
This is a repository copy of Almost Consistent Systems of Linear Equations.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/223348/

Version: Accepted Version

Article:

Dabrowski, K.K., Jonsson, P., Ordyniak, S. orcid.org/0000-0003-1935-651X et al. (2 more
authors) (Accepted: 2025) Almost Consistent Systems of Linear Equations. ACM
Transactions on Algorithms (TALG). ISSN 1549-6325 (In Press)

This is an author produced version of an article accepted for publication in ACM
Transactions on Algorithms (TALG), made available under the terms of the Creative
Commons Attribution License (CC-BY), which permits unrestricted use, distribution and
reproduction in any medium, provided the original work is properly cited.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Almost Consistent Systems of Linear Equations

KONRAD K. DABROWSKI, Newcastle University, UK

PETER JONSSON, Linköping University, Sweden

SEBASTIAN ORDYNIAK, University of Leeds, UK

GEORGE OSIPOV, Linköping University, Sweden

MAGNUS WAHLSTRÖM, Royal Holloway, University of London, UK

Checking whether a system of linear equations is consistent is a basic computational problem with ubiquitous applications. When

dealing with inconsistent systems, one may seek an assignment that minimises the number of unsatisfied equations. This problem is

NP-hard and UGC-hard to approximate within any constant even for two-variable equations over the two-element field. We study

this problem from the point of view of parameterized complexity, with the parameter being the number of unsatisfied equations. We

consider equations defined over a family of commutative domains (i.e. rings without zero divisors) with a particular Helly property.

This set contains, for instance, finite and infinite fields, the ring of integers, and univariate polynomial rings with coefficients from a

field; more generally, it contains the important class of Prüfer domains. We show that if every equation contains at most two variables,

the problem is fixed-parameter tractable. This generalises many eminent graph separation problems such as Bipartization, Multiway

Cut and Multicut parameterized by the size of the cutset. To complement this, we show that the problem isW[1]-hard when three

or more variables are allowed in an equation, as well as for many commutative rings that are not covered by our fpt result. On the

technical side, we introduce the notion of important balanced subgraphs, generalising the important separators of Marx [Theoretical

Computer Science, 351:3, 2006] to the setting of biased graphs. Furthermore, we use recent results on parameterized MinCSP [Kim et

al., SODA-2021] to efficiently solve a generalisation of Multicut with disjunctive cut requests.

CCS Concepts: · Theory of computation → Computational complexity and cryptography.

Additional Key Words and Phrases: parameterized complexity, linear equations, biased graphs, minimum constraint satisfaction

(MinCSP), graph separation

ACM Reference Format:

Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, and Magnus Wahlström. 2025. Almost Consistent Systems

of Linear Equations. ACM Trans. Algor. 1, 1 (February 2025), 55 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Authors’ addresses: Konrad K. Dabrowski, Newcastle University, Newcastle upon Tyne, UK, konrad.dabrowski@newcastle.ac.uk; Peter Jonsson, Linköping

University, Linköping, Sweden, peter.jonsson@liu.se; Sebastian Ordyniak, University of Leeds, Leeds, UK, sordyniak@gmail.com; George Osipov,

Linköping University, Linköping, Sweden, george.osipov@pm.me; Magnus Wahlström, Royal Holloway, University of London, London, UK, Magnus.

Wahlstrom@rhul.ac.uk.

Please use nonacm option or ACM Engage class to enable CC licenses

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).

Manuscript submitted to ACM

Manuscript submitted to ACM 1

2 Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, and Magnus Wahlström

Contents

Abstract 1

Contents 2

1 Introduction 3

1.1 Background 4

1.2 Our Results 6

2 Graph Cleaning 13

2.1 LP-relaxation for Rooted Biased Graph Cleaning 14

2.2 Biased Graph Cleaning 16

2.3 Important Balanced Subgraphs 17

3 Graph Partitioning 23

3.1 Partition Cut 23

3.2 Pair Partition Cut 24

4 Algorithm forMin-2-Lin 26

4.1 Rings and Integral Domains 26

4.2 Helly Dimension 29

4.3 Iterative Compression 32

4.4 Graph Cleaning 33

4.5 The Algorithm 35

4.6 Correctness Proof and Complexity Analysis 38

4.7 Applicability of the Algorithm: Prüfer Domains 41

5 Faster Algorithm for Fields 42

5.1 2-Lin over Fields 42

5.2 Algorithm forMin-2-Lin over Fields 43

5.3 Correctness Proof and Complexity Analysis 43

5.4 Even Faster Algorithm for Finite Fields 45

6 Hardness Results 46

6.1 Three Variables per Equation 47

6.2 Rings with Zero Divisors 49

7 Conclusions and Discussion 51

References 53

Manuscript submitted to ACM

Almost Consistent Systems of Linear Equations 3

1 INTRODUCTION

Algorithms for systems of linear equations have been studied since ancient times [25]. As Håstad [27] aptly remarks,

for computer science “[t]his problem is in many regards as basic as satisfiabilityž.

******Suggestion

Håstad [27, p. 799] aptly remarks the following concerning equation solving in a computer science context:

A problem that in many respects is as basic as satisfiability is that of solv- ing a system of linear

equations over a field.

Well-known methods like Gaussian elimination can recognise and solve consistent systems of equations. However,

these methods are not well suited for dealing with inconsistent systems. In one optimisation version of the problem,

called MaxLin, one seeks an assignment maximising the number of satisfied equations. In its dual, called MinLin, the

objective is to minimise the number of unsatisfied equations. BothMaxLin andMinLin remain NP-hard in severely

restricted settings, which has motivated an extensive study of approximation algorithms for these problems. However,

the problems resist approximation within reasonable bounds: in particular,MinLin over the two-element field restricted

to equations with at most two variables is not approximable within any constant factor under the Unique Games

Conjecture (UGC)Ðin fact, it has been suggested that constant-factor inappoximability of this version of MinLin

may be equivalent to UGC (see Definition 3 in [36] and the discussion that follows it). This motivates exploring other

approaches to resolving inconsistent systems.

Crowston et al. [13] initiated the study of the parameterized complexity of MinLin with the parameter 𝑘 being the

number of unsatisfied equations. They focused on systems over the two-element field and proved that when every

equation has at most two variables, the problem can be solved in O∗ (2𝑘) time1 by a reduction to Edge Bipartization.

Furthermore, they proved that allowing three or more variables in an equation leads toW[1]-hardness. This rules out

the existence of an algorithm for this problem running in O∗ (𝑓 (𝑘)) time for any computable function 𝑓 under the

standard assumption FPT ≠ W[1]. Göke et al. [24] considered a closely related problem: the parameterized complexity

of resolving linear systems of equations and inequalities under a mix of parameters, showing W[1]-hardness and FPT

results (see also Bérczi et al. [5]). We emphasise that we exclusively consider equations in this article.

We substantially extend the study of the parameterized complexity of MinLin by considering equations over

commutative rings. Thus, we study a particular class H2 of commutative domains (i.e. rings without zero divisors) that

has a natural Helly property defined via ring ideals. The set H2 includes the finite fields F𝑞
2, infinite fields such as the

rationals Q, the ring of integers Z, the Gaussian integers Z[𝑖], the ring of univariate polynomials F[𝑥] over a field F and

many more structures. In particular, we prove that every Prüfer domain has the required Helly property. Prüfer domains

and related rings are of central importance in commutative algebra (see e.g. [4] and [22]) and have been intensively

studied since their introduction [50]. Perhaps unsurprisingly, we show that with three or more variables per equation,

the problem isW[1]-hard for every commutative ring (in fact, the hardness proof only uses the coefficients 0, 1 and

−1, so the result holds for equations over any non-trivial Abelian group). On the other hand,Min-2-Lin, where each

equation has two variables, turns out to be much more interesting: the problem is fixed-parameter tractable for the

members of H2.

1O∗ hides polynomial factors in the bit-size of the instance.
2In fact, finite fields are the only finite domains by Wedderburn’s Little Theorem (see Section 5.4).

Manuscript submitted to ACM

4 Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, and Magnus Wahlström

Problem Solution Method Reduces to

Bipartization [51] in 2004 Iterative compression Min-2-Lin(F2)

𝑞-Multiway Cut [45] in 2006 Important separators (IS) Min-2-Lin(F𝑞)

Multiway Cut [45] in 2006 Important separators Min-2-Lin(Q)

Multicut [6], [47]† in 2011 †Random sampling of IS Min-2-Lin(Z)

Table 1. Graph separation problems related to Min-2-Lin.

1.1 Background

This background section is divided into two parts, in which we describe the MinLin problem in connection with graph

and group problems, respectively. We start off with a few basic definitions. Let D = (𝐷 ;+, ·) denote a commutative

ring. An expression 𝑐1 · 𝑥1 + · · · + 𝑐𝑟 · 𝑥𝑟 = 𝑐 is a (linear) equation over D if 𝑐1, . . . , 𝑐𝑟 , 𝑐 ∈ 𝐷 and 𝑥1, . . . , 𝑥𝑟 are variables

with domain 𝐷 . Let 𝑆 denote a set (or equivalently a system) of equations over D. We let 𝑉 (𝑆) denote the variables

appearing in 𝑆 and say that 𝑆 is consistent if there is an assignment 𝜑 : 𝑉 (𝑆) → 𝐷 that satisfies all equations in 𝑆 .

An instance of the computational problem 𝑟 -Lin(D) is a system 𝑆 of equations in at most 𝑟 variables over D, and the

question is whether 𝑆 is consistent. To assign positive integer weights to the elements of any set 𝑌 , we use a weight

function𝑤 : 𝑌 → N+ and write𝑤 (𝑋) for any subset 𝑋 ⊆ 𝑌 as a shorthand for
∑
𝑒∈𝑋 𝑤 (𝑒). The following is the main

computational problem that we consider in this paper.

Min-𝑟 -Lin(D)

Instance: An instance 𝑆 of 𝑟 -Lin(D), a weight function𝑤 : 𝑆 → N+ and an integer 𝑘 .

Parameter: 𝑘 .

Question: Is there a set 𝑍 ⊆ 𝑆 such that 𝑆 − 𝑍 is consistent and𝑤 (𝑍) ≤ 𝑘?

Background via graphs. Crowston et al. [13] studied the problem Min-𝑟 -Lin(F2) and proved that Min-2-Lin(F2)

is in FPT. However, their methods do not seem sufficient to solve Min-2-Lin over structures larger than F2. As a

possible explanation and additional motivation, we note thatMin-2-Lin over F2, F𝑞 , Q and Z generalize well-known

graph separation problems that have served as milestones for the development of parameterized algorithms: these are

Bipartization, 𝑞-Terminal Multiway Cut, (General) Multiway Cut and Multicut, respectively (see Table 1 for a

short summary).

In Bipartization, given a graph𝐺 and an integer 𝑘 , the goal is to remove at most 𝑘 edges from the graph to make

it bipartite. To reduce to Min-2-Lin(F2), create a variable for every vertex and add an equation 𝑥 − 𝑦 = 1 for every

edge {𝑥,𝑦} in 𝐺 . The parameterized complexity status of this problem was resolved by Reed et al. [51] using iterative

compression, which has since become a common opening of fpt-algorithms, including those presented in this paper

(see [14, Chapter 4] for many more examples).

In 𝑞-Terminal Multiway Cut, given a graph 𝐺 , a set of 𝑞 vertices 𝑡1, . . . , 𝑡𝑞 called terminals, and an integer 𝑘 , the

goal is to remove edges of weight at most 𝑘 from 𝐺 to separate the terminals into distinct connected components. The

problem is in P for 𝑞 = 2 andNP-hard for 𝑞 ≥ 3. The reduction toMin-2-Lin(F𝑞)works by introducing an equality 𝑥 = 𝑦

for every edge {𝑥,𝑦} in 𝐺 , and assigning a distinct field element 𝛼𝑖 to every terminal 𝑡𝑖 by adding the equation 𝑡𝑖 = 𝛼𝑖

with weight 𝑘 + 1 (prohibiting its deletion). Note that the construction above does not work if there are more than 𝑞

terminals. This limitation does not arise over infinite fields, soMin-2-Lin(Q) generalizesMultiway Cutwith arbitrarily

many terminals. Marx [45] presented the first fpt-algorithm forMultiway Cut, which is based on important separators.

Manuscript submitted to ACM

Almost Consistent Systems of Linear Equations 5

This work was followed by a string of improvements [9, 55] including an approach based on linear programming [16, 26]

that is especially relevant to our work.

In Multicut, given an graph 𝐺 , a set of𝑚 cut requests (𝑠1, 𝑡1), . . . , (𝑠𝑚, 𝑡𝑚), and an integer 𝑘 , the goal is to remove

edges of weight at most 𝑘 from 𝐺 to separate 𝑠𝑖 from 𝑡𝑖 for all 𝑖 . This problem clearly generalizesMultiway Cut: a

reduction can introduce a request for every pair of terminals. In turn,Min-2-Lin(Z) generalizes it as follows: add an

equation 𝑥 = 𝑦 for every edge {𝑥,𝑦} in 𝐺 ; then, for every pair of terminals (𝑠𝑖 , 𝑡𝑖), introduce two new variables 𝑠′𝑖 and

𝑡 ′𝑖 , and add two equations 𝑠𝑖 = 𝑝𝑖𝑠
′
𝑖 and 𝑡𝑖 = 𝑝𝑖𝑡

′
𝑖 + 1 with weight 𝑘 + 1, where 𝑝𝑖 is the 𝑖th prime number. Clearly, no

path connecting 𝑠𝑖 and 𝑡𝑖 may exist in a consistent subset of equations, since this would imply a contradiction (different

remainders modulo 𝑝𝑖). Moreover, if all cut requests are fulfilled, a satisfying assignment can be obtained by applying

the Chinese Remainder Theorem in each component. The parameterized complexity status of Multicut was resolved

simultaneously by Bousquet et al. [6] and Marx and Razgon [47]. The latter introduced the method of random sampling

of important separators, also known as shadow removal. More recently, the technique of flow augmentation has been

used to solve the weighted version of the problem [40].

Background via groups. We continue by comparingMin-2-Lin(D) to two well-studied problems based on groups:

Group Feedback Edge Set (GFES) and Uniqe Label Cover (ULC).

GFES is a problem that is usually defined in terms of labelled graphs, but can also be defined in terms of equations as

follows. The input is a system of group equations of the form 𝑥 · 𝛾 = 𝑦 over a group Γ, where 𝑥 and 𝑦 are variables,

𝛾 ∈ Γ is a constant and · is the composition operation in Γ. The variables take values from Γ, and the question is

whether the system can be made consistent by removing at most 𝑘 equations. More commonly, the input is represented

as a group-labelled graph, i.e. an oriented graph 𝐺 where every oriented edge 𝑥𝑦 ∈ 𝐸 (𝐺) is assigned a group label

𝛾 = 𝛾 (𝑥𝑦) ∈ Γ, and where the reverse direction of the edge has the label 𝛾 (𝑦𝑥) = 𝛾 (𝑥𝑦)−1. Such a system of equations

is consistent if and only if every cycle of the underlying undirected graph of 𝐺 is consistent. This implies that GFES

can equivalently be defined as finding a set of at most 𝑘 edges which intersects every inconsistent cycle in 𝐺 . The

vertex-deletion variant, Group Feedback Vertex Set (GFVS), is defined accordingly and generalizes GFES. GFES

and GFVS parameterized by 𝑘 generalize many well-studied problems in parameterized complexity such as Feedback

Vertex Set, Subset Feedback Vertex/Edge Set, Multiway Cut and Odd Cycle Transversal. Guillemot [26] was

the first to study GFVS in terms of parameterized complexity, and showed fpt-algorithms parameterized by 𝑘 + |Γ |.

