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We present a new mode-sum prescription for the efficient computation of renormalized expectation
values for a massive, charged, quantum scalar field propagating on a curved space-time background. Our
method is applicable to any static, spherically symmetric, four-dimensional space-time with a time-
independent, background electrostatic potential and can be used to find the renormalized scalar condensate,
current and stress-energy tensor. As an explicit example, we present a calculation of these quantities for a

charged scalar field in the Hartle-Hawking state on a Reissner-Nordstrom black hole background.
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I. INTRODUCTION

Hawking’s discovery [1] that black holes emit quantum
thermal radiation provoked many deep questions about the
interplay between general relativity and quantum field theory
on black hole space-times. Taking a semiclassical approach,
the background geometry is a solution of the classical

Einstein equations, possibly with additional background

)

matter sources having (classical) stress-energy tensor T&%

Gop + Ngy = Ty . (1.1)

where G4 is the (classical) Einstein tensor of the background
metric, A the cosmological constant and g,s the metric
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(here and throughout this paper, we use units in which
87G = ¢ = h = kg = 1). Having fixed the space-time and
matter fields, one can then study the behavior of a quantum
field on this fixed background.

However, such a framework is a lowest-order approxi-
mation. All matter and energy gravitates, including a
quantum field on a curved space-time background. This
backreaction process results in the evaporation of a black
hole due to Hawking radiation [1]. The backreaction of the
quantum field on the space-time geometry is described by
the semiclassical Einstein equations

C A
Gy + Moy = TG + (Top). (1.2)

where <T0,ﬁ> is the expectation value of the stress-energy
tensor of the quantum field. Finding <Taﬂ> is therefore of
central importance; it encodes detailed properties of the
quantum field itself as well as acting as a source term for
modifications of the underlying space-time.

In this paper we focus on the situation where the classical
background matter is an electromagnetic field whose
Faraday tensor F% = V?AF —VPA® (where A% is the
electromagnetic potential) satisfies Maxwell’s equations

V,Fhe =, (1.3)
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and the quantum field possesses a nonzero charge, so
that it interacts with the electromagnetic field as well as
the background geometry. The charge of the quantum
field introduces an effective chemical potential into the
Hawking radiation [1,2], thereby modifying the emission
and extracting charge as well as mass from a black hole. A
charged quantum scalar field will have an effect, not only
on the background space-time but also on the background
electromagnetic field, since it will provide a source term in
Maxwell’s equations:

VyFP* = 4n(J7), (1.4)
where (J%) is the expectation value of the current operator
for the quantum field (and we are using Gaussian units).
Therefore, to study the effect of a charged quantum field,
computation of (J%) as well as (T,) is required.

Computation of either (J%) or (T,;) is extremely
challenging; both involve the products of field operators
at the same space-time point and are therefore formally
divergent, resulting in the need to employ a regularization
and renormalization prescription. The divergences can be
regularized by point splitting [3.4], as the Green function
describing the quantum field depends on two space-time
points and is regular when those points are separated.
Formally, the two expectation values can be found by
applying a suitable differential operator (see, for example,
[5.6]) to the Green function, and then taking the coinci-
dence limit in which the space-time points are brought
together. The divergences in the expectation values arise
from divergences in the Green function in the coincidence
limit. For physical quantum states, the singularities in the
Green function can be renormalized by subtracting a
distribution given by the Hadamard parametrix [7] from
the Green function before applying any differential oper-
ator and bringing the space-time points together.

In practice, this procedure is technically difficult: the
Green function is typically given as an infinite sum over
mode solutions of the classical field equation, each of
which can only be computed numerically, while the
Hadamard parametrix is a geometric quantity involving
coefficients which have Taylor series expansions in the
coordinate separation of the points. The first methodology
for a practical computation of the renormalized expectation
value of the stress-energy tensor <Taﬁ>ren (RSET) for a
neutral quantum scalar field was developed by Howard and
Candelas [8,9] for a Schwarzschild black hole space-time.
This was subsequently refined in [10-12] to give a method
valid for a neutral scalar field on any static, spherically
symmetric background geometry. The key feature of this
approach is to work on the Euclideanized version of the
space-time, performing a Wick rotation of the time coor-
dinate. This has the advantage that the Euclidean Green
function is singular only in the coincidence limit, unlike
the Green function on the Lorentzian space-time, which

requires an ie prescription in order to avoid singularities
when the separated points are connected by a null geodesic.
Unfortunately, the method of [8—12] is cumbersome to
implement except in the simplest cases as it relies on a non-
uniform WKB approximation for the scalar field modes.

The development, over the past ten years, of two new
methods for computing renormalized expectation values
has greatly facilitated these calculations and enabled the
properties of a neutral quantum scalar field on a much
wider range of black hole space-times to be explored. The
“pragmatic mode-sum” method [13,14] works on the origi-
nal Lorentzian space-time and is notable for its applicability
to rotating as well as static black holes [15]. In contrast, the
“extended coordinates” method [16] involves the Euclidean
space-time. The key feature of the latter approach is that the
Hadamard parametrix to any order in the coordinate sepa-
ration can be expressed as a mode-sum, resulting in a
renormalized Green function that converges to any order
we desire; the rate of convergence being directly linked to the
order of the parametrix we subtract. This method also has the
advantage that itis approximately uniform, including close to
the horizon.

Progress in the computation of renormalized expectation
values for a charged scalar field has been more limited. On an
electrically charged Reissner-Nordstrom—de Sitter black
hole, the renormormalized current (J%) .. was computed
in [17,18]. Working on the Lorentzian space-time, making a
suitable choice of gauge at each space-time point, and a
suitable choice of point splitting, it is shown that only finite
(or zero) renormalization terms are required for the current,
which facilitates the computation. In [18] one component of
the RSET <Taﬂ>ren is also computed, which similarly requires
only finite or vanishing renormalization terms. Other calcu-
lations in the literature have been performed on an electrically
charged Reissner-Nordstrom black hole, and only involve
quantities which do not require renormalization, such as the
components (J") and (7.) [19] and differences in expect-
ation values between two quantum states [20].

To explore in detail the behavior of a charged quantum
scalar field on a charged black hole background, including
the backreaction, a methodology for the computation of all
components of the renormalized current and RSET is
required. First steps in this direction were taken many
years ago [21,22] but until now have not been developed
into a practical implementation. Our purpose in this paper is
to present a new methodology for the computation of all
components of both the current and RSET, building on the
“extended coordinates” approach of [16,23,24].

Our method is applicable to any static, spherically
symmetric geometry with a background electrostatic poten-
tial, and a quantum scalar field with arbitrary mass, charge,
and coupling to the Ricci scalar curvature. As in [16,23,24],
we work on Euclidean space-time, and first construct the
Euclidean Green function for a quantum charged scalar
field, in Sec. II. The Hadamard parametrix for this setup has
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already been derived in [6], and in Sec. III we find this
parametrix in terms of “extended coordinates” as defined in
[16,23,24]. In Sec. IV we write the Hadamard parametrix as
a mode sum and use this to perform the renormalization
mode by mode, obtaining expressions for the renormalized
scalar condensate (the square of the scalar field), current,
and RSET. As a demonstration of the efficacy of this
method, in Sec. V we perform a computation of these
quantities for a massive charged scalar field in the Hartle-
Hawking state [25] on a Reissner-Nordstrom black hole.
We close, in Sec. VI, with our conclusions.

II. EUCLIDEAN GREEN FUNCTION

The “extended coordinate” approach to implementing
Hadamard renormalization [16,23,24] is applicable to
static, spherically symmetric space-times with well-defined
Euclidean sections. Such space-times are described by line
elements of the form

1
ds* = f(r dr® + ——dr* + r*dQ?,
T

derived via a Wick rotation (t — —iz) of the original
Lorentzian space-time. Here, f(r) denotes some metric
function which, for the time being we leave unspecified,
and d€? is the usual line element of the two-sphere. When
(2.1) describes a black hole space-time, in order to describe
quantum states that are regular on the event horizon, it is
necessary to impose a periodicity in the = coordinate, 7 =
7+ 27 /x with k the event horizon surface gravity, in order
to avoid the existence of a conical singularity.

In this paper we are concerned with calculating the
renormalized expectation values of observables for a
charged scalar field. The charged scalar field satisfies the
equation of motion

(2.1)

[D,D* — > — ER]® = 0, (2.2)
where u is the field mass, R is the Ricci scalar, £ is the
coupling to the space-time curvature, D, = V, — igA, is
the gauge covariant derivative, ¢ is the scalar field charge,
and A is the gauge field which we assume is of the form
A = A,(r)dt, with A,(r) a real function of r. On the
Euclidean section (2.2) takes the form [22]

[0, — 2igA™V, — ¢*ATA, — u> — ER]® = 0, (2.3)
where L] is the d’ Alembertian operator, emphasizing that
this differential equation is now of elliptic type, and A, is
given, through Wick rotation, by A, = —iA; and hence is
purely imaginary [22,26]. As a result, the differential
operator on the left-hand side of (2.3) is real, unlike that
on the left-hand side of the equation of motion (2.2) on the
Lorentzian space-time. From henceforth, we will omit the
subscript E from covariant derivatives, which should be

assumed to be taken with respect to the Euclidean metric
(2.1) unless otherwise stated.

In black hole space-time applications, this framework
most naturally applies to a field considered in the Hartle-
Hawking state [25], thus we consider a Euclidean Green
function Gg(x,x’) corresponding to a thermal state at
temperature 7 = x/2z. This may be expanded as

(s

Z eanAT l(rv 7'/),

n=—0o0

1 (s
—22 (21 4+ 1)P(cosy)
=0
(2.4)
where At = 7 — 7/, the angular separation y is given by

cosy =cosfcos® +sinfsin@ cos (p —¢'), (2.5)

Pj(cosy) is a Legendre polynomial, the radial Green
function g,,(r, ) is

gnl(r’ r/) = Kanpnl(r<)qnl(r>)7 (26)

with r_ = min{r, '}, r. = max{r,”} and N, is the
normalization constant

1
PfWAPu(r). gu(r)}’

with WH{.,.} denoting the Wronskian. The functions
pn(r) and g,,(r) are solutions of the homogeneous radial
equation

i (P10 ) =

o 1>} Y,u(r) = 0.

