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We present a new mode-sum prescription for the efficient computation of renormalized expectation

values for a massive, charged, quantum scalar field propagating on a curved space-time background. Our

method is applicable to any static, spherically symmetric, four-dimensional space-time with a time-

independent, background electrostatic potential and can be used to find the renormalized scalar condensate,

current and stress-energy tensor. As an explicit example, we present a calculation of these quantities for a

charged scalar field in the Hartle-Hawking state on a Reissner-Nordström black hole background.
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I. INTRODUCTION

Hawking’s discovery [1] that black holes emit quantum

thermal radiation provoked many deep questions about the

interplay between general relativity and quantum field theory

on black hole space-times. Taking a semiclassical approach,

the background geometry is a solution of the classical

Einstein equations, possibly with additional background

matter sources having (classical) stress-energy tensor T
ðCÞ
αβ :

Gαβ þ Λgαβ ¼ T
ðCÞ
αβ ; ð1:1Þ

whereGαβ is the (classical) Einstein tensor of the background

metric, Λ the cosmological constant and gαβ the metric

(here and throughout this paper, we use units in which

8πG ¼ c ¼ ℏ ¼ kB ¼ 1). Having fixed the space-time and

matter fields, one can then study the behavior of a quantum

field on this fixed background.

However, such a framework is a lowest-order approxi-

mation. All matter and energy gravitates, including a

quantum field on a curved space-time background. This

backreaction process results in the evaporation of a black

hole due to Hawking radiation [1]. The backreaction of the

quantum field on the space-time geometry is described by

the semiclassical Einstein equations

Gαβ þ Λgαβ ¼ T
ðCÞ
αβ þ hT̂αβi; ð1:2Þ

where hT̂αβi is the expectation value of the stress-energy

tensor of the quantum field. Finding hT̂αβi is therefore of

central importance; it encodes detailed properties of the

quantum field itself as well as acting as a source term for

modifications of the underlying space-time.

In this paper we focus on the situation where the classical

background matter is an electromagnetic field whose

Faraday tensor Fαβ ¼ ∇αAβ −∇βAα (where Aα is the

electromagnetic potential) satisfies Maxwell’s equations

∇βF
βα ¼ 0; ð1:3Þ
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and the quantum field possesses a nonzero charge, so

that it interacts with the electromagnetic field as well as

the background geometry. The charge of the quantum

field introduces an effective chemical potential into the

Hawking radiation [1,2], thereby modifying the emission

and extracting charge as well as mass from a black hole. A

charged quantum scalar field will have an effect, not only

on the background space-time but also on the background

electromagnetic field, since it will provide a source term in

Maxwell’s equations:

∇βF
βα ¼ 4πhĴαi; ð1:4Þ

where hĴαi is the expectation value of the current operator

for the quantum field (and we are using Gaussian units).

Therefore, to study the effect of a charged quantum field,

computation of hĴαi as well as hT̂αβi is required.
Computation of either hĴαi or hT̂αβi is extremely

challenging; both involve the products of field operators

at the same space-time point and are therefore formally

divergent, resulting in the need to employ a regularization

and renormalization prescription. The divergences can be

regularized by point splitting [3,4], as the Green function

describing the quantum field depends on two space-time

points and is regular when those points are separated.

Formally, the two expectation values can be found by

applying a suitable differential operator (see, for example,

[5,6]) to the Green function, and then taking the coinci-

dence limit in which the space-time points are brought

together. The divergences in the expectation values arise

from divergences in the Green function in the coincidence

limit. For physical quantum states, the singularities in the

Green function can be renormalized by subtracting a

distribution given by the Hadamard parametrix [7] from

the Green function before applying any differential oper-

ator and bringing the space-time points together.

In practice, this procedure is technically difficult: the

Green function is typically given as an infinite sum over

mode solutions of the classical field equation, each of

which can only be computed numerically, while the

Hadamard parametrix is a geometric quantity involving

coefficients which have Taylor series expansions in the

coordinate separation of the points. The first methodology

for a practical computation of the renormalized expectation

value of the stress-energy tensor hT̂αβiren (RSET) for a

neutral quantum scalar field was developed by Howard and

Candelas [8,9] for a Schwarzschild black hole space-time.

This was subsequently refined in [10–12] to give a method

valid for a neutral scalar field on any static, spherically

symmetric background geometry. The key feature of this

approach is to work on the Euclideanized version of the

space-time, performing a Wick rotation of the time coor-

dinate. This has the advantage that the Euclidean Green

function is singular only in the coincidence limit, unlike

the Green function on the Lorentzian space-time, which

requires an iϵ prescription in order to avoid singularities

when the separated points are connected by a null geodesic.

Unfortunately, the method of [8–12] is cumbersome to

implement except in the simplest cases as it relies on a non-

uniform WKB approximation for the scalar field modes.

The development, over the past ten years, of two new

methods for computing renormalized expectation values

has greatly facilitated these calculations and enabled the

properties of a neutral quantum scalar field on a much

wider range of black hole space-times to be explored. The

“pragmatic mode-sum” method [13,14] works on the origi-

nal Lorentzian space-time and is notable for its applicability

to rotating as well as static black holes [15]. In contrast, the

“extended coordinates” method [16] involves the Euclidean

space-time. The key feature of the latter approach is that the

Hadamard parametrix to any order in the coordinate sepa-

ration can be expressed as a mode-sum, resulting in a

renormalized Green function that converges to any order

we desire; the rate of convergence being directly linked to the

order of the parametrix we subtract. Thismethod also has the

advantage that it is approximately uniform, including close to

the horizon.

Progress in the computation of renormalized expectation

values for a charged scalar field has beenmore limited. On an

electrically charged Reissner-Nordström–de Sitter black

hole, the renormormalized current hĴαiren was computed

in [17,18]. Working on the Lorentzian space-time, making a

suitable choice of gauge at each space-time point, and a

suitable choice of point splitting, it is shown that only finite

(or zero) renormalization terms are required for the current,

which facilitates the computation. In [18] one component of

the RSET hT̂αβiren is also computed,which similarly requires

only finite or vanishing renormalization terms. Other calcu-

lations in the literature have beenperformedonanelectrically

charged Reissner-Nordström black hole, and only involve

quantities which do not require renormalization, such as the

components hĴri and hT̂tri [19] and differences in expect-

ation values between two quantum states [20].

To explore in detail the behavior of a charged quantum

scalar field on a charged black hole background, including

the backreaction, a methodology for the computation of all

components of the renormalized current and RSET is

required. First steps in this direction were taken many

years ago [21,22] but until now have not been developed

into a practical implementation. Our purpose in this paper is

to present a new methodology for the computation of all

components of both the current and RSET, building on the

“extended coordinates” approach of [16,23,24].

Our method is applicable to any static, spherically

symmetric geometry with a background electrostatic poten-

tial, and a quantum scalar field with arbitrary mass, charge,

and coupling to the Ricci scalar curvature. As in [16,23,24],

we work on Euclidean space-time, and first construct the

Euclidean Green function for a quantum charged scalar

field, in Sec. II. The Hadamard parametrix for this setup has
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already been derived in [6], and in Sec. III we find this

parametrix in terms of “extended coordinates” as defined in

[16,23,24]. In Sec. IV wewrite the Hadamard parametrix as

a mode sum and use this to perform the renormalization

mode by mode, obtaining expressions for the renormalized

scalar condensate (the square of the scalar field), current,

and RSET. As a demonstration of the efficacy of this

method, in Sec. V we perform a computation of these

quantities for a massive charged scalar field in the Hartle-

Hawking state [25] on a Reissner-Nordström black hole.

We close, in Sec. VI, with our conclusions.

II. EUCLIDEAN GREEN FUNCTION

The “extended coordinate” approach to implementing

Hadamard renormalization [16,23,24] is applicable to

static, spherically symmetric space-times with well-defined

Euclidean sections. Such space-times are described by line

elements of the form

ds2 ¼ fðrÞdτ2 þ 1

fðrÞ dr
2 þ r2dΩ2; ð2:1Þ

derived via a Wick rotation (t → −iτ) of the original

Lorentzian space-time. Here, fðrÞ denotes some metric

function which, for the time being we leave unspecified,

and dΩ2 is the usual line element of the two-sphere. When

(2.1) describes a black hole space-time, in order to describe

quantum states that are regular on the event horizon, it is

necessary to impose a periodicity in the τ coordinate, τ ¼
τ þ 2π=κ with κ the event horizon surface gravity, in order

to avoid the existence of a conical singularity.

In this paper we are concerned with calculating the

renormalized expectation values of observables for a

charged scalar field. The charged scalar field satisfies the

equation of motion

½DαD
α − μ2 − ξR�Φ ¼ 0; ð2:2Þ

where μ is the field mass, R is the Ricci scalar, ξ is the

coupling to the space-time curvature, Dα ¼ ∇α − iqAα is

the gauge covariant derivative, q is the scalar field charge,

and A is the gauge field which we assume is of the form

A ¼ AtðrÞdt, with AtðrÞ a real function of r. On the

Euclidean section (2.2) takes the form [22]

½□E − 2iqAτ∇τ − q2AτAτ − μ2 − ξR�Φ ¼ 0; ð2:3Þ

where □E is the d’Alembertian operator, emphasizing that

this differential equation is now of elliptic type, and Aτ is

given, through Wick rotation, by Aτ ¼ −iAt and hence is

purely imaginary [22,26]. As a result, the differential

operator on the left-hand side of (2.3) is real, unlike that

on the left-hand side of the equation of motion (2.2) on the

Lorentzian space-time. From henceforth, we will omit the

subscript E from covariant derivatives, which should be

assumed to be taken with respect to the Euclidean metric

(2.1) unless otherwise stated.

In black hole space-time applications, this framework

most naturally applies to a field considered in the Hartle-

Hawking state [25], thus we consider a Euclidean Green

function GEðx; x0Þ corresponding to a thermal state at

temperature T ¼ κ=2π. This may be expanded as

GEðx; x0Þ ¼
1

8π2

X

∞

l¼0

ð2lþ 1ÞPlðcos γÞ
X

∞

n¼−∞

einκΔτgnlðr; r0Þ;

ð2:4Þ

where Δτ ¼ τ − τ0, the angular separation γ is given by

cos γ ¼ cos θ cos θ0 þ sin θ sin θ0 cos ðϕ − ϕ0Þ; ð2:5Þ

Plðcos γÞ is a Legendre polynomial, the radial Green

function gnlðr; r0Þ is

gnlðr; r0Þ ¼ κN nlpnlðr<Þqnlðr>Þ; ð2:6Þ

with r< ¼ minfr; r0g, r> ¼ maxfr; r0g and N nl is the

normalization constant

N nl ¼ −
1

r2fðrÞWfpnlðrÞ; qnlðrÞg
; ð2:7Þ

with Wf:; :g denoting the Wronskian. The functions

pnlðrÞ and qnlðrÞ are solutions of the homogeneous radial

equation

�

d

dr

�

r2fðrÞ d

dr

�

−
r2

fðrÞ ðnκ − qAτÞ2 − r2ðμ2 þ ξRÞ

− lðlþ 1Þ
�

YnlðrÞ ¼ 0; ð2:8Þ

satisfying appropriate boundary conditions. We note that

the differential operator on the left-hand side of (2.8) is

complex due to the presence of Aτ which is imaginary,

however the Euclidean Green functionGEðx; x0Þ is real. The
solutions YnlðrÞ of (2.8) with positive and negative n are

related by

Y−nlðrÞ ¼ Y�
nlðrÞ; ð2:9Þ

where � denotes the complex conjugate. Solutions Y0lðrÞ
are thus real.