Cygan et al. [15] demonstrated GFVS to be fpt parameterized by 𝑘 alone, even when the group is given only implicitly

by an oracle supporting group operations. Iwata et al. [30] showed a faster algorithm, solving GFVS in time O∗ (4𝑘)

using an LP-branching approach, also in the oracle model. The latter was generalised by Wahlström [54] to a setting of

balanced (or biased) subgraphs, a connection that we use in our algorithms.

For comparison with Min-2-Lin, consider an Abelian group, e.g. Z with operation +. Group equations 𝑥 + 𝛾 = 𝑦 are

equivalent to equations 𝑦 − 𝑥 = 𝛾 inMin-2-Lin(Z). ThusMin-2-Lin generalises GFES for all Abelian groups that are

the additive group of a ring (which, for example, includes all finite Abelian groups). However, additive equations ignore

the multiplicative structure of the ring, which leads to significant algorithmic complications in the Min-2-Lin problem.

Indeed, as we have seen above,Min-2-Lin(Z) is complex enough to generaliseMulticut, which does not seem possible

for the simpler problem of GFES. Similarly, if Γ is the multiplicative group of a field F, then group equations 𝑥 · 𝛾 = 𝑦

over Γ have similarities to homogeneous equations 𝛾 · 𝑥 − 𝑦 = 0 in Min-2-Lin(Z). In fact, for such groups GFES is

equivalent toMin-2-Lin with only homogeneous equations, with the additional constraint that no variable can take the

zero value.

Manuscript submitted to ACM

6 Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, and Magnus Wahlström

4

3

2

1

0

4

3

2

1

0

Fig. 1. A permutation of {0, 1, 2, 3, 4} not expressible as a linear equation.

Another problem related to Min-2-Lin is Uniqe Label Cover (ULC) [11, 30, 35]. In ULC over an alphabet Σ,

the input is a set of constraints of the form 𝜋 (𝑥) = 𝑦, where 𝑥 and 𝑦 are variables and 𝜋 is a permutation of ΣÐthe

connection to groups follows from the fact that we can view the permutations as members of the symmetric group on

Σ. Constraints are consistent if there is an assignment of values from Σ to the variables that satisfy all constraints. The

question is whether the input set can be made consistent by removing at most 𝑘 constraints. ULC lies at the heart of the

Unique Games Conjecture [35]. In the realm of parameterized complexity, it is known that ULC is fixed-parameter

tractable when parameterized by 𝑘 + |Σ|, but W[1]-hard when parameterized by 𝑘 alone [11].

To connect this problem with Min-2-Lin, consider for example a field F and an equation 𝑎𝑥 + 𝑏𝑦 = 𝑐 with 𝑎, 𝑏, 𝑐 ∈ F

and 𝑎 ≠ 0, 𝑏 ≠ 0. For every value of 𝑦 there is exactly one value of 𝑥 that satisfies this equation. Thus, any equation

is equivalent to a permutation constraint over F, and ULC generalizesMin-2-Lin(F). As a consequence, observe that

Min-2-Lin(F𝑞) is in FPT for all finite fields F𝑞 , and can be solved in O∗ (𝑞2𝑘)-time using the best known algorithm

for ULC [30, 31]. On the other hand, ULC is strictly more general than Min-2-Lin(F): Consider Σ = {0, 1, 2, 3, 4} and a

permutation 𝜋 mapping (0, 1, 2, 3, 4) to (1, 0, 3, 2, 4) (see Figure 1). It is easy to see that no linear equation over F5 defines

this permutation.

1.2 Our Results

We introduce the Helly dimension of a ring. In brief, the Helly dimension of D denoted by 𝜅 (D) is the minimum number

in N∪ {∞} with the following property: if a family of principal ideal cosets in D has empty intersection, then it contains

a subfamily of ≤ 𝜅 (D) cosets that have empty intersection. We let H𝑚 ,𝑚 ∈ N ∪ {∞}, contain all commutative domains

D that have Helly dimension at most𝑚 and satisfy some mild computational properties. An in-depth treatment of the

Helly dimension together with a formal definition of H𝑚 can be found in Section 4.2.

We prove that Min-2-Lin(D), where D ∈ H2, is fixed-parameter tractable. For the special case when D is a field,

we provide a faster O∗ (2O(𝑘 log𝑘)) algorithm. Furthermore, if D is a finite, 𝑞-element field, we provide a O∗ ((2𝑞)𝑘)

algorithm improving upon the O∗ (𝑞2𝑘) upper bound obtained by reduction to ULC. To complement the results, we

show that Min-3-Lin(·) is W[1]-hard for every non-trivial ring and thus rule out the existence of fpt-algorithms

for Min-𝑟 -Lin(·) when 𝑟 ≥ 3 under standard complexity assumptions. Furthermore, we show that Min-2-Lin(D) is

W[1]-hard for many commutative rings D that are not members of H2. For example, the hardness result holds if D is

isomorphic to the direct product of nontrivial rings (such as the ring Z/6Z of integers modulo 6).

TheMin-2-Lin algorithm consists of three steps: compression, cleaning and cutting. The compression step is based

on a standard technique for FPT algorithms. An important technical issue here is that we need a polynomial-time

algorithm for 2-Lin(D) when D ∈ H2 (Theorem 18). The cleaning step is the most involved, and is based upon our

main technical contribution ś important balanced subgraphs, which is a substantial generalisation of the important

separators introduced by Marx [45]. In the cutting step, we solve the remaining problem by reducing it to a carefully

Manuscript submitted to ACM

Almost Consistent Systems of Linear Equations 7

𝑥1

𝑥2

𝑥3

𝑥4

Fig. 2. An example of a theta graph.

chosen cutting problem ś Pair Partition Cut. The choice here is delicate: the problem must be solvable in FPT time,

but it also has to be sufficiently powerful so that it can handle the cleaned instance. Finally, we solve Pair Partition

Cut by a reduction to Boolean MinCSP, for which an FPT dichotomy was recently given by Kim et al. [39].

We now introduce our main novel technical contribution required for the Min-2-Lin algorithm, i.e. important

balanced subgraphs.

Important balanced subgraphs. Consider a parameterized deletion problem where the input consists of an edge-

weighted graph𝐺 , an integer 𝑘 , and a polynomial-time membership oracle to a family F of minimal forbidden subgraphs

of 𝐺 that we call obstructions. A (sub)graph of 𝐺 is balanced if it does not contain any obstructions. The goal is to

find a set of edges of total weight at most 𝑘 that intersects all obstructions in F . This objective is dual to finding a

maximum-weight balanced subgraph of𝐺 . For example, in Bipartization a graph is balanced if it is bipartite, and the

set of obstructions consists of all odd cycles. Wahlström [54] presented a general method based on LP-branching for

solving this problem in fpt time when the obstructions F are a family of cycles with the theta property. This property

can roughly be defined as follows: if a chordal path 𝑃 is added to a cycle 𝐶 from F , then at least one of the smaller

cycles formed by 𝑃 and 𝐶 is also in F . For illustration, consider the theta graph in Figure 2: here 𝐶 = 𝑥1𝑥2𝑥3𝑥4 is a

cycle and 𝑥2𝑥4 is a chordal path that cuts it into two smaller cycles 𝐶1 = 𝑥2𝑥1𝑥4 and 𝐶2 = 𝑥2𝑥3𝑥4. If 𝐶 is in the family,

then 𝐶1 or 𝐶2 is in the family. For instance, the set of all odd cycles in a graph has the theta property since any chordal

path added to an odd cycle forms an odd and an even cycle. Alternatively, the problem can be defined in terms of biased

graphs. A biased graph is a pair (𝐺,B) where𝐺 is a graph and B is a set of simple cycles in𝐺 such that the complement

of B has the theta property; cycles outside B are referred to as the unbalanced cycles in (𝐺,B). Biased graphs are

encountered, for instance, in matroid theory [56]. The problem is then to find a set of 𝑘 edges that intersects every

unbalanced cycle in (𝐺,B). In the case of Graph Bipartization, the set B contains all even cycles.

It is instructive to approach this global problem by instead considering a local version where a single root vertex

𝑥 is distinguished, and the goal is to remove edges of total weight at most 𝑘 to make the connected component of 𝑥

balanced. For a balanced subgraph 𝐻 of 𝐺 , define 𝑐 (𝐻) as the cost of carving 𝐻 out of 𝐺 i.e. the sum of weights on

all edges between 𝑉 (𝐻) and 𝑉 (𝐺) \𝑉 (𝐻) plus the weights of edges in the subgraph of 𝐺 induced by 𝑉 (𝐻) that are

not in 𝐻 . To solve the global problem, we can choose a root, enumerate solutions to the local problem i.e. balanced

subgraphs of cost at most 𝑘 that include 𝑥 , and solve the remaining part recursively (possibly with some branching to

Manuscript submitted to ACM

8 Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, and Magnus Wahlström

guess the intersection of the local and global solutions). The caveat is that the number of balanced subgraphs of cost at

most 𝑘 does not have to be bounded by any function of 𝑘 . To overcome this obstacle, we need another observation: if

there are two balanced subgraphs 𝐻1 and 𝐻2 such that 𝑐 (𝐻2) ≥ 𝑐 (𝐻1) and 𝑉 (𝐻2) ⊆ 𝑉 (𝐻1), then 𝐻1 is clearly a better

choice than 𝐻2 both in terms of cost and in the amount of “workž left in the remaining graph. If the conditions above

hold for 𝐻1 and 𝐻2, we say that 𝐻1 dominates 𝐻2. See Figure 3 for an illustration. Formally, we want to compute a

setH of important balanced subgraphs defined analogously to the important separators: for any balanced subgraph

𝐻 ′ including 𝑥 of cost at most 𝑘 , there is a subgraph 𝐻 ∈ H such that 𝑉 (𝐻 ′) ⊆ 𝑉 (𝐻) and 𝑐 (𝐻 ′) ≥ 𝑐 (𝐻). In other

words, the balanced subgraphs in H are Pareto efficient balanced subgraphs in terms of maximising the set of covered

vertices and minimising the weight. Note here a subtlety in the definition: the total number of incomparable solutions

is not bounded in 𝑘 . For example, if the input consists of a single, unbalanced cycle 𝐶𝑛 on 𝑛 vertices, i.e. 𝐺 = 𝐶𝑛 and

B = ∅, then we may output a single important balanced subgraph 𝐻 , with 𝑉 (𝐻) = 𝑉 (𝐶𝑛) and 𝑐 (𝐻) = 1, but there are

𝑛 incomparable solutions with these parameters, produced by deleting any one edge of the cycle. However, all these

solutions belong to the same “equivalence classž of solutions, and the key to applications (in previous work [54] as well

as in the present work) is that a global solution does not need to distinguish between them.

We prove (in Theorem 5) that there is a dominating family H of important balanced subgraphs such that |H | ≤ 4𝑘

and every connected balanced subgraph of 𝐺 with cost at most 𝑘 is dominated by some member of H . Moreover, there

is an fpt-algorithm that computes H by branching based on the optimum of the half-integral LP-relaxation of the local

problem.

We show that important balanced subgraphs strictly generalize important separators: given a graph and two subsets

of vertices, one can recover important separators by computing a dominating family of important balanced subgraphsÐ

see Example 6 for further details. In fact, the bounds achieved are identical: using the important balanced subgraph

framework to enumerate important separators yields at most 4𝑘 important separators of cost at most 𝑘 , and they can be

enumerated in O∗ (4𝑘) time, both of which match the bounds for important separators [9, 45] (although the polynomial

factor incurred in the running time by the method above is significantly higher). Moreover, our algorithms crucially

build on the increased generality of the important balanced subgraphs setting, where the cost of carving out a subgraph

includes both the cost of a separator and a transversal of unbalanced cycles reachable from the root after separation.

This way, important balanced subgraphs can be used for graph separation problems in a more general sense than simply

enumerating graph cuts, e.g. for computing transversals of obstruction families with the theta property. As we show in

what follows, removing a family of obstructions is a key step in ourMin-2-Lin algorithms.

We note that other generalizations of important separators have appeared in the literature. A recent example is

reported by Jansen, de Kroon and Włodarczyk [32]. Given an undirected graph 𝐺 , two vertex sets 𝑆 and 𝑇 , and a finite

set of forbidden subgraphs F , they show that there are 2O(𝑘) maximal vertex sets 𝐶 in 𝐺 such that 𝐶 contains 𝑆 and

avoids 𝑇 , the neighbourhood of 𝐶 contains at most 𝑘 vertices, and the subgraph induced by 𝐶 does not contain any

subgraph in F . Furthermore, they provide an fpt algorithm for listing such subgraphs. The obstruction set F being

finite is crucial for their approach, and the O(𝑘) factor in the exponent hides a dependency on |F |. We, on the other

hand, deal with infinite sets of obstructions so our results and theirs are incomparable: our obstructions are cycles with

theta property, while theirs can be arbitrary connected subgraphs. Another example was presented by Lokshtanov and

Ramanujan [43] who introduced a generalisation of important separators to develop an fpt-algorithm for the Parity

Multiway Cut problem, where given an undirected graph𝐺 , two sets𝑇𝑒 and𝑇𝑜 of even and odd terminals, respectively,

and an integer 𝑘 , the task is to decide whether there is a set 𝑆 of at most 𝑘 vertices that hits every even (odd) path with

one endpoint 𝑣 in 𝑇𝑒 (𝑇𝑜) and the other endpoint in (𝑇𝑒 ∪𝑇𝑜) \ {𝑣}. Given vertex sets 𝑋 and 𝑌 as well as a minimal

Manuscript submitted to ACM

Almost Consistent Systems of Linear Equations 9

𝑋 -𝑌 -separator 𝑆 , their notion of an important separator is defined as follows: 𝑆 ′ is an important separator if it is an

important separator with respect to 𝑋 in the original sense and the size of a minimum vertex set that hits all even

length paths with endpoints in 𝑋 in𝐺 − 𝑆 does not increase in𝐺 − 𝑆 ′. Their notion of important separators is, however,

clearly not related to ours.

Let us now illustrate important balanced subgraphs using a few examples.

(1). Consider the biased graph (𝐺,B) defined above, where B contains the set of even cycles. Then a balanced

subgraph of (𝐺,B) is precisely a bipartite graph, and our result outputs connected bipartite subgraphs containing the

root vertex 𝑥 .