N = - (2.7)

—qA,)* = (i + ER)
(2.8)

satisfying appropriate boundary conditions. We note that
the differential operator on the left-hand side of (2.8) is
complex due to the presence of A, which is imaginary,
however the Euclidean Green function G (x, x) is real. The
solutions Y,,;(r) of (2.8) with positive and negative n are
related by

Y_(r) = Yiy(). (2.9)
where * denotes the complex conjugate. Solutions Y, (r)
are thus real.

For our later analysis, it is convenient to decompose the
Euclidean Green function into its symmetric and antisym-
metric parts, namely

Gy(x,x) = GO (x,x'

)+ GW(x,x), (2.10a)

where
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1 (s
GB)( = Q; (21 + 1)P(cosy)
X Z cos(nkAt) g, (r,r'), (2.10b)
GW( W; (21 4+ 1)P(cosy)
Z sin(nkAt) g, (r, r'). (2.10c¢)

Although g,,(r, ') (2.6) is complex, both the symmetric
and antisymmetric parts of the Euclidean Green function
are real, since (2.9) implies that

G r) = giy(r.). (2.11)

Our desired expectation values can be derived from
coincidence limits involving the symmetric and antisym-
metric parts of the Euclidean Green function (2.10).
However, at present, naive coincidence limits of (2.10b)
and the time derivative of (2.10c) (which is necessary for
the computation of the current) lead to divergences in
the sense that the mode sums above do not converge in
this limit. In the following sections we show how the
“extended coordinate” method [16,23,24] can be utilized
to remove these divergences and derive sensible results for
the expectation values of observables of the charged
scalar field.

III. EXPANSION OF THE HADAMARD
PARAMETRIX

In this section, we will describe the renormalization
prescription employed to extract meaningful finite results
from the naive divergent expectation values of quantities
that involve the Euclidean Green function (2.10). The
quantities of interest in this paper are the charged scalar
condensate, the expectation value of the current and the
expectation value of the stress-energy tensor, all of which
require the coincidence limit of the Euclidean Green
function and its derivatives. From the previous section,
we note that the mode sums in the representation of the
Euclidean Green function (2.10b) [and the time derivative
of (2.10c)] do not converge at coincidence and we require a
meaningful way to render these mode-sums finite.

At least formally, the prescription for subtracting these
divergences is well understood [5,6]. Noting that the short-
distance singularity structure of the Euclidean Green
function is universal (independent of the quantum state)
provided the quantum state satisfies the Hadamard prop-
erty, the divergences are encoded in the Hadamard para-
metrix, which is a locally constructed bidistribution such
that the difference between the Green function and the

Hadamard parametrix satisfies an inhomogeneous wave
equation with a regular source term.

On the Euclidean section of a four-dimensional space-
time, the Hadamard parametrix has the following universal
form [5,6]

i) = 5 [ vt (265)]

872 | o(x, ) L?
(3.1)

where o(x, x’) is Synge’s world function corresponding to
half the square of the geodesic distance between the points
x and x’ (which is positive definite on a Euclidean section
when x # x). The biscalars U(x,x’) and V(x,x’) are
regular in the coincidence limit and are constructed locally
from the metric and its derivatives [6]. An arbitrary length
scale L has been inserted into the log term in (3.1) to make
the argument dimensionless. This arbitrariness is part of
the well-known renormalization ambiguity [5,6] and is a
manifestation of the fact that the biscalar V(x,x’) is a
solution to the charged scalar field homogeneous wave
equation [6]

DD - (4 + ER)V(x.¥) =0, (32)
and so we are free to add multiples of V(x,x’) to any
parametrix. The biscalar U(x,x’) satisfies the transport
equation [6]

26D, + Oo — 4|U(x,x") =0, (3.3)
subject to the boundary condition
U(x,x)=1. (3.4)

Here and throughout,
notation o, := V6.

For a neutral scalar field, the two-point function is
symmetric in the arguments x and x" and hence U(x, x)
and V(x, x’) are also symmetric in that case. However, for a
charged scalar, this is no longer the case, as can be seen in
(2.10). While the reduced symmetry renders (3.3) more
difficult to solve in practice than the neutral case, it is still a
transport equation along the geodesic connecting x and x/
and readily solved as a covariant Taylor series about one of
the points.

In the same way, we can expand V(x,x’) as

we have adopted the common

(3.5)

in the charged scalar field equation (3.2) and equating equal
powers in ¢ gives a set of transport equations for each
Vi1 (x,X') (with k£ > 0), namely [6],

045010-4
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(k+ 1)[26“D, + Oo + 2k] V41 (x, ')

+ [DeD® = (u* + ER) Vi (x,x') =0, (3.62)
together with the transport equation for V|,
[26°D, + 0o — 2]Vy(x, x')
+ [DeD* = (1* + ER)]U(x,x') = 0.  (3.6b)

The V(x,x") are now easily found as covariant Taylor
series, subject to boundary conditions obtained by taking
the coincidence limits of the respective equations.

The “extended coordinate” approach to renormalization
involves expanding the biscalars o(x,x’), U(x,x’), and
Vi (x,x") in terms of a judiciously chosen set of “extended
coordinates” @ and s:

x') = Zaabc(r)w“Arbsc, (3.7a)
a,b,c
= g () Ar s, (3.7b)
ab,c
(e, x) = Zvabc(r @ Arls¢ (3.7¢)
a.b.c
where
2 KAT
=—sin{ — |, 3.8
w Ksm( 5 > (3.8a)
s? = f(r)m* + 2r*(1 — cosy), (3.8b)

and Ar = r — 7/ is the separation of the points in the radial
direction. The coefficients in the expansions (3.7) can then
be found by substituting (3.7) into the relevant equa-
tions (3.3), (3.6) and solving order by order, treating
w~s~Ar~O(e). We begin by substituting the ansatz
(3.7a) into the defining relation

26 = 6,07, (3.9)

writing the derivatives of the extended coordinates (3.8)
as series in (@, s, Ar). Solving order by order in € gives
the coefficients o,,.(r), which are unchanged from those
arising in the neutral case [16,23,24]. This expansion for
o(x,x’) is then used, together with (3.3), to find the
coefficients in U(x,x") (3.7b). Next, having the expan-
sions of o(x,x") and U(x,x’), we use these in (3.6b) to
find the coefficients in the expansion of Vj(x,x), and
then, having V,(x,x’), we can use (3.6a) to find the
coefficients in the expansion of V; (x,x’). Finally, the
resulting expansions (3.7) are combined into the terms
appearing in (3.1). The algebraic manipulations required

to find the expansions (3.7) to the order required are
extremely lengthy, and are therefore performed in
Mathematica. Further details can be found in [16,23,24].

A key feature of this particular choice of “extended
coordinates” is that in the limit Ar — 0, we have
s =20+ O(e*). Note also that, although the
Hadamard parametrix itself (3.1) is independent of
the quantum state, this particular choice of expansion
parameters (3.8) is adapted specifically to quantum
fields in thermal states. This is easily seen in the
fact that the extended time coordinate w (3.8a) is
periodic with periodicity related to «. This is an
essential feature of the method, since the goal is to
obtain a mode-sum representation of the parametrix
(3.1) that has the same form as the Euclidean Green
function (2.4) so that a mode-by-mode subtraction can
be performed.

For a neutral scalar field, the symmetry of the biscalars
implies that only even powers of w and s appear in the
expansion of the Hadamard parametrix. For charged
scalar fields, while the parametrix contains only even
powers of s, odd powers of @w also arise.

Let us deal first with the direct part of the parametrix,
U(x,x')/o(x,x"). If we expand the direct part in our
extended coordinates up to order O(e*") and then take
the partial coincidence limit Ar = 0, then we obtain

Ulx m 2at2b
= 2> DE ) T
( X, X a=0 b=
m—1 a 2a-+2b+1
R) T

+ Z Z DO, (1) (2b+2
a=0 b=0

+ Z Z DSSB (r)w2a—2bs2b—2
a=1 b=l
m—1 a

+ DOS;)(r)wztz—sz §26-2 4 O(€2m).
a=1 b=1

(3.10)

The functions DE'SZ) (r) correspond to the coefficients of
terms appearing in the direct part of the Hadamard
parametrix that are rational in @ and s> and even in

w, while DOS;)(I") are the coefficients of terms that are
polynomial in @ and s*> and odd in @, etc. So the
labeling convention is this: D refers to the direct part,
O/E& refers to odd/even in @, the superscript (R)/(P)
refers to whether the term is rational/polynomial in @ and
s>, In Appendix A, we list the first few of these
coefficients, higher order coefficients can be found in
the Supplemental Material [27].

We can also similarly expand the so-called tail part of the
Hadamard parametrix V/(x, x) log(26/L?), which after
again taking the radial points at coincidence gives
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26 X, ¥/ m—1 a-1 w2a+2b+2 m=2 a—1 w2a+2h+3
V(X, x') log <(l,42)) = ZZTESZ)(F)W'F TOS})(?‘)W
a=1 b=0 a—1 b=0
m—=1 a m=2 a
+ TE[(]’;)(,.)WZbSZa—Zb log(s2/L?) + Tofl';)(r)w2b+lS2a—2b log(s?/L?)
a=0 b=0 a=0 b=0
m—1 a m-2 a
+ TEEB(r)thSZ“_Z” + Z Z T(’)Elpb)(r)wz”“sz“_z” + O(e? loge). (3.11)
a=1 b=0 a=1 b=0
The coefficients are now labeled by a 7 to indicate these come K(x,x') = K& (x,x') + K®(x,x'), (3.12a)

from the tail part of the parametrix and the superscript (L)
indicates coefficients of terms that contain a logarithm. Again,
the first few of these coefficients are listed in Appendix A.

It will be convenient for later purposes to decompose the
Hadamard parametrix (3.1) as

1 m a
KO)(x, ) 8—7,2{229% () Tz + 30 3 DEL
a=0 b= a—1 b=1
m—1 a
+ TEEIL;;)( Yo 2b (2a- 2h10g 2/L2
a=0 b=0

lat2b+l m—=1 a

S
Il
=}
i
o
::

=1

+ TO(';]) (r)w2b+1s2a—2b 1og(s2/L2) +

In the following section, we use the expansion (3.12) of the
Hadamard parametrix to renormalize the Euclidean Green
function and hence find renormalized expectation values of
the scalar condensate, current and stress-energy tensor.