For our later analysis, it is convenient to decompose the

Euclidean Green function into its symmetric and antisym-

metric parts, namely

GEðx; x0Þ ¼ GðSÞðx; x0Þ þ GðAÞðx; x0Þ; ð2:10aÞ

where
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GðSÞðx; x0Þ ¼ 1

8π2

X

∞

l¼0

ð2lþ 1ÞPlðcos γÞ

×
X

∞

n¼−∞

cosðnκΔτÞgnlðr; r0Þ; ð2:10bÞ

GðAÞðx; x0Þ ¼ i

8π2

X

∞

l¼0

ð2lþ 1ÞPlðcos γÞ

×
X

∞

n¼−∞

sinðnκΔτÞgnlðr; r0Þ: ð2:10cÞ

Although gnlðr; r0Þ (2.6) is complex, both the symmetric

and antisymmetric parts of the Euclidean Green function

are real, since (2.9) implies that

g−nlðr; r0Þ ¼ g�nlðr; r0Þ: ð2:11Þ

Our desired expectation values can be derived from

coincidence limits involving the symmetric and antisym-

metric parts of the Euclidean Green function (2.10).

However, at present, naïve coincidence limits of (2.10b)

and the time derivative of (2.10c) (which is necessary for

the computation of the current) lead to divergences in

the sense that the mode sums above do not converge in

this limit. In the following sections we show how the

“extended coordinate” method [16,23,24] can be utilized

to remove these divergences and derive sensible results for

the expectation values of observables of the charged

scalar field.

III. EXPANSION OF THE HADAMARD
PARAMETRIX

In this section, we will describe the renormalization

prescription employed to extract meaningful finite results

from the naïve divergent expectation values of quantities

that involve the Euclidean Green function (2.10). The

quantities of interest in this paper are the charged scalar

condensate, the expectation value of the current and the

expectation value of the stress-energy tensor, all of which

require the coincidence limit of the Euclidean Green

function and its derivatives. From the previous section,

we note that the mode sums in the representation of the

Euclidean Green function (2.10b) [and the time derivative

of (2.10c)] do not converge at coincidence and we require a

meaningful way to render these mode-sums finite.

At least formally, the prescription for subtracting these

divergences is well understood [5,6]. Noting that the short-

distance singularity structure of the Euclidean Green

function is universal (independent of the quantum state)

provided the quantum state satisfies the Hadamard prop-

erty, the divergences are encoded in the Hadamard para-

metrix, which is a locally constructed bidistribution such

that the difference between the Green function and the

Hadamard parametrix satisfies an inhomogeneous wave

equation with a regular source term.

On the Euclidean section of a four-dimensional space-

time, the Hadamard parametrix has the following universal

form [5,6]

Kðx; x0Þ ¼ 1

8π2

�

Uðx; x0Þ
σðx; x0Þ þ Vðx; x0Þ log

�

2σðx; x0Þ
L2

��

;

ð3:1Þ

where σðx; x0Þ is Synge’s world function corresponding to

half the square of the geodesic distance between the points

x and x0 (which is positive definite on a Euclidean section

when x ≠ x0). The biscalars Uðx; x0Þ and Vðx; x0Þ are

regular in the coincidence limit and are constructed locally

from the metric and its derivatives [6]. An arbitrary length

scale L has been inserted into the log term in (3.1) to make

the argument dimensionless. This arbitrariness is part of

the well-known renormalization ambiguity [5,6] and is a

manifestation of the fact that the biscalar Vðx; x0Þ is a

solution to the charged scalar field homogeneous wave

equation [6]

½DαD
α − ðμ2 þ ξRÞ�Vðx; x0Þ ¼ 0; ð3:2Þ

and so we are free to add multiples of Vðx; x0Þ to any

parametrix. The biscalar Uðx; x0Þ satisfies the transport

equation [6]

½2σαDα þ□σ − 4�Uðx; x0Þ ¼ 0; ð3:3Þ

subject to the boundary condition

Uðx; xÞ ¼ 1: ð3:4Þ

Here and throughout, we have adopted the common

notation σμ ≔ ∇μσ.

For a neutral scalar field, the two-point function is

symmetric in the arguments x and x0 and hence Uðx; x0Þ
and Vðx; x0Þ are also symmetric in that case. However, for a

charged scalar, this is no longer the case, as can be seen in

(2.10). While the reduced symmetry renders (3.3) more

difficult to solve in practice than the neutral case, it is still a

transport equation along the geodesic connecting x and x0

and readily solved as a covariant Taylor series about one of

the points.

In the same way, we can expand Vðx; x0Þ as

Vðx; x0Þ ¼
X

∞

k¼0

Vkðx; x0Þσk; ð3:5Þ

in the charged scalar field equation (3.2) and equating equal

powers in σ gives a set of transport equations for each

Vkþ1ðx; x0Þ (with k ≥ 0), namely [6],
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ðkþ 1Þ½2σαDα þ□σ þ 2k�Vkþ1ðx; x0Þ
þ ½DαD

α − ðμ2 þ ξRÞ�Vkðx; x0Þ ¼ 0; ð3:6aÞ

together with the transport equation for V0

½2σαDα þ□σ − 2�V0ðx; x0Þ
þ ½DαD

α − ðμ2 þ ξRÞ�Uðx; x0Þ ¼ 0: ð3:6bÞ

The Vkðx; x0Þ are now easily found as covariant Taylor

series, subject to boundary conditions obtained by taking

the coincidence limits of the respective equations.

The “extended coordinate” approach to renormalization

involves expanding the biscalars σðx; x0Þ, Uðx; x0Þ, and

Vkðx; x0Þ in terms of a judiciously chosen set of “extended

coordinates” ϖ and s:

σðx; x0Þ ¼
X

a;b;c

σabcðrÞϖa
Δrbsc; ð3:7aÞ

Uðx; x0Þ ¼
X

a;b;c

uabcðrÞϖa
Δrbsc; ð3:7bÞ

Vkðx; x0Þ ¼
X

a;b;c

v
ðkÞ
abcðrÞϖa

Δrbsc; ð3:7cÞ

where

ϖ ¼ 2

κ
sin

�

κΔτ

2

�

; ð3:8aÞ

s2 ¼ fðrÞϖ2 þ 2r2ð1 − cos γÞ; ð3:8bÞ

and Δr ¼ r − r0 is the separation of the points in the radial

direction. The coefficients in the expansions (3.7) can then

be found by substituting (3.7) into the relevant equa-

tions (3.3), (3.6) and solving order by order, treating

ϖ ∼ s ∼ Δr ∼OðϵÞ. We begin by substituting the ansatz

(3.7a) into the defining relation

2σ ¼ σασ
α; ð3:9Þ

writing the derivatives of the extended coordinates (3.8)

as series in ðϖ; s;ΔrÞ. Solving order by order in ϵ gives

the coefficients σabcðrÞ, which are unchanged from those

arising in the neutral case [16,23,24]. This expansion for

σðx; x0Þ is then used, together with (3.3), to find the

coefficients in Uðx; x0Þ (3.7b). Next, having the expan-

sions of σðx; x0Þ and Uðx; x0Þ, we use these in (3.6b) to

find the coefficients in the expansion of V0ðx; x0Þ, and

then, having Vkðx; x0Þ, we can use (3.6a) to find the

coefficients in the expansion of Vkþ1ðx; x0Þ. Finally, the
resulting expansions (3.7) are combined into the terms

appearing in (3.1). The algebraic manipulations required

to find the expansions (3.7) to the order required are

extremely lengthy, and are therefore performed in

Mathematica. Further details can be found in [16,23,24].

A key feature of this particular choice of “extended

coordinates” is that in the limit Δr → 0, we have

s2 ¼ 2σ þOðϵ3Þ. Note also that, although the

Hadamard parametrix itself (3.1) is independent of

the quantum state, this particular choice of expansion

parameters (3.8) is adapted specifically to quantum

fields in thermal states. This is easily seen in the

fact that the extended time coordinate ϖ (3.8a) is

periodic with periodicity related to κ. This is an

essential feature of the method, since the goal is to

obtain a mode-sum representation of the parametrix

(3.1) that has the same form as the Euclidean Green

function (2.4) so that a mode-by-mode subtraction can

be performed.

For a neutral scalar field, the symmetry of the biscalars

implies that only even powers of ϖ and s appear in the

expansion of the Hadamard parametrix. For charged

scalar fields, while the parametrix contains only even

powers of s, odd powers of ϖ also arise.

Let us deal first with the direct part of the parametrix,

Uðx; x0Þ=σðx; x0Þ. If we expand the direct part in our

extended coordinates up to order Oðϵ2mÞ and then take

the partial coincidence limit Δr ¼ 0, then we obtain

Uðx; x0Þ
σðx; x0Þ ¼

X

m

a¼0

X

a

b¼0

DE
ðRÞ
ab ðrÞ

ϖ2aþ2b

s2bþ2

þ
X

m−1

a¼0

X

a

b¼0

DO
ðRÞ
ab ðrÞ

ϖ2aþ2bþ1

s2bþ2

þ
X

m

a¼1

X

a

b¼1

DE
ðPÞ
ab ðrÞϖ2a−2bs2b−2

þ
X

m−1

a¼1

X

a

b¼1

DO
ðPÞ
ab ðrÞϖ2a−2bþ1s2b−2 þOðϵ2mÞ:

ð3:10Þ

The functions DE
ðRÞ
ab ðrÞ correspond to the coefficients of

terms appearing in the direct part of the Hadamard

parametrix that are rational in ϖ and s2 and even in

ϖ, while DO
ðPÞ
ab ðrÞ are the coefficients of terms that are

polynomial in ϖ and s2 and odd in ϖ, etc. So the

labeling convention is this: D refers to the direct part,

O=E refers to odd/even in ϖ, the superscript ðRÞ=ðPÞ
refers to whether the term is rational/polynomial in ϖ and

s2. In Appendix A, we list the first few of these

coefficients, higher order coefficients can be found in

the Supplemental Material [27].

We can also similarly expand the so-called tail part of the

Hadamard parametrix Vðx; xÞ logð2σ=L2Þ, which after

again taking the radial points at coincidence gives
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Vðx; x0Þ log
�

2σðx; x0Þ
L2

�

¼
X

m−1

a¼1

X

a−1

b¼0

T E
ðRÞ
ab ðrÞ

ϖ2aþ2bþ2

s2bþ2
þ
X

m−2

a¼1

X

a−1

b¼0

T O
ðRÞ
ab ðrÞ

ϖ2aþ2bþ3

s2bþ2

þ
X

m−1

a¼0

X

a

b¼0

T E
ðLÞ
ab ðrÞϖ2bs2a−2b logðs2=L2Þ þ

X

m−2

a¼0

X

a

b¼0

T O
ðLÞ
ab ðrÞϖ2bþ1s2a−2b logðs2=L2Þ

þ
X

m−1

a¼1

X

a

b¼0

T E
ðPÞ
ab ðrÞϖ2bs2a−2b þ

X

m−2

a¼1

X

a

b¼0

T O
ðPÞ
ab ðrÞϖ2bþ1s2a−2b þOðϵ2m log ϵÞ: ð3:11Þ

The coefficients are now labeled by a T to indicate these come

from the tail part of the parametrix and the superscript (L)

indicates coefficients of terms that contain a logarithm. Again,

the first few of these coefficients are listed in Appendix A.

