operation if and only if

ΔHη � 0, (5)

for all states ηR on HR, where we have defined

ΔHη = Hη(σ) − Hη(ρ), (6)

as the difference in entropy between input and output systems.

As shown in the original paper, the infinite set of entropic conditions outlined in theorem 1 can be
reformulated as a semi-definite programme that can be solved efficiently for sufficiently low-dimensional
quantum systems. However, for larger system sizes it quickly becomes computationally intensive. Moreover,
without simplification, working with these expressions analytically is not an option, since we have an
infinite set of conditions and the physics involved remains hidden.

2.1. Appearance of relativistic features in the quantum-information framework
In quantum gravity, one has the Wheeler–de Witt equation [65] that provides a Hamiltonian constraint
H|Ψ〉 = 0 for a global wavefunction |Ψ〉. This in particular implies global time-translation covariance, and
raised the question of how observed dynamics are consistent with this condition. One answer to this
question was presented by Page and Wootters [66], who argued that time-evolution of subsystems should be
properly viewed in terms of relational correlations between subsystems.

The above complete set of entropic conditions for general covariant transformations has links with this
formalism. In particular, the following features appear from the quantum information-theoretic treatment
when specialised to G being the time-translation group [58]:

• External reference frame systems automatically appear in the information-theoretic analysis.

• The Hamiltonians on R and B obey HR + HT
B = 0 as matrices.

• The properties of any system A that transform non-trivially under the symmetry group are fully
described by correlations between R and A.

• A single-shot Page–Wootters condition emerges in the classical reference frame limit in terms of
optimal guessing-probabilities of the time parameter.

• Local gauge symmetries can be formulated with a causal structure on asymmetry resources [67].

The appearance of a Page–Wootters condition is surprising. The classical limit here is when reference
frame η acts as a good clock, in the sense that one can encode the classical information t into it in such a
way that one can discriminate between two different values t1 and t2 with high probability.

For this regime, the state ΩRA = G(ηR ⊗ ρA) tends to a classical-quantum state, with R behaving as a
classical ‘register’ for t. However, it can be shown that for a classical quantum state ΩRA, where R is classical,
the single-shot entropy corresponds exactly to an optimal guessing probability [68]. More precisely, it can
be proved that

− log Hmin(R|A)Ω = popt(t), (7)

where popt(t) is the optimal guessing probability for the value of t, over all generalised POVM

measurements, given the state U(t)ρU(t)†. This provides a refinement of the Page–Wootters formalism.
This interpretation of the Hmin(R|A)Ω terms extends to arbitrary states on R. In the fully general case it

quantifies the optimal singlet fraction [68], the degree to which the state ΩRA can be transformed to a
maximally entangled (perfectly correlated) state through action on A alone. It is also possible to include
thermodynamics into this setting without much complication. For this extension, varying the state ηR

allows us to interpolate smoothly between free energy-like conditions and clock-like conditions [58].
The above features come solely from the single-shot quantum-information formalism of the problem,

and show that these aspects are fundamental. It therefore motivates a deeper analysis of the complete set of
entropic conditions with the aim of unpacking the physical content and determining the minimal
information-theoretic conditions that describe fully general symmetric transformations of quantum
systems.

2.2. Warm-up example: a curious dependence on reference frame states
It is useful to first illustrate special cases of the Hmin(R|A) conditions for the elementary case of channels
sending a single qubit to a single qubit under a U(1)-covariant symmetry constraint. For concreteness, we
take this to be time-translation U(t) = e−itHA under a qubit Hamiltonian HA = σz, where (σx,σy,σz) are
the Pauli matrices for the qubit system.

4
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Figure 1. ‘Less is more’: near-symmetric reference frame states are optimal. We consider a qubit system under G = U(1)
symmetry. Given a reference frame state ηR (blue dot), the shaded region Tη corresponds to potential states in the Bloch sphere
which ηR classes as accessible from the state ρ (the black dot) under a covariant transformation. The black curve marks the
boundary of all states that are covariantly accessible from ρ, and is obtained from the intersection of all regions Tη . Suprisingly,
the maximum coherence state ηR = |+〉〈+| gives a weak bound (figure (c)), but shifting ηR towards the symmetric eigenstate |0〉
(|1〉) while keeping it pure improves the part of the bound above (below) ρ (figure (b)). In fact, by taking ηR infinitesimally close
to |0〉 and |1〉, one obtains the complete constraints with arbitrary accuracy (the combination of figures (a) and (d)).

We must therefore consider an auxiliary qubit reference frame R in a state ηR with HR = −σz, and
compute the conditional min-entropy on the joint state

G(ηR ⊗ ρA) =

∫ 2π

0

dt

2π
Ut(ηR) ⊗ Ut(ρA). (8)

We also choose ρA = 1
2 (𝟙+ 1

2σx +
1
2σz) and look at how each choice of reference frame state ηR constrains

the region of quantum states accessible under time-covariant quantum channels. For fixed input state ρ, we
define the set

Tη := {σA : Hη(σ) � Hη(ρ)}. (9)

In other words, Tη is the region of quantum states the reference frame state ηR classes as admissible for
time-covariant transformations. As such, σ ∈ Tη constitutes a necessary, but not sufficient, condition on the
pre-order ρ � σ.

The natural first choice for a reference frame state is ηR = |+〉〈+|; with a uniform superposition over
energy eigenstates, this is in a sense the ‘best’ clock state one can find for the qubit in that it can encode a
single bit of data about the parameter t, which is the maximum allowed by the Holevo bound [2]. The
region Tη in this case is plotted in figure 1(c).

We now consider other choices of reference frame states, and find a surprising result. If we take
ηR = |ϕ〉〈ϕ| with |ϕ〉 approaching either |0〉 or |1〉, the region Tη provides a better approximation to the
actual region of quantum states accessible under time-covariant channels. This is shown in figure 1.

We also find the following striking result: the accessible region is exactly recovered if we consider just
two reference frame states η0 = |ϕ0〉〈ϕ0| and η1 = |ϕ1〉〈ϕ1|, where η0 is infinitesimally close to |0〉〈0| and
η1 infinitesimally close to |1〉〈1| (a proof may be found in appendix G.1.1). However, if we took the
reference frame states to be exactly equal to these pure symmetric states, then Tη is the entire Bloch sphere,
and the constraints determined by the reference frame state disappear completely!

This suggests that the constraints coming from the reference frame, via the correlations in the state
Ω(ρA), have a non-trivial and counter-intuitive dependence on the state ηR. However, this simple example
also illustrates that there are significant redundancies in the entropic set of conditions—we have reduced
from having to compute infinitely many conditions to just two. The question then becomes whether such
features carry over to more general situations, and to what degree can we reduce the set of reference frames
so as to determine the minimal relational data needed to specify the asymmetry properties of a quantum
state with respect to an arbitrary group G.

5
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3. Sufficient surfaces of reference frame states for a general group G

We shall begin our analysis by reducing the set of reference frames needed substantially and establishing
high-level results. These shed light on the structure of the problem and lead to our tractable set of
conditions in section 5.

3.1. Basic reference frame redundancies
The entropic conditions in theorem 1 are over-complete, and contain a large number of redundancies.
Firstly, given two reference states η0 and η1 on R such that

η1 = V(η0), (10)

for some unitary channel VR and
[VR ⊗ idA,G] = 0, (11)

then it can be shown (see appendix B.1) that ΔHη0 = ΔHη1 for all possible input and output states. This
invariance is a special case of the following lemma, which we prove in appendix B.1:

Lemma 2. Let VR : B(HR) → B(HR′) and WA : B(HA) → B(HA′) be local isometries that jointly commute
with the G-twirl, i.e.

[VR ⊗WA,G] = 0. (12)

We then have:
HV(η)(W(ρ)) = Hη(ρ) (13)

for any pair of quantum states η and ρ on HR and HA respectively.

A second set of redundancies comes from considering the asymmetric modes of the input state, which are
a particular decomposition of ρ into irreducible components which transform simply under G-covariant
operations [60]. More precisely, any state ρ can be decomposed into independent modes of asymmetry
labelled by (λ, j):

ρ =
∑
λ,j

ρλj : ρλj =
∑
α

tr
[

X(λ,α)†
j ρ

]
X(λ,α)

j , (14)

where λ labels an irreducible representation (irrep) of G, j labels the basis vector of the given irrep λ, α

labels any multiplicity degrees of freedom, and the set
{

X(λ,α)
j

}
form an orthonormal irreducible tensor

operator (ITO) basis for B(H) (see appendix A for further details). It has been shown [60] that every
G-covariant channel E : E(ρ) = σ acts independently on the different modes of the input state such that

E(ρλj ) = σλ
j , (15)

for any (λ, j). Let the asymmetric modes of a state ρ be denoted modes(ρ). Then it follows from
equation (15) that

modes(σ) ⊆ modes(ρ), (16)

is a necessary condition for a G-covariant transition from ρ to σ. Moreover, it turns out that if we assume
that the condition equation (16) holds, then it suffices to range only over reference frame states η such that
modes(η) = modes(ρ) (a proof is given in appendix C.2).

3.2. Necessary and sufficient surfaces of reference frame states
It turns out that the entropic set of conditions have a more non-obvious kind of redundancy. Any reference
state η can be written in an orthogonal basis of Hermitian operators { 𝟙

d , X1, . . . , Xd2−1} as

η(x) :=
𝟙
d
+

d2−1∑
k=1

xkXk, (17)

where xk ∈ R and ‖Xk‖∞ = 1
d for all k ∈ {1, . . . , d2 − 1} provide coordinates for the state. With this in

mind, we now have the following result:

Theorem 3 (Sufficient surfaces of states). Let all states and systems be defined as in theorem 1. Let ∂D be any
closed d2 − 2 dimensional surface in the state space of R that has 𝟙

d in its interior. The state transformation
ρ → σ is possible under a G-covariant channel if and only if

ΔHη � 0, (18)

for all reference frame states η ∈ ∂D.

6
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Figure 2. (Sufficient surfaces of reference frames). There is extensive freedom in the choice of sufficient reference states.
According to theorem 3, any surface inside the set of all reference states SR that encloses the maximally mixed state is a sufficient
set of reference frames—the three surfaces shown all provide the same information. The blue region is the set of symmetric
states.

A proof is given in appendix D.2, and follows from fact that the conditional min-entropies behave
particularly simply under the application of a partial depolarizing channel on the reference system
(see lemma 19). Informally, theorem 3 tells us that any closed surface of reference frames enclosing the
maximally mixed state constitutes a sufficient set in which to evaluate the entropic conditions in
equation (18). A pictorial representation of this theorem is shown in figure 2, where the surfaces D1,D2,
and D3 all form sufficient sets of reference frame states in SR.

Combined with the redundancies of section 3.1, we have that only a subset of ∂D will produce
non-trivial constraints—namely the intersection of ∂D with the set of output states that have the same
asymmetric modes as ρ, quotiented by the action of the unitary sub-group of channels VR obeying
equation (11). While these results reduce the complexity of our problem from checking the entropic
conditions on the whole set of density operators on HR to a subset of a lower-dimensional manifold of
states, we still must range over an uncountably infinite set of states. To combat this, in the next section we
instead consider a smoothing of the exact conditions given in theorem 3, which allows for a reduction of the
problem to a finite set of reference frames.

3.3. A finite set of reference states under ε-smoothing
It is natural to consider a ‘smoothed’ version of the asymmetry conditions in which we are limited to some
ε-ball resolution around states [59, 69], where an ε-ball around a state τ is defined by

Bε(τ) := {τ̃ ∈ B(H) : D(τ , τ̃ ) � ε}, (19)

and D is the generalized trace distance [70]. This is physically motivated by the fact that in any practical
experimental scenario, two states that are in a sense close cannot be distinguished up to some finite
precision in the measurement apparatus. Here we prove that, if we allow for some ε-probability of error in
the transformation, then we can restrict to a finite set of reference frame states.

To perform the ε-smoothing over the reference system, we need the following lemma, which states that
the entropic relations are continuous functions of the reference frame state.

Lemma 4. For any η̃ ∈ Bε(η), we have

|ΔHη̃ −ΔHη| � 2d2
Rε

ln 2(1 − 2ε)
. (20)

Note that if we further restrict η̃ to normalised states and define r(ε) :=
2d2

Rε

ln 2 this simplifies to

|ΔHη̃ −ΔHη| � r(ε). (21)

Proof. A proof is given in appendix E.1. �

Therefore, an ε-variation in the choice of the reference state η corresponds to an ε-small variation in the
entropy difference ΔHη .

7
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A corollary of theorem 3 is that it is sufficient to consider only reference frame states of the form
equation (17) that live on the surface of a sphere about the maximally mixed state. It can be shown [71, 72]
that there exists a finite ε-net {η1, η2, . . . , ηN} covering this set of reference states. This gives rise to the
following result:

Theorem 5. Given any ε > 0 resolving scale, there is a finite set of reference frame states N := {ηk}N
k=1 with

N = O
(

(1 + 1
ε
)d2−1

)
that leads to the following cases:

• If ΔHηk
< 0 for any ηk ∈ N then ρ → σ is forbidden under all G-covariant quantum channels.

• If ΔHηk
� r(ε) for all ηk ∈ N then ρ → σ under a G-covariant quantum channel.

• For each ηk ∈ N that has 0 � ΔHηk
< r(ε) we can obtain O(ε) upper bound estimates of the minimal

asymmetry resources needed to realise the transformation.