IV. RENORMALIZED EXPECTATION VALUES

Previous work [6] on the use of Hadamard renormaliza-
tion for a charged scalar field outlined how to find
renormalized expectation values on a Lorentzian space-
time. Since we are working on a Euclidean space-time, in
this section we first outline how the results of [6] translate
to a Euclidean framework.

A. Euclidean vs Lorentzian expressions

An immediate difficulty arises when one comes to
computing renormalized expectation values using
Euclidean methods: how do we translate the formal
Lorentzian expressions for the renormalized expectation
values [6] into their Euclidean counterpart? For a neutral
scalar field on a static space-time, this is a straightforward
matter since one simply replaces the Feynman Green

ab

T2t + Z DO

3

Q

where K (x,x') and K™ (x,x') are the symmetric and
antisymmetric parts, respectively. Explicitly, the expan-
sions of these in the radial coincidence limit are

m-1 a1 2a+2b+2
w22 4 T“:Esz)(r _ws2b+2
a=1 b=0
m— a
Z b 20— Zh} + O(e¥" loge). (3.12b)
2021 22 m=2 a=1 m2a+2b+3
amsbtlgsh=s 4 TON (1) 2 —
L Lo $2b+2
2 a
Tog‘z(r>w2b+ls2a—2b} + O loge). (3.12¢)
1 5=0

function with the corresponding Euclidean Green function
via the mapping

—iG(t,x;1,X') = Gy(r,x;7,X'), (4.1)
where the two-point functions are related by
Gy(—it,x; =it ,x') = —iGy(t, x; ¢, X'). (4.2)

Our conventions for the Feynman Green function are given
by the definition

~iGy(x.x') = (O]T{d(x)®" (x') }]0),
where T denotes a time-ordering operator which permutes
the field operators so that the one evaluated at a time in the
chronological past of the other acts first.

While the correspondence (4.2) between the Feynman
and Euclidean propagators remains true for a charged scalar
field in static spacetimes, the Feynman propagator is a
complex bidistribution and certain expectation values for
the charged field involve taking real or imaginary parts of

(4.3)
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this bidistribution [6]. On the other hand, the Euclidean
Green function (2.4) is purely real, so translating the
Lorentzian definitions into corresponding Euclidean ones
requires consideration. As an illustrative example, consider
the unrenormalized expectation value of the current, which
is defined to be [6]

<‘7a>unren = [S{Da[_iGF(x’ x/)]}]? (44)

_a

47
where [-] indicates the coincidence limit X — x and J{-}
indicates the imaginary part. Clearly employing the map-
ping in (4.1) in this Lorentzian definition does not give the
correct definition of the current in terms of the Euclidean
Green function since the Euclidean Green function, as well
as the Euclideanized version of the operator D, are real and
hence its imaginary part vanishes identically.

To obtain the correct dictionary between the Lorentzian
and Euclidean definitions, one must first recast the
Lorentzian definitions into an equivalent form that involves
the symmetric and antisymmetric parts of the Euclidean
Green function, rather than real and imaginary parts. In
particular, because the Feynman propagator for a complex
scalar field is sesquisymmetric,

Gi(x,x') = Gy (X, x), (4.5)
this immediately implies that
N{=iGp(x,x')} = —iGéS)(x,x’),
iIX{—iGe(x, x')} = =GP (x, %), (4.6)

Hence, we can show that an equivalent definition of the
current (4.4) is

) wnren = ﬁ VGV (x, %) — igA, G (x,x')].  (4.7)

This definition of the current has an immediate counterpart
in terms of the Euclidean Green function under the

mapping

—iGgs) (x,x') = G](;S) (x,x7),

~iGM (x, %) = G (x, %), (4.8)

This now provides the framework for defining the
expectation values on the Euclidean section: we recast
the Lorentzian definitions in Ref. [6] in terms of the
symmetric and antisymmetric parts of the Feynman
Green function, and then map to the symmetric and
antisymmetric parts of the corresponding Euclidean
Green function.

B. Scalar condensate

The unrenormalized scalar condensate is defined to be

<d\)cADT>unren - [_iGF(X’ x/)L (49)

and according to our prescription above, we define this in
terms of the Euclidean Green function as

<(i)q,\)-[->unren = [GE<xvx,>]' (410)

Of course it is the renormalized expectation value we
wish to compute and this is obtained by subtracting the
Hadamard parametrix from the Euclidean Green function.
We define the renormalized Euclidean Green function by

W(x,x') = Gg(x,x') — K(x,x). (4.11)

It will also be useful, given our discussion in the previous
subsection, to define the symmetric and antisymmetric
parts

WO (x,x') = G (x.x') = KO (x,%),

W (x,x') = GéM(x, X)) — KW (x,x'). (4.12)

Now since the Hadamard parametrix, by definition, has the
same short-distance singularity structure as the Euclidean
Green function, W(x, x') is regular in the coincidence limit
x' = x. Hence,

w(x) = [W(x,x)] = [W(S)(x,x’)], (4.13)

where the last equality follows from the fact that the
coincidence limit of a regular antisymmetric biscalar must
vanish. Hence, we have
(DDT) ., = w(x). (4.14)
To compute w(x) in practice, we require a means to
express each of the terms in K (S)(x, x') (3.12b), the
symmetric part of the Hadamard parametrix, as a mode-
sum representation of the same form as the mode-sum
representation of the Euclidean Green function (2.4) for the
quantum field. If such a mode-sum representation can be
obtained, then we can renormalize the two-point function
mode by mode. It is sufficient to have mode-sum repre-
sentations for terms in (3.12b) that are nonpolynomial in
w? and s?, since the terms that are polynomial in these
variables have only finitely many modes in their mode sum
representations and hence cannot affect the large n, large [
behavior. Hence, only terms of the form w?**2¢ /s20*2 and
w?s24=20 Jog(s?) require a mode-sum representation.
Formally speaking, some of these terms are vanishing in
the coincidence limit but their inclusion as a mode-sum
serves to increase the rate of convergence of the mode-sum
representation of the renormalized expectation value. For
example, terms of the form w24 *?0 /52042 ~ O(Ax?*2)
with a > 2 are formally vanishing in the coincidence limit,
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but by including them as a mode sum we have complete
control of the rate of convergence of the mode sum.

To obtain the mode-sum representation of terms of
the form @?*+2b /s20%2 we start with the mode-sum ansatz
[16,23,24]

w2a+2h o 0 .
SZhT: Z(Zl+ 1)P1(COS}/) Z e””‘A“Pn[(a,bV),
=0 n=—co

(4.15)

for some as-yet undetermined functions ¥,,;(a, b|r) which
we call the regularization parameters. This ansatz (4.15)
can be inverted using the completeness relations of the
Legendre polynomials and the Fourier modes to obtain a
double integral expression for the regularization parame-
ters. Note that the fact that the point-splitting in K®) (x, x')
was maintained in multiple directions (we have taken only
radial points together ¥ — r) played an essential role in
this step. Moreover, the fact that we expanded using the
“extended coordinates” w and s (3.8) makes it feasible to
compute the double integral in terms of known functions.
The result depends only on the geometry of space-time and
hence is the same in the charged case as in the neutral case.
We state only the result, further details can be found in
Refs. [16,23,24]:

with

(4.17)

and where Py(z), QU(z) are the associated Legendre
functions of the first and second kind, respectively. It is
straightforward to show that ¥,,;(a, b|r) is invariant under
the mapping n — —n so that one could equally write

w2a +2b © sl

b = Z(2l+ 1)P;(cosy) Z cos(nkA7)¥,;(a,b|r),

=0 n=-—co

(4.18)

which is precisely of the same form as (2.10b). The rational
terms coming from the tail part of the Hadamard parametrix
are of the form w?**+2b+2 /§20+2 which are trivially obtained
from those above with a - a + 1.

All that remains is to express the logarithmic terms
@?s2¢=20 Jog(s?) in (3.12b) as a mode sum. The approach
is very similar and indeed the regularization parameters

themselves are essentially identical to the neutral scalar
case [16,24]. We have

o

24P al(2a — 1)1(=1)" @522 Jog(s?) = > (21 + 1)Py(cosy)
Wila,blr) = 2a+2b 2b+2 ) =0
n+a el \ o7 o
y + (li)b (_l)bPl p(;/])le (77) X Z COS(ﬂKA‘L’)){nl(a,b|r), (419)
Vo non) (a—n+p)l(a+n-p)’ n—oo
(4.16) where
|
p 1+a-»b 3y -Ipl Inl
—1)"(a—b)!(2b)! a (I+3+a—b=2k) n [ ) ARRe )
(a.bI1) % P b(_l)k< k )m ng_b o )b snep)t for [ > a—b,
Xni\@, 0|1) =
2”;5,:}" [% (A+1=10),2r%)* fozﬂ/"(l — cos kt)Pemint (72 — 1)UHN/2 QT (z)dt] e for I < a—b,
(4.20)
|
where this expression is only required for the very low / modes

z=n*—(* = 1) cos(kt). (4.21)
Again, P;(z), QU(z) are the associated Legendre functions
of the first and second kind, respectively, while Qy(z) is
Olver’s definition [28] of the Legendre function of the
second kind. The integral in the second branch of the
expression above (4.20) can be obtained in closed form in
terms of special functions, but the expression is lengthy and
offers no significant computational advantage compared to
simply computing the integral above numerically. Besides,

with [ <a—b.

Putting all of these details together then, we obtain the
following expression for the renormalized scalar conden-
sate for a charged scalar field in a thermal state

A l o0 o0 m
(@ ) =g 5> (2 +1) Y {gulr) k(1))
=0 n=-—oo0
| | D) 2
— @’Dé‘” (r) + ngOO log(L ), (422)

where
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m a

K (r) =303 DR ()W ,u(a. blr)
TES (P, (a+ 1,b|r)

+ TEY (Fym(a. b|r). (4.23)

The renormalized scalar condensate (4.22) is real, since

gui(r) = gu(r.r) satisties (2.11) and k() is real. In
principle, we can make the mode sum in (4.22) increasingly
convergent by choosing m larger and larger. Having
this precise control over the rate of convergence with a
direct correspondence to the order of expansion in the
Hadamard parametrix is one of the major advantages of this
approach.