It will be convenient for later purposes to decompose the

Hadamard parametrix (3.1) as

Kðx; x0Þ ¼ KðSÞðx; x0Þ þ KðAÞðx; x0Þ; ð3:12aÞ

where KðSÞðx; x0Þ and KðAÞðx; x0Þ are the symmetric and

antisymmetric parts, respectively. Explicitly, the expan-

sions of these in the radial coincidence limit are

KðSÞðx; x0Þ ¼ 1

8π2

�

X

m

a¼0

X

a

b¼0

DE
ðRÞ
ab ðrÞ

ϖ2aþ2b

s2bþ2
þ
X

m

a¼1

X

a

b¼1

DE
ðPÞ
ab ðrÞϖ2a−2bs2b−2 þ

X

m−1

a¼1

X

a−1

b¼0

T E
ðRÞ
ab ðrÞ

ϖ2aþ2bþ2

s2bþ2

þ
X

m−1

a¼0

X

a

b¼0

T E
ðLÞ
ab ðrÞϖ2bs2a−2b logðs2=L2Þ þ

X

m−1

a¼1

X

a

b¼0

T E
ðPÞ
ab ðrÞϖ2bs2a−2b

�

þOðϵ2m log ϵÞ; ð3:12bÞ

KðAÞðx; x0Þ ¼ 1

8π2

�

X

m−1

a¼0

X

a

b¼0

DO
ðRÞ
ab ðrÞ

ϖ2aþ2bþ1

s2bþ2
þ
X

m−1

a¼1

X

a

b¼1

DO
ðPÞ
ab ðrÞϖ2a−2bþ1s2b−2 þ

X

m−2

a¼1

X

a−1

b¼0

T O
ðRÞ
ab ðrÞ

ϖ2aþ2bþ3

s2bþ2

þ
X

m−2

a¼0

X

a

b¼0

T O
ðLÞ
ab ðrÞϖ2bþ1s2a−2b logðs2=L2Þ þ

X

m−2

a¼1

X

a

b¼0

T O
ðPÞ
ab ðrÞϖ2bþ1s2a−2b

�

þOðϵ2m log ϵÞ: ð3:12cÞ

In the following section, we use the expansion (3.12) of the

Hadamard parametrix to renormalize the Euclidean Green

function and hence find renormalized expectation values of

the scalar condensate, current and stress-energy tensor.

IV. RENORMALIZED EXPECTATION VALUES

Previous work [6] on the use of Hadamard renormaliza-

tion for a charged scalar field outlined how to find

renormalized expectation values on a Lorentzian space-

time. Since we are working on a Euclidean space-time, in

this section we first outline how the results of [6] translate

to a Euclidean framework.

A. Euclidean vs Lorentzian expressions

An immediate difficulty arises when one comes to

computing renormalized expectation values using

Euclidean methods: how do we translate the formal

Lorentzian expressions for the renormalized expectation

values [6] into their Euclidean counterpart? For a neutral

scalar field on a static space-time, this is a straightforward

matter since one simply replaces the Feynman Green

function with the corresponding Euclidean Green function

via the mapping

−iGFðt;x; t0;x0Þ → GEðτ;x; τ0;x0Þ; ð4:1Þ

where the two-point functions are related by

GEð−it;x;−it0;x0Þ ¼ −iGFðt;x; t0;x0Þ: ð4:2Þ

Our conventions for the Feynman Green function are given

by the definition

−iGFðx; x0Þ ¼ h0jTfΦ̂ðxÞΦ̂†ðx0Þgj0i; ð4:3Þ

where T denotes a time-ordering operator which permutes

the field operators so that the one evaluated at a time in the

chronological past of the other acts first.

While the correspondence (4.2) between the Feynman

and Euclidean propagators remains true for a charged scalar

field in static spacetimes, the Feynman propagator is a

complex bidistribution and certain expectation values for

the charged field involve taking real or imaginary parts of
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this bidistribution [6]. On the other hand, the Euclidean

Green function (2.4) is purely real, so translating the

Lorentzian definitions into corresponding Euclidean ones

requires consideration. As an illustrative example, consider

the unrenormalized expectation value of the current, which

is defined to be [6]

hĴαiunren ¼ −
q

4π
½ℑfDα½−iGFðx; x0Þ�g�; ð4:4Þ

where ½·� indicates the coincidence limit x0 → x and ℑf·g
indicates the imaginary part. Clearly employing the map-

ping in (4.1) in this Lorentzian definition does not give the

correct definition of the current in terms of the Euclidean

Green function since the Euclidean Green function, as well

as the Euclideanized version of the operatorDμ, are real and

hence its imaginary part vanishes identically.

To obtain the correct dictionary between the Lorentzian

and Euclidean definitions, one must first recast the

Lorentzian definitions into an equivalent form that involves

the symmetric and antisymmetric parts of the Euclidean

Green function, rather than real and imaginary parts. In

particular, because the Feynman propagator for a complex

scalar field is sesquisymmetric,

GFðx; x0Þ ¼ G�
Fðx0; xÞ; ð4:5Þ

this immediately implies that

ℜf−iGFðx; x0Þg ¼ −iG
ðSÞ
F ðx; x0Þ;

iℑf−iGFðx; x0Þg ¼ −iG
ðAÞ
F ðx; x0Þ; ð4:6Þ

Hence, we can show that an equivalent definition of the

current (4.4) is

hĴαiunren ¼
q

4π
½∇αG

ðAÞ
F ðx; x0Þ − iqAαG

ðSÞ
F ðx; x0Þ�: ð4:7Þ

This definition of the current has an immediate counterpart

in terms of the Euclidean Green function under the

mapping

−iG
ðSÞ
F ðx; x0Þ → G

ðSÞ
E ðx; x0Þ;

−iG
ðAÞ
F ðx; x0Þ → G

ðAÞ
E ðx; x0Þ: ð4:8Þ

This now provides the framework for defining the

expectation values on the Euclidean section: we recast

the Lorentzian definitions in Ref. [6] in terms of the

symmetric and antisymmetric parts of the Feynman

Green function, and then map to the symmetric and

antisymmetric parts of the corresponding Euclidean

Green function.

B. Scalar condensate

The unrenormalized scalar condensate is defined to be

hΦ̂Φ̂
†iunren ¼ ½−iGFðx; x0Þ�; ð4:9Þ

and according to our prescription above, we define this in

terms of the Euclidean Green function as

hΦ̂Φ̂
†iunren ¼ ½GEðx; x0Þ�: ð4:10Þ

Of course it is the renormalized expectation value we

wish to compute and this is obtained by subtracting the

Hadamard parametrix from the Euclidean Green function.

We define the renormalized Euclidean Green function by

Wðx; x0Þ ¼ GEðx; x0Þ − Kðx; x0Þ: ð4:11Þ

It will also be useful, given our discussion in the previous

subsection, to define the symmetric and antisymmetric

parts

WðSÞðx; x0Þ ¼ G
ðSÞ
E ðx; x0Þ − KðSÞðx; x0Þ;

WðAÞðx; x0Þ ¼ G
ðAÞ
E ðx; x0Þ − KðAÞðx; x0Þ: ð4:12Þ

Now since the Hadamard parametrix, by definition, has the

same short-distance singularity structure as the Euclidean

Green function, Wðx; x0Þ is regular in the coincidence limit

x0 → x. Hence,

wðxÞ ¼ ½Wðx; x0Þ� ¼ ½WðSÞðx; x0Þ�; ð4:13Þ

where the last equality follows from the fact that the

coincidence limit of a regular antisymmetric biscalar must

vanish. Hence, we have

hΦ̂Φ̂
†iren ¼ wðxÞ: ð4:14Þ

To compute wðxÞ in practice, we require a means to

express each of the terms in KðSÞðx; x0Þ (3.12b), the

symmetric part of the Hadamard parametrix, as a mode-

sum representation of the same form as the mode-sum

representation of the Euclidean Green function (2.4) for the

quantum field. If such a mode-sum representation can be

obtained, then we can renormalize the two-point function

mode by mode. It is sufficient to have mode-sum repre-

sentations for terms in (3.12b) that are nonpolynomial in

ϖ2 and s2, since the terms that are polynomial in these

variables have only finitely many modes in their mode sum

representations and hence cannot affect the large n, large l

behavior. Hence, only terms of the form ϖ2aþ2b=s2bþ2 and

ϖ2bs2a−2b logðs2Þ require a mode-sum representation.

Formally speaking, some of these terms are vanishing in

the coincidence limit but their inclusion as a mode-sum

serves to increase the rate of convergence of the mode-sum

representation of the renormalized expectation value. For

example, terms of the form ϖ2aþ2b=s2bþ2 ∼OðΔx2a−2Þ
with a ≥ 2 are formally vanishing in the coincidence limit,
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but by including them as a mode sum we have complete

control of the rate of convergence of the mode sum.

To obtain the mode-sum representation of terms of

the form ϖ2aþ2b=s2bþ2, we start with the mode-sum ansatz

[16,23,24]

ϖ2aþ2b

s2bþ2
¼

X

∞

l¼0

ð2lþ 1ÞPlðcos γÞ
X

∞

n¼−∞

einκΔτΨnlða; bjrÞ;

ð4:15Þ

for some as-yet undetermined functions Ψnlða; bjrÞ which
we call the regularization parameters. This ansatz (4.15)

can be inverted using the completeness relations of the

Legendre polynomials and the Fourier modes to obtain a

double integral expression for the regularization parame-

ters. Note that the fact that the point-splitting in KðSÞðx; x0Þ
was maintained in multiple directions (we have taken only

radial points together r0 → r) played an essential role in

this step. Moreover, the fact that we expanded using the

“extended coordinates” ϖ and s (3.8) makes it feasible to

compute the double integral in terms of known functions.

The result depends only on the geometry of space-time and

hence is the same in the charged case as in the neutral case.

We state only the result, further details can be found in

Refs. [16,23,24]:

Ψnlða; bjrÞ ¼
2a−ba!ð2a − 1Þ!!ð−1Þn

κ2aþ2br2bþ2b!

×
X

nþa

p¼n−a

�

1

η

∂

∂η

�

b ð−1ÞbP−jpj
l ðηÞQjpj

l ðηÞ
ða − nþ pÞ!ðaþ n − pÞ! ;

ð4:16Þ

with

η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ fðrÞ
κ2r2

r

; ð4:17Þ

and where P
μ
νðzÞ, Q

μ
νðzÞ are the associated Legendre

functions of the first and second kind, respectively. It is

straightforward to show that Ψnlða; bjrÞ is invariant under
the mapping n → −n so that one could equally write

ϖ2aþ2b

s2bþ2
¼
X

∞

l¼0

ð2lþ 1ÞPlðcosγÞ
X

∞

n¼−∞

cosðnκΔτÞΨnlða;bjrÞ;

ð4:18Þ

which is precisely of the same form as (2.10b). The rational

terms coming from the tail part of the Hadamard parametrix

are of the formϖ2aþ2bþ2=s2bþ2 which are trivially obtained

from those above with a → aþ 1.