A proof is provided in appendix E.2.
This implies that the entropic relation can be checked on a finite number of reference frames states, and

furthermore each individual reference frame state can give us some information.
The above result is potentially of interest in numerical studies of low-dimensional systems. However, it

does not shed much additional light on the structure of covariant state transformations. Therefore, instead
of developing this line further here, we look at a limiting regime of reference frame states that make things
clearer. This in turn lead to a more user-friendly set of conditions for ‘smoothed’ interconversions in
section 5.

4. Infinitesimal reference frames and a single minimality condition for asymmetry

While we have a finite number of conditions for smoothed asymmetry, these are, by construction, of only
approximate validity, and are not very physically informative. The surface condition of theorem 3 reduces
the problem significantly, but still leaves us with an infinite set of reference frames to check.

However, we can take the region D in theorem 3 to be any arbitrarily small region around the maximally
mixed state, and so restrict to reference frame states that are arbitrarily close to being trivial, without
affecting the completeness of the set of reference frames. This shows that the counter-intuitive features we
highlighted in the qubit case are in fact generic and appear for any dimension and any group action.

A statement of this is as follows.

Theorem 6. Given systems A and B, it is possible to transform a quantum state ρA of A into a state σB of B
under a G-covariant quantum channel if and only if ΔHη has a local minimum at ηR = 𝟙

d .

Proof. We first note that ΔHη = 0 whenever ηR is symmetric (see lemma 12 in the appendices), and

therefore ΔHη = 0 when ηR = 𝟙
d . If we assume that ρA

G−→ σB, i.e. ρA can be transformed into σB via a

G-covariant channel, then theorem 1 implies that ΔHη has a global minimum at ηR = 𝟙
d , which must

therefore be a local minimum as well. Conversely, if we assume ΔHη has a local minimum at ηR = 𝟙
d , then

there exists a neighbourhood D around ηR = 𝟙
d in which ΔHη � ΔH𝟙/d = 0. The conditional entropies are

continuous in ηR, so we have ΔHη � 0 on ∂D as well. We conclude by theorem 3 that ρA
G−→ σB.

Therefore, ρA
G−→ σB if and only if ηR = 𝟙

d is a local minimum of ΔHη . �

This result is surprising, since we would expect that ‘optimal’ information would be obtained by
evaluating the entropic relations on reference states that are closest to being a ‘classical’ reference frame
[19], namely a state |φ〉 whose orbit |φ(g)〉 :=U(g)|ψ〉 under G encodes all group elements completely
distinguishably, i.e.

〈φ(g)|φ(g′)〉 = δ(g−1g′) (22)

for all g, g′ ∈ G.
The use of such a reference frame |φ〉 allows us to ‘relativise’ all symmetries and construct covariant

versions of every aspect of quantum theory [19, 64, 73–76]. This is done via a relativising map

A → Ã :=

∫
dg Ug(A) ⊗ |φ(g)〉〈φ(g)|, (23)

which can be viewed as a quantum to classical-quantum channel. In the limit of a classical reference frame
with 〈φ(g)|φ(g′)〉 = δ(g−1g

′
), the mapping becomes reversible via a readout from the classical register.

However, for reference frame states that are not classical, the encoding is fundamentally noisy and so it is
expected that the asymmetry features of a quantum state are not properly described within the encoding.
Theorem 6, however, tells us this is not the case.

8
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This ability to restrict relational data to the case of infinitesimally small reference frames suggests that
asymmetry theory admits a differential geometry description in terms of the tangent space of operators at
the maximally mixed state. Given that the interconversion of states under G-covariant channels corresponds
to a local minimum condition we might also expect that asymmetry is described by information geometry
[77, 78], and a single curvature computed from the Hmin(R|A) entropy. This would imply that the
asymmetry properties of a system are fully described by a form of quantum Fisher information [64].

We find that, for our warm-up example of G = U(1) on a qubit, something like this does indeed occur.
We show in appendix G.1.1 that

ρ
U(1)−−−→ σ if and only if ∂2

θ (ΔHη) � 0, at θ = 0,π, (24)

where θ is the angle the Bloch vector of η makes with the Z-axis. In this case, the problem reduces to
checking just two conditions, framed as a curvature term in the angular direction. We leave as a topic for
future study whether this drastic reduction is simply a low-dimensional anomaly or indicative of deeper
information-theoretic principles, for instance that the curvature of ΔHη at pure symmetric reference states
(where they exist) may suffice to determine the asymmetry properties of any state. However, as the rest of
this section shows, in the radial direction one does not have a smooth variation. Instead, we conjecture that
under ε-smoothing a complete curvature condition exists in all directions with the angular directions
providing the non-trivial constraint. In the next section we give explicit details on this troublesome radial
behaviour.

4.1. Conical behaviour at the maximally mixed state
We now consider the behaviour of the Hη entropies in the neighbourhood of the maximally mixed state.
Once again, we characterise reference frame states using the co-ordinate system in equation (17) as η(x),
where the maximally mixed state is located at x = 0. We further define

Φτ (x) := 2−Hη(x)(τ) (25)

and Φ̃τ (x) :=Φτ (x) − Φτ (0), which gives the difference in Φτ between the maximally mixed state and the
reference state at x.

As a result of lemma 20, Φ̃τ (x) has the following properties:

Lemma 7. Let γ � 0. Then for all x, γx ∈ S, where S is the set of all co-ordinates corresponding to reference
states:

Φ̃τ (γx) = γΦ̃τ (x). (26)

Furthermore,
Φ̃τ (x) � 0. (27)

Proof. A proof can be found at appendix F. �

We conclude from the above lemma that Φ̃τ (x), and consequently Φτ (x), is linearly non-decreasing in
every direction out of the maximally mixed state. This means Φτ (x) will, in general, have a conical form at
the maximally mixed state; as a result, unless ΔΦ(x) is completely linear, it will have a singularity at the
maximally mixed state. Using the defining relationship between Φτ (x) and the min-entropy, we further
derive from lemma 7 that, for sufficiently small ε � 0,

ΔH(εx) = dεΔΦ(x) + O(ε2), (28)

where ΔΦ(x) :=Φρ(x) − Φσ(x). In the neighbourhood of the maximally mixed state, the behaviour of
ΔHη is thus given by that of ΔΦ, and so in this single-shot regime we do not in general have smooth
behaviour at the maximally mixed state in the radial direction.

4.2. Structure of Φτ (x) for simple cases
To illustrate this in practice, we now provide two examples on a qubit system for G = U(1) and G = SU(2).

4.2.1. The case of time-covariant U(1)
We first present Φτ for time-covariant transformations in a non-degenerate qubit. Consider a qubit with the
Hamiltonian σz. The states of this qubit are restricted to transforming among each other via channels that
commute with all time translations {Ut : t ∈ [0, 2π)}, where Ut(·) = e−iσzt(·)eiσzt . This set of
time-translations form a unitary representation of the group U(1).

9
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We parameterise an arbitrary state τ of this qubit in its energy eigenbasis as:

τ :=

(
pτ cτ
c∗τ 1 − pτ

)
. (29)

We further use the (scaled) Pauli operators { 𝟙
2 , σx

2 ,
σy

2 , σz
2 } as our basis for characterising reference frame

states according to equation (17). The Bloch vector of a state, (x, y, z), gives its co-ordinates in this basis. A
direct computation (see appendix G.1) gives

Φτ (x, y, z) =
|cτ |2

1 − pτ

x2 + y2

4z
+

z

2
+

1

2
(30a)

for the region 0 �
√

x2+y2

2z � 1−pτ
|cτ | , and

Φτ (x, y, z) =

(
pτ −

1

2

)
z + |cτ |

√
x2 + y2 +

1

2
(30b)

for the region
√

x2+y2

2z � 1−pτ
|cτ | and

√
x2+y2

2z � − pτ
|cτ | , and finally

Φτ (x, y, z) = −|cτ |2

pτ

x2 + y2

4z
− z

2
+

1

2
(30c)

for the region 0 �
√

x2+y2

2z � − pτ
|cτ | . When ρ and σ are not both symmetric, ΔΦ(x) is completely linear if

and only if |cρ| = |cσ| (removes non-linear term arising from equation (30b)) and pρ = pσ (removes further
non-linear terms arising from equations (30a) and (30c)). Since these conditions are equivalent to
ρ = Ut(σ) for some t, for arbitrary asymmetric choices of ρ and σ we almost always expect a conical
singularity in ΔHη at η = 𝟙

d .
This analysis illustrates how the original complete set of entropic conditions has many redundancies. We

explicitly see the conical behaviour at the maximally mixed state (0, 0) in figure 3(a), where we have plotted
Φτ for an example state defined by cτ =

1
3 and pτ =

1
3 . Mathematically, this conical behaviour is given by

Φτ (γ(x, y, z)) = γ

(
Φτ (x, y, z) − 1

2

)
+

1

2
, (31)

where γ is a positive scaling factor, which is captured by the even spacing of the contour lines in figure 3(b)
as (z, r :=

√
x2 + y2) → (0, 0) along any straight line.

There are also some redundancies specific to this physical system. Because U(1) is abelian, we have that
[Ut ⊗ 𝟙,G] = 0 for all t, so lemma 2 implies, for any r � 0, that

Φτ (r cos(t), r sin(t), z) = Φτ (r, 0, z), (32)

and so Φτ has cylindrical symmetry around the z-axis. More non-trivially, lemma 2 may also be applied to
X ⊗ X , where X (·) := σx(·)σx, since [X ⊗ X ,G] = 0. This means

ΦX (τ)(x, y, z) = Φτ (x,−y,−z). (33)

According to the parameterisation of τ we have chosen, X (τ) means cτ → c∗τ and pτ → 1 − pτ . In this way,
Φτ for reference states in the bottom half of the Bloch sphere (i.e. z � 0) can be calculated from ΦX (τ) for
reference states in the top half (z � 0).

Given any ρ and σ, we can look at the minimality condition at (0, 0, 0) and obtain reference
frame-independent conditions that recover known results [79] on necessary and sufficient conditions for
time-covariant transitions in a non-degenerate qubit:

|cρ|2

1 − pρ
� |cσ|2

1 − pσ
for pσ � pρ, (34)

and
|cρ|2

pρ
� |cσ|2

pσ
for pσ � pρ. (35)

10
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Figure 3. Conical structure for time covariance. Shown here is Φτ (x) for time-covariant transformations in a non-degenerate
qubit from the state τ with cτ =

1
3 and pτ =

1
3 , plotted for 0 � r � 1, where r :=

√
x2 + y2, and −1 � z � 1. The

non-decreasing linear behaviour of Φτ (x) in every direction out of the maximally mixed state (i.e. along any straight line out of
r = 0, z = 0) is readily seen in (a) and generates the conical behaviour discussed in the text. Figure (b) gives a contour plot of
Φτ (x) as a function of the reference frame state Bloch vector.

Comparing with (30), this means when pσ � pρ, checking ΔΦη � 0 for a single reference state with
co-ordinates in the range

0 �
√

x2 + y2

2z
� min

{
1 − pρ
|cρ|

,
1 − pτ
|cτ |

}
(36)

is sufficient to determine whether a covariant transition can occur. Similarly, when pσ � pρ, checking ΔΦη

for a single reference state with co-ordinates in the range

0 �
√

x2 + y2

2z
� max

{
− pρ
|cρ|

,− pσ
|cσ|

}
(37)

is sufficient.

4.2.2. The case of SU(2)-covariant transformations
We now consider the case of G = SU(2) on a qubit. In this case, G-covariant channels partially depolarise
and may additionally invert the input state about the maximally mixed state [22]. We will continue to write
η in its Bloch basis as in the U(1) example, and will parameterise τ as before. Using the simplifying
abbreviations σ := (σx,σy ,σz)T and x = (x, y, z)T, we have

η(x) :=
1

2
(𝟙+ x · σ), (38)

ρ(r) :=
1

2
(𝟙+ r · σ). (39)

Given x = (x, y, z) we define x = (x,−y, z).
The form of Φτ (x) is then given by (see appendix G.2):

Φτ (x) =

⎧⎪⎪⎨
⎪⎪⎩

1

2
(1 + x · r) if x · r � 0,

1

2

(
1 − 1

3
x

)
· r otherwise.

(40)

11
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We see that Φτ (x) is piecewise linear with the plane x · r = 0 distinguishing the two regions.
Consider an input state ρ and an output state σ that are not maximally mixed. Letting r and s be the

Bloch vectors of ρ and σ respectively, this means r, s �= 0. Let us further restrict ourselves to the case where
ρ and σ are not located along the same diameter in the Bloch sphere. This implies both r − s �= 0 and that
r − s cannot be anti-parallel to s. Therefore, it is always possible to find x′ �= 0 such that x′ lies strictly above
both the plane x · s = 0 and the plane x · (r − s) = 0. This means

x′ · r > x′ · s > 0, (41)

so ΔΦ(x′) must be calculated from the top solution in equation (40) as

ΔΦ(x′) =
1

2
x′ · (r − s). (42)

Conversely, −x′ must lie strictly below both the plane x · s = 0 and the plane x · (r − s) = 0, so
ΔΦ(−x′) must be calculated from the bottom solution in equation (40), which means

ΔΦ(−x′) =
1

6
x′ · (r − s). (43)

We must therefore conclude that if ρ and σ are neither maximally mixed nor located along the same
diameter of the Bloch sphere, then there exists x′ such that:

ΔΦ(0) = 0 �= 2

3
x′ · (r − s) (44)

= ΔΦ(x′) + ΔΦ(−x′). (45)

Since most choices of ρ and σ satisfy these requirements, we see that ΔΦ(x) is almost never completely
linear. In this example, ΔHη also almost always has a conical singularity at η = 𝟙

d .