(2). The previous example can be generalised as follows. Recall that a group-labelled graph (that we discussed in

connection with the GFES problems) is a graph 𝐺 in which every oriented edge of 𝐺 is assigned a label by 𝛾 from

a group Γ so that for any edge {𝑢, 𝑣} ∈ 𝐸 (𝐺), the labelling satisfies 𝛾 (𝑢𝑣) = 𝛾 (𝑣𝑢)−1. Let a cycle 𝐶 = (𝑣1, . . . , 𝑣𝑛) be

balanced if the product 𝛾 (𝑣1𝑣2)𝛾 (𝑣2𝑣3) . . . 𝛾 (𝑣𝑛𝑣1) of the group labels of the edges of𝐶 is the identity element of Γ. This

forms a biased graph (𝐺,B) where B is the class of balanced cycles in𝐺 . For example, consider a directed graph where

edges are labelled by integers (using (Z, +) as the group). Then the important balanced subgraph theorem can be used

to output weakly connected subgraphs which can be laid out on a line such that all edges get the length and orientation

according to the value of their labels.

(3). As a special case of the previous example, consider the Subset Feedback Edge Set problem. In this problem,

the input is a graph 𝐺 with a set of special edges 𝐹 ⊆ 𝐸 (𝐺), and the goal is to find a set of edges 𝑋 ⊆ 𝐸 (𝐺) such that

no edge of 𝐹 is contained in a cycle in 𝐺 − 𝑋 . It is easy to observe that the class of cycles intersecting 𝐹 has the theta

property (and in fact, can be captured as the unbalanced cycles in a group-labelled graph). Then a subgraph 𝐻 of 𝐺 is

balanced if any edge of 𝐹 ∩ 𝐸 (𝐻) is a bridge in 𝐻 .

For more examples, see Wahlström [54] and Zaslavsky [56]. From a technical perspective, the result follows from a

refined analysis of the LP formulation of Wahlström [54] for the problem of computing a minimum (vertex) transversal

for the set of unbalanced cycles. Wahlström showed that this can be solved in O∗ (4𝑘) time, given oracle access to B,

where 𝑘 is the solution size. The result works in two parts. First, consider the rooted case outlined above, where the

input additionally distinguishes a root vertex 𝑥 ∈ 𝑉 (𝐺) and the task is to find a balanced subgraph of minimum cost,

rooted in 𝑥 . Wahlström provided a half-integral LP-relaxation for this problem, and showed that it can be used to guide

a branching process for an fpt-algorithm computing a min-cost rooted balanced subgraph. Second, the LP-relaxation is

shown to have some powerful persistence properties (see Section 2), that allow the solution from the rooted case to be

reused in solving the general problem. We reformulate and simplify these results for the edge deletion case. We find

that the extremal (“furthestž, or important) optima to the LP are described by a rooted, connected, balanced subgraph 𝐻

of 𝐺 , where edges of value 1 in the LP are deleted edges within 𝑉 (𝐻), and the half-integral edges are the edges leaving

𝐻 , i.e. with precisely one endpoint in 𝑉 (𝐻). Furthermore, every balanced subgraph 𝐻 ′ of 𝐺 with 𝑥 ∈ 𝑉 (𝐻 ′) can be

“improvedž to a subgraph 𝐻 ′′ so that 𝑉 (𝐻) ∪ 𝑉 (𝐻 ′) ⊆ 𝑉 (𝐻 ′′), 𝑐 (𝐻 ′′) ≤ 𝑐 (𝐻 ′), and the edges of value 1 in the LP

are not contained in 𝐸 (𝐻 ′). A dominating family of important balanced subgraphs of (𝐺,B) rooted in 𝑥 can then be

obtained by branching over the status of the half-integral edges leaving 𝑉 (𝐻), in an analysis similar to that of Chen et

al. [9] for the bound 4𝑘 on the number of important separators.

Min-2-Lin Algorithm for Fields. We begin by explaining our algorithm when restricted to fields for pedagogical

reasonsÐthe basic underlying ideas become clearer in this restricted setting. In short, our fpt-algorithms are based

Manuscript submitted to ACM

10 Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, and Magnus Wahlström

(a) Subgraph 𝐻1. (b) Subgraph 𝐻2.

(c) Subgraph 𝐻3.

Fig. 3. Examples of rooted balanced subgraphs of the same graph. The root is the leftmost vertex, balanced cycles are even cycles, and

all edges have unit weight. Red dashed edges are deleted, and the yellow area covers all vertices reachable from the root. The cost of

𝐻1 is 4, while the cost of 𝐻2 and 𝐻3 is 5. Subgraph 𝐻1 is incomparable with 𝐻2 and 𝐻3 since it has lower cost but𝑉 (𝐻1) is a strict

subset of𝑉 (𝐻2) and𝑉 (𝐻3) . On the other hand, 𝐻2 is dominated by 𝐻3 since𝑉 (𝐻2) ⊊ 𝑉 (𝐻3) while they have the same cost.

on three steps: compression, cleaning, and cutting. Given an instance (𝑆,𝑤𝑆 , 𝑘) of Min-2-Lin, we first use iterative

compression to compute a slightly suboptimal “solutionž 𝑋 . In the cleaning step we consider the primal graph of 𝑆

i.e. the graph with vertices for variables of 𝑆 and edges for equations, and produce a dominating family of important

balanced subgraphs around a subset of vertices in𝑉 (𝑋). We use the subgraphs for removing rigid cycles that may cause

inconsistencies. Finally, the problem reduces to computing a cut in the “cleanedž graph that fulfils certain requirements.

For a basic example, consider Min-2-Lin(Q) i.e. Min-2-Lin over the field of rationals. Every instance of this problem

can be viewed as a graph where an edge connecting two variables is labelled by an equation from 𝑆 ranging over these

two variables. To gain insight into the problem, first consider a path of equations, e.g.

𝑥 𝑢 𝑣 𝑤 𝑦
𝑥 − 𝑢 = 1 𝑢 + 2𝑣 = 0 4𝑣 −𝑤 = 2 𝑤 + 𝑦 = −3

Equations along the path can be combined to cancel out intermediate variables. For example, combining 𝑥 − 𝑢 = 1 with

𝑢 + 2𝑣 = 0 yields 𝑥 + 2𝑣 = 1. In the end, we obtain an equation over the endpoints 𝑥 and 𝑦, namely 2𝑥 − 𝑦 = 3. Now, if

there is another path between 𝑥 and 𝑦 in the instance, we are dealing with a cycle. Depending on the equation implied

by the other path, the cycle is of one of the following types:

(1) If the other path implies the same equation as the first one (i.e. 2𝑥 −𝑦 = 3), then the cycle admits infinitely many

solutions.

(2) If the other path implies a linear equation that has one common solution with 2𝑥 − 𝑦 = 3 (e.g. 2𝑥 + 𝑦 = 0), then

the cycle admits a unique solution.

Manuscript submitted to ACM

Almost Consistent Systems of Linear Equations 11

(3) If the other path implies a linear equation that contradicts 2𝑥 − 𝑦 = 3 (e.g. 2𝑥 − 𝑦 = 1), then the cycle admits no

solution.

A geometric intuition for this classification comes from viewing linear equations as lines in the 𝑥𝑦-plane. The lines

defined by the two paths of equations between 𝑥 and 𝑦 in the instance either coincide (as in Case 1), intersect (as

in Case 2) or are parallel (as in Case 3). We say that the cycles formed by paths of these types are flexible, rigid and

inconsistent, respectively.

Observe that any acyclic instance (with respect to the underlying primal graph) of 2-Lin(Q) is consistent, since we

can pick an arbitrary variable, assign any value to it, and then propagate to the remaining variables according to the

equations labelling the edges. Thus, any inconsistency in an instance ofMin-2-Lin(Q) is due to cycles. If an instance

contains only flexible cycles, we call it flexible, and observe that, similarly to acyclic instances, all flexible instances are

consistent. This follows from propagating a value in the same way as above.

With this in mind, we can now sketch an algorithm. By iterative compression, we may assume that we have an

over-sized solution 𝑋 at our disposal i.e. a set of equations of total weight 𝑘 + 1 such that 𝑆 − 𝑋 is consistent. In the

special case when 𝑆 − 𝑋 is not only consistent but flexible, a solution to the instance is a minimum cut 𝑍 in 𝑆 − 𝑋

that separates vertices 𝑉 (𝑋) into distinct connected components according to some partition. Recall the problem

𝑞-Terminal Multiway Cut that was introduced earlier in this section. We letMultiway Cut denote the problem with

arbitrarily many terminals, and we note that it is in FPT [45]. Since |𝑉 (𝑋) | ≤ 2𝑘 + 2, we can enumerate partitions of

𝑉 (𝑋) in fpt time, and compute a minimum cut 𝑍 using an fpt-algorithm forMultiway Cut.

In the general case when 𝑆 − 𝑋 is not flexible, our strategy is to reduce the case to the flexible one outlined above.

Assuming that 𝑋 is inclusion-wise minimal, every connected component of 𝑆 −𝑋 must contain a rigid cycle (otherwise,

there is an edge in 𝑋 connecting a flexible component with another component of 𝑆 − 𝑋 , and the equation labelling

that edge can be added back to 𝑆 −𝑋 without causing inconsistency). This implies that 𝑆 −𝑋 admits a unique satisfying

assignment 𝜑𝑋 . Let 𝜑𝑍 be the assignment that satisfies 𝑆 − 𝑍 . We guess which variables in 𝑉 (𝑋) have the same value

in 𝜑𝑋 and 𝜑𝑍 and which do not. Let 𝑇 ⊆ 𝑉 (𝑋) be the subset of variables that receive different values under these

assignments. The key observation is that the change propagates i.e. every variable reachable from 𝑇 in 𝑆 − 𝑍 has a

different value under 𝜑𝑋 and 𝜑𝑍 . Since rigid cycles in 𝑆 −𝑋 admit a unique satisfying assignment (which is 𝜑𝑋), none of

them can remain in 𝑆 − 𝑍 and be reachable from 𝑇 . We show that the set of rigid cycles in 𝑆 − 𝑋 has the theta property

using the fact that fields have Helly dimension 2. This allows us to use the method of important balanced subgraphs to

get rid of rigid cycles reachable from the changing terminals𝑇 . More specifically, in one of the branches we obtain a set

𝐹 of size at most 𝑘 such that the connected components of 𝑇 in 𝑆 − (𝑋 ∪ 𝐹) are free from rigid cycles and thus flexible.

Moreover, all variables in the remaining components have the same value in 𝜑𝑋 and 𝜑𝑍 . Thus, we can concentrate on

the flexible part of the cleaned instance and use the partition-guessing and cutting idea outlined above. We remark

that the reduction to the flexible case is analogous to the shadow removal process of Marx and Razgon [47], but works

in O∗ (4𝑘)-time instead of 2O(𝑘3)𝑛O(1) (later improved to 2O(𝑘2)𝑛O(1) in [10]) time required by random sampling of

important separators. We also note that essentially the same algorithm works forMin-2-Lin(F), where F is an arbitrary

field.

GeneralMin-2-Lin Algorithm. Let us now consider the generalMin-2-Lin(D) problem where D ∈ H2. Important

differences between fields and rings in H2 become apparent even when considering simple structures such as the ring

of integers. While in the case of fields all obstructions to consistency of 2-Lin(F) instances are cycles, obstructions may

now also be paths. For example, consider the following system of equations over Z: {𝑦 − 2𝑥 = 1, 𝑦 − 2𝑧 = 0}. While

Manuscript submitted to ACM

12 Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, and Magnus Wahlström

both equations have integer satisfying assignments (e.g. (𝑦, 𝑥) ↦→ (1, 0) and (𝑦, 𝑧) ↦→ (2, 1), respectively), they are not

simultaneously satisfiable: the equation obtained by cancelling out 𝑦 is 2𝑧 − 2𝑥 = 1 and it has no integer solutions. The

restriction to rings with Helly dimension at most two now becomes important: there are no other obstructions besides

cycles and paths. This is a very important property that we utilise in our algorithm.

We show that after taking similar steps to those in the Min-2-Lin(Q) algorithm (iterative compression, and cleaning

by the method of important balanced subgraphs), the solution is again a certain cut in the cleaned graph. However, this

time it is not sufficient to partition 𝑇 into connected components, but we additionally need to break some paths that

have no solutions in D. The latter requirements can be expressed as certain disjunctive cut request for the non-terminals.

The requests are of the form ({𝑥, 𝑠}, {𝑦, 𝑡}), where 𝑠 and 𝑡 are terminals, and the cut is required to either separate 𝑥

from 𝑠 or 𝑦 from 𝑡 . We refer to Section 3.2 for the formal definition of the problem. These cut requests are used to deal

with inconsistent paths. More concretely, we can check whether the path going from 𝑥 to 𝑠 , then from 𝑠 to 𝑡 , and finally

from 𝑡 to 𝑦 is inconsistent in D, and then add the cut request for it. By iterative compression, the optimal solution is

disjoint from 𝑋 , so the part of this path between 𝑠 and 𝑡 cannot be cut. Computing all cut requests requires polynomial

time: we consider every pair of terminals 𝑠, 𝑡 and non-terminals 𝑥,𝑦, and add a corresponding cut request if necessary.

To compute a separator that satisfies such disjunctive requests in fpt time, we reduce the cut problem to a special case

of the MinCSP parameterized by the solution cost. Kim et al. [39] solve this MinCSP using the recently introduced

technique of flow augmentation.

An additional technical issue is that 2-Lin(D) is not well understood when D ∈ H2. If D is a field, then Gaussian

elimination solves 𝑟 -Lin(F) for every 𝑟 in polynomial time. Polynomial-time algorithms are also known for 𝑟 -Lin(Z)

and 𝑟 -Lin(F[𝑥]) [33, 34] for every 𝑟 , but to the best of our knowledge, there are no general algorithms described in

the literature that are applicable in our setting, even for the simpler 2-Lin(D) problem. This forces us to develop novel

methods for checking consistency of 2-Lin(D) instances to be used in our Min-2-Lin algorithms, and we present

polynomial-time algorithms for 2-Lin(D) when D ∈ H𝑚 for𝑚 ∈ N.

Roadmap. The remainder of the paper is structured as follows. In Section 2 we describe the LP-based approach

to parameterized deletion problems, define important balanced subgraphs and develop the fpt-algorithm producing

a dominating family of important balanced subgraphs. Section 3 contains fpt-algorithms for the graph separation

problems (Partition Cut and Pair Partition Cut) used in the Min-2-Lin algorithms. In Sections 4 and 5 we present

the general algorithm for rings in H2 and faster algorithms for fields, respectively.

Section 4 begins by presenting some background concerning commutative rings (Section 4.1) and formally introducing

the Helly dimension together with a polynomial-time algorithm for 2-Lin(D) when D ∈ H𝑚 (Section 4.2). When

presenting the algorithm, we follow the compressionścleaningścutting structure outlined earlier. Thus, Section 4.3

describes the compression step and Section 4.4 demonstrates how the machinery of balanced important subgraphs

(from Section 2) can be used in the cleaning step. In Section 4.5, we show how the resulting instance is reduced to Pair

Partition Cut and thus can be solved in fpt-time (by the results in Section 3). We prove correctness of the algorithm

and analyze its time complexity in Section 4.6. The complexity analysis shows thatMin-2-Lin(D) is solvable in time

O∗ (2𝑘
O(1)

). Finally, we use Section 4.7 for verifying that H2 contains the so-called Prüfer domains and thus confirming

that a wide range of well-studied and interesting rings are members of H2. Section 5 contains faster algorithms for

Min-2-Lin(F) when F is a field. The first algorithm is applicable to all reasonably represented fields F and it runs in

time O∗ (𝑘O(𝑘)). The second algorithm is only applicable to finite fields but it has much better time complexity: the

algorithm runs in O∗ ((2𝑝)𝑘) where 𝑝 is the number of elements in F.