All that remains is to express the logarithmic terms

ϖ2bs2a−2b logðs2Þ in (3.12b) as a mode sum. The approach

is very similar and indeed the regularization parameters

themselves are essentially identical to the neutral scalar

case [16,24]. We have

ϖ2bs2a−2b logðs2Þ ¼
X

∞

l¼0

ð2lþ 1ÞPlðcos γÞ

×
X

∞

n¼−∞

cosðnκΔτÞχnlða; bjrÞ; ð4:19Þ

where

χnlða; bjrÞ ¼

8

>

>

<

>

>

:

ð−1Þnða−bÞ!ð2bÞ!
2κ2br2b−2a

P

1þa−b
k¼0

ð−1Þk
�

1þ a − b

k

�

ðlþ3
2
þa−b−2kÞ

ðlþ1
2
−kÞ2þa−b

×
P

nþb
p¼n−b

P
−jpj
lþa−bþ1−2k

ðηÞQjpj
lþa−bþ1−2k

ðηÞ
ðb−nþpÞ!ðbþn−pÞ! for l > a − b;

2b−1ð−1Þl
πκ2b−1

h

d
dλ
ðλþ 1 − lÞlð2r2Þλ

R

2π=κ
0 ð1 − cos κtÞbe−inκtðz2 − 1Þðλþ1Þ=2Q−λ−1

l ðzÞdt
i

λ¼a−b
for l ≤ a − b;

ð4:20Þ

where

z ¼ η2 − ðη2 − 1Þ cosðκtÞ: ð4:21Þ

Again, P
μ
νðzÞ, Qμ

νðzÞ are the associated Legendre functions

of the first and second kind, respectively, while Q
μ
νðzÞ is

Olver’s definition [28] of the Legendre function of the

second kind. The integral in the second branch of the

expression above (4.20) can be obtained in closed form in

terms of special functions, but the expression is lengthy and

offers no significant computational advantage compared to

simply computing the integral above numerically. Besides,

this expression is only required for the very low l modes

with l ≤ a − b.
Putting all of these details together then, we obtain the

following expression for the renormalized scalar conden-

sate for a charged scalar field in a thermal state

hΦ̂Φ̂
†iren ¼

1

8π2

X

∞

l¼0

ð2lþ 1Þ
X

∞

n¼−∞

fgnlðrÞ − k
ðmÞ
nl ðrÞg

−
1

8π2
DE

ðPÞ
11 ðrÞ þ

1

8π2
T E

ðLÞ
00 logðL2Þ; ð4:22Þ

where
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k
ðmÞ
nl ðrÞ ¼

X

m

a¼0

X

a

b¼0

DE
ðRÞ
ab ðrÞΨnlða; bjrÞ

þ
X

m−1

a¼1

X

a−1

b¼0

T E
ðRÞ
ab ðrÞΨnlðaþ 1; bjrÞ

þ
X

m−1

a¼0

X

a

b¼0

T E
ðLÞ
ab ðrÞχnlða; bjrÞ: ð4:23Þ

The renormalized scalar condensate (4.22) is real, since

gnlðrÞ ¼ gnlðr; rÞ satisfies (2.11) and k
ðmÞ
nl ðrÞ is real. In

principle, we can make the mode sum in (4.22) increasingly

convergent by choosing m larger and larger. Having

this precise control over the rate of convergence with a

direct correspondence to the order of expansion in the

Hadamard parametrix is one of the major advantages of this

approach.

C. Renormalized current

We now turn to the calculation of the renormalized

current hĴαiren. We have already derived, in Sec. IVA,

the unrenormalized current in terms of the symmetric and

antisymmetric parts of the Feynman propagator, given in

Eq. (4.7). In terms of the Euclidean Green function, we

employ the mapping (4.8) and the renormalization (4.12)

to obtain

hĴαiren ¼
iq

4π
½∇αW

ðAÞðx; x0Þ − iqAαW
ðSÞðx; x0Þ�: ð4:24Þ

Moreover, we can expand the biscalar Wðx; x0Þ in a

covariant Taylor expansion about the point x:

Wðx; x0Þ ¼ wðxÞ þ wαðxÞσα þ
1

2
wαβðxÞσασβ þOðϵ3Þ;

ð4:25Þ

where wα and wαβ are tensors at the point x, and, as before,

we use the book-keeping notation OðϵÞ ∼OðΔxÞ to track

orders in a short-distance expansion. A similar expansion

for Wðx0; xÞ is obtained by swapping x and x0 above. It is
then straightforward to show that

wα ¼ ½∇αW
ðAÞðx; x0Þ� − 1

2
∇αw;

wðαβÞ ¼
1

2
w;αβ þ wðα;βÞ − ½∇β∇αW

ðSÞðx; x0Þ�;

¼ wðα;βÞ þ ½∇β0∇αW
ðSÞðx; x0Þ�; ð4:26Þ

where the last equality follows from Synge’s rule and the

fact that ½∇αW
ðSÞðx; x0Þ� ¼ 1

2
∇αw. We can then rewrite the

renormalized current as

hĴαiren ¼
iq

4π

�

wα þ
1

2
∇αw − iqAαw

�

: ð4:27Þ

Now the only nonzero component of the current for a

charged scalar field in the Hartle-Hawking state on a static

spacetime with an electrostatic potential is the time com-

ponent, which is

hĴτiren ¼
iq

4π
ðwτ − iqAτwÞ; ð4:28Þ

where we have discussed already how to compute w ¼
hΦ̂Φ̂

†iren and

wτ ¼ ½∂τGðAÞ
E ðx; x0Þ − ∂τK

ðAÞðx; x0Þ�: ð4:29Þ

The first term is straightforward to compute mode by mode

and is given by

∂τG
ðAÞ
E ðx; x0Þ ¼ i

8π2

X

∞

l¼0

Plðcos γÞ

×
X

∞

n¼−∞

ðnκÞ cosðnκΔτÞgnlðr; r0Þ: ð4:30Þ

To renormalize thismode bymode, we require amode-sum

representation for ∂τK
ðAÞðx; x0Þ. The regularizationparameters

that we derived for the terms in the symmetric part of the

parametrix (3.12b) are not valid for the antisymmetric part

(3.12c), since the time integral involved in inverting themode-

sum ansatz is harder to express in closed form when there are

odd powers ofϖ in the integral. Nevertheless, we can proceed

as follows:DifferentiatingKðAÞðx; x0Þ (3.12c)with respect to τ
using the definitions of ϖ and s (3.8) gives

∂τK
ðAÞðx; x0Þ ¼ 1

8π2

�

X

m−1

a¼0

X

a

b¼0

DO
ðRÞ
ab ðrÞ

ϖ2aþ2b

s2bþ2

�

ð2aþ 2bþ 1Þ − ð2bþ 2ÞfðrÞϖ
2

s2

�

dϖ

dτ

þ
X

m−1

a¼1

X

a

b¼1

DO
ðPÞ
ab ðrÞϖ2a−2bs2b−2

�

ð2a − 2bþ 1Þ þ ð2b − 2ÞfðrÞϖ
2

s2

�

dϖ

dτ

þ
X

m−2

a¼1

X

a−1

b¼0

T O
ðRÞ
ab ðrÞ

ϖ2aþ2bþ2

s2bþ2

�

ð2aþ 2bþ 3Þ − ð2bþ 2ÞfðrÞϖ
2

s2

�

dϖ

dτ
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þ
X

m−2

a¼0

X

a

b¼0

T O
ðLÞ
ab ðrÞϖ2bs2a−2b

�

ð2bþ 1Þ logðs2=L2Þ þ ð2a − 2bÞϖ
2

s2
fðrÞ logðs2=L2Þ þ 2fðrÞϖ

2

s2

�

dϖ

dτ

þ
X

m−2

a¼1

X

a

b¼0

T O
ðPÞ
ab ðrÞϖ2bs2a−2b

�

ð2bþ 1Þ þ ð2a − 2bÞfðrÞϖ
2

s2

�

dϖ

dτ

�

þOðϵ2m−1 log ϵÞ: ð4:31Þ

We then note that

dϖ

dτ
¼

X

∞

k¼0

�

1
2

k

��

−
κ2ϖ2

4

�

k

; ð4:32Þ

which involves only even powers ofϖ. Moreover, we need not worry that this is an infinite sum since we can truncate at the

appropriate order consistent with the order in which we are expanding the Hadamard parametrix. We thus obtain

∂τK
ðAÞðx; x0Þ ¼ 1

8π2

�

X

m−1

a¼0

X

a

b¼0

X

m−a

k¼0

�

1
2

k

��

−
κ2

4

�

k

DO
ðRÞ
ab ðrÞ

ϖ2aþ2bþ2k

s2bþ2

�

ð2aþ 2bþ 1Þ − ð2bþ 2ÞfðrÞϖ
2

s2

�

þ
X

m−1

a¼1

X

a

b¼1

X

m−a

k¼0

�

1
2

k

��

−
κ2

4

�

k

DO
ðPÞ
ab ðrÞϖ2a−2bþ2ks2b−2

�

ð2a − 2bþ 1Þ þ ð2b − 2ÞfðrÞϖ
2

s2

�

þ
X

m−2

a¼1

X

a−1

b¼0

X

m−a−2

k¼0

�

1
2

k

��

−
κ2

4

�

k

T O
ðRÞ
ab ðrÞ

ϖ2aþ2bþ2kþ2

s2bþ2

�

ð2aþ 2bþ 3Þ − ð2bþ 2ÞfðrÞϖ
2

s2

�

þ
X

m−2

a¼0

X

a

b¼0

X

m−a−2

k¼0

�

1
2

k

��

−
κ2

4

�

k

T O
ðLÞ
ab ðrÞϖ2bþ2ks2a−2b

�

ð2bþ 1Þ logðs2=L2Þ

þ ð2a − 2bÞϖ
2

s2
fðrÞ logðs2=L2Þ þ 2fðrÞϖ

2

s2

�

þ
X

m−2

a¼1

X

a

b¼0

X

m−a−2

k¼0

�

1
2

k

��

−
κ2

4

�

k

T O
ðPÞ
ab ðrÞϖ2bþ2ks2a−2b

�

ð2bþ 1Þ þ ð2a − 2bÞfðrÞϖ
2

s2

��

þOðϵ2m−1 log ϵÞ: ð4:33Þ

Now all of the terms in the expression (4.33) can be expressed as a mode-sum using the regularization parameters

Ψnlða; bjrÞ (4.16) and χnlða; bjrÞ (4.20). As before, terms that are polynomial in bothϖ2 and s2 do not require a mode-sum

representation, whilst terms that are nonpolynomial are converted to a mode sum even if they formally vanish in the

coincidence limit. Hence we have

wτ ¼
1

8π2

X

∞

l¼0

ð2lþ 1Þ
X

∞

n¼−∞

fiðnκÞgnlðrÞ − j
ðmÞ
nl ðrÞg − 1

8π2
DO

ðPÞ
11 ðrÞ þ

1

8π2
T O

ðLÞ
00 ðrÞ logðL2Þ; ð4:34aÞ

where

j
ðmÞ
nl ðrÞ ¼

X

m−1

a¼0

X

a

b¼0

X

m−a

k¼0

�

1
2

k

��

−
κ2

4

�

k

DO
ðRÞ
ab ðrÞ½ð2aþ 2bþ 1ÞΨnlðaþ k;bjrÞ− ð2bþ 2ÞfðrÞΨnlðaþ k;bþ 1jrÞ�

þ
X

m−2

a¼1

X

a−1

b¼0

X

m−a−2

k¼0

�

1
2

k

��

−
κ2

4

�

k

T O
ðRÞ
ab ðrÞ½ð2aþ 2bþ 3ÞΨnlðaþ kþ 1;bjrÞ− ð2bþ 2ÞfðrÞΨnlðaþ kþ 1;bþ 1jrÞ�

þ
X

m−2

a¼0

X

a

b¼0

X

m−a−2

k¼0

�

1
2

k

��

−
κ2

4

�

k

T O
ðLÞ
ab ðrÞ½ð2bþ 1Þχnlða;bþ kjrÞþ ð2a− 2bÞfðrÞχnlða− 1;bþ kþ 1jrÞ�

þ
X

m−2

a¼0

X

m−a−2

k¼0

�

1
2

k

��

−
κ2

4

�

k

T O
ðLÞ
aa ðrÞ½2fðrÞΨnlðaþ kþ 1;0jrÞ�: ð4:34bÞ
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We now have convergent mode-sum expressions

for w and wτ which are combined according to (4.28)

to give hĴτiren. Finally, since the Euclidean time and

Lorentzian time are related by the mapping t → −iτ,
we have

hĴtiren ¼ ihĴτiren: ð4:35Þ

Note that, from (4.28), since Aτ is purely imaginary, so too

is hĴτiren. Hence hĴtiren (4.35) is real, as expected.