C. Renormalized current

We now turn to the calculation of the renormalized
current (J,).... We have already derived, in Sec. IVA,
the unrenormalized current in terms of the symmetric and
antisymmetric parts of the Feynman propagator, given in
Eq. (4.7). In terms of the Euclidean Green function, we
employ the mapping (4.8) and the renormalization (4.12)
to obtain

Uadren = 7o [VaW W (x,) = igA WO (x. )], (4.24)
T

Moreover, we can expand the biscalar W(x,x') in a
covariant Taylor expansion about the point x:

W(x,x') = w(x) + wy(x)o® + %waﬂ(x)aaaﬁ + O(e?),
(4.25)

where w, and w,; are tensors at the point x, and, as before,
we use the book-keeping notation O(e) ~ O(Ax) to track
orders in a short-distance expansion. A similar expansion
for W(x’, x) is obtained by swapping x and x’ above. It is
then straightforward to show that

+
M=
>

,lDZa +2b
(") 52

OF) (rym2e-2b520-2 [(Za —2b+ 1)+ (2b = 2)f(r) T

1
2 a—
m N 2a+2b+2

—a {(2a+2b+3) - (2b+2)f(r)—

1
w, = [VaW<A) (x,x")] = EV(,W,

1
Wiap) = 5 Weap T Weap) ~ [VpVa W (x,)],

= Wgp) + [Vﬂ/VaW(S) (x,x)], (4.26)
where the last equality follows from Synge’s rule and the
fact that [V,W®) (x,x')] = 1V,w. We can then rewrite the
renormalized current as
n iq 1 .
(o) ren = 1\ We + Evaw —igAw ). (4.27)
Now the only nonzero component of the current for a
charged scalar field in the Hartle-Hawking state on a static
spacetime with an electrostatic potential is the time com-
ponent, which is
5 iq .
<J1>ren = 47 (Wr - lqATW)’ (428)
T
where we have discussed already how to compute w =
(®®T)  and

w, = [0,G (x,x) = 0,k (x,x)].  (4.29)

The first term is straightforward to compute mode by mode
and is given by

.GV (x.x') = — > P(cosy)

X io: (nk) cos(nkAt)g,,(r, 7). (4.30)

To renormalize this mode by mode, we require a mode-sum
representation for d, K *)(x, x'). The regularization parameters
that we derived for the terms in the symmetric part of the
parametrix (3.12b) are not valid for the antisymmetric part
(3.12c), since the time integral involved in inverting the mode-
sum ansatz is harder to express in closed form when there are
odd powers of @ in the integral. Nevertheless, we can proceed
as follows: Differentiating K(*) (x, x') (3.12c) with respect to 7
using the definitions of @ and s (3.8) gives

[(2a+2b—|— 1)—(2b+2)f(r)—
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m—2
+ Z Z TOab w?h g2 [(Zb + 1) log(s%/L?) + (2a — 2b) f—; f(r)log(s?/L?) +2f(r) f—; ‘%’

O

3 Q
[\S}
S)

£33 O (rymhsa [<2b+> T (24— 2B)f(r) ]

a=1 b=0

dw

2m=1] . 4.31
dr}+0(€ oge) (4.31)

We then note that

-5

k=0

which involves only even powers of . Moreover, we need not worry that this is an infinite sum since we can truncate at the
appropriate order consistent with the order in which we are expanding the Hadamard parametrix. We thus obtain

(A) 1 m—1 a m—a 1 K'2 k ® w2a+2b+2k w2
0,K®(x, :g 3 Okz -7 D(’)ab(r)w (2a+2b+1) - (2b+2)f(r)—2
mlamu% K 2a-2b+2k 2b=2 o
+ — D(’)a (r)m*a=2bt2kg2b= [(2a—2b+1)+(2b—2)f(r)—]
> 22 (1) () e ;
m=2 a—1 m—a-2 % K2\ K ®) 2aT2b+2k+2 w2
+ 2 2 <k> (_Z> TO,,(r) — {2a—|—2b+3 (2b+2)f(r)s—2}
m=2 a m—a-2 ;1 K2 k
+ <]2€) <_4> TOEsz)( o 2b+2k g2a- 2/7[ (2b + 1) log(s 2/L2)
a=0 b=0 k=0

()

+ (2a - 2b) ?—zf(r) log(s?/L?) +2£(r) sz}

m=2 a m—a=2 ;1 K'2 k ,w.Z
+ <12c> (— Z) TO) (r) b +2ks2a-2b {(21) + 1)+ (2a —2b)f(r) S—Z} }

+ O(e* loge). (4.33)

Now all of the terms in the expression (4.33) can be expressed as a mode-sum using the regularization parameters
W,(a,b|r) (4.16) and y,;(a, b|r) (4.20). As before, terms that are polynomial in both @? and s? do not require a mode-sum

representation, whilst terms that are nonpolynomial are converted to a mode sum even if they formally vanish in the
coincidence limit. Hence we have

:%i 20+1) i {i(n) g (r) = J3) (r )}——DOU( )+$TO&)(r) log(L?), (4.34a)
where
'(m)r:m_lam_u% —K—ZkD(’)(R)r 2a +2b+ 1)¥,(a+k,blr)—2b+2)f(r)¥Y,;(a+k,b+1|r
501=3 35 (7] (-5) PO+ 25 )8t kb~ (25 20+ kb 1)
+mz_2“_lm_a_2(%>(—K—2>kTO(R)(r)[(2a+2b+3)‘I’ i r) = (2b42)f(r)¥(a+k+1,b+1|r)]
a=1 b=0 k=0 k 4 @ ! "
m—=2 a m—a-2 % K2 k
335 () (<) TORNE Vet 1) + Qa2 a1tk 1)
m—2m—a-2 s 1 2\ k
N 2V (-5 7oh o)y, .0]7)]. 4.34b
>3 () (-5) motmane ) (4340

045010-10



MODE-SUM PRESCRIPTION FOR RENORMALIZED ...

PHYS. REV. D 111, 045010 (2025)

We now have convergent mode-sum expressions
for w and w, which are combined according to (4.28)
to give (J.).,. Finally, since the Euclidean time and
Lorentzian time are related by the mapping t — —it,
we have

<]t>ren = i<jr>ren’ (435)

Note that, from (4.28), since A, is purely imaginary, so too
is (J.).,- Hence (J,).., (4.35) is real, as expected.

D. Renormalized stress energy tensor

The formal expression for the unrenormalized stress-
energy tensor on the Lorentzian space-time is [6]

R o 1
T hunren = T (=iGe(x. X))} + 5 6% 01, (4.36)
where 'T'“ﬁ is the differential operator

Ta " pa y* 1 a / *

1
~26D°Dy + 268°yD, D’ + ER% ~ > (4% + ER)57,

(4.37)
with ¢?* the bivector of parallel transport, and
1 1 2 1 1 1
= |u? ——|R| —=(&—~)OR—-=—-R¥R
R {” * (5 6) ] 24 (5 5) 7200
1 1
+ _Raﬁ/)iR(lﬂ/)/l - _quaﬁFa/} (438)

720 48

is the local term which must be added to ensure the stress-
energy tensor is conserved. The derivatives and the electro-
magnetic potential here are to be understood as the
Lorentzian quantities.

We can follow the procedure from Sec. IV A and express
the unrenormalized stress-energy tensor in terms of deriv-
atives acting on the symmetric and antisymmetric parts of
the Feynman Green function, which is then easily mapped
to the Euclidean section via (4.8). Renormalizing the
Euclidean Green function then gives the following defi-
nition of the RSET

. 1
<T{Iﬂ>l‘en _ _ |:<vavﬂ _ Eéa/}m) W(S>(x, x/):|

1 1
2AaA 1 ZAAA o 1 2 R)S*
+4q p~54 25/7’_5(/4 +&R)%
1

+ ER + iq <A<"vﬂ) - 25aﬁAlvl> }w
1

+ lq(ZA(aWﬂ) - 5aﬁAﬁW/1) + F(saﬂﬂl, (439)
T

where round brackets surrounding indices denotes sym-
metrization. In arriving at this expression, we have used
Synge’s rule for exchanging limits and derivatives, as well
as the fact that the coincidence limit of the antisymmetric
part of the propagator vanishes. In this expression, all
quantities are to be thought of as Euclidean so, for example,
the d’Alembertian operator [1 =V, V# is with respect to
the Euclidean metric.

We have already discussed how to compute w and w, in
Secs. IV B and IV C, respectively. Moreover, the deriva-
tives of these quantities that appear in Eq. (4.39) are
straightforward, since only radial derivatives are nonvan-
ishing and these can be accurately obtained numerically,
provided that w and w, are computed with sufficient
accuracy on a sufficiently fine radial grid.

This leaves only the first term in (4.39), which we now
consider, following the approach of [16]. We note that the
Euclidean Green function G (x,x") satisfies the charged
scalar field equation (2.2) with the vanishing right-hand side
replaced by a delta function, so that the renormalized Green
function W(x, x’) satisfies the inhomogeneous wave equa-
tion with a regular source. In the coincidence limit, this gives

[(DeD* = p? = ER)W (x,x')] = (4.40)

T4

Moreover, considering the symmetric and antisymmetric
parts gives the coincidence limit

[OWE) (x,x)] = (m? + ER + *A,A* + igA*V))w

3
+ 2l(]14AW]L -

WUI’ (441)

and employing this result in (4.39) gives
Fa ~a 1 a 1 ]
<T /)'>ren:_w /7’+ - 5_5 \% v[)’+ 5_1 0 /}D
+ quaA/j + fRa/j + lqA(“Vﬁ) }W

1
+ 2lqA(aWﬂ) - y(sa'[ﬂil s (442)
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where we have introduced the notation

Wy = [V“Vﬂ (x x)]. (4.43)
For the component Ww*,, we can first write
7 (s) I
—[VEV WS (x,x)] + TW r, (4.44)

using Synge’s rule and the fact that w is independent of time.
The last term on the right-hand side we can compute by
simply taking a radial derivative of the interpolation function
for w. The salient point is that now the covariant derivatives in
the first term on the right-hand side are at different space-time
points and so act as partial derivatives. This can now be
computed from taking time derivatives of the mode-sum
representation of W®)(x,x') already derived (4.22).
Explicitly, we have

V'V, WO (x,x)]

[Se]

8,[22 @+1) Y ;’j {gu(r) =K (1)}

n=—oo

+ W {DES)(r) + £(r)DER ()

— F(NTEY (r)1og(L?) = TEY (r) log(L2)

+F(NTER (r) + TER (). (4.45)

The mode sum in the first line remains rapidly convergent for

m sufficiently large. The regularization modes k;’[")(r) are
given already in (4.23).