Manuscript submitted to ACM

Almost Consistent Systems of Linear Equations 13

Section 6 is devoted to W[1]-hardness results. We show W[1]-hardness of Min-𝑟 -Lin(D) when 𝑟 ≥ 3 and D is an

arbitrary ring with at least two elements. We consider Min-2-Lin(D) for commutative rings D that contain a zero

divisor and prove thatMin-2-Lin(D) isW[1]-hard for many such structures. We finish off in Section 7, summarising and

discussing the results, open questions and possible directions for future work. Compared to the preliminary conference

version of this article [18], we have extended the algorithm from Euclidean domains to effective Prüfer domains and

the rings in H2 (Section 4) and sharpened the W[1]-hardness proof to apply to a substantially broader class of rings

(Section 6).

Preliminaries. We assume familiarity with the basics of graph theory, linear and abstract algebra, and combinatorial

optimisation throughout the article. The necessary material can be found in, for instance, the books by Diestel [19],

Artin [1], and Schrijver [52], respectively. We use the following graph-theoretic terminology. Let 𝐺 be an undirected

graph. We write 𝑉 (𝐺) and 𝐸 (𝐺) to denote the vertices and edges of 𝐺 , respectively. For every vertex 𝑣 ∈ 𝑉 (𝐺), let

the neighbourhood of 𝑣 in 𝐺 denoted by 𝑁𝐺 (𝑣) be the set {𝑢 ∈ 𝑉 (𝐺) | {𝑢, 𝑣} ∈ 𝐸 (𝐺)} and the closed neighbourhood

𝑁𝐺 [𝑣] = 𝑁𝐺 (𝑣) ∪ {𝑣}. We extend this notion to sets of vertices 𝑆 ⊆ 𝑉 (𝐺) in a natural way: 𝑁𝐺 (𝑆) = (
⋃
𝑣∈𝑆 𝑁𝐺 (𝑣)) \ 𝑆 .

If 𝑈 ⊆ 𝑉 (𝐺), then the subgraph of 𝐺 induced by 𝑈 is the graph 𝐺 ′ with 𝑉 (𝐺 ′) = 𝑈 and 𝐸 (𝐺 ′) = {{𝑣,𝑤} | 𝑣,𝑤 ∈

𝑈 and {𝑣,𝑤} ∈ 𝐸 (𝐺)}. We denote this graph by 𝐺 [𝑈]. If 𝑍 is a subset of edges in 𝐺 , we write 𝐺 − 𝑍 to denote the

graph 𝐺 ′ with 𝑉 (𝐺 ′) = 𝑉 (𝐺) and 𝐸 (𝐺 ′) = 𝐸 (𝐺) \ 𝑍 . For 𝑋,𝑌 ⊆ 𝑉 (𝐺), an (𝑋,𝑌)-cut is a subset of edges 𝑍 such that

𝐺 − 𝑍 does not contain a path with one endpoint in 𝑋 and another in 𝑌 . When 𝑋,𝑌 are singleton sets 𝑋 = {𝑥} and

𝑌 = {𝑦}, we simplify the notation and write 𝑥𝑦-cut instead of (𝑋,𝑌)-cut. We say that a path 𝑃 is an 𝑥𝑦-path if its

endpoints are the vertices 𝑥 and 𝑦.

2 GRAPH CLEANING

We will now consider one of the cornerstones in our algorithms for Min-2-Lin: graph cleaning. The framework we

present is intimately connected with biased graphs. These are combinatorial objects of importance especially to matroid

theory [56]. To introduce biased graphs, we recall that a theta graph is a collection of three vertex-disjoint paths with

shared endpointsÐsee Figure 2 for an illustration. A biased graph is a pair (𝐺,B) where 𝐺 is an undirected graph and

B ⊆ 2𝐸 (𝐺) is a set of cycles in 𝐺 (referred to as the balanced cycles of 𝐺) with the property that if two cycles 𝐶,𝐶′ ∈ B

form a theta graph, then the third cycle of𝐶∪𝐶′ is also in B. A set of cycles B with this property is referred to as a linear

class. An example of two cycles forming a theta graph is given in Figure 2 with 𝐶 following 𝑥1 → 𝑥2 → 𝑥4 → 𝑥1 and

𝐶′ following 𝑥2 → 𝑥3 → 𝑥4 → 𝑥2. Given a biased graph (𝐺,B), we always assume that B is defined via a membership

oracle that takes as input a cycle 𝐶 (provided as an edge set) and tests whether 𝐶 ∈ B.

The most basic biased graph cleaning problem is the following.

Biased Graph Cleaning (BGC)

Instance: A biased graph (𝐺,B) and an integer 𝑘 .

Question: Is there a set 𝑋 ⊆ 𝑉 (𝐺) such that |𝑋 | ≤ 𝑘 and all cycles in 𝐺 − 𝑋 are balanced,

i.e. members of B?

We will consider an LP-relaxation of BGC and its rooted variant in Section 2.1. Results based on this LP-relaxation

will then be used in Section 2.2 where we present fpt-algorithms for various biased graph cleaning problems. These

results are directly used in our single-exponential time algorithm for Min-2-Lin over finite fields (Section 5.4). Inspired

by these kinds of problems and their solution structure, we introduce the concept of important balanced subgraphs in

Manuscript submitted to ACM

14 Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, and Magnus Wahlström

Section 2.3. Our main result shows that we can efficiently compute a small family of important balanced subgraphs

such that every other balanced subgraph is dominated by a member in the set. This forms an important step of our later

fpt-algorithms forMin-2-Lin.

Our algorithms exploit half-integral LP-relaxations, a method that historically has proven to be very powerful for

attacking this kind of problems. Guillemot [26] was the first to use half-integral LP-relaxations as a tool for constructing

fixed-parameter algorithms. The method was refined by Cygan et al. [16] who used it to solve Multiway Cut in

timeO∗ (2𝑘) andAlmost 2-SAT in timeO∗ (4𝑘). The latter was further improved by Lokshtanov et al. [42] toO∗ (2.3146𝑘).

Iwata et al. [30] generalised the approach using tools from constraint satisfaction problems to provide O∗ (4𝑘)-time

algorithms for a range of problems, including GFVS as noted above. Iwata et al. [31] later improved this to linear time

O∗ (4𝑘)-time algorithms for an important subclass of these problems, by providing a fast combinatorial solution to the

LP-relaxation. Wahlström [54] generalised the GFVS-results of Iwata et al. [30] further to the setting of biased graphs,

via the Biased Graph Cleaning problem.

2.1 LP-relaxation for Rooted Biased Graph Cleaning

Previous work by Wahlström [54] shows that BGC has an fpt-algorithm running in O∗ (4𝑘) time. The algorithm is based

around a particular LP-relaxation. The workhorse of this result is the following rooted variant of BGC. Note that we

have extended the problem with vertex weights.

Rooted Biased Graph Cleaning (RBGC)

Instance: A biased graph (𝐺,B), a vertex-weight function 𝑤 : 𝑉 (𝐺) → N, a vertex 𝑣0 ∈

𝑉 (𝐺), and an integer 𝑘 .

Question: Is there a set 𝑋 ⊆ 𝑉 (𝐺) such that 𝑤 (𝑋) ≤ 𝑘 , 𝑣0 ∉ 𝑋 , and all cycles in the

connected component of 𝑣0 in 𝐺 − 𝑋 are balanced?

We will now review the LP-relaxation that underlies the fpt-algorithms for BGC and RBGC. Note that both BGC

and RBGC can be defined in terms of seeking a set of vertices 𝑋 that intersects a class of obstructions. In BGC, the

obstructions are simply all unbalanced cycles of (𝐺,B). In RBGC, we can define a class of obstructions consisting of the

combination (𝑃,𝐶) of an unbalanced cycle 𝐶 and a (possibly empty; in the case that 𝑣0 is on 𝐶) path 𝑃 connecting 𝐶 to

𝑣0. Such a rooted unbalanced cycle is referred to as a balloon [54]. Then we see that a set 𝑋 ⊆ 𝑉 (𝐺) is a solution to

an instance 𝐼 = ((𝐺,B),𝑤, 𝑣0, 𝑘) of RBGC if and only if 𝑋 intersects every balloon (where the balloons are implicitly

rooted in 𝑣0).

A balloon (𝑃,𝐶) can clearly be decomposed into two paths: for any 𝑣 ∈ 𝑉 (𝐶) \ 𝑉 (𝑃), (𝑃,𝐶) is the union of two

paths 𝑃1, 𝑃2 from 𝑣0 to 𝑣 . The LP-relaxation of an RBGC instance 𝐼 = ((𝐺,B), 𝑣0,𝑤, 𝑘) is then defined as follows. Let

𝑥 ∈ [0, 1]𝑉 (𝐺) be an assignment, and for a path 𝑃 define 𝑥 (𝑃) =
∑
𝑣∈𝑉 (𝑃) 𝑥 (𝑣). The LP-relaxation of 𝐼 has objective

min
∑︁

𝑣∈𝑉 (𝐺)

𝑤 (𝑣)𝑥 (𝑣)

subject to the constraints 𝑥 (𝑣0) = 0, 𝑥 (𝑣) ≥ 0 for every 𝑣 ∈ 𝑉 (𝐺) \ {𝑣0} and

𝑥 (𝑃1) + 𝑥 (𝑃2) ≥ 1

for every balloon (𝑃,𝐶) decomposed into two paths 𝑃1 and 𝑃2. Wahlström [54] showed several properties of this LP.

First, an optimal solution can be found in polynomial time, given access to a membership oracle for B. Second, it is

half-integral i.e. the LP always has an optimum 𝑥∗ ∈ {0, 12 , 1}
𝑉 (𝐺) . Finally, it is persistent in the sense that there is an

Manuscript submitted to ACM

Almost Consistent Systems of Linear Equations 15

S

VR

G[V \ S+]
v0

S'

S'

G[V \ S+]
v0

Fig. 4. Two illustrations for Lemma 1. On the left we have a graph with root vertex 𝑣0, the set 𝑆 such that 𝐺 [𝑆] is balanced and

connected (highlighted in blue) and the set 𝑉𝑅 defined by the optimal half-integral LP solution (highlighted in gray). The set 𝑆+

includes 𝑆 ,𝑉𝑅 and all their neighbours. The white cloud corresponds to the remainder of the graph, i.e.𝐺 [𝑉 \ 𝑆+]. The blue-gray

part is the intersection of 𝑆 and𝑉𝑅 . On the right we have the same graph with the new set 𝑆 ′ (two parts highlighted in green) such

that𝐺 [𝑆 ′] is balanced and𝑉𝑅 ⊆ 𝑆 ′ . The deleted vertices in both pictures are indicated in red.

optimal solution 𝑋 ⊆ 𝐸 (𝐺) with the following property: if 𝑥∗ (𝑣) = 1, then 𝑣 ∈ 𝑋 . Note that for certain vertices 𝑣 with

𝑥∗ (𝑣) = 0 we can conclude 𝑣 ∉ 𝑋 .

More precisely, we have the following. The support of an LP-solution 𝑥 is the set supp(𝑥) = {𝑣 ∈ 𝑉 (𝐺) | 𝑥 (𝑣) > 0}.

Let 𝐼 = ((𝐺,B), 𝑣0,𝑤, 𝑘) be an instance of RBGC and let 𝑥 = 𝑉1 +
1
2𝑉1/2 be a half-integral optimum to the LP-relaxation

of 𝐼 , i.e. 𝑥 (𝑣) = 1 for 𝑣 ∈ 𝑉1, 𝑥 (𝑣) = 1/2 for 𝑣 ∈ 𝑉1/2 and 𝑥 (𝑣) = 0 otherwise. Let 𝑉𝑅 (𝑥) ⊆ 𝑉 (𝐺) be the set of vertices

connected to 𝑣0 in 𝐺 − supp(𝑥). Then 𝑥 is an extremal LP-optimum if 𝑉𝑅 (𝑥) is maximal among all LP-optima 𝑥 . If 𝑥 is

a half-integral extremal LP-optimum for 𝐼 , then there is an optimal solution 𝑋 ⊆ 𝑉 (𝐺) to 𝐼 such that 𝑉1 (𝑥) ⊆ 𝑋 and

𝑉𝑅 (𝑥) ∩ 𝑋 = ∅. Via these properties, we can design an fpt-algorithm for RBGC by a branch-and-bound approach over

the LP [54].

In fact, an even stronger, more technical property holds, which we will used in what follows. We give an informal

version first. Let 𝑆 ⊆ 𝑉 (𝐺) be an arbitrary connected balanced subgraph of 𝐺 with 𝑣0 ∈ 𝑆 . The cost of cutting out 𝑆

from 𝐺 is𝑤 (𝑁𝐺 (𝑆)). Now consider the extended set 𝑆+ = 𝑁𝐺 [𝑆 ∪𝑉𝑅 (𝑥)] which contains both 𝑆 and 𝑉𝑅 (𝑥) as well as

their neighbours. One can show that 𝑆+ also contains another set 𝑆 ′ ⊆ 𝑉 (𝐺) such that 𝐺 [𝑆′] is balanced; moreover,

𝑉𝑅 (𝑥) ⊆ 𝑆
′, 𝑁𝐺 (𝑆

′) ⊆ 𝑆+ and𝑤 (𝑆+ \ 𝑆 ′) ≤ 𝑤 (𝑁𝐺 (𝑆)). Thus, if we are solving BGC problem, then, informally, instead

of “coveringž 𝑁𝐺 [𝑆] by deleting 𝑁𝐺 (𝑆) we can cover a possibly larger set 𝑆+ by deleting vertices of at most the same

cost, and we can replace 𝐺 [𝑆] with 𝐺 [𝑆 ′]. In terms of RBGC, this means that we always have a balanced subgraph

of minimum cost that includes 𝑉𝑅 . See Figure 4 for an illustration. We will use this lemma to prove Lemma 8, which

contains a simpler version of the statement for the edge-deletion case, and then to derive Lemma 9, which is a concise

and important consequence.

Lemma 1 (Wahlström [54, Lemma 6]). Let 𝑥 = 𝑉1 +
1
2𝑉1/2 be a half-integral extremal LP-optimum for a RBGC instance

𝐼 = ((𝐺,B),𝑤, 𝑣0, 𝑘) and let𝑉𝑅 (𝑥) be defined as above. Let 𝑆 ⊆ 𝑉 (𝐺) be a vertex set with 𝑣0 ∈ 𝑆 such that𝐺 [𝑆] is balanced

and connected. Then there is a set of vertices 𝑆+ and a set 𝑆 ′ ⊆ 𝑆+ such that 𝐺 [𝑆 ′] is balanced and the following hold.