D. Renormalized stress energy tensor

The formal expression for the unrenormalized stress-

energy tensor on the Lorentzian space-time is [6]

hT̂α
βiunren ¼ ½ℜfT̂α

βð−iGFðx; x0ÞÞg� þ
1

4π2
δαβv1; ð4:36Þ

where T̂α
β is the differential operator

T̂
α
β ¼ ð1 − 2ξÞgβλ

0
DαD�

λ0 þ
�

2ξ −
1

2

�

δαβg
ρλ0DρD

�
λ0

− 2ξDαDβ þ 2ξδαβDρD
ρ þ ξRα

β −
1

2
ðμ2 þ ξRÞδαβ;

ð4:37Þ

with gρλ
0
the bivector of parallel transport, and

v1 ¼
1

8

�

μ2 þ
�

ξ −
1

6

�

R

�

2

−
1

24

�

ξ −
1

5

�

□R −
1

720
RαβRαβ

þ 1

720
RαβρλRαβρλ −

1

48
q2FαβFαβ ð4:38Þ

is the local term which must be added to ensure the stress-

energy tensor is conserved. The derivatives and the electro-

magnetic potential here are to be understood as the

Lorentzian quantities.

We can follow the procedure from Sec. IVA and express

the unrenormalized stress-energy tensor in terms of deriv-

atives acting on the symmetric and antisymmetric parts of

the Feynman Green function, which is then easily mapped

to the Euclidean section via (4.8). Renormalizing the

Euclidean Green function then gives the following defi-

nition of the RSET

hT̂α
βiren ¼ −

��

∇α∇β −
1

2
δαβ□

�

WðSÞðx; x0Þ
�

þ
�

−

�

ξ −
1

2

�

∇α∇β þ
�

ξ −
1

4

�

δαβ□

þ q2AαAβ −
1

2
q2AλAλδ

α
β −

1

2
ðμ2 þ ξRÞδαβ

þ ξRα
β þ iq

�

Aðα∇βÞ −
1

2
δαβA

λ∇λ

��

w

þ iqð2AðαwβÞ − δαβA
λwλÞ þ

1

4π2
δαβv1; ð4:39Þ

where round brackets surrounding indices denotes sym-

metrization. In arriving at this expression, we have used

Synge’s rule for exchanging limits and derivatives, as well

as the fact that the coincidence limit of the antisymmetric

part of the propagator vanishes. In this expression, all

quantities are to be thought of as Euclidean so, for example,

the d’Alembertian operator □ ¼ ∇μ∇
μ is with respect to

the Euclidean metric.

We have already discussed how to compute w and wα in

Secs. IV B and IV C, respectively. Moreover, the deriva-

tives of these quantities that appear in Eq. (4.39) are

straightforward, since only radial derivatives are nonvan-

ishing and these can be accurately obtained numerically,

provided that w and wα are computed with sufficient

accuracy on a sufficiently fine radial grid.

This leaves only the first term in (4.39), which we now

consider, following the approach of [16]. We note that the

Euclidean Green function GEðx; x0Þ satisfies the charged

scalar field equation (2.2) with the vanishing right-hand side

replaced by a delta function, so that the renormalized Green

function Wðx; x0Þ satisfies the inhomogeneous wave equa-

tion with a regular source. In the coincidence limit, this gives

½ðDαD
α − μ2 − ξRÞWðx; x0Þ� ¼ −

3

4π2
v1: ð4:40Þ

Moreover, considering the symmetric and antisymmetric

parts gives the coincidence limit

½□WðSÞðx; x0Þ� ¼ ðm2 þ ξRþ q2AλA
λ þ iqAλ∇λÞw

þ 2iqAλwλ −
3

4π2
v1; ð4:41Þ

and employing this result in (4.39) gives

hT̂α
βiren ¼ −w̃α

β þ
�

−

�

ξ −
1

2

�

∇α∇β þ
�

ξ −
1

4

�

δαβ□

þ q2AαAβ þ ξRα
β þ iqAðα∇βÞ

�

w

þ 2iqAðαwβÞ −
1

8π2
δαβv1; ð4:42Þ
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where we have introduced the notation

w̃α
β ¼ ½∇α∇βW

ðSÞðx; x0Þ�: ð4:43Þ

For the component w̃τ
τ, we can first write

w̃τ
τ ¼ −½∇τ0∇τW

ðSÞðx; x0Þ� þ f;r

4
w;r; ð4:44Þ

using Synge’s rule and the fact thatw is independent of time.

The last term on the right-hand side we can compute by

simply taking a radial derivative of the interpolation function

forw. The salient point is that now the covariant derivatives in

the first termon the right-hand side are at different space-time

points and so act as partial derivatives. This can now be

computed from taking time derivatives of the mode-sum

representation of WðSÞðx; x0Þ already derived (4.22).

Explicitly, we have

½∇τ0∇τW
ðSÞðx; x0Þ�

¼ 1

8π2

X

∞

l¼0

ð2lþ 1Þ
X

∞

n¼−∞

n2κ2

fðrÞ fgnlðrÞ − k
ðmÞ
nl ðrÞg

þ 1

4π2fðrÞ fDE
ðPÞ
21 ðrÞ þ fðrÞDE

ðPÞ
22 ðrÞ

− fðrÞT E
ðLÞ
10 ðrÞ logðL2Þ − T E

ðPÞ
11 ðrÞ logðL2Þ

þ fðrÞT E
ðPÞ
10 ðrÞ þ T E

ðPÞ
11 ðrÞg: ð4:45Þ

Themode sum in the first line remains rapidly convergent for

m sufficiently large. The regularization modes k
ðmÞ
nl ðrÞ are

given already in (4.23).

The angular components are found in a similar way,

noting first that we have

w̃ϕ
ϕ ¼ w̃θ

θ ¼ −½∇ϕ0
∇ϕW

ðSÞðx; x0Þ� þ fðrÞ
2r

w;r; ð4:46Þ

where the first term on the right-hand side is obtained by

taking angular partial derivatives of the mode-sum repre-

sentation for WðSÞðx; x0Þ, yielding

½∇ϕ0
∇ϕW

ðSÞðx; x0Þ�

¼ 1

8π2

X

∞

l¼0

lðlþ 1Þð2lþ 1Þ
2r2

X

∞

n¼−∞

fgnlðrÞ − k
ðmÞ
nl ðrÞg

þ 1

4π2
fDE

ðPÞ
22 ðrÞ − T E

ðLÞ
10 ðrÞ logðL2Þ þ T E

ðPÞ
10 ðrÞg:

ð4:47Þ

Finally, we require a means to find w̃r
r. The most efficient

way to compute this is to note that

w̃r
r ¼ ½□WðSÞðx; x0Þ� − w̃τ

τ − 2w̃ϕ
ϕ; ð4:48Þ

and hence from (4.41), we simply have

w̃r
r ¼ −w̃τ

τ − 2w̃ϕ
ϕ þ 2iqAλwλ þ ðm2 þ ξRþ q2AλA

λ

þ iqAλ∇λÞw −
3

4π2
v1; ð4:49Þ

where a mode-sum representation for every term on the

right-hand side has already been developed.

V. HARTLE-HAWKING STATE
ON REISSNER-NORDSTRÖM

In this section we demonstrate the utility of the above

framework by applying it to a charged quantum scalar field

on the Reissner-Nordström spacetime. Our geometry is

once again described by the line element (2.1) with

fðrÞ ¼
�

1 −
2M

r
þQ2

r2

�

; ð5:1Þ

where M is the black hole mass and Q its electric charge.

The roots of fðrÞ are given by

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 −Q2
p

; ð5:2Þ

and correspond to the event (rþ) and Cauchy (r−) horizons.
We take τ to be periodic with τ ¼ τ þ 2π=κ, where κ is the
event horizon surface gravity, given by

κ ¼ rþ − r−

2r2þ
: ð5:3Þ

Therefore the charged scalar field is assumed to be in the

Hartle-Hawking state [25], so we are considering a thermal

state at the black hole temperature κ=2π. The gauge field

takes the form

A ¼
�

−
Q

r
þ Q

rþ

�

dt; ð5:4Þ

where we have chosen a gauge such that A is regular

throughout the Euclidean section. In particular, regularity

requires that we use a gauge in which A vanishes on the

horizon [26].

A. Radial modes

The Euclidean Green function corresponding to the field in

the Hartle-Hawking state can again be expanded as (2.4), and

further separated into its symmetric and antisymmetric parts,

as defined in (2.10b) and (2.10c), respectively. The mode

functions pnlðrÞ and qnlðrÞ now satisfy the radial equation

�

d

dr

�

r2fðrÞ d

dr

�

−
r2

fðrÞ

�

nκ − iq

�

Q

r
−

Q

rþ

��

2

− r2μ2 − lðlþ 1Þ
�

YnlðrÞ ¼ 0; ð5:5Þ

with pnlðrÞ regular at rþ, and qnlðrÞ regular as r → ∞.
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Following a procedure analogous to that of [29], one can

transform the radial equation into the confluent Heun

equation [30]. This allows one to obtain an expression

for pnlðrÞ in terms of a confluent Heun function:

pnlðrÞ ¼ e
α1ðr−r−Þ
rþ−r−

�

r − r−

rþ − r−

�

α2
�

r − rþ
rþ − r−

�

α3

× HEUNC

�

a1; a2; a3; a4; a5;
r − rþ
r− − rþ

�

; ð5:6Þ

where HEUNCð…Þ denotes the confluent Heun function

satisfying the equation

�

zðz − 1Þ d2

dz2
þ fa3ðz − 1Þ þ a4zþ zðz − 1Þa5g

d

dz

þ ða2z − a1Þ
�

HEUNCða1; a2; a3; a4; a5; zÞ ¼ 0; ð5:7Þ

with z ¼ ðr − rþÞ=ðr− − rþÞ, such that

HEUNC ða1; a2; a3; a4; a5; 0Þ ¼ 1: ð5:8Þ

The constants in (5.6) are given by

α1 ¼
rþ − r−

rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2þðμ2 þ κ2n2Þ þ 2iκnqQrþ − q2Q2

q

;

α2 ¼
r−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½κnr−rþ þ iqQðr− − rþÞ�2
p

rþðrþ − r−Þ
;

α3 ¼
κnr2þ

rþ − r−
;

a1 ¼ lðlþ 1Þ − α1 − α2 − α3 − 2α3ðα1 þ α2Þ

þ 2κ2n2r3þðrþ − 2r−Þ
ðrþ − r−Þ2

þ 2iκnqQr2þ
rþ − r−

þ μ2r2þ;

a2 ¼ ðr2þ − r2−Þðμ2 þ 2κ2n2Þ − 2α1ðα2 þ α3 þ 1Þ

þ 2iκnqQðr2þ þ r−rþ − 2r2−Þ
rþ

−
2q2Q2r−ðrþ − r−Þ

r2þ
;

a3 ¼ 1þ 2α3;

a4 ¼ 1þ 2α2;

a5 ¼ −2α1: ð5:9Þ

The confluent Heun function is normalized to unity on the

event horizon and we have followed the convention set in

Mathematica for the order of its arguments. The expression

(5.6) is useful as the confluent Heun function is provided as

a built-in function in Mathematica, and therefore one can

generate these mode functions very efficiently.