The angular components are found in a similar way,
noting first that we have

)] + 4,

=—[V/V,W! (4.46)
where the first term on the right-hand side is obtained by
taking angular partial derivatives of the mode-sum repre-

sentation for W (x, x'), yielding

[V‘/’ V¢ (x x)]
I(1+1 21 +1
=37 Z _Z_ {gu(r) =Ky (1)}
o (DER() - 76§5’<r> log(L?) + T&(g ()}

(4.47)

Finally, we require a means to find W",. The most efficient
way to compute this is to note that
= [OWO) (x,x)] = W*

. —2w?,, (4.48)

and hence from (4.41), we simply have

W= =W, = 20+ 2igAtw, + (m? + ER + AN

3
. ) vy, (449)

where a mode-sum representation for every term on the
right-hand side has already been developed.

+ lqAﬁvl)W

V. HARTLE-HAWKING STATE
ON REISSNER-NORDSTROM

In this section we demonstrate the utility of the above
framework by applying it to a charged quantum scalar field
on the Reissner-Nordstrom spacetime. Our geometry is
once again described by the line element (2.1) with

= (1-2+4),

where M is the black hole mass and Q its electric charge.
The roots of f(r) are given by

(5.1)

ry =M+ \/M?*-Q?, (5.2)
and correspond to the event (7, ) and Cauchy (r_) horizons.
We take 7 to be periodic with 7 = 7 + 2z /k, where « is the
event horizon surface gravity, given by

ry—r_

K= . (5.3)

2
2ry

Therefore the charged scalar field is assumed to be in the
Hartle-Hawking state [25], so we are considering a thermal
state at the black hole temperature x/27z. The gauge field

takes the form
A= <_g + Q>
ry

where we have chosen a gauge such that A is regular
throughout the Euclidean section. In particular, regularity
requires that we use a gauge in which A vanishes on the
horizon [26].

(5.4)

A. Radial modes

The Euclidean Green function corresponding to the field in
the Hartle-Hawking state can again be expanded as (2.4), and
further separated into its symmetric and antisymmetric parts,
as defined in (2.10b) and (2.10c), respectively. The mode
functions p,,(r) and g,;(r) now satisfy the radial equation

£ (0 2) el
— P =1+ 1)] Yu(r) =0, (5.5)

with p,,;(r) regular at r,, and g,,(r) regular as r — oo.
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Following a procedure analogous to that of [29], one can
transform the radial equation into the confluent Heun
equation [30]. This allows one to obtain an expression
for p,;(r) in terms of a confluent Heun function:

aj(r-r-) [y —r N[ r—r a3
[ - +
Pnﬁr)—-e +
ry—r_ ry—r_

xHEUNC(al,az,a3,a4,a5; r—r+>’ (5.6)
r_—ry

where HEUNC(...) denotes the confluent Heun function
satisfying the equation

{z(z _ 1)5_Z2+ {az(z=1) + asz + z(z - l)as}diz

with z = (r—r,)/(r_ — r,), such that
HEUNC (a,, a», as, a4, as;0) = 1. (5.8)

The constants in (5.6) are given by

r,.—r_ -
a = *r \/ (@ 4 1°n?) + 2ikngQr. — ¢* 0%,
+

o+ igQU = )P
2 r+(r+ - r_)

El

2
Knr

a3: .
rp—r_

ay =1+ 1) —ay = ay — a3 = 2a3(a + @)

20?13 (ry —2r.)
(rp—ro)?

a = (r1 = r2) (W’ +2&°n%) = 20 (@, + a3 + 1)

N 2ikngQ(rt +r_ry =2r2) 2¢°Q%*r_(r. —r_)
_ 5 ’

21 2
ikngQri n ,uzri,

ry—r_

ry re
az =1+ 2as,
as =14 2a,,
as = —2a,. (5.9)

The confluent Heun function is normalized to unity on the
event horizon and we have followed the convention set in
Mathematica for the order of its arguments. The expression
(5.6) is useful as the confluent Heun function is provided as
a built-in function in Mathematica, and therefore one can
generate these mode functions very efficiently.

The mode solutions ¢,,;(r) can also be written in terms
of confluent Heun functions, but the relevant confluent
Heun functions in this case are of logarithmic type and not
built in to Mathematica. Instead, we generate the g,,;(r) by

numerically integrating the radial equation (5.5), making
use of Mathematica’s NDSOLVE function. This was
achieved through the modification of the numerical inte-
gration Mathematica notebook of the REGGEWHEELER
package of the Black Hole Perturbation Toolkit [31]. We
start the integration at a large value of r, approximating the
solution using an asymptotic expansion, and then integrat-
ing inwards with r decreasing. Since the radial mode
functions satisfy (2.9), we need only compute p,,;(r) and
qn(r) for n > 0.

B. Numerical results

We now use the expressions of the previous sec-
tion (4.22), (4.28), (4.42) to calculate the renormalized
scalar condensate, current, and RSET. We consider a
Reissner-Nordstrom black hole with charge Q = M/2
and use units in which M = 1. In these units the event

horizon is located at r = r. = 1 + V/3/2 = 1.86602540 to
9 s.f. (5.2). We assume that the scalar field is minimally
coupled to the scalar curvature, so that £ = 0, and set the
scalar field mass to be uM = 1/10, whilst the scalar field

charge is gM = 1/4. With these parameters we have u >

% and therefore no classical charge superradiance [32]. In

this case the Euclidean Green function (2.4) is uniquely
defined. The presence of superradiant modes complicates
the definition of a Hartle-Hawking-like state for a charged
scalar field on a Reissner-Nordstrom black hole [20] and
therefore, the construction of the Euclidean Green func-
tion. For this reason, we do not consider the possibility of
charge superradiance in this paper, although we expect
the framework presented in this paper for implementing
Hadamard renormalization will be unaffected by the
presence of superradiant modes. Finally, we also set the
arbitrary renormalization length scale L = M =1 (3.1).

We first generated our radial mode functions p,,;(r),
¢,(r) using the procedure described in Sec. VA, for 0 <
[ <l and 0 < n < np,,. We used a working precision of
100 digits, and found that the Wronskian of p,,;(r), ¢,;(r)
was constant across our radial grid to at least 46 digits for
all values of / and n used.

The next stage is to compute the mode sums appearing in
(4.22), (4.34a), (4.45), and (4.47), performing the sum over
n first, before the sum over /. As in the neutral case [23,24],
the summand in the sum relevant for calculating the scalar

condensate (4.22), namely {N(g,;(r)) — kfl'?)(r) }, con-
verges as O(n=?"~3) for fixed [ and large n, as demon-
strated in Fig. 1 for m = 0, 1, 2. Similarly, the additional

terms relevant for calculating the current (4.34a), namely

{=nc3(gu(r)) = j" ()}, converge as O(n=""1) for

fixed [ and large n, as can be seen in Fig. 2 for m =1,
2, 3. From Fig. 1, we deduce that the additional mode
sums required for the RSET computation (4.45), namely

(2[R (gu(r)) = £ (r)]}, also converge as O(n=2""1)

nl
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_14 , ...........................................................

. log(n°IRe(gni(r))-k V(1))
-16F,
i log(r®IRe(gn(0)-k V(1)
-20F
=22+

) log(n” IRe(gni()-k@ i)

_24 [ T ®%cccccccccsscccccccccccccccccccccccccccsccccccccccsse
FIG. 1. Log plot demonstrating the convergence of the terms in

the n sum, for fixed [, used to calculate the scalar condensate
(4.22). The blue, yellow, and green lines correspond to setting
m =0, 1, 2, respectively, in the expansion of the relevant part of
the Hadamard parametrix (4.23), and show the expected
O(n=2"=3) behavior.

_1al log(n®|-nkim(gri(r)~/n(r)])

log(n®|-nkim(gri(r)~@ )

.
°e
.
...................................................

FIG. 2. Log plot demonstrating the convergence of the addi-
tional terms in the n sum, for fixed [, used to calculate the
renormalized current (4.34a). The blue, yellow, and green lines
correspond to setting m = 1, 2, 3, respectively, in the expansion
of the relevant part of the Hadamard parametrix (4.34b), and
show the expected O(n~2"~1) behavior.

for fixed / and large n. Here the real and imaginary parts of
g,(r) arise through the use of the relation (2.11) in the
expressions (2.10b), (2.10c).

The number of modes required for final answers for the
renormalized expectation values to the desired precision

can be reduced by increasing the order m in the expansion
of the Hadamard parametrix (4.23), (4.34b), at the cost of
increased computation time of the required regularization
parameters (4.16), (4.20). Table I shows the effect of
increasing the expansion order m and [,,, on the con-
vergence of results for the RSET component <T§>, with
Nmax fixed to be np,, = 30. Increasing m has the more
significant effect on improving convergence than increas-
ing /... We also found that increasing /., has a greater
impact on the rate of convergence than increasing 7.
This informed our decision to set /,,,,, = 40 and n,,,, = 30,
and, following [16], we set m = 6. These choices proved
sufficient for yielding an RSET satisfying the conservation
equation

v(1<?aﬁ> = 477:Fa/3<'7a>7 (510)

to at least 10 decimal places.

Our numerical results for the scalar condensate (®d'),
time component of the current (J’), and the nonzero
components of the RSET (namely (77,), (I”,) and
(T%) = (T?,)) are presented in Figs. 3, 4, and 5,
respectively.