(1) 𝑆+ = 𝑁𝐺 [𝑆 ∪𝑉𝑅 (𝑥)];

(2) 𝑁𝐺 [𝑆 ′] ⊆ 𝑆+;

(3) 𝑉𝑅 (𝑥) ⊆ 𝑆
′;

(4) 𝑉1 (𝑥) ⊆ (𝑆+ \ 𝑆 ′);

(5) 𝑤 (𝑆+ \ 𝑆 ′) ≤ 𝑤 (𝑁𝐺 (𝑆)).

Manuscript submitted to ACM

16 Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, and Magnus Wahlström

2.2 Biased Graph Cleaning

In this section we consider further variants of biased graph cleaning problems. Our goal is to show that the vertex-

weighted extension of Biased Graph Cleaning and the edge version of Rooted Biased Graph Cleaning (RBGCE)

both admit fpt-algorithms. These results are standard, but they are needed for later results in the paper.

We begin by noting that RBGC is in FPT, using the same LP-branching algorithm as in the unweighted case [54].

Proposition 2 (Wahlström [54, Theorem 1]). RBGC admits an fpt-algorithm with running time O∗ (2𝑘) assuming that

B is given by a polynomial-time membership oracle.

Proof sketch. Let 𝐼 = ((𝐺,B),𝑤, 𝑣0, 𝑘) be an instance of RBGC, where (𝐺,B) is a biased graph,𝑤 : 𝑉 (𝐺) → N is

a weight function, 𝑣0 ∈ 𝑉 (𝐺) is the root vertex and 𝑘 ∈ N is the deletion budget. We note that the algorithm for the

unweighted case [54, Lemma 8] also applies in the presence of integer weights. We use the slightly more careful version

of the extended preprint [41]. Let𝑊 =
∑
𝑣∈𝑉 (𝐺) 𝑤 (𝑣), and assume 𝑘 <𝑊 , as otherwise the instance is trivial. For a

vertex 𝑣 ∈ 𝑉 (𝐺), we say fix 𝑣 = 0 to refer to setting a weight𝑤 (𝑣) = 2𝑊 , and fix 𝑣 = 1 to refer to setting𝑤 (𝑣) = 0. Let

𝑥∗ be a half-integral extremal LP-optimum as in Lemma 1; such an optimum can be computed efficiently in a greedy

manner [41]. Let 𝜆 be the cost of 𝑥∗. If 𝜆 > 𝑘 , then we reject the instance. Otherwise 𝜆 <𝑊 and as 𝑥∗ is half-integral, if

we have fixed 𝑣 = 0, then we must have 𝑥∗ (𝑣) = 0. Furthermore, if 𝜆 < 𝑘/2, then supp(𝑥∗) is an integral solution of

cost at most 𝑘 . Now, as in [41], we either find an integral LP-optimum, or we find a half-integral vertex 𝑣 ∈ supp(𝑥∗)

such that 𝑥∗ (𝑣) = 1/2, fixing 𝑣 = 0 increases the LP-optimum cost, and𝑤 (𝑣) > 0. Then we can recursively branch on

fixing 𝑣 = 0, and on fixing 𝑣 = 1 and decreasing 𝑘 by𝑤 (𝑣). In the former case 𝜆 increases by at least 1/2 since the LP is

half-integral, and 𝑘 is unchanged. In the latter case 𝜆 decreases by𝑤 (𝑣)/2, but 𝑘 decreases by𝑤 (𝑣). Hence the value of

𝑘 − 𝜆 decreases by at least 1/2 in both branches. It follows that an exhaustive branching takes O∗ (22(𝑘−𝜆)) time, and

since 𝜆 ≥ 𝑘/2 initially, this is O∗ (2𝑘). □

Next, we consider the edge deletion version of the problem, Rooted Biased Graph Cleaning by Edge Deletion

(RBGCE), which is defined similarly to RBGC except that the solution is an edge set, not a vertex set, and where the

input comes with edge weights𝑤 instead of vertex weights. By a standard reduction, this problem is also in FPT.

Proposition 3. RBGCE admits an fpt-algorithm with running time O∗ (2𝑘) assuming thatB is given by a polynomial-time

membership oracle.

Proof. Let 𝐼 = ((𝐺,B),𝑤, 𝑣0, 𝑘) be an instance of RBGCE. We provide a polynomial-time and parameter preserving

reduction to RBGC, which together with Proposition 2 shows the proposition. The instance 𝐼 ′ = ((𝐺 ′,B′),𝑤 ′, 𝑣 ′0, 𝑘
′)

of RBGC is obtained from 𝐼 as follows. We set 𝑘′ = 𝑘 . The graph 𝐺 ′ is obtained from 𝐺 by subdividing every edge

of 𝐺 exactly once. We set the weight 𝑤 ′ of every original vertex to 𝑘 + 1 and the weight of every new (subdividing)

vertex 𝑥𝑒 , subdividing an edge 𝑒 , to𝑤 ′ (𝑥𝑒) = 𝑤 (𝑒). Finally, we let B′ be the set of all cycles 𝐶 in 𝐺 ′ such that the cycle

obtained from 𝐶 after reversing the subdivision is in B. This completes the construction of 𝐼 ′, which can clearly be

achieved in polynomial-time and is parameter preserving. It remains to show that 𝐼 is a yes-instance if and only if 𝐼 ′ is

a yes-instance.

Towards showing the forward direction, let 𝑋 ⊆ 𝐸 (𝐺) be a solution for 𝐼 and let 𝑋 ′ ⊆ 𝑉 (𝐺 ′) be the set of vertices

used for subdividing the edges in 𝑋 . We claim that 𝑋 ′ is a solution for 𝐼 ′. Suppose for contradiction that this is not the

case. Then, there is a cycle 𝐶′ in 𝐺 ′ − 𝑋 ′ reachable from 𝑣0 with 𝐶
′
∉ B′. But then, the cycle 𝐶 obtained from 𝐶′ after

reversing the subdivision of all edges is also in𝐺 − 𝑋 and reachable from 𝑣0. Finally, because 𝐶
′
∉ B′, we obtain that

𝐶 ∉ B, contradicting our assumption that 𝑋 is a solution of 𝐼 .

Manuscript submitted to ACM

Almost Consistent Systems of Linear Equations 17

Towards showing the reverse direction, let𝑋 ′ ⊆ 𝑉 (𝐺 ′) be a solution for 𝐼 ′. Then, because the weight of every original

vertex is 𝑘 + 1, 𝑋 ′ only contains vertices used for the subdivision of edges of 𝐺 . We claim that the set 𝑋 containing all

edges of 𝐺 whose corresponding vertex in 𝐺 ′ is in 𝑋 ′ is a solution for 𝐼 . Suppose for contradiction that this is not the

case and there is a cycle 𝐶 in 𝐺 − 𝑋 reachable from 𝑣0 with 𝐶 ∉ B. Let 𝐶′ be the corresponding cycle in 𝐺 ′, i.e. 𝐶′ is

obtained from𝐶 after subdividing each edge of𝐶 . Then,𝐶′ is also in𝐺 ′ −𝑋 ′ because 𝑋 ′ does not contain any (original)

vertex of 𝐶 . Moreover, 𝐶′ is reachable from 𝑣0 and 𝐶
′
∉ B′, a contradiction to our assumption that 𝑋 ′ is a solution for

𝐼 ′. □

On a side note, we observe that the standard, non-rooted (but weighted) problem BGC and its edge-deletion variant

BGCE are in FPT. The result follows from same procedure as in the original paper [54], building on Propositions 2 and 3.

Proposition 4. The integer-weighted variants of BGC and BGCE both admit an fpt-algorithm with run-time O∗ (4𝑘)

assuming that B is given by a polynomial-time membership oracle, where 𝑘 is the total weight of a solution.

2.3 Important Balanced Subgraphs

Important separators are a central concept in fpt-algorithms for graph separation problems that was originally defined by

Marx [45]. Let 𝐺 be an undirected graph, and let 𝑋,𝑌 ⊂ 𝑉 (𝐺) be disjoint sets of vertices. For an (𝑋,𝑌)-cut 𝐶 ⊆ 𝑉 (𝐺),

let 𝑅(𝑋,𝐶) be the set of vertices reachable from 𝑋 in 𝐺 − 𝐶 . Then 𝐶 is an important (𝑋,𝑌)-separator if, for every

(𝑋,𝑌)-cut 𝐶′ such that |𝐶′ | ≤ |𝐶 | and 𝑅(𝑋,𝐶) ⊆ 𝑅(𝑋,𝐶′), we have 𝐶′
= 𝐶 . In other words, for any (𝑋,𝑌)-cut 𝐶′ such

that 𝑅(𝑋,𝐶) ⊊ 𝑅(𝑋,𝐶′) we must have |𝐶′ | > |𝐶 |.3 Marx showed that for any graph 𝐺 and sets 𝑋,𝑌 , there are at most

𝑓 (𝑘) distinct important separators 𝐶 with |𝐶 | ≤ 𝑘 [45], and this bound was later improved to 𝑓 (𝑘) = 4𝑘 (see [14]).

The same bound applies to both undirected and directed graphs, and by using standard reductions it also applies to

edge cuts. Important separators are a key component in many fpt-algorithms, including the algorithms for Multiway

Cut [45] and Multicut [47] (see Cygan et al. [14] for more applications).

We show a new result on the solution structure of RBGCE that generalizes important separators for undirected edge

cuts. We first note that the number of (in some sense) incomparable solutions to RBGCE is not bounded in 𝑘 . Indeed, if

𝐶 is an unbalanced cycle on 𝑛 vertices, then deleting any one edge of𝐶 is a minimal solution, and there is no clear order

of preference between these solutions. On the other hand, it turns out that a result in the style of important separators

does hold in terms of vertex sets of balanced connected subgraphs of a biased graph.

Let us introduce some terminology. Let (𝐺,B) be a biased graph and let𝑤 : 𝐸 (𝐺) → Z be a set of edge weights. Let

𝐻 be a subgraph of 𝐺 . Let 𝛿𝐺 (𝑋) for 𝑋 ⊆ 𝑉 (𝐺) denote the set of edges in 𝐺 with precisely one endpoint in 𝑋 . We then

define the cost of 𝐻 as the cost of the edges in 𝐺 incident with 𝑉 (𝐻) but not present in 𝐻 i.e.

𝑐𝐺 (𝐻) = 𝑤 (𝐸 (𝐺 [𝑉 (𝐻)]) \ 𝐸 (𝐻)) +𝑤 (𝛿𝐺 (𝑉 (𝐻))) .

We refer to (𝐸 (𝐺 [𝑉 (𝐻)]) \ 𝐸 (𝐻)) ∪ 𝛿𝐺 (𝑉 (𝐻)) as the deleted edges of 𝐻 .

Let 𝐻 and 𝐻 ′ be balanced subgraphs (with respect to B) of 𝐺 . We say that 𝐻 ′ dominates 𝐻 if 𝑉 (𝐻) ⊆ 𝑉 (𝐻 ′) and

𝑐𝐺 (𝐻) ≥ 𝑐𝐺 (𝐻
′), and that 𝐻 ′ strictly dominates 𝐻 if at least one of these two inequalities is strict. Analogously to

important separators, we refer to 𝐻 as an important balanced subgraph in (𝐺,B) if 𝐻 is a connected, balanced subgraph

of 𝐺 and no balanced subgraph 𝐻 ′ of 𝐺 strictly dominates 𝐻 . We refer the reader to Figure 3 for an illustration. We

3One can alternatively view important (𝑋,𝑌)-separators as minimal (𝑋,𝑌)-cuts with respect to the quasi-order ⪯ defined as𝐶′ ⪯ 𝐶 if and only if
|𝐶′ | ≤ |𝐶 | and 𝑅 (𝑋,𝐶) ⊆ 𝑅 (𝑋,𝐶′) .

Manuscript submitted to ACM

18 Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, and Magnus Wahlström

may assume here without loss of generality that 𝐻 ′ is also connected (see Lemma 7). Importantly, observe that if 𝐻 is

dominated by 𝐻 ′, then 𝐻 might not be a subgraph of 𝐻 ′. In the example of a single unbalanced cycle 𝐶 , the subgraphs

𝐶 − {𝑒} for 𝑒 ∈ 𝐸 (𝐶) all mutually dominate each other, although not strictly.

Let G := G(𝐺,B,𝑤, 𝑘𝑣0) be the family of connected balanced subgraphs in (𝐺,B) that contain 𝑣0 and have cost

at most 𝑘 under 𝑤 . A subset H ⊆ G is a dominating family for G if for any 𝐻 ∈ G there is a subgraph 𝐻 ′ ∈ H that

dominates 𝐻 . We show the following result.

Theorem 5 (Dominating family of important balanced subgraphs). Let (𝐺,B) be a biased graph with positive integer

edge weights 𝑤 , let 𝑣0 ∈ 𝑉 (𝐺) and let 𝑘 be an integer. Let G := G(𝐺,B,𝑤, 𝑘, 𝑣0) be the family of connected balanced

subgraphs in (𝐺,B) that contain 𝑣0 and have cost at most 𝑘 . Then, given (𝐺,𝑤, 𝑘, 𝑣0) and oracle access to B we can compute

a dominating family H for G such that |H | ≤ 4𝑘 in O∗ (4𝑘)-time. Furthermore, every member of H is an important

balanced subgraph of (𝐺,B).

Before we present our proof of Theorem 5, we illustrate that important biased subgraphs are indeed a generalisation

of important separators.

Example 6. Let𝐺 be an undirected graph and 𝑠, 𝑡 ∈ 𝑉 (𝐺) be distinguished vertices. Note that since we are considering

edge cuts, the assumption that 𝑠 and 𝑡 are single vertices (as opposed to disjoint vertex sets 𝑋 and 𝑌) can be made

without loss of generality. Now, add two vertices 𝑧, 𝑧′ and three edges 𝑒1 = {𝑡, 𝑧}, 𝑒2 = {𝑧, 𝑧′}, 𝑒3 = {𝑡, 𝑧′}. Let𝐺 ′ be the

resulting graph, and let B be the set containing all cycles except 𝐶𝑡 = {𝑒1, 𝑒2, 𝑒3}. Note that B trivially defines a linear

class since 𝐶𝑡 is not part of any theta graph, so (𝐺 ′,B) is a biased graph. Finally, set edge weights𝑤 (𝑒𝑖) = 𝑘 + 1, for

𝑖 ∈ {1, 2, 3}, and𝑤 (𝑒) = 1 for every other edge 𝑒 ∈ 𝐸 (𝐺), and use 𝑣0 = 𝑠 as the root vertex. Then a connected subgraph

𝐻 of𝐺 ′ with 𝑠 ∈ 𝑉 (𝐻) and of cost at most 𝑘 is balanced if and only if 𝑡 ∉ 𝑉 (𝐻) (since breaking the unbalanced cycle𝐶𝑡

would exceed the budget). Hence 𝐻 is a connected, balanced subgraph of 𝐺 ′ with 𝑠 ∈ 𝑉 (𝐻) and of cost at most 𝑘 if

and only if the set of deleted edges 𝐶 of 𝐻 contains an 𝑠𝑡-cut in 𝐺 . Furthermore, in such a case 𝑉 (𝐻) = 𝑅({𝑠},𝐶). We

see that the important (𝑠, 𝑡)-separators in 𝐺 of cost at most 𝑘 directly correspond to the deleted edges of important

balanced subgraphs 𝐻 of 𝐺 ′ with 𝑠 ∈ 𝑉 (𝐻) and of cost at most 𝑘 .