The mode solutions qnlðrÞ can also be written in terms

of confluent Heun functions, but the relevant confluent

Heun functions in this case are of logarithmic type and not

built in to Mathematica. Instead, we generate the qnlðrÞ by

numerically integrating the radial equation (5.5), making

use of Mathematica’s NDSOLVE function. This was

achieved through the modification of the numerical inte-

gration Mathematica notebook of the REGGEWHEELER

package of the Black Hole Perturbation Toolkit [31]. We

start the integration at a large value of r, approximating the

solution using an asymptotic expansion, and then integrat-

ing inwards with r decreasing. Since the radial mode

functions satisfy (2.9), we need only compute pnlðrÞ and
qnlðrÞ for n ≥ 0.

B. Numerical results

We now use the expressions of the previous sec-

tion (4.22), (4.28), (4.42) to calculate the renormalized

scalar condensate, current, and RSET. We consider a

Reissner-Nordström black hole with charge Q ¼ M=2
and use units in which M ¼ 1. In these units the event

horizon is located at r ¼ rþ ¼ 1þ
ffiffiffi

3
p

=2 ≈ 1.86602540 to

9 s.f. (5.2). We assume that the scalar field is minimally

coupled to the scalar curvature, so that ξ ¼ 0, and set the

scalar field mass to be μM ¼ 1=10, whilst the scalar field

charge is qM ¼ 1=4. With these parameters we have μ >
qQ
rþ

and therefore no classical charge superradiance [32]. In

this case the Euclidean Green function (2.4) is uniquely

defined. The presence of superradiant modes complicates

the definition of a Hartle-Hawking-like state for a charged

scalar field on a Reissner-Nordström black hole [20] and

therefore, the construction of the Euclidean Green func-

tion. For this reason, we do not consider the possibility of

charge superradiance in this paper, although we expect

the framework presented in this paper for implementing

Hadamard renormalization will be unaffected by the

presence of superradiant modes. Finally, we also set the

arbitrary renormalization length scale L ¼ M ¼ 1 (3.1).

We first generated our radial mode functions pnlðrÞ,
qnlðrÞ using the procedure described in Sec. VA, for 0 ≤

l ≤ lmax and 0 ≤ n ≤ nmax. We used a working precision of

100 digits, and found that the Wronskian of pnlðrÞ, qnlðrÞ
was constant across our radial grid to at least 46 digits for

all values of l and n used.

The next stage is to compute the mode sums appearing in

(4.22), (4.34a), (4.45), and (4.47), performing the sum over

n first, before the sum over l. As in the neutral case [23,24],
the summand in the sum relevant for calculating the scalar

condensate (4.22), namely fℜðgnlðrÞÞ − k
ðmÞ
nl ðrÞg, con-

verges as Oðn−2m−3Þ for fixed l and large n, as demon-

strated in Fig. 1 for m ¼ 0, 1, 2. Similarly, the additional

terms relevant for calculating the current (4.34a), namely

f−nκℑðgnlðrÞÞ − j
ðmÞ
nl ðrÞg, converge as Oðn−2m−1Þ for

fixed l and large n, as can be seen in Fig. 2 for m ¼ 1,

2, 3. From Fig. 1, we deduce that the additional mode

sums required for the RSET computation (4.45), namely

fn2κ2½ℜðgnlðrÞÞ − k
ðmÞ
nl ðrÞ�g, also converge as Oðn−2m−1Þ
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for fixed l and large n. Here the real and imaginary parts of

gnlðrÞ arise through the use of the relation (2.11) in the

expressions (2.10b), (2.10c).

The number of modes required for final answers for the

renormalized expectation values to the desired precision

can be reduced by increasing the order m in the expansion

of the Hadamard parametrix (4.23), (4.34b), at the cost of

increased computation time of the required regularization

parameters (4.16), (4.20). Table I shows the effect of

increasing the expansion order m and lmax on the con-

vergence of results for the RSET component hT̂t
ti, with

nmax fixed to be nmax ¼ 30. Increasing m has the more

significant effect on improving convergence than increas-

ing lmax. We also found that increasing lmax has a greater

impact on the rate of convergence than increasing nmax.

This informed our decision to set lmax ¼ 40 and nmax ¼ 30,

and, following [16], we set m ¼ 6. These choices proved

sufficient for yielding an RSET satisfying the conservation

equation

∇αhT̂α
βi ¼ 4πFαβhĴαi; ð5:10Þ

to at least 10 decimal places.

Our numerical results for the scalar condensate hΦ̂Φ̂
†i,

time component of the current hĴti, and the nonzero

components of the RSET (namely hT̂t
ti, hT̂r

ri and

hT̂θ
θi ¼ hT̂ϕ

ϕi) are presented in Figs. 3, 4, and 5,

respectively.

From Fig. 3, we see that the scalar condensate is regular

everywhere outside the event horizon (see the analysis in

Sec. V C below for its behavior on the horizon) and

monotonically decreasing as the radial coordinate r
increases. The scalar condensates for massless [33] and

massive [34] scalar fields on a Schwarzschild black hole are

similarly monotonically decreasing as r increases. For a

neutral scalar field on a Reissner-Nordström black hole

[35], again the scalar condensate monotonically decreases

as r increases, except when the charge of the black hole

is close to its maximum value Q ¼ M, which is not the

situation we are considering here. We also note that in

Fig. 3, the scalar condensate is negative except for a region

close to the event horizon, whereas the scalar condensate is

positive everywhere outside the event horizon for the

neutral scalar field results in Refs. [33–35] (however, this

is not the case for a neutral scalar field on a higher-

dimensional black hole [23,24]).

FIG. 1. Log plot demonstrating the convergence of the terms in

the n sum, for fixed l, used to calculate the scalar condensate

(4.22). The blue, yellow, and green lines correspond to setting

m ¼ 0, 1, 2, respectively, in the expansion of the relevant part of

the Hadamard parametrix (4.23), and show the expected

Oðn−2m−3Þ behavior.

FIG. 2. Log plot demonstrating the convergence of the addi-

tional terms in the n sum, for fixed l, used to calculate the

renormalized current (4.34a). The blue, yellow, and green lines

correspond to setting m ¼ 1, 2, 3, respectively, in the expansion

of the relevant part of the Hadamard parametrix (4.34b), and

show the expected Oðn−2m−1Þ behavior.

TABLE I. RSET componentM4hT̂t
ti to 20 decimal places close to the event horizon, demonstrating its convergence as m and lmax are

increased while nmax is held fixed.

r=M ¼ 1.86645496

lmax ¼ 30, nmax ¼ 30 lmax ¼ 40, nmax ¼ 30 lmax ¼ 50, nmax ¼ 30 lmax ¼ 60, nmax ¼ 30

m ¼ 2 0.00002618590886922940 0.00002618502912849888 0.00002618461774413245 0.00002618439521262908

m ¼ 3 0.00002618382980083290 0.00002618383654191550 0.00002618383844230895 0.00002618383913839172

m ¼ 4 0.00002618383985909550 0.00002618383981352664 0.00002618383980593583 0.00002618383980409387

m ¼ 5 0.00002618383980252072 0.00002618383980307558 0.00002618383980312958 0.00002618383980313821

m ¼ 6 0.00002618383980315258 0.00002618383980314160 0.00002618383980314098 0.00002618383980314092
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The only nonzero component of the renormalized current

is hĴti, shown in Fig. 4. We find that this is negative

everywhere outside the event horizon, and monotonically

increasing as the radial coordinate r increases. Comparing

the results in Fig. 4 with those in Figs. 3 and 5, it can be

seen that the renormalized current has a magnitude which is

about 100 times smaller than the magnitudes of the scalar

condensate or RSET components. The magnitude of hĴti
depicted in Fig. 4 is of similar order of magnitude to that

computed for a charged scalar on a Reissner-Nordström–de

Sitter black hole in Ref. [17].

The RSET has three nonzero components, hT̂t
ti, hT̂r

ri
and hT̂θ

θi ¼ hT̂ϕ
ϕi, and these can be seen in Fig. 5. As with

the scalar condensate and current, all three components are

regular everywhere outside the event horizon. Once again,

the results depicted in Fig. 5 share some qualitative features

with the corresponding RSET components for a neutral

scalar field on a Schwarzschild [8,9] (at least when the

neutral scalar field is conformally coupled [16]) and on a

Reissner-Nordström black hole [10,11] (again when the

field is conformally coupled and providing the black hole

charge is not too large). The component hT̂t
ti is positive on

the event horizon and monotonically decreasing as r
increases close to the horizon. This component has a

minimum at r ∼ 3, and is monotonically increasing for

larger r, although it remains negative for all r larger than the
location of the minimum. In contrast, the remaining com-

ponents, hT̂r
ri and hT̂θ

θi, are positive everywhere outside

the horizon. The radial component hT̂r
ri is monotonically

decreasing as r increases, while the angular component

hT̂θ
θi is decreasing close to the horizon, has a minimum at

r ∼ 3 and is increasing for larger values of r. Far from the

black hole, the spatial components hT̂r
ri and hT̂θ

θi converge
towards a common value, while on the horizon, the inter-

polated values of hT̂r
ri and hT̂t

ti at the horizon agree to 17

decimal places. Next, we further explore the behavior of all

the renormalized expectation values on the horizon.

C. Expectation values on the event horizon

In this section we outline the calculation of the scalar

condensate, renormalized current, and RSET components

on the event horizon. We will use these calculated values as

a check on the numerical off-horizon results presented in

the previous section.

To obtain the horizon values, we exploit the choice of

gauge in (5.4), which has the effect that the radial equa-

tion (2.8) reduces to its neutral equivalent as the horizon is

approached. This in turn means that the solutions pnlðrÞ and
qnlðrÞ have the following leading order behavior at the

horizon:

pnlðrÞ ∼ ðr − rþÞjnj=2; qnlðrÞ ∼ ðr − rþÞ−jnj=2:

FIG. 4. Renormalized time component of the current hĴti for a
charged scalar field on a Reissner-Nordström black hole having

charge Q ¼ M=2. The event horizon radius is rþ=M ≈ 1.866.

The scalar field is minimally coupled to the space-time curvature

and has mass μM ¼ 1=10 and charge qM ¼ 1=4. We use units in

which M ¼ 1.

FIG. 3. Renormalized scalar condensate hΦ̂Φ̂
†i for a charged

scalar field on a Reissner-Nordström black hole having charge

Q ¼ M=2. The event horizon radius is rþ=M ≈ 1.866. The scalar

field is minimally coupled to the space-time curvature and has

mass μM ¼ 1=10 and charge qM ¼ 1=4. We use units in

which M ¼ 1.