5. Robust symmetric transformations of general states with minimal depolarization

In principle the minimality condition in theorem 6 gives a complete description of the asymmetry
properties of quantum states. However, as the preceding examples have shown, standard tests for local
minima are typically not applicable for the functional ΔHη , and thus computing this necessary and
sufficient condition presents a technical challenge which we leave for future study. Instead, we can adopt a
more physical perspective on the problem and look for a complete set of conditions where we weaken the

assumptions for the interconversion. For example instead of ρ
G−→ σ we could ask the question:

What is the minimal amount of depolarization noise we need to add to σ so as to make it accessible from the
initial state ρ via a G-covariant channel?

Since the maximally mixed state is invariant for any group action, this form applies to all symmetry
groups G. It also incorporates a type of robustness. Suppose, for example, that σ is outside the set of states
accessible from ρ under covariant channels by a trace distance of ε � 1. Then in practical terms the
interconversion is effectively possible, and it is easy to construct examples in which partially depolarizing σ

by only O(ε) can bring the state inside the accessible region. The strict conditions would say that it is
impossible to transform from ρ to σ, yet it is clear that we only require O(ε) amount of depolarising noise
in order to make the transformation possible. Therefore the above question is more physically relevant than
the simple ‘yes/no’ question of exact interconversion.

The formulation of the problem therefore involves smoothing our output state with the maximally
mixed state:

σ → σp := (1 − p)σ + p
𝟙
d

, (46)

where p is an error probability, and we wish to estimate how small p can be so as to make ρ
G−→σp possible

via a covariant quantum channel. As we will see, this set of sufficient conditions has the benefit of being
straightforward to compute.

We make use of two core ingredients for our results. First, we recall the asymmetric mode
decomposition of our input and output states, defined in equation (14), to derive conditions which must be
satisfied on each of the modes (λ, j) independently. (In the following, we will denote the trivial irrep of the
group by λ = 0.) This manoeuvre is physically motivated by the condition that a G-covariant quantum
channel always maps any given mode of the input state to the very same mode of the output state, with no
‘mixing’ between the different modes. Therefore, exploiting the modal structure of G-covariant operations
to construct sufficient conditions is in a sense natural.

12
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Figure 4. Constructing state interconversion conditions. If, for a complete set of reference frame states {η}, we construct some
family of covariant protocols that transform from a state ρ to Eη(ρ) that has a higher Hilbert–Schmidt overlap with η than σ has
with η, then it is possible to transform from ρ to σ under a G-covariant channel.

Secondly, we have the sandwiched α-Rényi divergence Dα(ρ‖σ) for two states ρ,σ of a quantum system,
which is defined as [61, 62]

Dα(ρ‖σ) :=
1

α− 1
log tr

[
σ

1−α
2α ρσ

1−α
2α

]α
, (47)

whenever the support of ρ lies in the support of σ, and is infinite otherwise. Our results turn out to be most
compactly expressed in terms of the following generalization of the α = 2 sandwiched Rényi divergence,
which extends the domain of the first argument to all linear operators in the support of σ, and reproduces
the standard definition when that first argument is Hermitian:

D2(X‖σ) := log tr

([
σ− 1

4 Xσ− 1
4

]† [
σ− 1

4 Xσ− 1
4

])
. (48)

We also use the following result, which provides a way of certifying a covariant transformation between a
state ρ and a state σ by constructing a family of covariant channels that obey an easier inequality. The
intuitive idea for these conditions is shown in figure 4 and we give its proof in appendix H.

Lemma 8. Let ρA, σB, and ηR be quantum states on systems A, B, and R, respectively, where dR = dB. If there
exists a family of covariant channels Eη : S(HA) → S(HR) parameterised by η such that

tr[ηEη(ρ)] � tr[ησ], (49)

for all η in some sufficient surface of states, then ρ
G−→σ under a covariant channel.

The reason this makes the problem easier is that we need only ensure a collection of inequalities hold,
rather than trying to solve the exact equality E(ρ) = σ for some covariant E . In practice this turns out to be
relatively easy to achieve, as we now demonstrate in the scenario where we allow depolarization of the
output state.

We use the previous lemma to obtain the following theorem, which gives an estimate of the minimal
amount of depolarization needed in order to make a transformation possible under covariant channels.

Theorem 9. Let 0 � p � 1 be a probability. There exists a G-covariant channel transforming ρ into
σp := (1 − p)σ + p𝟙

d if

D2(ρλj ‖G(ρ)) � log gλj (σ) − log n−1

(
μmin +

p

d(1 − p)

)
, (50)

for all λ �= 0, j, where μmin is the smallest non-zero eigenvalue of G(σ), and gλj (σ) :=
∑

α

∣∣∣tr[X(λ,α)†
j σ]

∣∣∣. The

operators X(λ,α)
j form an ITO basis for B(HB), where HB is the Hilbert space of the output system, and n is the

sum of the dimensions of all distinct non-trivial irreps appearing in the representation of G on B(HB).

A proof is given in appendix H, and exploits the SDP duality structure for covariant interconversion to
determine an admissible range of values for p. This analysis is done by using a family of pretty good
measurement schemes [80] that attempt to generate as large a fidelity with the set of all reference frame
states ηR as possible. By modifying this general strategy, we anticipate that the results presented here can
almost certainly be improved upon, and it would be of interest to study how well similar families perform
relative to the exact SDP solution to the covariant interconversion problem.

13
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Figure 5. Depolarization conditions for a qubit system. An exact treatment of how states transform under G-covariant channels
requires non-trivial computations, however the closed, robust conditions given in theorem 10 provide a simple means to estimate
the interconversion structure. Here we demonstrate this for the case of d = 2 and G = U(1). Left: the black dot shows an initial
qubit state ρ with Bloch vector r := ( 1

2 , 0, 1
2 ). The large blue shaded region (SDP) defines the full set of output qubit states that

can be reached under covariant maps for the group G = U(1) of time-translations generated by H = σz, computed via the exact
interconversion conditions. The smaller pink shaded region (SC) overlapping this shows the region given by the conditions given
in theorem 10. Right: here the black dot now represents the output qubit state σ, and the shaded regions correspond to the set of
input states {ρ} that can be transformed into σ via a G-covariant channel for the full set of conditions (SDP) and the robust
approximation conditions (SC). (Note that despite appearances the boundary of the SDP region is not linear.)

When the input and output systems are the same, we can provide a strengthening of the above
conditions to the following form:

Theorem 10. Consider transformations from a quantum system A to itself. Assume for simplicity that G(σ) is
full-rank. There exists a G-covariant channel transforming ρ into σp := (1 − p)σ + p 𝟙

d if ρ = σp or if for any
q ∈ (q∗, 1] we have

D2(ρλj ‖G(ρ)) � log gλj (σp(q)) − log n−1μmin(G[σp(q)]), (51)

for all λ �= 0, j, where we have σp(q) :=σp − (1 − q)ρ, q∗ := min{q ∈ R
+ : G(σp(q)) � 0}, μmin(G[σp(q)]) is

the smallest eigenvalue of G[σp(q)], and all other terms are as defined in theorem 9.

Given that the analysis is built on pretty good measurement schemes for resolving group elements, it is
expected that a measure-and-prepare strategy (such as above, or a slightly modified version) will behave
well when ρ has many large modes of asymmetry for the group. While this can be achieved for systems with
a large dimension, we find that even for low dimensional systems the conditions perform well. For example,
in figure 5, we plot the performance of the sufficient condition for the group G = U(1) of time translations
generated by the Hamiltonian H = σz for a qubit system in initial state ρ = 1

2 (𝟙+ 1
2σx +

1
2σz). On the left,

we plot the set of output states {σ} for which our sufficient condition tells us are accessible from ρ (pink
shaded region) relative to the full set of accessible output states granted by the complete set of conditions
stated in theorem 1 (blue shaded region).

We also note that we can recast our sufficient conditions in terms of familiar norms. We first note that
we always have gλj (σ) �

∥∥∥σλ
j

∥∥∥
1
, where ‖X‖1 := tr

[√
X†X

]
is the trace norm. Therefore it follows from

theorem 9 that exists a G-covariant operation transforming ρ into σ if

n−1
∥∥ρλj ∥∥2

2
�
∥∥σ̃λ

j

∥∥
1
, ∀ λ �= 0, j, (52)

where the notation ρλj :=G(ρ)−
1
4 ρλj G(ρ)−

1
4 and σ̃ = σμ−1

min, and ‖X‖2 :=
√

tr[X†X] is the Frobenius norm.

We note that
∥∥∥σλ

j

∥∥∥
1

for λ �= 0 is a known asymmetry monotone that measures the the degree of asymmetry

in the (λ, j)-mode of σ [60].

6. Outlook

In this work we have shown that the recent complete set of entropic conditions for asymmetry can be
greatly simplified, and more importantly, can be converted into useful forms. The fact that the reference
frames that are needed to describe asymmetry can be taken to have arbitrarily small modes of asymmetry
suggest that a deeper analysis should be possible in terms of differential geometry, as opposed to quantities
such as the degree to which a quantum state encodes group data. We expect that this should take the form
of a Fisher-like information [17, 18, 64], and in particular it is of interest to see if it is possible to replace the
Hmin(R|A) entropy with the conditional von-Neumann entropy H(R|A), which would allow explicit analytic
computations.

Beyond this, a range of other interesting questions exist. For example we have not exploited the duality
relations [68, 70] between Hmin(R|A) and Hmax(R|S) where S is a purifying system for the state ΩRA. For
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example, for the case of time-translation symmetry the joint purified state admits two notable forms. The
first is an energetic form:

ΩRAS =
∑

E

√
p(E)|ϕ(E)〉RA ⊗ |E〉S (53)

obtained from considering ΩRA = G(ηR ⊗ ρA) =
∑

EΠ(E)(ηR ⊗ ρA)Π(E) as an ensemble of states over
energy sectors, Π(E) being the projector onto the energy E subspace of RA. While the second is a temporal
form, given by

ΩRAS =

∫
dt |φ(t)〉RAS, (54)

with |φ(t)〉RAS being a purification of Ut(ηR) ⊗ Ut(ρA). It would be of interest to explore these two forms
and also their connection to entropic uncertainty relations.

Finally, it would also be valuable to see how the explicit conditions given by theorems 9 and 10 could be
used in concrete settings, such as for covariant quantum error-correcting codes [52–54], thermodynamics
[58] or metrology [21]. Moreover, the method of constructing these conditions can certainly be improved
upon by using more detailed covariant protocols.
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Appendix A. Notation and background details

To any quantum system we have an associated Hilbert space H, and the set of bounded linear operators on
this space denoted by B(H). Given a group G we denote its representation on H by U(g) and on B(H) as Ug

where Ug(X) = U(g)XU(g)† for any X ∈ B(H) and any g ∈ G.
We define D(ρ,σ) := 1

2‖ρ− σ‖1 +
1
2 |tr ρ− tr σ| to be the generalized trace distance between any two

ρ,σ ∈ B(H). We also define S�(H) to be the set of all normalized and sub-normalized quantum states
on H.

A quantum channel E : B(HA) → B(HB), from a quantum system A to a quantum system B, is a
superoperator that is both trace-preserving and completely positive [2]. A quantum channel is covariant
with respect to the group action if we have that

E(Ug(ρ)) = Ug(E(ρ)), (55)

for all quantum states ρ ∈ B(HA) and all g ∈ G. Note here that the group representation of the input and
output systems are generally different, and we should strictly write UA

g and UB
g for each action. However, to

simplify notation, we shall use Ug throughout, as it does not cause ambiguity in practice. The above
condition can also be compactly written as [Ug , E] = 0 for all g ∈ G.

The reference system R for G-covariant transformations from A to B is chosen such that the
representation of G on HR, the Hilbert space of system R, is dual to its representation on HB.

We also make use of an ITO basis. An ITO consists of a basis of operators X(λ,α)
j ∈ B(H) that have the

property that

Ug

(
X(λ,α)

j

)
=
∑

i

vλij (g)X(λ,α)
i , (56)

where (vλji (g)) are the matrix components of the λ-irrep of the group G on H. The irrep λ may occur with

multiplicities, and so we also denote this as (λ,α) where α is a multiplicity label for the irrep. Since {X(λ,α)
j }

form a basis for B(H) we may decompose any operator, and in particular any quantum state as

ρ =
∑
λ,j

(∑
α

tr
(

X(λ,α)†
j ρ

)
X(λ,α)

j

)
:=

∑
λ,j

ρλj . (57)
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Since each ρλj transforms irreducibly under the group action Ug(·), this defines a decomposition of ρ into
modes of asymmetry. If E is a covariant channel, then it does not mix modes, and so

E(ρλj ) = E(ρ)λj , (58)

for all λ, j. See [60, 64] for more details.

Appendix B. Properties of min-entropies

In this section we review some useful properties of the conditional min-entropies Hmin(R|A)Ω and
properties that relate to the case of ΩRA being a G-twirled bipartite quantum state.

It proves useful to define the functional Φ(MRA) : MRA �→ 2−Hmin(R|A)M defined on bipartite Hermitian
operators MRA:

Definition 11. Let MRA be a Hermitian operator on HRA. Then we define the argument of the conditional
min-entropy of MRA, Φ(MRA), via

Φ(MRA) := inf
XA�0

{tr[XA] : 𝟙R ⊗ XA − MRA � 0}. (59)

We note the following known properties of the functions Φ(·), proofs of which can be found in [69] or
are obvious from the definition.

(P1) (Scalar multiplication). Φ(λMRA) = λΦ(MRA) for any λ � 0.

(P2) (Convexity). Φ(pMRA + (1 − p)NRA) � pΦ(MRA) + (1 − p)Φ(NRA) for any p ∈ [0, 1].