We proceed to prove Theorem 5; this occupies the rest of the subsection. We first note that we may assume that

strictly dominating subgraphs are connected.

Lemma 7. Assume that 𝐺 is a connected undirected graph that has no zero-weight edges. Let 𝐻 be a connected balanced

subgraph of 𝐺 . If there is a balanced graph 𝐻 ′ that strictly dominates 𝐻 , then there is also a connected balanced graph 𝐻 ′

that strictly dominates 𝐻 . Furthermore, if 𝐻 ′ is of minimum cost among all balanced graphs that dominate 𝐻 , then 𝐻 ′ is

connected.

Proof. Assume that there exists a balanced subgraph 𝐻 ′ of 𝐺 that strictly dominates 𝐻 , and let 𝐻 ′ be chosen to

minimise 𝑐𝐺 (𝐻
′) among all such subgraphs 𝐻 ′. Suppose that 𝐻 ′ is not connected, and first suppose that 𝐻 ′ contains a

connected component 𝐶 such that 𝐶 ∩𝑉 (𝐻) = ∅. Then 𝐻 ′ −𝐶 is balanced, 𝑐𝐺 (𝐻
′ −𝐶) < 𝑐𝐺 (𝐻

′) since𝐺 is connected,

and 𝑉 (𝐻) ⊆ 𝑉 (𝐻 ′ − 𝐶). Hence 𝐻 ′ − 𝐶 also dominates 𝐻 , and would be the preferred choice over 𝐻 ′. Hence we

proceed assuming that every connected component of 𝐻 ′ intersects 𝑉 (𝐻). Now let 𝑒 ∈ 𝐸 (𝐻) be an edge connecting

distinct connected components in 𝐻 ′. Such an edge clearly exists, e.g. follow a path in 𝐻 whose endpoints lie in distinct

components of 𝐻 ′. Then adding 𝑒 to 𝐻 ′ yields another balanced subgraph 𝐻 ′′, since no cycle passes through 𝑒 in 𝐻 ′′.

Then 𝑐𝐺 (𝐻
′′) < 𝑐𝐺 (𝐻

′) and 𝐻 ′′ dominates 𝐻 ; hence by choice of 𝐻 ′, no such edge can exist. We conclude that 𝐻 ′ is

connected. □

Manuscript submitted to ACM

Almost Consistent Systems of Linear Equations 19

For the proof of Theorem 5, we begin by adapting the LP-relaxation for RBGC and Lemma 1 to the edge-deletion

version RBGCE. More precisely, the LP-relaxation for RBGC and Lemma 1 are both defined in terms of a solution space

𝑥 ∈ {0, 1/2, 1}𝑉 (𝐺) of half-integral relaxed solutions over the vertex set of a graph. We use the reduction from RBGCE

to RBGC provided in the proof of Proposition 3 to derive half-integral optimal solutions 𝑥∗ ∈ {0, 1/2, 1}𝐸 (𝐺) to the

edge-deletion version of the problem. We also observe the following persistence properties of such a solution 𝑥∗, as a

simplification of Lemma 1. We refer to these solutions as the LP-relaxation of RBGCE (indeed, they are a projection of

the solutions to the LP-relaxation of the RBGC-instance resulting from the reduction, so they correspond to an LP over

variables 𝐸 (𝐺)).

Lemma 8. Let 𝐼 = ((𝐺,B),𝑤, 𝑣0, 𝑘) be an instance of RBGCE. In polynomial time, we can compute a half-integral

extremal optimum 𝑥∗ = 𝑋1 +
1
2𝑋1/2 of the LP-relaxation of 𝐼 such that the following holds. Let 𝑋 = 𝑋1 ∪𝑋1/2 be the support

of 𝑥∗, 𝑋 ⊆ 𝐸 (𝐺). Let 𝐺𝑅 be the subgraph consisting of edges reachable from 𝑣0 in 𝐺 − 𝑋 . Let 𝐻 be any connected balanced

subgraph of 𝐺 with 𝑣0 ∈ 𝑉 (𝐻). Then there is a balanced subgraph 𝐻 ′ of 𝐺 on vertex set 𝑉 (𝐺𝑅) ∪𝑉 (𝐻) such that 𝐺𝑅 is a

subgraph of 𝐻 ′, 𝑐𝐺 (𝐻
′) ≤ 𝑐𝐺 (𝐻), and 𝑋1 ∩ 𝐸 (𝐻

′) = ∅.

In particular, unless 𝑉 (𝐺𝑅) ⊆ 𝑉 (𝐻), there is a graph 𝐻 ′ that strictly dominates 𝐻 and has 𝑉 (𝐺𝑅) ⊆ 𝑉 (𝐻 ′).

Proof. Let (𝐺 ′,B′) be the biased graph obtained from (𝐺,B) by subdividing every edge 𝑒 ∈ 𝐸 (𝐺) by a new vertex

𝑧𝑒 . Here, B
′ contains a cycle 𝐶′ if and only if it is a subdivision of a cycle 𝐶 ∈ B. Apply Lemma 1 to (𝐺 ′,B′) giving

every vertex 𝑣 ∈ 𝑉 (𝐺) weight 𝑤 (𝑣) = 2𝑤 (𝐸 (𝐺)) + 1 and the subdividing vertices weight 1. Let 𝑥 be the resulting

half-integral LP-optimum, and define 𝑥∗ ∈ {0, 1/2, 1}𝐸 (𝐺) as 𝑥∗𝑒 = 𝑥𝑧𝑒 for all 𝑒 ∈ 𝐸 (𝐺), and define 𝐺𝑅 accordingly. For

an edge 𝑒 ∈ 𝐸 (𝐺), we say that the vertex 𝑧𝑒 which subdivides 𝑒 in 𝐺 ′ represents 𝑒 in 𝐺 ′. For a subgraph 𝐺0 of 𝐺 , let

𝑉 ′ (𝐺0) ⊆ 𝑉 (𝐺 ′) contain the copy in 𝐺 ′ of every vertex 𝑣 ∈ 𝑉 (𝐺0) as well as the vertex 𝑧𝑒 subdividing 𝑒 for every

edge 𝑒 ∈ 𝐸 (𝐺0). Note that 𝑉
′ maps connected, respectively balanced subgraphs of 𝐺 to vertex sets 𝑆 such that 𝐺 ′ [𝑆] is

connected, respectively balanced.

Consider the vertex sets 𝑆 = 𝑉 ′ (𝐻) and 𝑅 = 𝑉 ′ (𝐺𝑅). Since 𝐺
′ [𝑆] is balanced and connected, Lemma 1 provides

sets 𝑆 ′, 𝑆+ ⊆ 𝑉 (𝐺 ′), where 𝑅 ⊆ 𝑆 ′, 𝑁𝐺 ′ [𝑆 ′] ⊆ 𝑆+ and 𝑆+ = 𝑁𝐺 ′ [𝑆 ∪ 𝑅]. Let 𝐻 ′ be the subgraph of 𝐺 defined by

𝑆 ′, i.e. 𝑉 (𝐻 ′) = 𝑆 ′ ∩ 𝑉 (𝐺) and 𝑒 ∈ 𝐸 (𝐻 ′) for 𝑒 ∈ 𝐸 (𝐺) if and only if the vertex subdividing 𝑒 is contained in 𝑆 ′.

We claim that 𝑉 (𝐻 ′) = 𝑉 (𝐻) ∪ 𝑉 (𝐺𝑅). In one direction, 𝑉 (𝐻 ′) ⊆ 𝑉 (𝐻) ∪ 𝑉 (𝐺𝑅), since 𝑆
′ ⊆ 𝑆+ = 𝑁𝐺 ′ [𝑆 ∪ 𝑅] and

every vertex of 𝑁𝐺 ′ (𝑆 ∪ 𝑅) represents an edge in 𝐺 . In the other direction, we claim 𝑉 (𝐻) ∪ 𝑉 (𝐺𝑅) ⊆ 𝑆 ′. Indeed,

𝑉 (𝐺𝑅) ∪𝑉 (𝐻) ⊆ 𝑆+ = 𝑁𝐺 ′ [𝑆 ∪𝑅], and if there were a vertex 𝑣 ∈ 𝑉 (𝐺) ∩ (𝑆+ \𝑆 ′), then the cost of 𝑆+ \𝑆 would exceed

𝑤 (𝑁𝐺 ′ (𝑆)) = 𝑐𝐺 (𝐻). Thus 𝑉 (𝐻 ′) = 𝑉 (𝐺𝑅) ∪ 𝑉 (𝐻). Furthermore 𝐻 ′ is balanced, since any unbalanced cycle in 𝐻 ′

would correspond to an unbalanced cycle in 𝐺 ′ [𝑆 ′].

Next, we note that 𝐺𝑅 is a subgraph of 𝐻 ′ since 𝑅 = 𝑉 ′ (𝐺𝑅) ⊆ 𝑆
′. Finally,

𝑐𝐺 (𝐻
′) ≤ 𝑤 (𝑆+ \ 𝑆 ′) ≤ 𝑤 (𝑁𝐺 ′ (𝑆)) = 𝑐𝐺 (𝐻),

and 𝑋1 ∩ 𝐸 (𝐻
′) = ∅, since the vertices subdividing 𝑋1 are contained in 𝑆+ \ 𝑆 ′.

For the last part, let 𝐻 ′ be the subgraph produced above from𝐺𝑅 and 𝐻 . Then 𝐻 ′ is balanced, 𝑐𝐺 (𝐻
′) ≤ 𝑐𝐺 (𝐻), and,

unless 𝑉 (𝐺𝑅) ⊆ 𝑉 (𝐻), 𝑉 (𝐻 ′) = 𝑉 (𝐺𝑅) ∪𝑉 (𝐻) is a strict superset of 𝑉 (𝐻). □

We show one more property of the LP-relaxation. Recall that the constraints of the LP are written as 𝑥 (𝑃1) +𝑥 (𝑃2) ≥ 1

for every balloon 𝐵 = (𝑃,𝐶) decomposed into two paths 𝑃1 and 𝑃2. Equivalently, for every balloon 𝐵 = (𝑃,𝐶), there is a

constraint where the edges of 𝑃 have coefficient 2, and the edges of𝐶 have coefficient 1. The constraint for 𝐵 = (𝑃,𝐶) is

tight if equality holds in the constraint. By so-called slackness conditions, it is known that for any LP optimum 𝑥∗ and

Manuscript submitted to ACM

20 Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, and Magnus Wahlström

v0

Fig. 5. Illustration of a half-integral extremal optimum 𝑥∗ = 𝑋1 +𝑋1/2 to the LP-relaxation of the RGBCE instance (𝐺, B, 𝑤, 𝑣0, 𝑘) ,

where𝐺 is the graph in the picture, B is the set of even cycles in𝐺 , the root 𝑣0 is the leftmost vertex, and 𝑤 assigns weight 2 to the

edges incident to 𝑣0 (bold), and unit weight to all other edges. In the picture, the edges of 𝑋1 are in green and dotted, the edges of

𝑋1/2 are in red and dashed, and the yellow area encloses the subgraph𝐺𝑅 . Here 𝑐𝐺 (𝐺𝑅) = |𝑋1 | + |𝑋1/2 | = 5, while the LP-objective

value of 𝑥∗ is |𝑋1 | +
1
2 |𝑋1/2 | = 3 1

2 .

any edge 𝑒 in the support of 𝑥∗ there is a tight constraint involving 𝑒 , i.e. a balloon 𝐵 = (𝑃,𝐶) with 𝑒 ∈ 𝐸 (𝐵) such that

the constraint for 𝐵 is tight.

Lemma 9. Let 𝑥∗ = 𝑋1 +
1
2𝑋1/2 be a half-integral extremal optimum computed in Lemma 8. Let 𝑋 = 𝑋1 ∪𝑋1/2, let𝐺𝑅 be

the subgraph corresponding to the connected component of 𝑣0 in𝐺 −𝑋 , and let𝑉𝑅 = 𝑉 (𝐺𝑅). Then 𝑋1 = 𝐸 (𝐺 [𝑉𝑅]) \ 𝐸 (𝐺𝑅)

and 𝑋1/2 = 𝛿𝐺 (𝑉𝑅).

Proof. For the first item, let 𝑒 ∈ 𝑋1. By the slackness conditions, there must be a tight constraint in the LP which

contains 𝑒 . By inspection of the constraints, this implies that there is a balloon 𝐵𝑒 = (𝑃,𝐶) rooted in 𝑣0 such that 𝑒

is contained in 𝐵𝑒 . Since 𝑥
∗ (𝑒) = 1, it may only appear with coefficient 1 in the summation of the constraint, hence

𝑒 ∈ 𝐶 . Moreover, we have 𝑥∗ (𝑒′) = 0 for every edge 𝑒′ ∈ 𝑃 ∪𝐶 \ {𝑒}. Then 𝐵𝑒 − 𝑒 is contained in 𝐺𝑅 . Similarly, let

𝑒 ∈ 𝑋1/2 and assume towards a contradiction that 𝑒 is spanned by 𝐺𝑅 , i.e. 𝑒 ⊆ 𝑉𝑅 . Let 𝐵𝑒 = (𝑃,𝐶) be a balloon with

𝑒 ∈ 𝐸 (𝐵𝑒) such that the corresponding constraint is tight. There are two cases. First suppose that 𝑒 occurs in the path

𝑃 of 𝐵𝑒 . Since 𝑒 occurs with coefficient 2 in the constraint corresponding to 𝐵𝑒 , for every other edge 𝑒′ ∈ 𝐸 (𝐵𝑒) we

must have 𝑥∗ (𝑒′) = 0. But since 𝑒 ⊆ 𝑉𝑅 , this implies that every vertex of 𝐵𝑒 is in 𝑉𝑅 . In particular, there is a path from

𝑣0 to 𝐶 entirely contained in 𝐺𝑅 , and considering a shortest such path we find a path 𝑃 ′ that is internally disjoint

from 𝐶 . This produces a balloon 𝐵′𝑒 = (𝑃 ′,𝐶) disjoint from 𝑋 , which is a contradiction. Next, suppose that 𝑒 ∈ 𝐸 (𝐶).

Then by tightness, 𝑉 (𝐶) ⊆ 𝑉𝑅 . Indeed, by tightness 𝐶 intersects precisely two edges of 𝑋1/2 and none of 𝑋1, and since

𝑒 ∉ 𝛿𝐺 (𝑉𝑅) by assumption, it follows that both edges of 𝐸 (𝐶) ∩ 𝑋 are spanned by 𝐺𝑅 , i.e. 𝑉 (𝐶) ⊆ 𝑉𝑅 . Then 𝐶 \ 𝑋1/2

splits into two paths 𝑃1 and 𝑃2, where one of them may be edgeless but both consist entirely of vertices of 𝑉𝑅 . Let 𝑃
′ be

a shortest path in 𝐺𝑅 from 𝑃1 to 𝑃2. Then 𝑃
′ forms a chordal path for the unbalanced cycle 𝐶 , hence results in at least

one new unbalanced cycle 𝐶′ of weight 1/2 in 𝑥∗. Furthermore, there is a path 𝑃 ′′ contained in 𝐺𝑅 forming a balloon

𝐵′𝑒 = (𝑃 ′′,𝐶′) of weight 1/2 in 𝑥∗, which is a contradiction to 𝑥∗ being an LP solution. Hence 𝑋1/2 = 𝛿𝐺 (𝑉𝑅). □

See Figure 5 for an illustration how a half-integral extremal optimum may look like according to Lemma 9.