FIG. 5. Nonvanishing components of the RSET, hT̂t
ti, hT̂r

ri
and hT̂θ

θi ¼ hT̂ϕ
ϕi for a charged scalar field on a Reissner-

Nordström black hole having charge Q ¼ M=2. The event

horizon radius is rþ=M ≈ 1.866. The scalar field is minimally

coupled to the space-time curvature and has mass μM ¼ 1=10
and charge qM ¼ 1=4. We use units in which M ¼ 1.
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Therefore choosing to point split purely in the radial direction

and placing the innermost point, the argument of pnlðrÞ, on
the horizon will collapse the sum over n in the various mode

sums required. For example, the mode sums required for the

scalar condensate and the current, (2.10b) and (4.30),

respectively, reduce to

fGðSÞðx; x0Þg ¼ κ

8π2

X

∞

l¼0

ð2lþ 1ÞN 0lq0lðrÞ;

f∂τGðAÞðx; x0Þg ¼ 0; ð5:11Þ

where the notation fg denotes that the partial coincidence

limit τ0 → τ, θ0 → θ, ϕ0
→ ϕ has been taken. This procedure

also yields

f∇ϕ∇
ϕ0
GðSÞðx;x0Þg¼ κ

8π2rþ

X

∞

l¼0

l

r
ðlþ1Þð2lþ1ÞN 0lq0lðrÞ:

ð5:12Þ

For a neutral massless field, the solution q0lðrÞ can be

expressed in terms of Legendre functions and the above

modes sums can be computed exactly [36]. However for a

massive field, this is no longer the case and we need an

alternative approach.

One such approach is that of [37,38], where uniform

approximations for the radial solution qnlðrÞ were used to

calculate the event horizon values of the scalar condensate

and the renormalized stress energy tensor for a field in the

Hartle-Hawking state. Even though this method was

developed for the case of a neutral scalar field, the results

for any mode sums involving the n ¼ 0 mode q0lðrÞ, such
as (5.11), (5.12), carry through to the charged case with

only minor adjustments, leading to the following quasia-

nalytical expression for the scalar condensate on the event

horizon:

hΦ̂Φ̂
†iren ¼ w ¼ 1

8π2r2þ

�

1

12
þ d

dx
ζ

�

x;
1

2
þ iδ

�	

	

	

	

x¼−1

þ d

dx
ζ

�

x;
1

2
− iδ

�	

	

	

	

x¼−1

− iδ ln

�

Γð1
2
þ iδÞ

Γð1
2
− iδÞ

�

þ μ2r2þ

�

1þ γ − ln

�

2rþ
L

��

þ κrþ
3

þ
X

∞

l¼0

ð2lþ 1Þβl
�

; ð5:13Þ

where δ2 ¼ μ2r2þ þ 1=12 is a constant, ζ is the generalized

Riemann Zeta function, γ is Euler’s constant, and Γ is

Euler’s gamma function. The quantity βl ensures that the

approximation to q0lðrÞ employed contains the appropriate

multiples of p0lðrÞ and must be obtained numerically. The

details of how these βl terms are obtained are given in

Appendix B. We note that while the charge of the scalar

field, q, does not appear explicitly in the above expression

for w, the quantity w does in fact depend on q through the

numerical βl terms.

In Fig. 6 we compare the results of our numerical

computations from the previous section (yellow dots) with

the on-horizon expression (5.13), shown as a blue dot. The

value obtained by extrapolating the off-horizon results to

the horizon agrees with the quasianalytical expression

(5.13) to nine significant figures.

Employing a similar approach to the mode sum in (5.12)

leads to a similar, if much longer, quasianalytical expres-

sion for w̃ϕ
ϕ on the horizon, which is also presented in

Appendix B. Similarly, at r ¼ rþ both w̃t
t and w̃r

r can be

expressed terms of the n ¼ 0 mode q0lðrÞ, and hence we

have, from the results of [38], that on the event horizon

w̃t
t ¼ w̃r

r ¼ −w̃ϕ
ϕ þ

μ2

2
w −

3v1

8π2
: ð5:14Þ

Therefore, using (4.42) and noting that Aτ vanishes on the

event horizon, we see that all components of the renor-

malized stress energy tensor on the horizon may be

expressed in terms of w̃ϕ
ϕ, w, and derivatives of w. In

fact, for minimal coupling we see that

hT̂r
ri ¼ hT̂t

ti ¼ w̃ϕ
ϕ −

μ2

2
wþ v1

4π2
: ð5:15Þ

Inserting Eqs. (5.13) and (B1) into the above expression

and evaluating for the parameter set considered in this

paper, gives the result shown in Fig. 7. We find agreement

with the off-horizon numerical results extrapolated to the

horizon to nine significant figures.

For the final stress energy tensor component, we have,

with ξ ¼ 0, that on the horizon:

FIG. 6. Renormalized scalar condensate hΦ̂Φ̂
†i near the black

hole event horizon. Yellow dots are computed numerically using

the method in Sec. V B, while the blue dot is the on-horizon

result (5.13).
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hT̂ϕ
ϕi ¼ −w̃ϕ

ϕ −
κ

2
w;r −

v1

8π2
: ð5:16Þ

To calculate w;r directly requires taking derivatives at both

r and r0, with the derivative at r0 leading to a mode sum

involving the n ¼ 1 mode. In this case, the radial equation

is now complex and the neutral results do not carry over as

easily as for the n ¼ 0 case. However, we may circumvent

this issue by exploiting the fact that we have both the exact

value of w on the horizon and extremely accurate numerical

results in the near-horizon region. We can therefore gen-

erate an interpolating function for w that is valid on the

horizon, which (numerically) gives its derivative there.

Taking this approach yields a value shown in Fig. 7. We

find that this agrees with the off-horizon results to the same

accuracy as for the other RSET components.

Finally, we turn our attention to the renormalized current.

For radial separation, with the innermost point on the

horizon, one can show that like f∂τGðAÞðx; x0Þg, the partial
coincidence limit f∂τKðx; x0Þg also vanishes and hence wτ

is zero on the event horizon. Recalling the expression

(4.28) for the only nonzero component of the current, and

noting once more that Aτ vanishes on the horizon, we

obtain the result that hĴtiren ¼ 0 on the event horizon,

which is in agreement with the numerical results. To

confirm the near-horizon results for hĴtiren as plotted in

Fig. 4, we must consider the ratio hĴτiren=fðrÞ as r → rþ.
As both quantities vanish in this limit, we have that

hĴtirenjr¼rþ
¼ i

2κ

d

dr
hĴτiren

	

	

	

	

r¼rþ

: ð5:17Þ

As for the scalar condensate, we may calculate the

derivative of the current by exploiting our knowledge of

the exact horizon value to obtain the derivative there

numerically, without recourse to evaluating any sums

involving the n ¼ 1 mode. The result of this computation

is shown in Fig. 8. We find agreement with the extrapolated

horizon values to seven significant figures.

VI. CONCLUSIONS

We have presented a new, practical method for the

computation of renormalized expectation values for a

charged quantum scalar field. Our scheme is applicable to

any static, spherically symmetric space-time with a time-

independent background electrostatic potential. Our meth-

odology was developed from the “extended coordinates”

approach for a neutral scalar field [16,23,24]. Working

on a Euclidean space-time, we first constructed the point-

split Euclidean Green function as a mode sum over

separable solutions of the charged scalar field equation,

assuming that the field is in a thermal Euclidean

state. The Euclidean Green function is renormalized by

FIG. 7. Nonvanishing RSET components hT̂t
ti (top), hT̂r

ri
(middle), and hT̂θ

θi (bottom) near the black hole event horizon.

Yellow dots are computed numerically using the method in

Sec. V B, while blue dots are the on-horizon results (5.15), (5.16).

FIG. 8. Renormalized time component of the current hĴti near
the black hole event horizon. Yellow dots are computed numeri-

cally using the method in Sec. V B, while the blue dot is the on-

horizon result (5.17).
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subtracting the Hadamard parametrix [6]. We first wrote

the Hadamard parametrix in terms of “extended coor-

dinates,” from which it can be expressed as a mode sum,

enabling the renormalization to be performed mode by

mode. Using the renormalized Green function, we

derived expressions for the renormalized scalar conden-

sate, current, and stress-energy tensor. We have demon-

strated the effectiveness of our method by applying it to a

particular case of a massive, minimally coupled, charged

scalar field in the Hartle-Hawking state on a Reissner-

Nordström black hole.

Our method is sufficiently efficient that it would now

be practical to explore the dependence of the renormal-

ized expectation values on the scalar field mass, charge,

and coupling to the Ricci scalar curvature. Previous work

for neutral scalar fields on both Schwarzschild [16] and

Reissner-Nordström [10,11,39] black holes have shown

that expectation values depend strongly on the scalar field

parameters. In addition, our results depend on a renorm-

alization length scale L. Changing this scale may also

affect the qualitative features of the renormalized expect-

ation values.

On black hole space-times, our approach most natu-

rally applies to the Hartle-Hawking state (although the

“extended coordinates” method has very recently been

generalized to the Boulware state [40]). However,

differences in expectation values between two quantum

states do not require renormalization and are therefore

easier to compute. Our results can therefore also be

extended to different quantum states, such as the Unruh

[41] and Boulware [42] states (see Ref. [39] for recent

results on expectation values in these states for a neutral

scalar field on a Reissner-Nordström black hole). While

we have focussed on a particular Reissner-Nordström

black hole, it would also be feasible to study the effect of

changing the charge of the black hole (on which the

expectation values for a neutral scalar field also depend

strongly [10,11,39]). Furthermore, our implementation

works on any static, spherically symmetric, space-time,

and hence is applicable to charged quantum scalar fields

on more general black hole space-times, such as

Reissner-Nordström–(anti–)de Sitter. In this paper, we

have worked in four space-time dimensions, although the

“extended coordinates” method works equally well in

dimensions greater than four (at least for the scalar

condensate) [23,24], so we anticipate that our results

in this paper could also be extended to higher

dimensions.

Finally, in this paper we have restricted our attention to

the region exterior to the event horizon of a black hole.

There has been a great deal of recent interest in quantum

effects on black hole interiors, particularly in the behavior

of the RSET near the inner horizon and the consequen-

ces for cosmic censorship [18,43–54]. With the notable

exception of [18], work to date on this topic has largely

focused on a neutral scalar field, even when the back-

ground black hole is charged. Given that the analysis of

the current on the black hole interior has revealed

unexpected (dis)charge processes [18], it would be of

great interest to study the RSET for a charged scalar near

the inner horizon of a charged black hole.
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APPENDIX A: COEFFICIENTS IN THE
HADAMARD EXPANSION

In this appendix, we give explicitly the coefficients of

the Hadamard parametrix when expanded in “extended

coordinates” (with Δr ¼ 0), that is, the coefficients

appearing in Eqs. (3.12b) and (3.12c). The assumptions

are that the space-time is a static, spherically symmetric

black hole space-time with surface gravity κ and that

there is a background electrostatic potential. Otherwise,

the metric function fðrÞ and the Euclideanized potential

Aτ are arbitrary functions of r. We list the coefficients

required to expand the parametrix up to the order such

that Oðϵ4 log ϵÞ terms are ignored, with Δx ∼ ϵ.