(P3) (Invariance under local isometries). Let UR := UR ⊗ 𝟙A(·)U†
R ⊗ 𝟙A and VA := 𝟙R ⊗ VA(·)𝟙R ⊗ V†

A be
isometries on subsystems R and A respectively. Then Φ(UR ◦ VA(MRA)) = Φ(MRA).

(P4) (Local data processing inequality). Let ER : B(HR) →B(HR′) be a unital CPTP map,
NA : B(HA) → B(HB) be a CPTP map, and IX(·) := 𝟙X(·)𝟙X denote the identity channel on system
X. Then Φ ((ER ⊗ IA)(MRA)) � Φ(MRA) and Φ((IR ⊗NA)(MRA)) � Φ(MRA).

We also introduce the following simplifying notation for the bipartite G-twirled states:

Φη(τ) :=Φ(G(ηR ⊗ τA)), (60)

and also Hη(τ) := − logΦη(τ ).

B.1. Invariance under local isometries that commute with G
Here we prove the following lemma, which specializes property (P4) to the particular form of the
conditional min-entropies appearing in theorem 1, which are instead equivalent up to local isometries that
jointly commute with the G-twirl on the global system.

Proof. By a straightforward appeal to property (P3), we have

Φ(G[UR(η) ⊗ VA(τ)]) = Φ(UR ⊗ VA ◦ G[η ⊗ τ]) = Φ(G[η ⊗ τ]). (61)

Since Hη(ρ) := − log Φ(G[η ⊗ ρ]), this implies

HU(η)(V(ρ)) = Hη(ρ), (62)

as claimed. �

B.2. Symmetric input states

Lemma 12. For any input state ρ on system A and reference state η on system R, the following identity holds

HG(η)(ρ) = Hη(G(ρ)) = HG(η)(G(ρ)) (63)

= − log ‖G(η)‖∞. (64)

Proof. The first two equalities in equation (63) straightforwardly follow from the fact that
G(G(η) ⊗ ρ) = G(η) ⊗ G(ρ) = G(η ⊗ G(ρ)) = G(G(η) ⊗ G(ρ)). To show the final equality, we first
examine

Φ(G(η) ⊗ G(ρ)) = inf
X�0

{tr[X] : 𝟙⊗ X − G(η) ⊗ G(ρ) � 0}. (65)
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Since G(η) is Hermitian, it can be diagonalised as G(η) :=
∑

iλi|i〉〈i| for some basis {|i〉} of the reference
system. Working in this basis, we obtain

𝟙⊗ X − G (η) ⊗ G(ρ) =

(∑
i

|i〉〈i| ⊗ X

)
−
(∑

i

λi|i〉〈i| ⊗ G(ρ)

)
=
∑

i

|i〉〈i| ⊗ (X − λiG(ρ)). (66)

Therefore, 𝟙⊗ X − G(η) ⊗ G(ρ) � 0 if and only if X − λiG(ρ) � 0 for all i, which in turn is true if and
only if X − μmaxG(ρ) � 0, where μmax denotes the largest eigenvalue of G(ρ). We can lower-bound the tr[X]
needed to achieve this by

tr[X] � μmax tr[G(ρ)] = μmax, (67)

and this minimum can be attained simply by choosing X :=μmaxG(ρ). Therefore,

Φ(G(η) ⊗ G(ρ)) = μmax = ‖G(ρA)‖∞ ⇒ HG(η)(G(ρ)) = − log ‖G(ρ)‖∞, (68)

which completes the proof. �

B.3. Dual formulation
From equation (60), we see that Φη(τ) is defined via a semidefinite programme (SDP). In this subsection,
we prove a lemma stating what the dual form of this SDP is, which is convenient for proving several results
of this paper, including the depolarization conditions for G-covariant channels.

Lemma 13. Let Ocov be the set of G-covariant channels from input system A to output system B. Let η be state of
the reference system R for this transformation, and τ be a state of input system A. Then the dual formulation of
Φη(τ ) is

Φη(τ) = max
E∈Ocov

tr(ηTE(τ)). (69)

Proof. From lemma 3 in [58], we see that

Φη(τ) = max
E∈Ocov

〈φ+|𝟙⊗ E[G(η ⊗ τ)]|φ+〉, (70)

where |φ+〉 :=
∑

i |ii〉 for local computational bases {|i〉} for the reference R and output system B. We first
note that |φ+〉 = |vec(𝟙)〉, which means [2] that

U∗(g) ⊗ U(g)|φ+〉 = U∗(g) ⊗ U(g)|vec(𝟙)〉 = |vec
(
U∗(g)𝟙UT(g)

)
〉 = |vec(𝟙)〉 = |φ+〉, (71)

where U(g) is the representation of the group element g on HB, the Hilbert space of B. We therefore see that
G(|φ+〉〈φ+|) = |φ+〉〈φ+|, which allows us to derive:

Φη(τ) = max
E∈Ocov

tr(|φ+〉〈φ+|𝟙⊗ E[G(η ⊗ τ)]) (72)

= max
E∈Ocov

tr(|φ+〉〈φ+|G(η ⊗ E[τ])) (73)

= max
E∈Ocov

tr

(
|φ+〉〈φ+|

[∫
dg U∗(g) ⊗ U(g)(η ⊗ E[τ])UT(g) ⊗ U†(g)

])
(74)

= max
E∈Ocov

tr

([∫
dg UT(g) ⊗ U†(g)|φ+〉〈φ+|U∗(g) ⊗ U(g)

]
η ⊗ E[τ]

)
(75)

= max
E∈Ocov

tr

([∫
dg U∗

g−1 ⊗ Ug−1 (|φ+〉〈φ+|)
]
η ⊗ E[τ]

)
(76)

= max
E∈Ocov

tr(G(|φ+〉〈φ+|)η ⊗ E[τ]) (77)

= max
E∈Ocov

tr(|φ+〉〈φ+|η ⊗ E[τ]) (78)

= max
E∈Ocov

∑
ij

〈j|η|i〉〈j|E[τ]|i〉 (79)

= max
E∈Ocov

∑
ij

〈i|ηT|j〉〈j|E[τ]|i〉 (80)

= max
E∈Ocov

tr(ηTE[τ]), (81)

as claimed. �
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B.4. Truncation of output system
The following two lemmas detail when one can truncate the Hilbert space of the output system without
affecting the possibility of interconversion to a particular output state σ. This is of use in our analysis of
state interconversion with partial depolarization.

Lemma 14. Let ρ be a state of the input system A, associated to the Hilbert space HA. Let σ be a state of the
output system B, associated to the Hilbert space HB.

Let HS be any subspace of HB with the following two properties:

(a) HS carries its own representation of G, i.e. HB can be decomposed into HB = HS ⊕HA such that
UB(g) = US(g) ⊕ UA(g).

(b) The support of σ is contained entirely within HS, i.e. letting ΠS be the projector onto HS, ΠSσΠS = σ.

Let HS be the Hilbert space appropriate to a new output system S truncated from B. Then there exists a
G-covariant operation from A to B that takes ρ to σ if and only if there exists a G-covariant operation from A to
S that takes ρ to σ.

Proof. Let us first assume that there exists a G-covariant operation Ecov : B(HA) → B(HB) such that
Ecov(ρ) = σ. We then observe that

ΠSUB(g) = (𝟙S ⊕ 0A)
(

US(g) ⊕ UA(g)
)
= US(g) ⊕ 0A = (US(g)𝟙S) ⊕ 0A = US(g)ΠS. (82)

Therefore, ΠS(·)ΠS is a covariant map from B(HB) to B(HS). As a result, ΠS[Ecov(·)]ΠS is a covariant
operation from B(HA) to B(HS) such that

ΠSEcov(ρ)ΠS = ΠSσΠS = σ. (83)

Conversely, let us now assume that that there exists a covariant transformation Fcov : B(HA) →B(HS)
such that Fcov(ρ) = σ. We then extend HS into the bigger Hilbert space HB = HS ⊕HA such that HS still
forms its own representation of G, i.e. UB(g) = US(g) ⊕ UA(g). Then Fcov can be reinterpreted as a
covariant channel from B(HA) to B(HB).

We therefore conclude that G-covariant interconversion from ρ to σ is unaffected by treating σ as a state
of B or as a state of S. �

Lemma 15. Given any particular output state σ, it is always possible to truncate the Hilbert space of the output
system, HB, to the support of G(σ) without affecting the possibility of G-covariant interconversion.

Proof. The representation of G on HB splits up in the following way [19]:

HB =
⊗

q

Hq. (84)

The Hq are known as the charge sectors of HB, and they each carry an inequivalent representation of G. Each
Hq can be further decomposed into a tensor product

Hq = Mq ⊗Nq. (85)

The Mq carry inequivalent irreps of G, while the Nq carry trivial representations of G. This means every
element g is represented on Hq in the form UMq (g) ⊗ 𝟙Nq . As a result, given any pure state |ψq〉 in Nq,
Mq ⊗ Span(|ψq〉) is an irrep of G. Projectors onto irreps of G thus take the form 𝟙Mq ⊗ |ψq〉〈ψq|.

We note the following properties about the projector 𝟙Mq ⊗ |ψq〉〈ψq|. Because Mq ⊗ Span
(
|ψq〉

)
is a

subspace of Hq, [
Πq, 𝟙Mq ⊗ |ψq〉〈ψq|

]
= 0. (86)

For the same reason, Πq is identity on Mq ⊗ Span
(
|ψq〉

)
, which means

𝟙Mq ⊗ |ψq〉〈ψq| = Πq

(
𝟙Mq ⊗ |ψq〉〈ψq|

)
. (87)

A subspace H of HB lies inside the kernel of σ if and only if tr(Πσ) = 0, where Π is the projector onto
H. Therefore, the irrep Mq ⊗ Span

(
|ψq〉

)
lies in the kernel of σ if and only if

tr(
(
𝟙Mq ⊗ |ψq〉〈ψq|

)
σ) = tr(Πq

(
𝟙Mq ⊗ |ψq〉〈ψq|

)
σ) (88)

= tr(ΠqΠq

(
𝟙Mq ⊗ |ψq〉〈ψq|

)
σ) (89)

= tr(Πq

(
𝟙Mq ⊗ |ψq〉〈ψq|

)
σΠq) (90)
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= tr(
(
𝟙Mq ⊗ |ψq〉〈ψq|

)
ΠqσΠq) (91)

= 〈ψq|trMq (ΠqσΠq)|ψq〉 = 0, (92)

where in the first equality we made use of equation (87), and in the fourth equality we made use of
equation (86). This short calculation means Mq ⊗ Span(|ψq〉) lies inside the kernel of σ if and only if |ψq〉
lies inside the kernel of trMq (ΠqσΠq).

Let
{
|ψq,i〉

}
be an orthonormal basis for Nq in which trMq (ΠqσΠq) is diagonalised. One possible irrep

decomposition for HB is then

HB =
⊗

q,i

Mq ⊗ Span
(
|ψq,i〉

)
. (93)

An irrep in this decomposition lies inside the kernel of σ if and only if |ψq,i〉 is a basis element for the kernel
of trMq (ΠqσΠq). This means

H⊥
S :=

⊗
q, |ψq,i〉∈ker[trMq (ΠqσΠq)]

Mq ⊗ Span
(
|ψq,i〉

)
=
⊗

q

Mq ⊗ ker(trMq (ΠqσΠq)) (94)

must lie inside the kernel of σ on HB. Conversely, the support of σ must lie inside the subspace of HB that
is orthogonal to H⊥

S , i.e.

HS =
⊗

q

Mq ⊗ supp[trMq (ΠqσΠq)]. (95)

As we see from the above equation, HS is also a direct sum over irreps of G and so carries its own
representation of G. Thus by lemma 14, the possibility of interconversion is unaffected if we truncate HB

to HS.
The action of the G-twirl is given by [19]:

G =
∑

q

(DMq ⊗ INq ) ◦ Pq, (96)

where Pq :=Πq(·)Πq is the projector onto the charge sector Hq, DMq is the completely depolarising channel
on Mq and INq is the identity channel on Nq. Therefore,

G(σ) =
∑

q

𝟙
dMq

⊗ trMq (ΠqσΠq), (97)

where dMq is the dimension of Mq. Looking back at equation (95), we see that HS = supp[G(σ)]. It is
therefore always possible to truncate the output Hilbert space to the support of G(σ) without affecting
possibility of interconversion. �

Appendix C. Redundancies in the entropic relations

Here we consider a few basic redundencies in the infinite set of conditions appearing in theorem 1. We first
note that Hη(ρ) � Hη(σ) and Φη(ρ) � Φη(σ) are equivalent conditions, since we have that Φ(X) > 0 for
any X that is positive-semidefinite with at least one non-zero eigenvalue [69], and the fact that −log(x) is
monotonic decreasing in x for x > 0.

C.1. Unitaries on the reference
Lemma 2 immediately gives rise to the following corollary.

Corollary 16. If η1 = V(η0) for any pair of quantum states η0, η1 on HR and for any unitary
V : B(HR) → B(HR) such that [V ⊗ 𝟙,G] = 0, then ΔHη0 � 0 if and only if ΔHη1 � 0.

As an example of this redundency, we can consider the group G = U(1) of time-translations generated
by the Hamiltonian H, U(t) = e−iHt. Here we have that any reference state η drawn from the set
{U(t)ηU(t)† : ∀ t ∈ [0, 2π)} will provide an equivalent constraint.