We can now show the main result. The proof is based on a branching procedure for the problem, i.e. a recursive

enumeration algorithm where at every step the solution space is partitioned by branching (in our case, on whether

Manuscript submitted to ACM

Almost Consistent Systems of Linear Equations 21

certain edges should be included into a solution or not) and a bounding function is used to eliminate recursive calls that

will not lead to a solution. The bounding function is based on the LP-relaxation for the edge-deletion version of RBGCE.

Proof of Theorem 5. We assume that𝐺 is connected, or otherwise restrict our attention to the connected component

of 𝐺 containing the vertex 𝑣0. Furthermore, by assumption the edge weights of 𝐺 are positive. Hence Lemma 7 applies.

Now, recall that G denotes the family of all connected, balanced subgraphs in (𝐺,B) that contain 𝑣0 and have cost at

most 𝑘 and letH ′ ⊆ G be all subgraphs 𝐻 ∈ G that are not strictly dominated by any member of G. We observe that

every member ofH ′ is important. Indeed, let 𝐻 ∈ G and assume that there is a balanced subgraph 𝐻 ′ of (𝐺,B) that

dominates 𝐻 . Choose 𝐻 ′ to minimise 𝑐𝐺 (𝐻
′). Then by Lemma 7 𝐻 ′ is connected. Furthermore 𝑐𝐺 (𝐻

′) ≤ 𝑐𝐺 (𝐻) ≤ 𝑘

and 𝑣0 ∈ 𝑉 (𝐻) ⊆ 𝑉 (𝐻 ′). Thus 𝐻 ′ ∈ G. Thus any subgraph 𝐻 of (𝐺,B) that is “domination maximalž within G is

important in (𝐺,B), and we can focus on computing a dominating family H ⊆ G.

For this, we present a branching procedure over the LP-optimum. Let a branching state be defined by a tuple (𝐸0, 𝐸1)

where 𝐸0, 𝐸1 ⊆ 𝐸 (𝐺) are disjoint edge sets. For a branching state 𝐵 = (𝐸0, 𝐸1), we let 𝐿𝑃𝑒 (𝐵) denote the LP on the

graph𝐺 − 𝐸1, with edge weights modified so that𝑤 (𝑒) = 2𝑘 + 1 for every 𝑒 ∈ 𝐸0. Intuitively, edges in 𝐸0 can be thought

of as undeletable while edges in 𝐸1 as deleted. We let 𝐵∗ denote the half-integral solution to 𝐿𝑃𝑒 (𝐵) and let 𝐺𝐵 denote

the corresponding subgraph of 𝐺 , i.e. 𝐺𝐵 is the connected component of 𝐺 − (𝐸1 ∪ supp (𝐵∗)) containing 𝑣0. Let us

consider the following branching procedure.

(1) Let 𝐵 = (𝐸0, 𝐸1) be a branching state that initially is set to (∅, ∅).

(2) Let 𝑋1 and 𝑋1/2 be such that 𝐵∗ = 𝑋1 +
1
2𝑋1/2 and let 𝑋 = 𝑋1 ∪ 𝑋1/2 be the support. Let 𝑘

′ be the cost of 𝐵∗.

(3) If |𝐸1 | + 𝑘
′
> 𝑘 , then abort the branch without output.

(4) If 𝑋1/2 = ∅, output 𝐺𝐵 as a potential solution and abort the branch.

(5) Otherwise, let 𝐵′ = (𝐸′0, 𝐸
′
1) with 𝐸

′
0 = 𝐸0 ∪ 𝐸 (𝐺𝐵) and 𝐸

′
1 = 𝐸1 ∪ 𝑋1.

(6) Let 𝑒 ∈ 𝑋1/2 be an arbitrary half-integral edge and branch recursively on the two states 𝐵1 = (𝐸′0 ∪ {𝑒}, 𝐸′1) and

𝐵2 = (𝐸′0, 𝐸
′
1 ∪ {𝑒}).

We will show that for any balanced, connected subgraph𝐻 of𝐺 with 𝑐𝐺 (𝐻) ≤ 𝑘 , at least one of the produced subgraphs

𝐺𝐵 dominates 𝐻 . Towards this, we need some support claims about the branching process.

Claim 5.1. In every branching state 𝐵 = (𝐸0, 𝐸1) encountered by the algorithm, the edge set 𝐸0 forms a balanced connected

subgraph of 𝐺 rooted in 𝑣0.

Proof of claim: We choose to interpret the initial empty edge set as the subgraph of𝐺 containing the root 𝑣0 and no

edges or any further vertices. The claim now holds by induction from the root. Note that there are two places where

the 𝐸0-part of a branching state is modified. First, let 𝐵 = (𝐸0, 𝐸1) be a branching state and let 𝐵∗ be the half-integral

optimum of 𝐿𝑃𝑒 (𝐵) used by the algorithm. Assume that the cost of 𝐵∗ is at most 𝑘 − |𝐸1 | as otherwise no further

branching state is produced. By assumption, 𝐸0 forms a connected subgraph of𝐺 , and every edge of 𝐸0 has cost 2𝑘 + 1

in 𝐿𝑃𝑒 (𝐵). Hence 𝐵
∗ (𝑒) = 0 for every 𝑒 ∈ 𝐸0, and 𝐸0 ⊆ 𝐸 (𝐺𝐵). Thus in the new branching state 𝐵′ = (𝐸′0, 𝐸

′
1) we in fact

have 𝐸′0 = 𝐸 (𝐺𝐵) which is a connected, balanced, rooted subgraph of 𝐺 by construction. Otherwise, assume that a new

state is formed as 𝐵′ = (𝐸0 ∪ {𝑒}, 𝐸1) for some edge 𝑒 that is half integral in 𝐿𝑃𝑒 (𝐵). Then by Lemma 9, 𝑒 is an edge

leaving 𝐺𝐵 , hence 𝐸
′
0 = 𝐸 (𝐺𝐵) ∪ {𝑒} forms a connected subgraph. Finally, we note that 𝐸′0 is balanced, since otherwise

there would exist an unbalanced cycle 𝐶 in 𝐸′0 using the edge 𝑒 , but since 𝑒 is leaving 𝐺𝐵 , 𝑒 is a pendant edge in 𝐸
′
0. ⋄

Claim 5.2. In every branching state 𝐵 = (𝐸0, 𝐸1) encountered by the algorithm, every edge of 𝐸1 has at least one endpoint

in 𝑉 (𝐸0).

Manuscript submitted to ACM

22 Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, and Magnus Wahlström

Proof of claim: Shown by induction. In the initial state (∅, ∅), it holds vacuously. Thereafter, the 𝐸1-part of a branching

state is modified in two ways. First, let 𝐵 = (𝐸0, 𝐸1) be a branching state and let 𝐵∗ = 𝑋1 +
1
2𝑋1/2 be the optimum of

𝐿𝑃𝑒 (𝐵). Let𝐺𝐵 be the corresponding subgraph of𝐺 and let 𝐵′ = (𝐸′0, 𝐸
′
1) be the new resulting branching state. Then

𝐸′1 = 𝐸1 ∪ 𝑋1, edges of 𝐸1 intersect 𝑉 (𝐸0) ⊆ 𝑉 (𝐸′0) by assumption, and edges of 𝑋1 are spanned by 𝐸 (𝐺𝐵) ⊆ 𝐸′0 by

Lemma 9. Otherwise, we have a modification 𝐸′1 = 𝐸1 ∪ {𝑒} for some 𝑒 ∈ 𝑋1/2, where 𝑒 intersects𝑉 (𝐸0) by Lemma 9. ⋄

We say that 𝐻 is compatible with a branching state 𝐵 = (𝐸0, 𝐸1) if 𝐸0 ⊆ 𝐸 (𝐻) and 𝐸1 ∩ 𝐸 (𝐻) = ∅. Note that it follows

that every edge of 𝐸1 is deleted in 𝐻 ; indeed, by Claim 5.2 every edge of 𝐸1 intersects𝑉 (𝐻), and every edge intersecting

𝑉 (𝐻) not present in 𝐻 is deleted in 𝐻 . Also say that 𝐻 is domination compatible with 𝐵 if there is a balanced, connected

subgraph 𝐻 ′ of 𝐺 rooted in 𝑣0 such that 𝐻 ′ dominates 𝐻 and is compatible with 𝐵. Note that if 𝐻 is domination

compatible with a leaf state in the branching tree, then the subgraph 𝐺𝑖 produced in this state dominates 𝐻 . Indeed, let

𝐵(𝐸0, 𝐸1) be the leaf branching state, and 𝐺𝑖 = 𝐺𝐵 . By assumption there is a graph 𝐻 ′ dominating 𝐻 , compatible with

𝐵. Then 𝛿𝐺 (𝐺𝐵) ⊆ 𝐸1, and 𝐸1 ∩ 𝐸 (𝐻
′) = ∅. Furthermore 𝐸 (𝐺𝐵) = 𝐸0 ⊆ 𝐸 (𝐻 ′). Hence 𝑉 (𝐻 ′) = 𝑉 (𝐺𝐵), and the cost of

𝐺𝐵 is optimal among all such graphs by the integrality of the LP solution 𝐿𝑒 (𝐵).

We can now prove by induction that for every balanced, connected subgraph 𝐻 of 𝐺 rooted in 𝑣0 with 𝑐𝐺 (𝐻) ≤ 𝑘 ,

the branching process will produce at least one balanced subgraph𝐺𝑖 that dominates 𝐻 . We claim by induction that for

every level ℓ of the branching tree, either such a graph𝐺𝑖 has been produced at a preceding level or there is a state on

level ℓ domination compatible with 𝐻 .

In the root node, we have the initial branching state (∅, ∅), where we can choose𝐻 ′
= 𝐻 . Inductively, first assume that

𝐵 = (𝐸0, 𝐸1) is a branching state domination compatible with 𝐻 via a graph 𝐻 ′ dominating 𝐻 , and let 𝐵∗ = 𝑋1 +
1
2𝑋1/2

be the optimum of 𝐿𝑃𝑒 (𝐵). Let 𝐵
′
= (𝐸′0, 𝐸

′
1) be the new resulting branching state. We will show that 𝐻 ′ is domination

compatible with 𝐵′, hence the same holds for 𝐻 .

Recall that 𝐿𝑃𝑒 (𝐵) is defined in the subgraph 𝐺 ′ := 𝐺 − 𝐸1. Let 𝐺𝐵 be the subgraph of 𝐺 ′ corresponding to the

optimum 𝐵∗. By Lemma 8 there is a balanced subgraph 𝐻 ′′ of 𝐺 ′ that dominates 𝐻 ′ in 𝐺 ′, such that 𝐺𝐵 is a subgraph

of 𝐻 ′′ and 𝑋1 ∩ 𝐸 (𝐻
′′) = ∅. We need to show that 𝐸′0 ⊆ 𝐸 (𝐻 ′′), that 𝐸′1 ∩ 𝐸 (𝐻

′′) = ∅, that 𝑐𝐺 (𝐻
′′) ≤ 𝑐𝐺 (𝐻

′), and that

𝑉 (𝐻 ′′) ⊇ 𝑉 (𝐻 ′). It then follows that 𝐻 ′′ dominates 𝐻 ′ in 𝐺 and is compatible with 𝐵′.

For the first, as before we have 𝐸0 ⊆ 𝐸 (𝐺𝐵) by construction so 𝐸′0 = 𝐸0 ∪ 𝐸 (𝐺𝐵) = 𝐸 (𝐺𝐵) ⊆ 𝐸 (𝐻 ′′). For the second,

since 𝐻 ′′ is a subgraph of𝐺 − 𝐸1 disjoint from 𝑋1, we have 𝐸
′
1 ∩ 𝐸 (𝐻

′′) = ∅. For the cost, we have 𝑐𝐺 ′ (𝐻 ′′) ≤ 𝑐𝐺 ′ (𝐻 ′)

by Lemma 8. As noted above, every edge of 𝐸1 is deleted in 𝐻 ′; hence 𝑐𝐺 ′ (𝐻 ′) = 𝑐𝐺 (𝐻
′) − |𝐸1 |. Similarly, since every

edge of 𝐸1 intersects 𝑉 (𝐸′0) by Claim 5.2 and 𝐸′0 ⊆ 𝐸 (𝐻 ′′), every edge of 𝐸′1 is deleted in 𝐻 ′′ with respect to 𝐺 . Thus

𝑐𝐺 (𝐻
′′) = 𝑐𝐺 ′ (𝐻 ′′) − |𝐸1 | ≤ 𝑐𝐺 ′ (𝐻 ′) − |𝐸1 | = 𝑐𝐺 (𝐻

′). Finally, 𝑉 (𝐻 ′′) ⊇ 𝑉 (𝐻 ′) by Lemma 8. Thus 𝐻 ′ is domination

compatible with 𝐵′.

The only remaining step to consider is when a branching state is modified as 𝐵 = (𝐸0, 𝐸1) ↦→ (𝐸0 ∪ {𝑒}, 𝐸1) or

(𝐸0, 𝐸1) ↦→ (𝐸0, 𝐸1∪{𝑒}) for some edge 𝑒 that is half-integral in 𝐿𝑃𝑒 (𝐵). However, by assumption there exists a subgraph

𝐻 ′ that dominates 𝐻 and is compatible with 𝐵. Then either 𝑒 ∈ 𝐸 (𝐻 ′) or 𝑒 ∉ 𝐸 (𝐻 ′), and precisely one of the two new

branching states is compatible with 𝐻 ′. Furthermore, by comparing Lemma 9 to the definition of the cost function

𝑐𝐺 (𝐻
′), it is clear that the cost of the resulting state does not exceed 𝑐𝐺 (𝐻

′) ≤ 𝑐𝐺 (𝐻) ≤ 𝑘 . Hence by induction, there

is a leaf in the branching tree which is domination compatible with 𝐻 .