From Fig. 3, we see that the scalar condensate is regular
everywhere outside the event horizon (see the analysis in
Sec. VC below for its behavior on the horizon) and
monotonically decreasing as the radial coordinate r
increases. The scalar condensates for massless [33] and
massive [34] scalar fields on a Schwarzschild black hole are
similarly monotonically decreasing as r increases. For a
neutral scalar field on a Reissner-Nordstrom black hole
[35], again the scalar condensate monotonically decreases
as r increases, except when the charge of the black hole
is close to its maximum value Q = M, which is not the
situation we are considering here. We also note that in
Fig. 3, the scalar condensate is negative except for a region
close to the event horizon, whereas the scalar condensate is
positive everywhere outside the event horizon for the
neutral scalar field results in Refs. [33-35] (however, this
is not the case for a neutral scalar field on a higher-
dimensional black hole [23,24]).

TABLEIL RSET component M*(7") to 20 decimal places close to the event horizon, demonstrating its convergence as m and [,,,, are

increased while n,,, is held fixed.

r/M = 1.86645496

limax = 30, npex = 30

lmax = 40’ Nmax = 30

Inax = 50, np, = 30 Inax = 60, np, = 30

0.00002618590886922940
0.00002618382980083290
0.00002618383985909550
0.00002618383980252072
0.00002618383980315258

33 II
I
AN AW

0.00002618502912849888
0.00002618383654191550
0.00002618383981352664
0.00002618383980307558
0.00002618383980314160

0.00002618461774413245
0.00002618383844230895
0.00002618383980593583
0.00002618383980312958
0.00002618383980314098

0.00002618439521262908
0.00002618383913839172
0.00002618383980409387
0.00002618383980313821
0.00002618383980314092
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w2 (8)
0.00005

-0.00005 -

-0.00010

-0.00015 -

-0.00020 -

-0.00025

-0.00030

FIG. 3. Renormalized scalar condensate (®®') for a charged
scalar field on a Reissner-Nordstrom black hole having charge
Q = M /2. The event horizon radius is r, /M = 1.866. The scalar
field is minimally coupled to the space-time curvature and has
mass uM = 1/10 and charge gM = 1/4. We use units in
which M = 1.

The only nonzero component of the renormalized current
is (J'), shown in Fig. 4. We find that this is negative
everywhere outside the event horizon, and monotonically
increasing as the radial coordinate r increases. Comparing
the results in Fig. 4 with those in Figs. 3 and 5, it can be
seen that the renormalized current has a magnitude which is
about 100 times smaller than the magnitudes of the scalar
condensate or RSET components. The magnitude of (J*)
depicted in Fig. 4 is of similar order of magnitude to that
computed for a charged scalar on a Reissner-Nordstrom—de
Sitter black hole in Ref. [17].

The RSET has three nonzero components, (17,), (1",)
and (7%) = <T¢¢>, and these can be seen in Fig. 5. As with
the scalar condensate and current, all three components are
regular everywhere outside the event horizon. Once again,
the results depicted in Fig. 5 share some qualitative features
with the corresponding RSET components for a neutral

M4

-2x1077 |2 3 4 5 6 M

—4x1077

—6x1077

-8x1077

~1x1078F

FIG. 4. Renormalized time component of the current (J) for a
charged scalar field on a Reissner-Nordstrom black hole having
charge Q = M/2. The event horizon radius is r, /M =~ 1.866.
The scalar field is minimally coupled to the space-time curvature
and has mass uM = 1/10 and charge gM = 1/4. We use units in
which M = 1.

0.00004
— M)
0.00003 | e
0.00002 — M%)
0.00001 -
.
2 ~—a 4 5 5 7 8

FIG. 5. Nonvanishing components of the RSET, (7",), (1",)
and (7%) = (T?,) for a charged scalar field on a Reissner-
Nordstrom black hole having charge Q = M/2. The event
horizon radius is r, /M =~ 1.866. The scalar field is minimally
coupled to the space-time curvature and has mass yM = 1/10
and charge gM = 1/4. We use units in which M = 1.

scalar field on a Schwarzschild [8,9] (at least when the
neutral scalar field is conformally coupled [16]) and on a
Reissner-Nordstrom black hole [10,11] (again when the
field is conformally coupled and providing the black hole
charge is not too large). The component (T’ ;) is positive on
the event horizon and monotonically decreasing as r
increases close to the horizon. This component has a
minimum at r ~ 3, and is monotonically increasing for
larger r, although it remains negative for all r larger than the
location of the minimum. In contrast, the remaining com-
ponents, (7”,) and (7?,), are positive everywhere outside
the horizon. The radial component (7”,) is monotonically
decreasing as r increases, while the angular component
(1%,) is decreasing close to the horizon, has a minimum at
r ~ 3 and is increasing for larger values of r. Far from the
black hole, the spatial components (7”,) and (7?,) converge
towards a common value, while on the horizon, the inter-
polated values of (77) and (") at the horizon agree to 17
decimal places. Next, we further explore the behavior of all
the renormalized expectation values on the horizon.

C. Expectation values on the event horizon

In this section we outline the calculation of the scalar
condensate, renormalized current, and RSET components
on the event horizon. We will use these calculated values as
a check on the numerical off-horizon results presented in
the previous section.

To obtain the horizon values, we exploit the choice of
gauge in (5.4), which has the effect that the radial equa-
tion (2.8) reduces to its neutral equivalent as the horizon is
approached. This in turn means that the solutions p,,;(r) and
¢,(r) have the following leading order behavior at the
horizon:

nl/2, ~lnl/2,

pnl(r)N<r_r+) qnl(r>~(r_r+)
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Therefore choosing to point split purely in the radial direction
and placing the innermost point, the argument of p,,;(r), on
the horizon will collapse the sum over 7 in the various mode
sums required. For example, the mode sums required for the
scalar condensate and the current, (2.10b) and (4.30),
respectively, reduce to

K‘ [e+]
(GO (x, ')} = 7Z(zz+ DN oigoi(r).
=0

)} =0,

where the notation {} denotes that the partial coincidence
limit7 — 7,6 — 6, ¢’ — ¢ has been taken. This procedure
also yields

{0,GW (x, x' (5.11)

, K =/
{VyVP GO ) == ~(1+ 1)1+ DN ogo(r).
+1=0

(5.12)

For a neutral massless field, the solution ¢ (r) can be
expressed in terms of Legendre functions and the above
modes sums can be computed exactly [36]. However for a
massive field, this is no longer the case and we need an
alternative approach.

One such approach is that of [37,38], where uniform
approximations for the radial solution g,,;(r) were used to
calculate the event horizon values of the scalar condensate
and the renormalized stress energy tensor for a field in the
Hartle-Hawking state. Even though this method was
developed for the case of a neutral scalar field, the results
for any mode sums involving the n = 0 mode ¢, (r), such
as (5.11), (5.12), carry through to the charged case with
only minor adjustments, leading to the following quasia-
nalytical expression for the scalar condensate on the event
horizon:

a 1 1 1

OdT) =

(08 = = g {5+ 2 (v +10)
d 1 '} +is)
—¢(x,2—i8 —idln|—2——~
+dx§<x’2 ’>x_1 l H{F(%—zﬁ)}

2r, KF,
‘|',M |:1+J/ IH<L>:|+3
e 1>m},
=0

where 8% = p?r% + 1/12 is a constant, { is the generalized
Riemann Zeta function, y is Euler’s constant, and T" is
Euler’s gamma function. The quantity f; ensures that the
approximation to g, (r) employed contains the appropriate
multiples of py;(r) and must be obtained numerically. The
details of how these f; terms are obtained are given in

x=-1

(5.13)

M2 (&) cﬁ)
[ ]

0.0000380 [
0.0000375 |

0.0000370 -

0.0000365 [

r

0.0000360 ~ 1.867 1.868 1.869 1.870 M

FIG. 6. Renormalized scalar condensate (®®') near the black
hole event horizon. Yellow dots are computed numerically using
the method in Sec. V B, while the blue dot is the on-horizon
result (5.13).

Appendix B. We note that while the charge of the scalar
field, g, does not appear explicitly in the above expression
for w, the quantity w does in fact depend on ¢ through the
numerical f; terms.

In Fig. 6 we compare the results of our numerical
computations from the previous section (yellow dots) with
the on-horizon expression (5.13), shown as a blue dot. The
value obtained by extrapolating the off-horizon results to
the horizon agrees with the quasianalytical expression
(5.13) to nine significant figures.

Employing a similar approach to the mode sum in (5.12)
leads to a similar, if much longer, quasianalytical expres-
sion for W/, on the horizon, which is also presented in
Appendix B. Similarly, at » = r, both W', and W, can be
expressed terms of the n = 0 mode ¢,(r), and hence we
have, from the results of [38], that on the event horizon

3v,
W, =W, = -l - .
o ¢+2 87

(5.14)
Therefore, using (4.42) and noting that A, vanishes on the
event horizon, we see that all components of the renor-
malized stress energy tensor on the horizon may be
expressed in terms of Vv%, w, and derivatives of w. In
fact, for minimal coupling we see that

(5.15)

Inserting Eqgs. (5.13) and (B1) into the above expression
and evaluating for the parameter set considered in this
paper, gives the result shown in Fig. 7. We find agreement
with the off-horizon numerical results extrapolated to the
horizon to nine significant figures.

For the final stress energy tensor component, we have,
with & = 0, that on the horizon:
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M)y
L]

0.0000262
0.0000261 |
0.0000260

0.0000259 |

0.0000258 |-

1.867 1.868 1.869 1.870 M
My

0.00002622 |-
0.00002620 -

0.00002618 |-

0.00002616
0.00002614

0.00002612 . ‘ ‘ ‘ ‘ ’
1.867 1.868 1.869 1.870 M

u* (1)
0.0000432
L]

0.0000430 |-
0.0000428 -
0.0000426 |-

r

1.867 1.868 1.869 1.870 M

FIG. 7. Nonvanishing RSET components (77,) (top), (1",)

(middle), and (7?,) (bottom) near the black hole event horizon.
Yellow dots are computed numerically using the method in
Sec. V B, while blue dots are the on-horizon results (5.15), (5.16).