C.2. Modes of asymmetry

Given an ITO basis
{

X(λ,α)
j

}
, which in the following we always take to be orthonormal such that

〈
X(λ,α)

j , X(μ,β)
k

〉
= δλ,μδα,βδj,k, (98)

19



New J. Phys. 24 (2022) 053023 R Alexander et al

where A, B〉 = tr[A†B] is the Hilbert–Schmidt inner product on B(H), we denote by Aλ
j the (λ, j) mode of

the operator A

Aλ
j :=

∑
α

〈
X(λ,α)

j , A
〉

X(λ,α)
j . (99)

The following gives some basic properties for handling inner products involving modes of asymmetry.

Lemma 17. Let A and B be any two linear operators on H. Then we have that

〈Aλ
j , Bμ

k 〉 = δλ,μδj,k〈Aλ
j , Bμ

k 〉 (100)

from which it follows that:

〈A, B〉 =
∑
λ,j

〈Aλ
j , Bλ

j 〉. (101)

Proof. Writing out the mode decompositions of A and B in the ITO basis explicitly in the trace product,
from the orthonormality of the basis operators {X(λ,α)

j } we obtain

〈Aλ
j , Bμ

k 〉 =
〈∑

α

〈X(λ,α)
j , A〉X(λ,α)

j ,
∑
β

〈X(μ,β)
k , B〉X(μ,β)

k

〉
(102)

=
∑
α,β

〈X(λ,α)
j , A〉〈X(μ,β)

k , B〉〈X(λ,α)
j , X(μ,β)

k 〉 (103)

=
∑
α,β

〈X(λ,α)
j , A〉〈X(μ,β)

k , B〉δλ,μδj,k〈X(λ,α)
j , X(μ,β)

k 〉 (104)

= δλ,μδj,k

〈∑
α

〈X(λ,α)
j , A〉X(λ,α)

j ,
∑
β

〈X(μ,β)
k , B〉X(μ,β)

k

〉
(105)

= δλ,μδj,k〈Aλ
j , Bμ

k 〉, (106)

as required. �

An immediate consequence of such a mode decomposition is that if modes(σ) ⊆ modes(ρ), then it
suffices to range only over reference frame states η such that modes(η) = modes(ρ) in theorem 1. The
reasoning is as follows. Let η have an irrep mode μ that does not occur in ρ. By hermiticity, it also has the
irrep mode μ∗. As seen in the following lemma, when computing G[η ⊗ ρ], the only mode terms that
survive this G-twirl are of the form

∑
iη

μ∗
i ⊗ ρμi , which is the unique way to form a singlet from a given

irrep:

Lemma 18.
G(η ⊗ ρ) =

∑
i,μ

ημ
∗

i ⊗ ρμi . (107)

Proof. Equation (4.3) of [60] states that∫
dg vλi′ i(g)vμ

j ′j =
1

dμ
δi′,iδj ′,jδλ∗ ,μ. (108)

Making use of this result, we can then demonstrate that

G(η ⊗ ρ) =

∫
dg

∑
λ,i,μ,j

Ug(ηλi ) ⊗ Ug(ρμj ) (109)

=

∫
dg

∑
λ,i,μ,j

∑
i′,j ′

vλi′ i(g)vμ
j ′ jη

λ
i′ ⊗ ρμ

j ′ (110)

=
∑
λ,i,μ,j

∑
i′ j ′

1

dμ
δi′,j ′δi,jδλ∗ ,μη

λ
i′ ⊗ ρμ

j ′ (111)

=
∑
μ,i′

⎛
⎝∑

j

1

dμ

⎞
⎠ ημ

∗

i′ ⊗ ρμi′ (112)
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=
∑
μ,i

ημ
∗

j ⊗ ρμj . (113)

�

We conclude from this lemma that if ρ does not contain a μ mode, then ημ
∗

i does not contribute to the
state G[η ⊗ ρ]. If we range over all η contained within a small surface around 𝟙/d, then we obtain a
complete set of conditions. We know that ημ

∗
j does not contribute to ΩRA. Now if the region is chosen

sufficiently small, we claim that η′ = η −
[∑

j

(
ημj + ημ

∗
j

)]
is still a valid state for μ �= 0, but with the μ

mode removed. To see this, firstly note that, by orthonormality, the term in the brackets is traceless and so
the net result still has trace one. Secondly, by choosing the surface appropriately, the eigenvalues of η can be
chosen arbitrarily close to the uniform distribution, and those of the term in bracket made arbitrarily small.
Therefore the eigenvalues of the resultant operator η′ are all non-negative. Therefore we have a reference
frame state η′ with the μ mode entirely removed, and gives the state joint state G[η ⊗ ρ] as did η. This
implies it suffices to range over reference frame states η with modes the same as ρ.

Appendix D. A sufficient surface of reference frames

D.1. Depolarizing the reference state
Let us define the partially depolarizing channel for some fixed probability p:

Λp[ρ] := pρ+ (1 − p)
𝟙
d
. (114)

In general, from (P2) we know that the functional Φη(ρ) is convex in the reference system, i.e.,
η = pη0 + (1 − p)η1 implies

Φη(ρ) � pΦη0 (ρ) + (1 − p)Φη1 . (115)

The following lemma shows that the functional Φη(ρ) behaves linearly when we take convex combinations
of the reference state with the maximally mixed state.

Lemma 19. Let all states and systems be defined as in theorem 1. For any reference state ηR and input state τA,
we have

ΦΛp(η)(τ) = pΦη(τ) + (1 − p)Φ𝟙/d(τ)

= pΦη(τ) +
1 − p

d
. (116)

Proof. Since 𝟙 is symmetric for any group G, we have G[Λp(ηR) ⊗ τA] = pG[ηR ⊗ τA] +
( 1−p

d

)
𝟙⊗ G[τA].

Substituting this into equation (60) and rearranging terms gives

ΦΛp[η] (τ) = inf
XA�0

{
tr[XA] : 𝟙R ⊗

(
XA −

(
1 − p

d

)
G[τA]

)
− pG [ηR ⊗ τA] � 0

}
. (117)

Given any semidefinite operator P ∈ B(H) and generic operator Y ∈ B(H), Y − P � 0 implies that Y
must be semidefinite positive as well, since given any |ψ〉 ∈ H we have
〈ψ|(Y − P)|ψ〉 � 0 ⇒ 〈ψ|Y|ψ〉 � 〈ψ|P|ψ〉 � 0. Therefore, for any positive semidefinite operator ZRA and
TA, 𝟙R ⊗ [XA − TA] − ZRA � 0 implies 𝟙R ⊗ [XA − TA] � 0, which in turn implies XA − TA � 0, and thus
XA � 0. We therefore have

{XA : XA � 0, 𝟙R ⊗ [XA − TA] − ZRA � 0} = {XA : XA − TA � 0, 𝟙R ⊗ [XA − TA] − ZRA � 0}, (118)

since the addition of XA − TA � 0 or XA � 0 imposes no further restriction on which linear operators on A
may have set membership beyond what is already imposed by 𝟙R ⊗ [XA − TA] − ZRA � 0.

We can thus can rewrite the feasible set over which we perform the optimization in equation (117) as
follows

ΦΛp[η] (τ) = inf
XA− 1−p

d G[τA]�0

{
tr[XA] : 𝟙R ⊗

(
XA − 1 − p

d
G[τA]

)
− pG [ηR ⊗ τA] � 0

}
(119)

= inf
YA�0

{
tr

[
YA +

1 − p

d
G[τA]

]
: 𝟙R ⊗ YA − pG [ηR ⊗ τA] � 0

}
, (120)
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where we have defined YA :=XA − 1−p
d G(τA). Now since tr[G(τA)] = 1, we can take the constant term out of

the infimum

ΦΛp[η] (τ) = inf
YA�0

{tr[YA] : 𝟙R ⊗ YA − pG [ηR ⊗ τA] � 0}+ 1 − p

d
. (121)

Finally we make use of property (P1) to arrive at

ΦΛp[η] (τ) = pΦη(τ) +
1 − p

d
, (122)

which concludes the proof. �

An automatic consequence of lemma 19 is that taking a convex mixture of any reference state with the
maximally mixed state will not change the entropic relation in theorem 1, which we state in the following
lemma:

Lemma 20. Let all states and systems be defined as in theorem 1 and let us further define the partially
depolarizing quantum channel Λp[ρ] := pρ+ (1 − p) 𝟙d , where p is a probability and d := dim(HR). Then the
following two statements are equivalent for any η:

(a) ΔHη � 0.

(b) ΔHΛp[η] � 0 for any p ∈ (0, 1].

Proof. Defining ΔΦη :=Φη(ρ) − Φη(σ), lemma 19 implies that ΔΦΛp[η] = pΔΦη for any p probability.
Therefore, ΔΦη � 0 if and only if ΔΦΛp[η] � 0, for any p ∈ [0, 1]. Since Φη and Hη are monotonically
related, this then gives the statement of the lemma. �

D.2. Proof of theorem 3
We now present a proof of theorem 3, which we restate here for clarity:

Proof. If the transformation is possible under a G-covariant channel then ΔHη � 0 for all states η, and
hence in particular for all η restricted to ∂D. Conversely, suppose ΔHη � 0 for all η ∈ ∂D. Let η′ be an
arbitrary quantum state of R that is not the maximally mixed state, and consider the one-parameter family
of states η′(p) :=Λp(η′) for p ∈ [0, 1]. This defines a continuous line of states connecting η′ to the
maximally mixed state 𝟙/d. Since ∂D encloses the maximally mixed state the set {η′(p) : 0 � p � 1} must
either intersect ∂D for some value p� with 0 < p� � 1 or lie entirely within the interior of D. If the set is
entirely inside D then we can find a quantum state η′′ ∈ ∂D such that Δq[η′′] = η′ for some q ∈ (0, 1).
However from lemma 20 we have that η′ and η′(p�) (or η′ and η′′ for the second case) give equivalent
entropic constraints. Since η′ was arbitrary it therefore suffices to restrict to states lying solely on the surface
∂D, which completes the proof. �

Appendix E. Smoothed asymmetry theory

E.1. Continuity of entropic relations under variations of the reference state
In this section, we consider the following definition of an ε-ball of operators on H around some ρ ∈ S�(H)

Bε(ρ) := {ρ̃ ∈ S�(H) : D(ρ̃, ρ) � ε}, (123)

but we note that all the results derived in this section also apply if we use the purified distance P(·, ·) as our
distance measure instead, due to the property D(ρ,σ) � P(ρ,σ) for all ρ, σ [70].

We also make use of the following theorem, which was proven in reference [69].

Theorem 21 (Continuity of min-entropy). Let ρ,σ ∈ S�(HRA). Then

|Hmin(R|A)ρ − Hmin(R|A)σ| � dR min{dR, dA}
ln 2 min{tr ρ, tr σ}D(ρ,σ), (124)

where D(ρ,σ) := 1
2‖ρ− σ‖1 +

1
2 |trρ− trσ| is the generalized trace distance.

Lemma 22. Consider the following bipartite quantum states on HRA:

ΩRA := ηR ⊗ ρA, Ω̃RA := η̃R ⊗ ρA. (125)

If η̃ ∈ Bε(η), then
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D(G[Ω],G[Ω̃]) � ε. (126)

Proof. The trace distance is contractive under quantum operations, and thus

1

2

∥∥∥G[Ω] − G[Ω̃]
∥∥∥

1
� 1

2

∥∥∥Ω− Ω̃
∥∥∥

1
(127)

=
1

2
‖(η − η̃) ⊗ ρ‖1 (128)

=
1

2
‖(η − η̃)‖1, (129)

where in the second equality we have used the identity ‖A ⊗ B‖1 = ‖A‖1‖B‖1. Similarly, since G is
trace-preserving and tr[A ⊗ B] = tr[A]tr[B], we have

1

2

∣∣∣tr (G[Ω]) − tr
(
G[Ω̃]

)∣∣∣ = 1

2

∣∣∣tr(Ω) − tr(Ω̃)
∣∣∣ = 1

2
|tr(η) − tr(η̃)| . (130)

Thus, combining results from equations (129) and (130) we find the generalized trace distance between
G[Ω] and G[Ω̃] is upper bounded as

D(G[Ω],G[Ω̃]) �
(

1

2
‖(η − η̃)‖1 +

1

2
|tr(η) − tr(η̃)|

)
= D(η, η̃). (131)

Therefore, if η̃ ∈ Bε(η) then D(Ω, Ω̃) � ε immediately follows from equation (131), which concludes the
proof of lemma 22. �

Lemma 23. If η̃ ∈ Bε(η), then

|Hη(τ) − Hη̃(τ)| � d2
R

ln 2

(
ε

1 − 2ε

)
, (132)

where Hη(τ) :=Hmin(R|A)G[Ω].