Subtracting the parametrix up to this order is sufficient

to regularize the stress-energy tensor for a massive

charged scalar in an arbitrary static spherically, symmetric

space-time. In practice, we subtract a much higher-order

expansion of the parametrix which serves to accelerate

the convergence of the mode-sum representation of the

renormalized stress-energy tensor. The higher order

coefficients are too lengthy to be of use in print form,

but we include in the Supplemental Material [27] a

Mathematica notebook with these expressions specialized

to Ricci flat space-times and imposing the Einstein-

Maxwell equations on the vector potential. Below, all

derivatives (f0, fðnÞ etc.) are with respect to the radius r.
We omit the explicit dependence on r throughout for

typographical convenience:
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DE
ðRÞ
00 ¼ 2;

DE
ðRÞ
10 ¼ −q2A2

τ −
fðr2f00 − 2rf0 þ 2f − 2Þ

12r2
;

DE
ðRÞ
11 ¼ fðr2½f02 − 4κ2� − 4f½rf0 þ 1� þ 4f2Þ

24r2
;

DE
ðRÞ
20 ¼ 1

2880r4
ð240q2r3fAτA

0
τ½rf0 − 2f� − 120q2r2A2

τff½−r2f00 þ 2rf0 þ 2� − 2f2 þ 2κ2r2g þ 240q4r4A4
τ

þ ff−5r2½4κ2 − f02�½r2f00 − 2rf0 − 2� − 8f2½3r3fð3Þ − 7r2f00 þ 19rf0 þ 10�
þ f½9r4f002 − 20r2f00 þ 86r2f02 þ 4rf0ð3r3fð3Þ − 14r2f00 þ 20Þ − 40κ2r2 þ 4� þ 76f3gÞ;

DE
ðRÞ
21 ¼ f

2880r4
ð60q2r2A2

τfr2½4κ2 − f02� þ 4f½rf0 þ 1� − 4f2g − r4½−20κ2f02 þ f04 þ 64κ4�

þ r2ff20κ2½r2f00 − 6� − 120κ2rf0 þ 30rf03 þ f02½30 − 11r2f00�g þ f3½−44r2f00 þ 208rf0 þ 160�
þ 2f2f10r2f00 − 67r2f02 þ f0½22r3f00 − 80r� þ 60κ2r2 − 28g − 104f4Þ;

DE
ðRÞ
22 ¼ f2ðr2½f02 − 4κ2� − 4f½rf0 þ 1� þ 4f2Þ2

1152r4
;

DE
ðPÞ
11 ¼ −

f0

6r
;

DE
ðPÞ
21 ¼ 120q2r2fAτA

0
τ þ 60q2r2A2

τf
0 þ fð−9rf02 þ 6rf½rfð3Þ − 2f00� þ 2f0½7r2f00 þ f þ 5�Þ

720r3
;

DE
ðPÞ
22 ¼ 7r2f02 − 10rf0 þ rfð9rf00 þ 4f0Þ − 3f2 þ 3

720r4
;

T E
ðRÞ
10 ¼ f

576r4
ðr2½4κ2 − f02� þ 4f½rf0 þ 1� − 4f2Þ

× ð−6ξr2f00 þ r2f00 þ 4½1 − 6ξ�rf0 þ 2½1 − 6ξ�f þ 12ξþ 6μ2r2 − 2Þ;

T E
ðPÞ
10 ¼ ðf − 1Þð6ξr2f00 − r2f00 þ 4½6ξ − 1�rf0 þ 2½6ξ − 1�f − 12ξ − 6μ2r2 þ 2Þ

144r4
;

T E
ðPÞ
11 ¼ −

fðrf0 − 2f þ 2Þð−6ξr2f00 þ r2f00 þ 4½1 − 6ξ�rf0 þ 2½1 − 6ξ�f þ 12ξþ 6μ2r2 − 2Þ
144r4

;

T E
ðLÞ
00 ¼ −6ξr2f00 þ r2f00 þ 4ð1 − 6ξÞrf0 þ 2ð1 − 6ξÞf þ 12ξþ 6μ2r2 − 2

12r2
;

T E
ðLÞ
10 ¼ 1

480r4
ð−10q2r4A02

τ − 60μ2ξr4f00 þ 10μ2r4f00 þ 30ξ2r4f002 − 10ξr4f002 þ r4f002 − 120ξ2r2f00

þ 20ξr2f00 − 240μ2ξr3f0 þ 20μ2r3f0 þ 480ξ2r2f02 − 100ξr2f02 þ 4r2f02 − 480ξ2rf0 þ 80ξrf0

þ 10ξr4fð3Þf0 − 2r4fð3Þf0 þ 240ξ2r3f0f00 − 20ξr3f0f00 − 4r3f0f00 þ 2ff5ξr4fð4Þ − r4fð4Þ þ 40ξr3fð3Þ

− 7r3fð3Þ þ 4½15ξ2 þ 10ξ − 2�r2f00 þ 2½120ξ2 − 40ξþ 3�rf0 − 120ξ2 þ 20ξ − 60μ2ξr2g
þ 4½30ξ2 − 10ξþ 1�f2 þ 120ξ2 þ 30μ4r4 þ 120μ2ξr2 − 4Þ;

T E
ðLÞ
11 ¼ 1

480r4
ðff20q2r4A02

τ − 10μ2r4f00 þ 10ξr4f002 − 2r4f002 − 20ξr2f02 þ 2r2f02 þ 120ξrf0

− 20rf0 þ 10ξr4fð3Þf0 − r4fð3Þf0 þ 80ξr3f0f00 − 12r3f0f00 þ rfðð16 − 80ξÞf0

þ r½r2fð4Þ þ ð6 − 20ξÞrfð3Þ þ ð12 − 80ξÞf00 þ 20μ2�Þ þ 8ð5ξ − 1Þf2 − 40ξ − 20μ2r2 þ 8g
þ 40q2r3AτfðrA00

τ þ 2A0
τÞ − 20q2r2A2

τf−6ξr2f00 þ r2f00 þ 4ð1 − 6ξÞrf0

þ ð2 − 12ξÞf þ 12ξþ 6μ2r2 − 2gÞ;

DO
ðRÞ
00 ¼ 2iqAτ;
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DO
ðRÞ
10 ¼ −

iqðrfA0
τ½rf0 − 2f� þ Aτff½r2f00 − 2rf0 − 2� þ 2f2 − κ2r2g þ 4q2r2A3

τÞ
12r2

;

DO
ðRÞ
11 ¼ iqAτfðr2½f02 − 4κ2� − 4f½rf0 þ 1� þ 4f2Þ

24r2
;

DO
ðPÞ
11 ¼ −

iqðfA0
τ þ Aτf

0Þ
6r

;

T O
ðLÞ
00 ¼ iqðAτf−6ξr2f00 þ r2f00 þ 4½1 − 6ξ�rf0 þ 2½1 − 6ξ�f þ 12ξþ 6μ2r2 − 2g − rf½rA00

τ þ 2A0
τ�Þ

12r2
: ðA1Þ

APPENDIX B: DETAILS OF THE ON-HORIZON CALCULATIONS

In this appendix we present an expression for ŵϕ
ϕ on the event horizon and provide further details on the calculation of

the βl terms in (5.13).

Taking the approach outlined in Sec. V C leads to the following expression for w̃ϕ
ϕ on the event horizon:

w̃ϕ
ϕ ¼ 1

8π2r4þ

�

2α −
1

240r2þ
½60r2− − 5ð12δ2 þ 23Þr−rþ þ fð45 − 60γÞδ4 þ ð75 − 30γÞδ2 þ 53gr2þ�

þ 1

360r2þ

�

−83r2− − 15ðq2Q2 − 3μ4r4þ þ 4μ2r2þ þ 6Þr2þ þ 4ð15μ2r2þ þ 44Þr−rþ

þ 15ðq2Q2 þ 2μ2r−rþ þ 3μ4r4þÞr2þ log

�

L2

r2þ

��

−
1

4

X

∞

l¼0

�

lðlþ 1Þð2lþ 1Þ
�

lnðνlÞ − ψ

�

1

2
þ νl

��

þ 4α

3ðlþ 1Þ

�

−

Z

∞

0

dλ
λðλ2 þ 1

4
Þ

1þ e2πλ
log ðjδ2 − λ2jÞ

−
1

2

X

∞

l¼0

lðlþ 1Þð2lþ 1Þβ̃l
�

; ðB1Þ

where r� are given in (5.2), ψ is the digamma function,

α ¼ 1

4
μ2r3þκ −

Q2q2

16
−

1

240
; δ2 ¼ μ2r2þ þ 1

12
; νl ¼

μ2r2þ þ 1=3þ lðlþ 1Þ
8

ffiffiffiffiffiffi

jαj
p ; ðB2Þ

and γ is Euler’s constant.

The quantity β̃l ensures that the approximation to q0lðrÞ
employed contains the appropriate multiple of p0lðrÞ and
must be obtained numerically. The sums and integrals in the

final line of (B1) must also be computed numerically.

Both β̃l in the above expression (B1) and the cor-

responding βl term in the expression for the scalar con-

densate in (5.13) arise by expressing the full q0lðrÞ in the

following way:

q0lðrÞ ¼ q
approx
0l ðrÞ þ βlp0lðrÞ; ðB3Þ

where q
approx
0l ðrÞ is an approximation that captures enough

of the local behavior of the full solution in the vicinity of

the horizon to calculate the local contributions to either the

scalar condensate or renormalized stress tensor. For the

scalar condensate, sufficient local behavior is captured

through approximating q0l as

q
approx
0l ðrÞ ¼ ϒ1=4

½r2fðrÞ�1=4K0ðρl
ffiffiffiffi

ϒ

p
Þ;

where fðrÞ is the metric function (2.1), K0ðxÞ denotes

the modified zeroth order Bessel function of the second

kind and

ϒ ¼
�
Z

r

rþ

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r02fðr0Þ
p dr0

�

2

; ρ2l ¼ μ2r2þ þ 1

3
þ lðlþ 1Þ:

ðB4Þ

For the components of the RSET, which is constructed by

taking derivatives of W, we must employ an approximation

that captures more of the local behavior of q0l, such as

q̃
approx
0l ðrÞ ¼ Γð1

2
− νlÞ

23=2½jαjϒr2fðrÞ�1=4 Wνl;0
ð2

ffiffiffiffiffiffi

jαj
p

ϒÞ; ðB5Þ
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where Wa;bðxÞ denotes the Whittaker function of the second kind.

Since p0lðrÞ and q0lðrÞ satisfy the same second order linear differential equation (2.8), by integrating the Wronskian, we

may also express q0lðrÞ in the form:

q0lðrÞ ¼ p0lðrÞ
Z

∞

r

dr0

r02fðr0Þp0lðr0Þ2
: ðB6Þ

Inserting this expression and the appropriate approximation into (B3) and then expanding in the near-horizon limit leads to

the following expressions for βl and β̃l:

βl ¼
Z

∞

rþ

dr0

r02fðr0Þ

�

1

pl0ðr0Þ2
− 1

�

þ 2

rþ − r−
½logðρlÞ þ γ�;

β̃l ¼
Z

∞

rþ

dr0

r02fðr0Þ

�

1

pl0ðr0Þ2
− 1

�

þ 1

rþ − r−

�

logð8
ffiffiffiffiffiffi

jαj
p

Þ þ ψ

�

1

2
þ ρl

8
ffiffiffiffiffiffi

jαj
p

�

þ 2γ

�

; ðB7Þ

where we have normalized the p0lðrÞ function to be unity on the horizon. For large l, the quantity βl is Oðl−4Þ and β̃l is

Oðl−6Þ; hence the respective sums of these quantities converge.
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