A - K V1
<T¢¢> = —W¢¢ - _W,r - 8_7[2 .

2

To calculate w , directly requires taking derivatives at both
r and 7/, with the derivative at 7’ leading to a mode sum
involving the n = 1 mode. In this case, the radial equation
is now complex and the neutral results do not carry over as
easily as for the n = 0 case. However, we may circumvent
this issue by exploiting the fact that we have both the exact
value of w on the horizon and extremely accurate numerical
results in the near-horizon region. We can therefore gen-
erate an interpolating function for w that is valid on the
horizon, which (numerically) gives its derivative there.
Taking this approach yields a value shown in Fig. 7. We
find that this agrees with the off-horizon results to the same
accuracy as for the other RSET components.

(5.16)

Yagas .

1.867 1.868 1.869 1.870 M

~9.62x1077 |
~9.63x1077 -
-9.64x1077 |

~9.65x107"

FIG. 8. Renormalized time component of the current (J') near
the black hole event horizon. Yellow dots are computed numeri-
cally using the method in Sec. V B, while the blue dot is the on-
horizon result (5.17).

Finally, we turn our attention to the renormalized current.
For radial separation, with the innermost point on the
horizon, one can show that like {9,G* (x, x')}, the partial
coincidence limit {0,K(x, x")} also vanishes and hence w,
is zero on the event horizon. Recalling the expression
(4.28) for the only nonzero component of the current, and
noting once more that A, vanishes on the horizon, we
obtain the result that (J,),,, =0 on the event horizon,
which is in agreement with the numerical results. To
confirm the near-horizon results for (J'),., as plotted in
Fig. 4, we must consider the ratio (J,).,/f(r) as r — r,.
As both quantities vanish in this limit, we have that

N i d
<Jt>ren|r:r+ = Y dr <Jr>ren

r=r,

(5.17)

As for the scalar condensate, we may calculate the
derivative of the current by exploiting our knowledge of
the exact horizon value to obtain the derivative there
numerically, without recourse to evaluating any sums
involving the n = 1 mode. The result of this computation
is shown in Fig. 8. We find agreement with the extrapolated
horizon values to seven significant figures.

VI. CONCLUSIONS

We have presented a new, practical method for the
computation of renormalized expectation values for a
charged quantum scalar field. Our scheme is applicable to
any static, spherically symmetric space-time with a time-
independent background electrostatic potential. Our meth-
odology was developed from the “extended coordinates”
approach for a neutral scalar field [16,23,24]. Working
on a Euclidean space-time, we first constructed the point-
split Euclidean Green function as a mode sum over
separable solutions of the charged scalar field equation,
assuming that the field is in a thermal Euclidean
state. The Euclidean Green function is renormalized by
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subtracting the Hadamard parametrix [6]. We first wrote
the Hadamard parametrix in terms of “extended coor-
dinates,” from which it can be expressed as a mode sum,
enabling the renormalization to be performed mode by
mode. Using the renormalized Green function, we
derived expressions for the renormalized scalar conden-
sate, current, and stress-energy tensor. We have demon-
strated the effectiveness of our method by applying it to a
particular case of a massive, minimally coupled, charged
scalar field in the Hartle-Hawking state on a Reissner-
Nordstrom black hole.

Our method is sufficiently efficient that it would now
be practical to explore the dependence of the renormal-
ized expectation values on the scalar field mass, charge,
and coupling to the Ricci scalar curvature. Previous work
for neutral scalar fields on both Schwarzschild [16] and
Reissner-Nordstrom [10,11,39] black holes have shown
that expectation values depend strongly on the scalar field
parameters. In addition, our results depend on a renorm-
alization length scale L. Changing this scale may also
affect the qualitative features of the renormalized expect-
ation values.

On black hole space-times, our approach most natu-
rally applies to the Hartle-Hawking state (although the
“extended coordinates” method has very recently been
generalized to the Boulware state [40]). However,
differences in expectation values between two quantum
states do not require renormalization and are therefore
easier to compute. Our results can therefore also be
extended to different quantum states, such as the Unruh
[41] and Boulware [42] states (see Ref. [39] for recent
results on expectation values in these states for a neutral
scalar field on a Reissner-Nordstrom black hole). While
we have focussed on a particular Reissner-Nordstrom
black hole, it would also be feasible to study the effect of
changing the charge of the black hole (on which the
expectation values for a neutral scalar field also depend
strongly [10,11,39]). Furthermore, our implementation
works on any static, spherically symmetric, space-time,
and hence is applicable to charged quantum scalar fields
on more general black hole space-times, such as
Reissner-Nordstrom—(anti-)de Sitter. In this paper, we
have worked in four space-time dimensions, although the
“extended coordinates” method works equally well in
dimensions greater than four (at least for the scalar
condensate) [23,24], so we anticipate that our results
in this paper could also be extended to higher
dimensions.

Finally, in this paper we have restricted our attention to
the region exterior to the event horizon of a black hole.
There has been a great deal of recent interest in quantum
effects on black hole interiors, particularly in the behavior
of the RSET near the inner horizon and the consequen-
ces for cosmic censorship [18,43-54]. With the notable

exception of [18], work to date on this topic has largely
focused on a neutral scalar field, even when the back-
ground black hole is charged. Given that the analysis of
the current on the black hole interior has revealed
unexpected (dis)charge processes [18], it would be of
great interest to study the RSET for a charged scalar near
the inner horizon of a charged black hole.
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APPENDIX A: COEFFICIENTS IN THE
HADAMARD EXPANSION

In this appendix, we give explicitly the coefficients of
the Hadamard parametrix when expanded in “extended
coordinates” (with Ar = 0), that is, the -coefficients
appearing in Eqgs. (3.12b) and (3.12c). The assumptions
are that the space-time is a static, spherically symmetric
black hole space-time with surface gravity x and that
there is a background electrostatic potential. Otherwise,
the metric function f(r) and the Euclideanized potential
A, are arbitrary functions of r. We list the coefficients
required to expand the parametrix up to the order such
that O(e*loge) terms are ignored, with Ax~e.
Subtracting the parametrix up to this order is sufficient
to regularize the stress-energy tensor for a massive
charged scalar in an arbitrary static spherically, symmetric
space-time. In practice, we subtract a much higher-order
expansion of the parametrix which serves to accelerate
the convergence of the mode-sum representation of the
renormalized stress-energy tensor. The higher order
coefficients are too lengthy to be of use in print form,
but we include in the Supplemental Material [27] a
Mathematica notebook with these expressions specialized
to Ricci flat space-times and imposing the Einstein-
Maxwell equations on the vector potential. Below, all
derivatives (f’, f") etc.) are with respect to the radius r.
We omit the explicit dependence on r throughout for
typographical convenience:
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APPENDIX B: DETAILS OF THE ON-HORIZON CALCULATIONS

In this appendix we present an expression for W? ¢ on the event horizon and provide further details on the calculation of
the S, terms in (5.13).

Taking the approach outlined in Sec. V C leads to the following expression for Vv% on the event horizon:

1 1
v, = —— 12q—
e Snzri{ “7 2402
1
36012

+ [—83}’% —15(¢?Q* -

+15(¢4°Q% + 2r_ry + 3p r+)r+10g<L
“Z{
—E;l(l+l)(21+l)ﬁl},

where r are given in (5.2), y is the digamma function,

wolpp Q1
a6 T a0

and y is Euler’s constant.

The quantity j3; ensures that the approximation to q0:(7)
employed contains the appropriate multiple of p;(r) and
must be obtained numerically. The sums and integrals in the
final line of (B1) must also be computed numerically.

Both 3, in the above expression (B1) and the cor-
responding f; term in the expression for the scalar con-
densate in (5.13) arise by expressing the full g¢,(r) in the
following way:

qoi(r) = qop (r) + Bipor(r),

where ¢(;""**(r) is an approximation that captures enough
of the local behavior of the full solution in the vicinity of
the horizon to calculate the local contributions to either the
scalar condensate or renormalized stress tensor. For the
scalar condensate, sufficient local behavior is captured
through approximating g; as

(B3)

[60r2 —5(126% + 23)r_r. + {(45 — 60y)5* +

Al
2

+

21+1){ln(v,)—u/<é+vl>}+%} —/jdﬂ% ¢ (|62 = 22))

& = ulr

75 —30y)8% + 53} 2
+

+6)r2 +4(1542r% +44)r_r,

(B1)
+%, gy =Pt ;/;%l(” b, (B2)
I

T1/4
g (r) = = )]1/4 Ko(p,ﬁ),

where f(r) is the metric function (2.1), Ky(x) denotes
the modified zeroth order Bessel function of the second
kind and

" 1 2 B |
:</’+Wdr>’ i =i A3+l

(B4)

For the components of the RSET, which is constructed by
taking derivatives of W, we must employ an approximation
that captures more of the local behavior of g, such as

,.approx( ) - F(% - Vl)

o T P ot ()]

W02V ]alT),  (BS)
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where W, ,(x) denotes the Whittaker function of the second kind.
Since py,(r) and g, (r) satisfy the same second order linear differential equation (2.8), by integrating the Wronskian, we

may also express ¢, (r) in the form:

qo(r) = Poz(r)/rww-

dr (B6)

Inserting this expression and the appropriate approximation into (B3) and then expanding in the near-horizon limit leads to

the following expressions for f; and By

o dr 2
= -1
bi [+ ”/zf(”/) (on r’) ) +r+ -

1
( 2
- o dr 1 1
= ~1
hi / 71 <on(”/)2 >+r+—

[log(p;) + 7],

[log<8 |a|>+w(§+ / (B7)

8\/|—Ex_|> +2y},

where we have normalized the p,(r) function to be unity on the horizon. For large /, the quantity f; is O(I=*) and B is
O(17%); hence the respective sums of these quantities converge.

[1] S. W. Hawking, Particle creation by black holes, Commun.
Math. Phys. 43, 199 (1975).

[2] G. W. Gibbons, Vacuum polarization and the spontaneous
loss of charge by black holes, Commun. Math. Phys. 44,
245 (1975).