Proof. Combining lemma 22 and theorem 21 (and using the fact that the G-twirl is a trace-preserving
map) we immediately have that

|Hη(τ) − Hη̃(τ)| � dR min{dR, dA}
ln 2 min{trΩ, tr Ω̃}

ε, (133)

for any η̃ ∈ Bε(η). To get the simplified form as stated, we note that min{tr(Ω), tr(Ω̃)} = tr(Ω̃) since Ω is
normalised and Ω̃ is sub-normalized. This then evaluates to

tr(Ω̃) = tr(τ)tr(η̃) = tr(η̃). (134)

Now D(η, η̃) � ε implies |1 − tr(η̃)| � 2ε, and therefore

tr(η̃) � 1 − 2ε. (135)

Substituting equation (135) into equation (134) thus gives

min{tr(Ω), tr(Ω̃)} � 1 − 2ε. (136)

Also, clearly dR � min{dR, dA}. Substituting this and equation (136) into equation (133) gives

|Hη(τ) − Hη̃(τ)| � d2
R

ln 2

ε

1 − 2ε
, (137)

as claimed. �
We are now able to prove the result presented in the main text:

Proof. First note:

ΔHη̃ −ΔHη = [Hη̃(σ) − Hη̃(ρ)] − [Hη(σ) − Hη(ρ)] (138)

= [Hη̃(σ) − Hη(σ)] − [Hη̃(ρ) − Hη(ρ)] =: x. (139)

It then follows immediately from lemma 23 that for any η̃ ∈ Bε(η) we have |x| � 2d2
R

ln 2
ε

1−2ε , which concludes
the proof. �
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E.2. Proof of theorem 5
First we need the following theorem (e.g. see [71, 72]):

Theorem 24. Let ‖·‖ be a norm on R
d. Then for every δ > 0, the unit sphere {x ∈ R

d, ‖x‖ = 1} admits a
δ-net, N with respect to the distance measured by ‖·‖, of cardinality |N | such that

|N | �
(

1 +
2

δ

)d

. (140)

This theorem implies that there exists an ε-covering of a unit-sphere, with a finite number of elements,
and which can be applied to a sphere of reference frame states around the maximally mixed state. We restate
the theorem which we seek to prove:

Proof. Given theorem 3, we choose as our sufficient set of reference frame states the surface

∂D =

{
η : η =

1

d
(𝟙+ A), where ‖A‖∞ = 1 and tr(A) = 0

}
. (141)

It is seen by inspection that this gives a closed surface of quantum states that contain the maximally mixed
state. We can describe ∂D entirely in the space of traceless d × d Hermitian matrices, which is embedded in
R

d2−1. In this embedding space the surface is the unit ball defined by ‖A‖∞ = 1, and so by the above
theorem admits an δ-net covering in the ‖ · ‖∞ norm. The cardinality of this covering N obeys

|N | �
(

1 +
2

δ

)d2−1

. (142)

We want an ε-net in the ‖ · ‖1 norm, so that for any η = 1
d (𝟙+ A) in ∂D there is an ηk =

1
d (𝟙+ Ak) in the

net such that

D(η, ηk) =
1

2
‖η − ηk‖1 −

1

2
|tr η − tr ηk| =

1

2d
‖A − Ak‖1 � ε. (143)

However in finite dimensions all matrix norms are equivalent, and we have that [81]

‖A − Ak‖1 � rank(A − Ak)‖A − Ak‖∞ � dδ. (144)

Therefore choosing δ = 2ε ensures that D(η, ηk) � ε as required, and we can always find a sufficient set of
reference frame states N = {ηk}N

k=1 such that N � (1 + 1/ε)d2−1.
We now check the ΔHη condition on each η = ηk in the ε-net. If ΔHηk

< 0 for one of these states then
the transformation is impossible. If however we find that

ΔHηk
� r(ε) for all ηk ∈ N , (145)

then we know from the continuity of the function ΔHη, lemma 4, that this implies that ΔHη � 0 for all
reference frame states η ∈ ∂D. However this is a sufficient set of states (theorem 3) and therefore we deduce
from these N conditions that the transformation is possible covariantly. The final case of at least one of the
ηk conditions giving 0 � ΔHηk

� r(ε) can be handled as follows: we can supplement the state ρA with an
additional reference frame state χA′ . If we take χA′ to be large and approximating a perfect reference frame
state (perfectly encoding the group element) then it is possible to transform to any quantum state
covariantly. This does so by reducing the entropy Hmin(R|AA′). This can be used to increase ΔHηk

and
ensure that ΔHηk

� r(ε), from which we can deduce that the transformation is now possible. The state χA′

therefore provides an upper bound estimate on the minimal additional asymmetry required to realise the
transformation. Since r(ε) = O(ε) the requirement on χ is to provide O(ε) resources as measured by the
single-shot entropy. �

Appendix F. The conical structure of Φτ (x) (proof of lemma 7)

Proof. Let P be the completely depolarising channel on the reference system, and define

A(x) :=
∑d2−1

k=1 xkXk. Then by property (P4) of Φτ (x), we have:

Φ

(
G
[(

𝟙
d
+ A(x)

)
⊗ τ

])
� Φ

(
P ⊗ 𝟙 ◦ G

[(
𝟙
d
+ A(x)

)
⊗ τ

])
(146)
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= Φ

(
G
[
P
((

𝟙
d
+ A(x)

))
⊗ τ

])
(147)

= Φ

(
G
[
𝟙
d
⊗ τ

])
≡ Φτ (0). (148)

Therefore, Φ̃τ (x) � 0, as claimed.
Let p be a probability. Then

pη(x) + (1 − p)
𝟙
d
= p

𝟙
d
+ pA(x) + (1 − p)

𝟙
d
=

𝟙
d
+ A(px). (149)

Using this equation, we can rewrite lemma 19 as:

Lemma 25. Let p be a probability; i.e. 0 � p � 1. Then for all x ∈ S:

Φτ

(
px
)
= pΦτ (x) +

1 − p

d
. (150)

We then immediately have

Φ̃τ (px) = pΦτ (x) +
1 − p

d
− 1

d
= pΦτ (x) − p

d
= pΦ̃τ (x), ∀ x ∈ S. (151)

Making the change of variables x′ := px, we find that the equation above is equivalent to:

Φ̃τ (x′) = pΦ̃

(
1

p
x′
)

⇒ 1

p
Φ̃τ (x′) = Φ̃τ

(
1

p
x′
)

, ∀ 1

p
x′ ∈ S. (152)

Since 1 � 1
p � ∞, we can combine the facts above and conclude that, for all γ � 0 such that x, γx ∈ S:

Φ̃τ (γx) = γΦ̃τ (x), (153)

as claimed. �

Appendix G. Calculating Φτ (x) for covariant transformations in a qubit

G.1. Time-covariant transformations (U(1))
We will consider a qubit with the Hamiltonian σz, transformations among whose states are limited to those
that are symmetric under all time translations {eiσzt |0 � t < 2π}. The reference system is then a qubit with
Hamiltonian −σz. We will calculate Φτ (x) for an arbitrary state τ of this qubit, while reference states are
given using the Bloch co-ordinates:

η(x, y, z) =
𝟙
2
+ x

σx

2
+ y

σy

2
+ z

σz

2
, (154)

where the σi are the Pauli matrices, and x2 + y2 + z2 � 1. The derivation will be conducted entirely in the
energy eigenbasis.

Recall from equation (60):

Φτ (x, y, z) ≡ Φη(x,y,z)(τ) := inf
X�0

{tr(X) : 𝟙⊗ X − G(η(x, y, z) ⊗ τ) � 0}. (155)

We first introduce this simplifying lemma that allows us to vastly reduce which X we must consider:

Lemma 26. When calculating Φη(τ), it is sufficient to minimise over X such that X = G(X).

Proof. Since Ug can be regarded as an (active) change of basis, it does not affect the eigenvalues of a
Hermitian operator K. Therefore,

K � 0 ⇒ Ug(K) � 0 (156)

tr(K) = tr[Ug(K)] (157)

for all g and Hermitian K. Averaging over the entire group G, we arrive at

K � 0 ⇒ G(K) � 0 (158)

tr(K) = tr[G(K)]. (159)
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If X is a feasible solution, then it obeys the two conic constraints in the SDP defining Φη(τ ): X � 0 and
𝟙⊗ X − G(η ⊗ τ) � 0. In this case, we see immediately from equation (158) that G(X) also obeys the first
constraint. Furthermore, since G[𝟙⊗ X − G(η ⊗ τ)] = 𝟙⊗ G(X) − G(η ⊗ τ), applying equation (158) to
𝟙⊗ X − G(η ⊗ τ) shows that G(X) also obeys the second constraint. Therefore, if X is a feasible solution,
then so is G(X).

By equation (159), G(X) produces the same value as X on the objective function to be minimised in the
SDP defining Φη(τ). We can thus further conclude that if X is a feasible solution, then G(X) is an equally
good feasible solution. It is then sufficient to only minimise over X such that X = G(X) when calculating
Φη(τ ). �

This lemma means we can take X to be diagonal without loss of generality, i.e.

X =

(
x1 0
0 x2

)
⇒ 𝟙⊗ X =

⎛
⎜⎜⎝

x1 0 0 0
0 x2 0 0
0 0 x1 0
0 0 0 x2

⎞
⎟⎟⎠ . (160)

We have already seen from the main text (equation (32)) that Φτ (x, y, z) is cylindrically symmetric about
the z-axis. This means we can restrict our calculation to x � 0, y = 0, and then equate

Φτ (x, y, z) = Φτ (
√

x2 + y2, 0, z). (161)

Having applied this restriction, we further see from equation (33) that

Φσxτσx (x, 0, z) = Φτ (x, 0,−z), (162)

which means we can additionally restrict our attention to z � 0. We therefore only need to consider
reference states of the form:

η =
1

2

(
1 + z x

x 1 − z

)
, x, z � 0. (163)

Recalling the parameterisation (equation (29))

τ :=

(
pτ cτ
c∗τ 1 − pτ

)
, (164)

we calculate

η ⊗ τ =
1

2

(
1 + z x

x 1 − z

)
⊗
(

pτ cτ
c∗τ 1 − pτ

)
(165)

=
1

2

⎛
⎜⎜⎝

pτ (1 + z) cτ (1 + z) pτx cτx
c∗τ (1 + z) (1 − pτ )(1 + z) c∗τx (1 − pτ )x

pτx cτx pτ (1 − z) cτ (1 − z)
c∗τx (1 − pτ )x c∗τ (1 − z) (1 − pτ )(1 − z)

⎞
⎟⎟⎠ . (166)

The G-twirling only leaves elements in span(|00〉, |11〉), span(|01〉) and span(|10〉) intact:

G(η ⊗ τ) =
1

2

⎛
⎜⎜⎝

pτ (1 + z) 0 0 cτx
0 (1 − pτ )(1 + z) 0 0
0 0 pτ (1 − z) 0

c∗τx 0 0 (1 − pτ )(1 − z)

⎞
⎟⎟⎠ . (167)

Therefore:

𝟙⊗ X − G(η ⊗ τ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x1 − pτ
1 + z

2
0 0 −cτ

x

2
0 x2 − (1 − pτ )

1 + z

2
0 0

0 0 x1 − pτ
1 − z

2
0

−c∗τ
x

2
0 0 x2 − (1 − pτ )

1 − z

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (168)
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Making a (passive) change of basis so the matrix appears block-diagonal, we obtain:

𝟙⊗ X − G(η ⊗ τ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x1 − pτ
1 + z

2
−cτ

x

2
0 0

−c∗τ
x

2
x2 − (1 − pτ )

1 − z

2
0 0

0 0 x2 − (1 − pτ )
1 + z

2
0

0 0 0 x1 − pτ
1 − z

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (169)

The Sylvester criterion [81] states that a matrix is semi-definite positive if and only if all its upper-left
determinants are greater than or equal to 0. This produces the following criteria:

(a) x1 � pτ
1+z

2 .

(b) (x1 − pτ 1+z
2 )(x2 − (1 − pτ ) 1−z

2 ) � |cτ |2x2

4 .

(c) x2 � (1 − pτ ) 1+z
2 .

(d) x1 � pτ
1−z

2 .

Since we have restricted ourselves to x � 0, condition (d) is redundant given condition (a).
Furthermore, given any value of x2 that satisfies condition (c), the smallest value of x1 satisfying condition
(a) is

x1 − pτ
1 + z

2
=

|cτ |2x2

4

1

x2 − (1 − pτ ) 1−z
2

. (170)

We are therefore looking to minimise

x1 + x2 = x2 +
|cτ |2x2

4

1

x2 − (1 − pτ ) 1−z
2

+ pτ
1 + z

2
. (171)

This occurs at

x2 = (1 − pτ )
1 − z

2
± |cτ |

x

2
. (172)

However, x2 also has to satisfy condition (c). Therefore, the value x2 should take is whichever of the
following two

x2 =

⎧⎪⎨
⎪⎩

(1 − pτ )
1 + z

2

(1 − pτ )
1 − z

2
+ |cτ |

x

2

(173)

is bigger, which results in

Φτ (x � 0, y = 0, z � 0) =

⎧⎪⎪⎨
⎪⎪⎩

|cτ |2

1 − pτ

x2

4z
+

z

2
+

1

2
for

x

2z
� 1 − pτ

|cτ |(
pτ −

1

2

)
z + |cτ | x +

1

2
for

x

2z
� 1 − pτ

|cτ |

. (174)

Finally, applying equations (161) and (162), and noting that σxτσx translates to pτ → 1 − pτ and cτ → c∗τ
in our parameterisation of τ , we can calculate Φτ for all reference states from the above result as seen in
(30):

Φτ (x, y, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

|cτ |2

1 − pτ

x2 + y2

4z
+

z

2
+

1

2
for 0 �

√
x2 + y2

2z
� 1 − pτ

|cτ |(
pτ −

1

2

)
z + |cτ |

√
x2 + y2 +

1

2
for

√
x2 + y2

2z
� 1 − pτ

|cτ |
and

√
x2 + y2

2z
� − pτ

|cτ |

− |cτ |2

pτ

x2 + y2

4z
− z

2
+

1

2
for 0 �

√
x2 + y2

2z
� − pτ

|cτ |
.

(175)

G.1.1. Two entropic conditions suffice to characterise time-covariant transformations in a non-degenerate
qubit
We can alternatively characterise each qubit reference frame state as η(r, θ,φ), where (r, θ,φ)T is state’s
Bloch vector in spherical polar co-ordinates (radial, polar and azimuthal respectively). Using the standard
conversion between spherical and Cartesian co-ordinates x = r sin(θ) cos(φ), y = r sin(θ) sin(φ) and
z = r cos(θ), we can rewrite equation (175) as
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Φτ (x, y, z) ≡ Φτ (r sin(θ) cos(φ), r sin(θ) sin(φ), r cos(θ)) (176)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

r
|cτ |2

1 − pτ

tan(θ) sin(θ)

4
+ r

cos(θ)

2
+

1

2
for 0 � tan(θ)

2
� 1 − pτ

|cτ |

r

(
pτ −

1

2

)
cos(θ) + r |cτ | sin(θ) +

1

2
for

tan(θ)

2
� 1 − pτ

|cτ |
and

tan(θ)

2
� − pτ

|cτ |

−r
|cτ |2

pτ

tan(θ) sin(θ)

4
− r

cos(θ)

2
+

1

2
for 0 � tan(θ)

2
� − pτ

|cτ |
.

(177)

Lemma 27. There exists a time-covariant transformation ρ to σ in a qubit with Hamiltonian σz if and only if

∂2
θ(ΔΦη)|θ=0 � 0 and ∂2

θ(ΔΦη)|θ=π � 0 (178)

for all 0 < r � 1 and 0 � φ < 2π, where we recall ΔΦη := Φη(r,θ,φ)(ρ) − Φη(r,θ,φ)(σ) and ∂θ := ∂
∂θ

. Since
Φη(τ ) is monotonically decreasing in Hη(τ ), this is equivalent to

∂2
θ(ΔHη)|θ=0 � 0 and ∂2

θ(ΔHη)|θ=π � 0, (179)

where we recall ΔHη :=Hη(r,θ,φ)(σ) − Hη(r,θ,φ)(ρ).

Proof. From equation (177), we can straightforwardly evaluate:

∂2
θΦη(τ)|θ=0 =

r

2

(
|cτ |2

1 − pτ
− 1

)
and ∂2

θΦη(τ)|θ=π =
r

2

(
|cτ |2

pτ
− 1

)
, (180)

from which it immediately follows that

∂2
θ(ΔΦη)|θ=0 � 0 ⇔ cσ � cρ

√
1 − pσ
1 − pρ

and ∂2
θ (ΔΦη)|θ=π � 0 ⇔ cσ � cρ

√
pσ
pρ

, (181)

which are known necessary and sufficient conditions for a time-covariant transformation from ρ to σ in a
qubit with the Hamiltonian σz [79]. �

We note that ∂θ(ΔΦη)|θ=0 = 0 and ∂θ(ΔΦη)|θ=π = 0. At r = 1, this lemma can be loosely interpreted as
asserting that two pure reference states, infinitesimally close to the energy eigenstates |0〉〈0| and |1〉〈1|
respectively, are sufficient for determining whether time-covariant interconversion is possible between any
input and output states in a non-degenerate qubit.

G.2. Unitarily covariant transformations (SU(2))
The only channels that are covariant with all unitary transformations on the qubit are [22]:

Eλ(ρ) =
1

2
(𝟙+ λr · σ), (182)

where λ ∈ [−1/3, 1], and r is the Bloch vector of ρ. Therefore, writing x̄ = (x,−y, z) given the Bloch vector
x = (x, y, z) of η, we have that

tr[ηTEλ(ρ)] =
1

2
(1 + λx̄ · r). (183)

We now want to consider the quantity

Φρ(x) = max
E∈Ocov

tr[ηTE(ρ)] = max
λ∈[− 1

3 ,1]
tr[ηTEλ(ρ)] = max

λ∈[− 1
3 ,1]

1

2
(1 + λx̄ · r). (184)

By convexity, we can restrict the set of λ that we must optimize over to the extremal values, which gives:

Φρ(x) =

⎧⎪⎪⎨
⎪⎪⎩

1

2
(1 + x̄ · r) if x̄ · r � 0,

1

2

(
1 − 1

3
x̄ · r

)
otherwise.

(185)
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In words, if the Bloch vectors of ηT and ρ are both located in the hemisphere above the plane perpendicular
to the Bloch vector of ηT, then the identity channel E1 = I optimizes the objective function. Otherwise, the
channel E− 1

3
which achieves the best inversion of ρ that can be done covariantly, is optimal.

Appendix H. Depolarization conditions

H.1. Depolarization conditions via the modes of asymmetry
We now provide a lemma (reproduced from section 5 of the main text) that is very flexible in constructing
sufficient sets of conditions for covariant interconversions. In what follows we let 〈A, B〉 := tr[A†B] denote
the Hilbert–Schmidt inner product.

Proof. Lemma 3 of the supplemental material of [58] tells us that ρ
G−→σ if and only if

Φη(ρ) � tr[ηTσ], ∀ η. (186)

Moreover, we know that we can restrict η to lie on any surface of states that contains the maximally mixed
state.

From the dual expression for Φη(ρ) in lemma 13, we have the following lower bound on Φη(ρ) for all
possible choices of covariant channel Eη :

Φη(ρ) � tr[ηTEη(ρ)]. (187)

Equations (186) and (187) allow us to generate the following sufficient condition, such that if we can find a
family of covariant maps Eη such that

tr[ηTEη(ρ)] � tr[ηTσ], ∀ η, (188)

or, equivalently
tr[ηEη(ρ)] � tr[ησ], ∀ η, (189)

then we are guaranteed ρ
G−→σ, which completes the proof. �

Lemmas 8 and 17 together produce the following corollary:

Corollary 28. We have that ρ
G−→σ if there exists a family of covariant channels Eη : S(HA) →S(HB)

parameterised by η, such that for all quantum states η on HR∑
λ,j

〈ηλj , Eη(ρλj ) − σλ
j 〉 � 0. (190)

H.2. PGM measure-and-prepare channel
For a general group G we have the pretty good measurement [80] POVM:

Mpgm(g) :=G(ρ)−
1
2 ρ(g)G(ρ)−

1
2 , (191)

where ρ(g) :=Ug(ρ).
Recall σλ

j = E(ρλj ) [60] and tr[AB] =
∑

λ,j tr[Aλ
j Bλ∗

j ], we can evaluate the trace product for the PGM
measure-and-prepare channel, which prepares Ug(τ) for an arbitrary state τ when the gth outcome is
obtained:

Epgm(ρ) :=

∫
dg τ(g)tr[Mpgm(g)ρ], (192)

which, from its form, is manifestly covariant.
We then have that

tr[ηEpgm(ρ)] =
∑
λ,j

tr[ηλ
∗

j Epgm(ρλj )] =
∑
λ,j

∫
dg tr[Mpgm(g)ρλj ]tr[ηλ

∗
j τ(g)]. (193)

We can write each term in the above equation more compactly in terms of the Hilbert–Schmidt inner
product:

〈ηλj , Epgm(ρλj )〉 =
∫

dg 〈ηλj , τ(g)〉〈ρλ∗j , ρ(g)〉, (194)

where we have defined the scaled variant of ρ, ρ as
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ρ :=G(ρ)−
1
2 ρG(ρ)−

1
2 . (195)

We now have the following lemma:

Lemma 29. For any irrep λ and irrep component j we have

〈ηλj , Epgm(ρλj )〉 = f λj (ρ)〈ηλj , τλj 〉, (196)

where we have introduced the functions f λj (ρ) := 〈ρλ∗j , ρλ
∗

j 〉.

Proof. We have:

〈ηλj , Epgm(ρλj )〉 =
∫

dg 〈ηλj , τ(g)〉〈ρλ∗j , ρ(g)〉 (197)

=

∫
dg 〈ηλj ⊗ ρλ

∗
j , τ(g) ⊗ ρ(g)〉 (198)

= 〈ηλj ⊗ ρλ
∗

j ,

∫
dg Ug(τ ⊗ ρ)〉 (199)

= 〈ηλj ⊗ ρλ
∗

j ,G(τ ⊗ ρ)〉 (200)

=
∑

i,μ

〈ηλj ⊗ ρλ
∗

j , τμi ⊗ ρμ
∗

i 〉 (201)

= 〈ηλj ⊗ ρλ
∗

j , τλj ⊗ ρλ
∗

j 〉 (202)

= 〈ηλj , τλj 〉〈ρλ
∗

j , ρλ
∗

j 〉 (203)

= 〈ηλj , f λj (ρ)τλj 〉, (204)

where in going from line (200) to line (201) we have made use of lemma 18. This completes the proof. �

We now note the following properties of the functions f λj (ρ), which hold for any input state ρ and for all
modes labelled by (λ, j):

(F1) (Real-valued). f λj (ρ) = f λ
∗

j (ρ) = [f λj (ρ)]∗.

(F2) (Non-negative). f λj (ρ) � 0.

(F3) (Trivial irrep). f 0
0 (ρ) = 1.

Proof of (F1). We note that

f λj (ρ) = tr
[
ρλj G(ρ)−

1
2 ρλ

∗
j G(ρ)−

1
2

]
= tr

[
ρλ

∗
j G(ρ)−

1
2 ρλj G(ρ)−

1
2

]
= f λ

∗
j (ρ) (205)

= tr

[(
ρλj G(ρ)−

1
2 ρλ

∗
j G(ρ)−

1
2

)†
]
= tr

[
ρλj G(ρ)−

1
2 ρλ

∗
j G(ρ)−

1
2

]∗
= [f λj (ρ)]∗. (206)

�

Proof of (F2). We begin by noting that

ρλj G(ρ)−
1
2 ρλ

∗
j =

(
ρλj G(ρ)−

1
4

)(
ρλj G(ρ)−

1
4

)†
= :AA†, (207)

where we have defined A := ρλj G(ρ)−
1
4 . Regardless of what A is, any operator of the form AA† is positive.

Since G(ρ)−
1
2 is a positive operator as well, this means ρλj G(ρ)−

1
2 ρλ

∗
j G(ρ)−

1
2 must be positive, so we are

guaranteed f λj (ρ) � 0, ∀ λ, j, ρ. �
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Proof of (F3). We first note

G(ρ) =
∑
λ,j

∫
dg Ug

(∑
α

tr(X(λ,α)
j

†
ρ)X(λ,α)

j

)
(208)

=
∑
λ,j,j ′

∫
dgv(λ)

j ′ j (g)
∑
α

tr(X(λ,α)
j

†
ρ)X(λ,α)

j ′ (209)

=
∑
λ,j,j ′

[∫
dgv(λ)

j ′ j (g)v0
0,0(g)

]∑
α

tr(X(λ,α)
j

†
ρ)X(λ,α)

j ′ (210)

=
∑
λ,j,j ′

δλ,0δj ′ ,0,δj,0

∑
α

tr(X(λ,α)
j

†
ρ)X(λ,α)

j ′ (211)

=
∑
α

tr(X(0,α)
0

†
ρ)X(0,α)

0 = ρ0
0 (212)

where in going from line (210) to line (211) we have made use of equation (108). It then follows that:

f 0
0 (ρ) = tr

[
G(ρ)G(ρ)−

1
2 G(ρ)G(ρ)−

1
2

]
= tr[G(ρ)] = 1, (213)

which completes the proof. �

H.3. Derivation of general conditions

Lemma 30. Let us define components t(λ,α)
j := 〈X(λ,α)

j , τ〉 and s(λ,α)
j := 〈X(λ,α)

j ,σ〉. The state ρ can be

transformed into σ covariantly with respect to a symmetry group G (i.e. ρ
G−→σ) if there exists a family of valid

quantum states ⎧⎨
⎩∀ θ(λ,α)

j ∈ [0, 2π) : τΘ =
∑
λ,α,j

t(λ,α)
j X(λ,α)

j

⎫⎬
⎭ , (214)

where each (λ,α, j)-component of τΘ satisfies either:

f λj (ρ)t(λ,α)
j = s(λ,α)

j , or, (215)

f λj (ρ)
∣∣∣t(λ,α)

j

∣∣∣− ∣∣∣s(λ,α)
j

∣∣∣ � 0, t(λ,α)
j = eiθ(λ,α)

j

∣∣∣t(λ,α)
j

∣∣∣ . (216)

Proof. We begin with corollary 28 and make the explicit choice for each member in our family of covariant
channels {Eη} to be a PGM-and-prepare channel Eη := Eη

pgm, as defined in equation (192). Combined with

lemma 29 this gives rise to the following sufficient condition on the transition ρ
G−→σ:∑

λ,j

{
〈ηλj , f λj (ρ)τλj − σλ

j 〉+ 〈ηλ∗j , f λj (ρ)τλ
∗

j − σλ∗
j 〉

}
� 0, ∀ η. (217)

We emphasise that the choice of preparation state τ can vary with η, though this dependence has been
suppressed in our notation for clarity. We now introduce the simplifying notation μ := {λ,α, j} and define
the following coefficients of the states η, τ , and σ in the ITO basis {Xμ}:

nμ := 〈Xμ, η〉 = |nμ| eiϕμ
η , (218)

tμ := 〈Xμ, τ〉 = |tμ| eiϕμ
τ , (219)

sμ := 〈Xμ,σ〉 = |sμ| eiϕμ
σ , (220)

such that ηλj =
∑

αnμXμ etc. By the hermiticity of η, we have nμ∗
:= n(λ∗ ,α)

j =
(

n(λ,α)
j

)∗
= (nμ)∗ etc. We

further introduce the notation
f μ(ρ) := f λj (ρ), ∀ α. (221)

Substituting these definitions into equation (217) and using the orthonormality of the ITO basis,
〈Xμ, Xν〉 = δμ,ν , gives the following sufficient condition:
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∑
μ

[
nμ∗ (

f μ(ρ)tμ − sμ
)
+ nμ

(
f μ(ρ)tμ

∗ − sμ
∗
)]

� 0, ∀ η. (222)

This can instead be written as∑
μ

R{nμ∗ (
f μ(ρ)tμ − sμ

)
} =

∑
μ

∣∣∣nμ∗
∣∣∣R{

e−iϕμ
η
[
f μ(ρ)tμ − sμ

]}
� 0, ∀ η. (223)