[3] S. M. Christensen, Vacuum expectation value of the stress
tensor in an arbitrary curved background: The covariant
point separation method, Phys. Rev. D 14, 2490 (1976).

[4] S.M. Christensen, Regularization, renormalization, and
covariant geodesic point separation, Phys. Rev. D 17,
946 (1978).

[5] Y. Decanini and A. Folacci, Hadamard renormalization of
the stress-energy tensor for a quantized scalar field in a
general spacetime of arbitrary dimension, Phys. Rev. D 78,
044025 (2008).

[6] V. Balakumar and E. Winstanley, Hadamard renormaliza-
tion for a charged scalar field, Classical Quantum Gravity
37, 065004 (2020).

[7]1 S. A. Fulling, M. Sweeny, and R. M. Wald, Singularity
structure of the two point function in quantum field theory in
curved space-time, Commun. Math. Phys. 63, 257 (1978).

[8] K. W. Howard and P. Candelas, Quantum stress tensor in
Schwarzschild space-time, Phys. Rev. Lett. 53, 403 (1984).

[9] K. W. Howard, Vacuum (7,) in Schwarzschild space-time,
Phys. Rev. D 30, 2532 (1984).

[10] P.R. Anderson, W. A. Hiscock, and D. A. Samuel, Stress
energy tensor of quantized scalar fields in static black hole
space-times, Phys. Rev. Lett. 70, 1739 (1993).

[11] P.R. Anderson, W. A. Hiscock, and D. A. Samuel, Stress—
energy tensor of quantized scalar fields in static spherically
symmetric space-times, Phys. Rev. D 51, 4337 (1995).

[12] C. Breen and A. C. Ottewill, Hadamard renormalization of
the stress energy tensor in a spherically symmetric black

hole space-time with an application to lukewarm black
holes, Phys. Rev. D 85, 084029 (2012).

[13] A. Levi and A. Ori, Versatile method for renormalized
stress-energy computation in black-hole spacetimes, Phys.
Rev. Lett. 117, 231101 (2016).

[14] A. Levi, Renormalized stress-energy tensor for stationary
black holes, Phys. Rev. D 95, 025007 (2017).

[15] A. Levi, E. Eilon, A. Ori, and M. van de Meent, Renor-
malized stress-energy tensor of an evaporating spinning
black hole, Phys. Rev. Lett. 118, 141102 (2017).

[16] P. Taylor, C. Breen, and A. Ottewill, Mode-sum prescription
for the renormalized stress energy tensor on black hole
spacetimes, Phys. Rev. D 106, 065023 (2022).

[17] C. Klein and J. Zahn, Renormalized charged scalar current
in the Reissner-Nordstrom-de Sitter spacetime, Phys. Rev. D
104, 025009 (2021).

[18] C. Klein, J. Zahn, and S. Hollands, Quantum (dis)charge of
black hole interiors, Phys. Rev. Lett. 127, 231301 (2021).

[19] V. Balakumar, E. Winstanley, R.P. Bernar, and L.C.B.
Crispino, Quantum superradiance on static black hole
space-times, Phys. Lett. B 811, 135904 (2020).

[20] V. Balakumar, R. P. Bernar, and E. Winstanley, Quantization
of a charged scalar field on a charged black hole back-
ground, Phys. Rev. D 106, 125013 (2022).

[21] R. Herman and W. A. Hiscock, Renormalization of the
charged scalar field in curved space, Phys. Rev. D 53, 3285
(1996).

[22] R. Herman, A method for calculating the imaginary part of
the Hadamard elementary function G!) in static, spherically
symmetric space-times, Phys. Rev. D 58, 084028 (1998).

[23] P. Taylor and C. Breen, Mode-sum prescription for the
vacuum polarization in odd dimensions, Phys. Rev. D 94,
125024 (2016).

045010-21



BREEN, MONTAGNON, TAYLOR, and WINSTANLEY

PHYS. REV. D 111, 045010 (2025)

[24] P. Taylor and C. Breen, Mode-sum prescription for vacuum
polarization in black hole spacetimes in even dimensions,
Phys. Rev. D 96, 105020 (2017).

[25] J. B. Hartle and S. W. Hawking, Path integral derivation of
black hole radiance, Phys. Rev. D 13, 2188 (1976).

[26] H. W. Braden, J. D. Brown, B. F. Whiting, and J. W. York,
Jr., Charged black hole in a grand canonical ensemble, Phys.
Rev. D 42, 3376 (1990).

[27] See the Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevD.111.045010 for a Mathe-
matica notebook.

[28] DLMEF, NIST Digital Library of Mathematical Functions,
https://dlmf.nist.gov/, Release 1.2.1 of 2024-06-15, edited
by F. W.J. Olver, A.B. Olde Daalhuis, D. W. Lozier, B. 1.
Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V.
Saunders, H. S. Cohl, and M. A. McClain.

[29] H.S. Vieira, V. B. Bezerra, and C. R. Muniz, Instability of
the charged massive scalar field on the Kerr—-Newman black
hole spacetime, Eur. Phys. J. C 82, 932 (2022).

[30] A. Ronveaux, Heun’s Differential Equations, Oxford Sci-
ence Publications (The Clarendon Press, Oxford University
Press, New York, 1995) with contributions by F. M. Arscott,
S. Yu. Slavyanov, D. Schmidt, G. Wolf, P. Maroni and A.
Duval.

[31] Black Hole Perturbation Toolkit, https://bhptoolkit.org/.

[32] L. Di Menza and J.-P. Nicolas, Superradiance on the
Reissner—Nordstrgm metric, Classical Quantum Gravity
32, 145013 (2015).

[33] P. Candelas and K. W. Howard, Vacuum (®?) in Schwarzs-
child space-time, Phys. Rev. D 29, 1618 (1984).

[34] P.R. Anderson, (¢?) for massive fields in Schwarzschild
space-time, Phys. Rev. D 39, 3785 (1989).

[35] P.R. Anderson, A method to compute {¢)*) in asymptoti-
cally flat, static, spherically symmetric space-times, Phys.
Rev. D 41, 1152 (1990).

[36] P. Candelas, Vacuum polarization in Schwarzschild space-
time, Phys. Rev. D 21, 2185 (1980).

[37] C. Breen and A.C. Ottewill, Extended Green-Liouville
asymptotics and vacuum polarization for lukewarm black
holes, Phys. Rev. D 82, 084019 (2010).

[38] C. Breen and A. C. Ottewill, Hadamard renormalisation of
the stress energy tensor on the horizons of a spherically
symmetric black hole space-time, Phys. Rev. D 85, 064026
(2012).

[39] J. Arrechea, C. Breen, A. Ottewill, and P. Taylor,
Renormalized stress-energy tensor for scalar fields in
Hartle-Hawking, Boulware, and Unruh states in the

Reissner-Nordstrom
125004 (2023).

[40] J. Arrechea, C. Breen, A. Ottewill, L. Pisani, and P. Taylor,
The renormalized stress-energy tensor for scalar fields in the
Boulware state with applications to extremal black holes,
arXiv:2409.04528.

[41] W. G. Unruh, Notes on black hole evaporation, Phys. Rev. D
14, 870 (1976).

[42] D. G. Boulware, Quantum field theory in Schwarzschild and
Rindler spaces, Phys. Rev. D 11, 1404 (1975).

[43] S. Hollands, R. M. Wald, and J. Zahn, Quantum instability
of the Cauchy horizon in Reissner—Nordstrom—de Sitter
spacetime, Classical Quantum Gravity 37, 115009 (2020).

[44] N. Zilberman, A. Levi, and A. Ori, Quantum fluxes at the
inner horizon of a spherical charged black hole, Phys. Rev.
Lett. 124, 171302 (2020).

[45] S. Hollands, C. Klein, and J. Zahn, Quantum stress tensor at
the Cauchy horizon of the Reissner—Nordstrom—de Sitter
spacetime, Phys. Rev. D 102, 085004 (2020).

[46] B. A. Judrez-Aubry and J. Louko, Quantum kicks near a
Cauchy horizon, AVS Quantum Sci. 4, 013201 (2022).

[47] N. Zilberman, M. Casals, A. Ori, and A.C. Ottewill,
Quantum fluxes at the inner horizon of a spinning black
hole, Phys. Rev. Lett. 129, 261102 (2022).

[48] T. McMaken and A.J.S. Hamilton, Renormalization of
(¢*) at the inner horizon of rotating, accreting black holes,
Phys. Rev. D 105, 125020 (2022).

[49] P. Hintz and C. K. M. Klein, Universality of the quantum
energy flux at the inner horizon of asymptotically de
Sitter black holes, Classical Quantum Gravity 41, 075006
(2024).

[50] C. Klein and J. Zahn, Long-range correlations of the stress
tensor near the Cauchy horizon, Phys. Rev. D 109, L061702
(2024).

[51] T. McMaken, Semiclassical instability of inner-extremal
regular black holes, Phys. Rev. D 107, 125023 (2023).

[52] C. Klein, M. Soltani, M. Casals, and S. Hollands, Infinite
quantum twisting at the Cauchy horizon of rotating black
holes, Phys. Rev. Lett. 132, 121501 (2024).

[53] T. McMaken, Backreaction from quantum fluxes at the Kerr
inner horizon, Phys. Rev. D 110, 045019 (2024).

[54] N. Zilberman, M. Casals, A. Levi, A. Ori, and A.C.
Ottewill, Computation of (®?) and quantum fluxes at
the polar interior of a spinning black hole, arXiv:2409
.17464.

[55] C. Breen, G. Montagnon, P. Taylor, and E. Winstanley,
Figshare, 10.15131/shef.data.26937325 (2024).

spacetime, Phys. Rev. D 108,

045010-22



	Mode-sum prescription for renormalized expectation values for a charged quantum scalar field on a charged black hole
	I. INTRODUCTION
	II. EUCLIDEAN GREEN FUNCTION
	III. EXPANSION OF THE HADAMARD PARAMETRIX
	IV. RENORMALIZED EXPECTATION VALUES
	A. Euclidean vs Lorentzian expressions
	B. Scalar condensate
	C. Renormalized current
	D. Renormalized stress energy tensor

	V. HARTLE-HAWKING STATE ON REISSNER-NORDSTRÖM
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