We can always choose X0 := 𝟙√
d

, which means all other ITO basis elements must be traceless. Since we
must choose τ to be a valid quantum state, this means we must assign

tr(τ) =
∑
μ

tμ tr(Xμ) =
√

dt0 = 1. (224)

As σ is a valid quantum state, by similar logic we conclude that
√

ds0 = 1. Due to (F3), this means
equation (223) reduces to

∑
μ�=0

∣∣∣nμ∗
∣∣∣R{

e−iϕμ
η
[
f μ(ρ)tμ − sμ

]}
� 0, ∀ η. (225)

Given any ν �= 0, there exists a valid reference state η =
∑

μ nμXμ where

nμ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1√
d

for μ = 0

n such that
1

2d
� n > 0 for μ = ν ,ν∗

0 otherwise,

(226)

since these assignments evidently lead to η being Hermitian and trace 1, and we can further verify, for any
pure state |ψ〉 of the reference system, that

〈ψ|η|ψ〉 =
∑
μ

nμ〈ψ|Xμ|ψ〉 = 1

d
− n(〈ψ|Xν |ψ〉+ 〈ψ|Xν∗ |ψ〉) � 1

d
− 2n � 1

d
− 2

2d
= 0 ⇒ η � 0. (227)

The only way that equation (225) can be satisfied for reference states with components assigned
according to equation (226) is if for each μ-component, we have

R

{
e−iϕμ

η
[
f μ(ρ)tμ − sμ

]}
� 0, ∀ η. (228)

Recall that we are free to choose τ as we like for every η, and our aim here is to derive a set of conditions
that are independent of η. For a given component μ, one possible way of satisfying equation (228)
independently of η is if we can choose a valid quantum state τ =

∑
μ tμXμ such that

f μ(ρ)tμ = sμ. (229)

Alternatively, note that we can rewrite equation (228) as follows:

f μ(ρ) |tμ| cos(ϕμ
τ − ϕμ

η ) − |sμ| cos(ϕμ
σ − ϕμ

η ) � 0, ∀ η. (230)

Therefore, an alternative way of satisfying the μ-component of the full set of sufficient conditions, is to
set the phases of τ such that they cancel those of η

ϕμ
τ = ϕμ

η , (231)

for all η. Substituting this phase choice on τ into the sufficient condition in equation (230) gives

f μ(ρ) |tμ| − |sμ| cos(ϕμ
σ − ϕμ

η ) � 0, ∀ η. (232)

Noting that max
x

cos x = 1, we see that the above equation holds for all η if

f μ(ρ) |tμ| � |sμ| , (233)
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which together with equation (231) gives us a second η-independent way of satisfying the μ-component of
equation (228). Putting back in our explicit labels μ = {λ,α, j}, we have that, if the τ we chose at every η

was a valid quantum state such that

f λj (ρ)t(λ,α)
j = s(λ,α)

j or f λj (ρ)
∣∣∣t(λ,α)

j

∣∣∣ �
∣∣∣s(λ,α)

j

∣∣∣ , ∀ λ, j,α, (234)

then ρ
G−→σ, and thus equation (234) constitutes a sufficient condition on the transition ρ

G−→σ, as
claimed. �

We now present the following theorem from which theorem 9 in the main text follows as a corollary.

Theorem 31. Assume without loss of generality (lemma 15) that G(σ) is full-rank. Then there exists a
G-covariant operation transforming ρ into σ if

μminn−1f λj (ρ) � gλj (σ), ∀ λ �= 0, j, (235)

where we have defined f λj (ρ) := tr[ρλj G(ρ)−
1
2 ρλ

∗
j G(ρ)−

1
2 ], gλj (σ) :=

∑
α

∣∣∣tr[X(λ,α)†
j σ]

∣∣∣, μmin as the smallest

eigenvalue of G(σ), and n as the sum of the dimensions of all distinct non-trivial irreps appearing in the
representation of G on B(HB), with HB being the Hilbert space of the output system.

Proof. We begin by making an explicit choice for {τΘ} in lemma 30 and proceed by showing that each τΘ
corresponds to a valid quantum state.

For the λ = 0 irrep we always choose

t(0,α)
0 := s(0,α)

0 , ∀ α, (236)

which corresponds to setting G(τΘ) = G(σ). Due to (F3), this choice guarantees that all zero mode
conditions from lemma 30 are satisfied for any given σ.

For λ �= 0, let us choose

t(λ,α)
j : = eiθ(λ,α)

j cλj |s(λ,α)
j |, cλj : =

μmin

n
(∑

α|s
(λ,α)
j |

) , θ(λ∗ ,α)
j = −θ(λ,α)

j , (237)

where n is the sum of the dimensions of all distinct non-trivial irreps appearing in the representation of G
on B(HB).

If τΘ corresponds to a valid quantum state for all values of θ(λ,α)
j , from lemma 30 we immediately have

the sufficient condition
f λj (ρ)cλj � 1, ∀ λ �= 0, j, (238)

which, with the identification gλj (σ) :=
∑

α

∣∣∣s(λ,α)
j

∣∣∣ = ∑
α

∣∣∣tr[X(λ,α)†
j σ]

∣∣∣, gives the statement of the lemma.

All that is left to do then is demonstrate that these choices of coefficients t(λ,α)
j indeed correspond to a

valid quantum state τΘ. We first note that the choice t(0,0)
0 = s(0,0)

0 = 1√
d

ensures that τΘ has trace 1.

Furthermore, since τΘ = G(σ) +
∑

λ,α,j:
λ�=0

t(λ,α)
j X(λ,α)

j , where the t(λ,α)
j in the sum have been so chosen that

t(λ∗ ,α)
j =

(
t(λ,α)
j

)∗
, τΘ is the sum of two Hermitian operators and so is also Hermitian. All that remains is to

verify that τ θ is positive semidefinite, i.e.,
〈ψ|τΘ|ψ〉 � 0, (239)

for any pure state |ψ〉 of the output system. The left-hand side of this expression can be lower bounded in
the following way for any θ(λ,α)

j ∈ [0, 2π):

〈ψ|τΘ|ψ〉 =
∑
λ,α,j

t(λ,α)
j 〈ψ|X(λ,α)

j |ψ〉 (240)

=
∑
α:λ=0

s0,α
0 〈ψ|X(0,α)

0 |ψ〉+
∑
λ,α,j:
λ�=0

eiθ(λ,α)
j cλj

∣∣∣s(λ,α)
j

∣∣∣ 〈ψ|X(λ,α)
j |ψ〉 (241)

� 〈ψ|G(σ)|ψ〉 −
∑
λ,α,j:
λ�=0

cλj

∣∣∣s(λ,α)
j

∣∣∣ ∣∣∣〈ψ|X(λ,α)
j |ψ〉

∣∣∣ (242)
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� μmin −
∑
λ,α,j:
λ�=0

cλj

∣∣∣s(λ,α)
j

∣∣∣ (243)

= μmin −
∑
λ,α,j:
λ�=0

μmin

n
(∑

α′

∣∣∣s(λ,α′)
j

∣∣∣)
∣∣∣s(λ,α)

j

∣∣∣ (244)

= μmin −
∑
λ�=0,j

μmin

n
(245)

= μmin − μmin = 0, (246)

where in the second inequality we have used the fact that the operators
{

X(λ,α)
j

}
are normalized. This

confirms that τΘ � 0 for all θ(λ,α)
j ∈ [0, 2π), which completes the proof. �

The sandwiched α-Rényi divergence Dα(ρ‖σ) for two states ρ,σ of a quantum system is defined
as [61, 62]

Dα(ρ‖σ) :=
1

α− 1
log tr

[
σ

1−α
2α ρσ

1−α
2α

]α
, (247)

whenever the support of ρ lies in the support of σ, and is infinite otherwise.
In the case of α = 2, we extend the domain of the first argument to the set of all linear operators in the

support of σ in the following manner:

D2(X‖σ) := log tr

([
σ− 1

4 Xσ− 1
4

]†[
σ− 1

4 Xσ− 1
4

]†)
. (248)

When X is Hermitian, which is the case whenever X is a valid quantum state, this extension reduces to the
standard definition of the sandwiched α-Réyni divergence for α = 2. We can then summarize the theorem
above as the following statement, reproduced from the main text:

Proof. We consider the transition ρ
G−→σp, where σp := (1 − p)σ + p 𝟙

d . We begin by noting that
μmin[G(σp)] = (1 − p)μmin +

p
d and gλj (σp) = (1 − p)gλj (σ) when (λ, j) �= (0, 0).

Therefore, substituting σp := (1 − p)σ + p 𝟙
d into theorem 31 gives the sufficient condition on the

transition ρ
G−→σp:

n−1

(
λmin +

p

d(1 − p)

)
f λj (ρ) � gλj (σ), ∀ (λ, j) �= 0. (249)

We now express this in terms of the extended sandwiched α-Rényi divergence Dα(ρ‖σ) for α = 2 defined in
equation (248), and it is readily checked that D2(ρλj ‖G(ρ)) = log f λj (ρ) for all λ, j. Since log(x) is monotonic
in x, we can re-express equation (249) as in the statement of the theorem, completing the proof. �

H.4. Conditions for identical input and output systems
When the input system A and output system B are identical, one can, without loss of generality, replace Eη

in lemma 8 with (1 − q)I + qEη , where q is a probability and I is the identity channel. The conditions of
lemma 8 are then rewritten as:

(1 − q)〈η, ρ〉+ q〈η, Eη(ρ)〉 � 〈η,σ〉, for all η and any q ∈ [0, 1], (250)

for an arbitrary family of covariant channels {Eη} parameterised by η, which can be rearranged as

q〈η, Eη(ρ)〉 � 〈η, (σ − (1 − q)ρ)〉, for all η and any q ∈ (0, 1], (251)

and so we define
σ(q) :=σ − (1 − q)ρ, (252)

for any q ∈ [0, 1] for which we require

q〈η, Eη(ρ)〉 � 〈η,σ(q)〉, for all η and any q ∈ [0, 1]. (253)

Therefore, when the input and output systems are the same, lemma 30 can be upgraded to

Lemma 32. Let us define components t(λ,α)
j := 〈X(λ,α)

j , τ〉 and s(q)(λ,α)
j := 〈X(λ,α)

j ,σ(q)〉. When the input system
A and the output system B are identical, the state ρ can be transformed into σ covariantly with respect to a
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symmetry group G (i.e. ρ
G−→σ) if there exists a family of valid quantum states⎧⎨

⎩∀ θ(λ,α)
j ∈ [0, 2π) : τΘ =

∑
λ,α,j

t(λ,α)
j X(λ,α)

j

⎫⎬
⎭ , (254)

where each (λ,α, j)-component of τΘ satisfies either:

qf λj (ρ)t(λ,α)
j = s(q)(λ,α)

j , or, (255)

qf λj (ρ)
∣∣∣t(λ,α)

j

∣∣∣− ∣∣∣s(q)(λ,α)
j

∣∣∣ � 0, t(λ,α)
j = eiθ(λ,α)

j

∣∣∣t(λ,α)
j

∣∣∣ (256)

for some probability q ∈ [0, 1].

Proof. The proof follows that of lemma 30 with Eη → qEη and σ → σ(q). �
These conditions are identical to those in lemma 30 under f λj (ρ) → qf λj (ρ) and σ → σ(q). Making use of

this lemma, we find that, when the input and output systems are the same, theorem 31 can be similarly
upgraded to

Theorem 33. Assume that G(σ) is full-rank. When the input and output systems are identical, there exists a
G-covariant operation transforming ρ into σ if ρ = σ or if there exists a probability q ∈ (0, 1] such that

μmin(G[σ(q)])n−1f λj (ρ) � gλj (σ(q)), ∀ λ �= 0, j, (257)

and G(σ(q)) � 0, where we have defined f λj (ρ) := tr[ρλj G(ρ)−
1
2 ρλ

∗
j G(ρ)−

1
2 ], gλj (σ(q)) :=

∑
α

∣∣∣tr[X(λ,α)†
j σ(q)]

∣∣∣,
n as the sum of the dimensions of all distinct non-trivial irreps appearing in the representation of G on B(HB),
with HB being the Hilbert space of the output system, and μmin(G[σ(q)]) as the smallest eigenvalue of G(σ(q)).

Proof. The only covariantly accessible state at q = 0 from ρ is ρ itself. At all other values of q, the proof
follows that of theorem 31 with the substitutions f λj (ρ) → qf λj (ρ) and σ → σ(q), except for the following
caveat. The part of that proof demonstrating why τΘ is positive relies on G(τΘ) being positive, which may
not be true for all q �= 0, since we now assign G(τΘ) := q−1G(σ(q)), but because q−1σ(q) or equivalently
G(σq) may not be positive for all q �= 0, q−1G(σ(q)) may not be either. We therefore additionally impose
G(σ(q)) � 0. �

By applying theorem 33 to a partially depolarised version of σ, σp := (1 − p)σ + p 𝟙
d , and noting once

again that D2(ρλj ‖G(ρ)) = log f λj (ρ), we obtain theorem 10 of the main text as an immediate corollary. We
note that the assumption of G(σ) being full-rank can be dropped by using lemma 15 to justify truncating
the output Hilbert space to supp(G(σ)), and then redefining σp → (1 − p)σ + p 𝟙

dS
where dS is the

dimension of supp[G(σ)], μmin[·] becomes min|ψ〉∈HS
〈ψ|(·)|ψ〉, and n becomes the sum of the dimensions

of all distinct non-trivial irreps appearing in the representation of G on B(supp[G(σ)]).
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