Finally, we claim that the whole process produces at most 4𝑘 outputs and can consequently be performed in O∗ (4𝑘)

time. To see this, we use an approach that is similar to the one used in [54]. Consider the value of the “LP gapž

𝑘 − (|𝐸1 | + 𝑘
′) computed in some node of the branching tree corresponding to the above computation. Clearly, this

Manuscript submitted to ACM

Almost Consistent Systems of Linear Equations 23

value is initially at most 𝑘 , and if it is negative in a node, then that branch of the computation is aborted. We claim

that furthermore, this gap decreases by at least 1/2 from a branching state 𝐵 to both of its children 𝐵1 and 𝐵2. In the

branching state 𝐵1, 𝐵
∗
1 is also a valid solution to the state 𝐵, and in the branching state 𝐵2, 𝐵

∗
2 becomes a valid solution

to the state 𝐵 if we modify the value of 𝑒 to 𝑥𝑒 = 1. In both cases, we get a valid LP solution to the state 𝐵. We claim

that these solutions cannot be optimal for 𝐿𝑃𝑒 (𝐵). On the one hand, if 𝐸0 ↦→ 𝐸0 ∪ {𝑒} then the set of reachable vertices

𝑉 (𝐺𝐵) increases strictly. Since the extremal solution 𝐵∗ is chosen so that this set is maximal among all LP-optima, the

result cannot be an LP-optimum. On the other hand, if 𝐸1 ↦→ 𝐸1 ∪ {𝑒} and the resulting branching state produces an

optimal solution for 𝐿𝑃𝑒 (𝐵), then by Lemma 9 the endpoints of 𝑒 must be spanned by the resulting set 𝐸′0 ⊇ 𝐸0, which

again contradicts the choice of 𝑉 (𝐺𝐵) as maximal. Thus, the cost of these solutions is greater than the cost of 𝐵∗. Since

the cost is half-integral (given integral edge weights), this difference is at least 1/2. Hence the entire branching process

will finish at depth at most 2𝑘 , producing at most 22𝑘 outputs. □

3 GRAPH PARTITIONING

As discussed in the introduction, the general strategy for our fpt-algorithms aims to reduceMin-2-Lin over various

domains to graph partitioning problems. In this section we develop algorithms for two problemsÐPartition Cut and

Pair Partition CutÐwhich arise in the study ofMin-2-Lin over fields and the rings in H2, respectively.

3.1 Partition Cut

A partition P of a finite set 𝑁 is a family of pairwise disjoint subsets 𝐵1, . . . , 𝐵𝑚 of 𝑁 such that
⋃𝑚
𝑖=1 𝐵𝑖 = 𝑁 . For any

𝑥,𝑦 ∈ 𝑁 , we write P(𝑥) = P(𝑦) if 𝑥 and 𝑦 appear in the same subset of P, while P(𝑥) ≠ P(𝑦) if they appear in distinct

subsets. If P′ is a partition of 𝑁 such that P′ (𝑥) = P′ (𝑦) =⇒ P(𝑥) = P(𝑦) for all 𝑥,𝑦 ∈ 𝑁 , then we say that P′

refines P. All partitions of a finite set can be enumerated in O(1) amortized time per partition [29].

Let 𝐺 be an undirected graph, 𝑇 be a subset of its vertices called terminals, and P be a partition of 𝑇 . A subset of

edges 𝑋 in 𝐺 is a P-cut if no component of 𝐺 − 𝑋 contains terminals from more than one subset of P. Consider the

following graph separation problem:

Partition Cut

Instance: An undirected graph 𝐺 with positive integer edge weights𝑤𝐺 : 𝐸 (𝐺) → N+, a

set of terminals 𝑇 ⊆ 𝑉 (𝐺), a partition P of 𝑇 , and an integer 𝑘 .

Parameter: 𝑘 .

Question: Is there a P-cut in 𝐺 of total weight at most 𝑘?

We may view this problem in the light of multiway cuts.

(Edge) Multiway Cut

Instance: An undirected graph 𝐺 with positive integer edge weights𝑤𝐺 : 𝐸 (𝐺) → N+, a

set of vertices (terminals) 𝑇 ⊆ 𝑉 (𝐺) and an integer 𝑘 .

Parameter: 𝑘 .

Question: Is there a set of edges 𝑋 ⊆ 𝐸 (𝐺) of total weight at most 𝑘 such that every

component of 𝐺 − 𝑋 contains at most one vertex from 𝑇 ?

One way to formulate the goal of the solution 𝑋 in Partition Cut is to ensure the partition of terminals into

connected components of 𝐺 − 𝑋 refines P. Thus, Multiway Cut is a special case of this problem where every subset

Manuscript submitted to ACM

24 Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, and Magnus Wahlström

of P is a singleton i.e. 𝑋 needs to separate all terminals. In fact, we can reduce from Partition Cut to Multiway Cut

and thus show that Partition Cut is in FPT.

Proposition 10 (Cygan et al. [16]). Multiway Cut is solvable in O∗ (2𝑘) time. If a solution exists, then the algorithm

computes it in this time.

Lemma 11. Partition Cut is solvable in O∗ (2𝑘) time. If a solution exists, then the algorithm computes it in this time.

Proof. Let (𝐺,𝑤𝐺 ,𝑇 ,P, 𝑘) be an instance of Partition Cut, where P = {𝐵1, . . . , 𝐵𝑚}. For every 𝑖 ∈ [𝑚], introduce

a superterminal vertex 𝑠𝑖 and connect all terminals in 𝐵𝑖 to 𝑠𝑖 with edges of weight 𝑘 + 1. Let the resulting graph

be 𝐺 ′, the weight function 𝑤𝐺 ′ , and the set of superterminals be 𝑆 = {𝑠1, . . . , 𝑠𝑚}. Then the instance of Multiway

Cut is (𝐺 ′,𝑤𝐺 ′ , 𝑆, 𝑘). Correctness of the reduction follows by noting that a cut in 𝐺 ′ is a solution only if it partitions

superterminals into distinct connected components. Since edges connecting any 𝑠 ∈ 𝑆 to any 𝑡 ∈ 𝑇 have weight 𝑘 + 1,

they cannot be included in the solution. Hence, terminals are partitioned according to P as well. The reduction runs in

polynomial time and the parameter is unchanged so we obtain the desired running time via Proposition 10. □

3.2 Pair Partition Cut

ForMin-2-Lin over more general rings than fields, our reduction leads to a more general graph separation problem.

Given a graph𝐺 with a set of terminals 𝑇 ⊆ 𝑉 (𝐺), a (disjunctive) pair cut request is a tuple ({𝑠,𝑢}, {𝑡, 𝑣}) where 𝑠, 𝑡 ∈ 𝑇

and 𝑢, 𝑣 ∈ 𝑉 (𝐺). A cut 𝑋 ⊆ 𝐸 (𝐺) fulfils ({𝑠,𝑢}, {𝑡, 𝑣}) if𝐺 −𝑋 does not contain an 𝑠𝑢-path or𝐺 −𝑋 does not contain a

𝑡𝑣-path.

Pair Partition Cut

Instance: An undirected graph 𝐺 with positive integer edge weights 𝑤𝐺 : 𝐸 (𝐺) → N+,

a set of vertices (terminals) 𝑇 ⊆ 𝑉 (𝐺), a partition P of 𝑇 , a set F of pair cut

requests, and an integer 𝑘 .

Parameter: 𝑘 .

Question: Is there a P-cut 𝑋 ⊆ 𝐸 (𝐺) of total weight at most 𝑘 that fulfils every pair cut

request in F ?

We prove that this problem is in FPT by casting it into the constraint satisfaction framework. A constraint satisfaction

problem (CSP) is defined by a constraint language Γ, which is a set of relation over a domain 𝐷 . A relation of arity 𝑟 is a

subset of 𝐷𝑟 . An instance 𝐼 = (𝑉 ,𝐶) of CSP(Γ) is a set of variables𝑉 and a set of constraints𝐶 of the form 𝑅(𝑣1, . . . , 𝑣𝑟),

where 𝑅 ∈ Γ is a relation of arity 𝑟 . The instance 𝐼 is consistent if it admits an assignment 𝜑 : 𝑉 (𝐶) → 𝐷 that satisfies

every constraint in 𝐶 i.e. (𝜑 (𝑣1), . . . , 𝜑 (𝑣𝑟)) ∈ 𝑅 holds for all constraints. In the parameterized version MinCSP(Γ) the

input is an instance 𝐼 = (𝑉 ,𝐶) of CSP(Γ) together with a weight function𝑤𝐶 : 𝐶 → N+ and the parameter 𝑘 ∈ N+, and

the goal is to check whether there is a subset 𝑋 ⊆ 𝐶 of equations with total weight at most 𝑘 such that (𝑉 ,𝐶 \ 𝑋) is

consistent.

For the intuition behind the reduction, consider an instance of Pair Partition Cut with a solution 𝑋 . Assume

without loss of generality that 𝐺 is connected. Since 𝑋 contains at most 𝑘 edges, removing 𝑋 splits 𝐺 into at most

𝑘 + 1 connected components. Enumerate connected components of 𝐺 − 𝑋 with integers from 0 to 𝑘 so that terminals

from subset 𝐵𝑖 of P are in the 𝑖th connected component. This is possible since 𝑋 is a P-cut. We define a function

𝜙 : 𝑉 (𝐺) → {0, . . . , 𝑘} such that 𝜙 (𝑥) = 𝑖 whenever 𝑥 belongs to 𝑖th component of𝐺−𝑋 . Then for every pair cut request

Manuscript submitted to ACM

Almost Consistent Systems of Linear Equations 25

({𝑠,𝑢}, {𝑡, 𝑣}) with 𝑠 ∈ 𝐵𝑖 and 𝑡 ∈ 𝐵 𝑗 , we have 𝜙 (𝑢) ≠ 𝑖 or 𝜙 (𝑣) ≠ 𝑗 . This reasoning suggests that all requirements of

Pair Partition Cut can be encoded using the following constraint language Γ𝑘 with domain {0, . . . , 𝑘} and relations:

• unary relations (𝑥 = 𝑖) for all 0 ≤ 𝑖 ≤ 𝑘 ,

• binary equality relation (𝑥 = 𝑦), and

• binary relation (𝑥 ≠ 𝑖) ∨ (𝑦 ≠ 𝑗) for all 1 ≤ 𝑖, 𝑗 ≤ 𝑘 .

To solve CSP(Γ𝑘), we define another constraint language Γ
′
𝑘
with domain {0, 1} and relations:

• (𝑥 = 0), (𝑥 = 1),

• 𝑅𝑘 (𝑥1, 𝑦1, . . . , 𝑥𝑘 , 𝑦𝑘) ≡
∧

1≤𝑖≤𝑘 (𝑥𝑖 = 𝑦𝑖) ∧
∧

1≤𝑖< 𝑗≤𝑘 (¬𝑥𝑖 ∨ ¬𝑥 𝑗),

• (¬𝑥 ∨ ¬𝑦).

Kim et al. [39] prove a dichotomy characterising MinCSP(Γ) as fpt or W[1]-hard for every finite Boolean language

Γ. We note that the problemMinCSP(Γ′
𝑘
) is fpt thanks to their result.

Lemma 12. The problem MinCSP(Γ′
𝑘
) is in FPT when parameterized by ℓ = 𝑘 + 𝑐 where 𝑐 is total solution cost.

Proof. Let 𝑅 ⊆ {0, 1}𝑟 be a Boolean relation. The relation 𝑅 is bijunctive if it can be defined as the set of solutions

to a 2-CNF formula 𝐹 over the variables 𝑋 = {𝑥1, . . . , 𝑥𝑟 }, i.e. (𝑎1, . . . , 𝑎𝑟) ∈ 𝑅 if and only if the assignment 𝑥𝑖 ↦→ 𝑎𝑖 ,

1 ≤ 𝑖 ≤ 𝑟 , satisfies 𝐹 . Let 𝐹 be a 2-CNF formula defining 𝑅(𝑥1, . . . , 𝑥𝑟) this way. The Gaifman graph of 𝐹 is the graph on

vertex set 𝑋 with an edge {𝑥𝑖 , 𝑥 𝑗 } for 𝑥𝑖 , 𝑥 𝑗 ∈ 𝑋 if and only if 𝐹 contains a 2-clause on the variables 𝑥𝑖 and 𝑥 𝑗 . We say

that 𝑅 is 2𝐾2-free if 𝑅 can be defined via a 2-CNF formula whose Gaifman graph does not contain 2𝐾2 as an induced

subgraph. Kim et al. [39, Theorem 1.2] showed that if Γ is a Boolean language where every relation is bijunctive and

2𝐾2-free, then MinCSP(Γ) is fpt parameterized by the solution cost 𝑐 . Furthermore, in the extended preprint version it

is shown that this remains true even if the maximum arity of a constraint is taken as a second parameter instead of a

constant [38, Theorem 3.1]. Every relation 𝑅 ∈ Γ
′
𝑑
is definable by a 2-CNF formula with a 2𝐾2-free Gaifman graph, and

the result follows. □

We present a two-step reduction from Pair Partition Cut to MinCSP(Γ𝑘) to MinCSP(Γ′
𝑘
).

Theorem 13. Pair Partition Cut is in FPT.

Proof. First, we spell out the reduction from Pair PartitionCut toMinCSP(Γ𝑘). Given an instance (𝐺,𝑤𝐺 ,𝑇 ,P, F , 𝑘)

of Pair Partition Cut, we construct an instance ((𝑉 ,𝐶),𝑤, 𝑘) ofMinCSP(Γ𝑘). Let𝑉 = 𝑉 (𝐺) denote the set of variables.

We define the set of constraints 𝐶 and the weight function 𝑤 as follows. Enumerate subsets in P as 𝐵1, . . . , 𝐵𝑚 and

for every subset 𝐵𝑖 , add the constraints (𝑡 = 𝑖) for all 𝑡 ∈ 𝐵𝑖 of weight 𝑘 + 1. For every edge {𝑢, 𝑣} ∈ 𝐸 (𝐺), add the

constraint (𝑢 = 𝑣) of weight𝑤𝐺 ({𝑢, 𝑣}). Finally, for every pair cut request ({𝑢, 𝑠}, {𝑣, 𝑡}) in F with 𝑠 ∈ 𝐵𝑖 and 𝑡 ∈ 𝐵 𝑗 ,

add the constraint (𝑢 ≠ 𝑖) ∨ (𝑣 ≠ 𝑗) of weight 𝑘 + 1. Clearly, the reduction can be carried out in polynomial time. A

solution 𝑋 to ((𝑉 ,𝐶),𝑤, 𝑘) may only contain equality equations because every other constraint is assigned weight 𝑘 + 1.

It is easy to see that {{𝑢, 𝑣} ∈ 𝐸 (𝐺) | (𝑢 = 𝑣) ∈ 𝑋 } is a P-cut in 𝐺 that fulfils F . To obtain a solution to ((𝑉 ,𝐶),𝑤, 𝑘)

from a solution to the Pair Partition Cut instance, one may pick the equality constraints corresponding to the edges

of the cut.

We continue by reducingMinCSP(Γ𝑘) toMinCSP(Γ′
𝑘
). Given an instance 𝐼 = ((𝑉 ,𝐶),𝑤, 𝑘) of the former problem,

we produce an equivalent instance 𝐼 ′ = ((𝑉 ′,𝐶′),𝑤 ′, 𝑘) of the latter, while keeping the parameter unchanged. To this

end, introduce variables 𝑣 (𝑖) for every 𝑣 ∈ 𝑉 and 𝑖 ∈ {1, . . . , 𝑘}. Intuitively, setting 𝑣 (𝑖) = 1 corresponds to assigning

Manuscript submitted to ACM

26 Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, and Magnus Wahlström

value 𝑖 to 𝑣 , while setting 𝑣 (𝑖) = 0 for all 𝑖 ∈ {1, . . . , 𝑘} corresponds to assigning 0 to 𝑣 . Every constraint 𝑐 in𝐶 is replaced

by constraints in 𝐶′ of the same weight as follows:

(1) if 𝑐 is 𝑡 = 𝑖 for 𝑖 ∈ {1, . . . , 𝑘}, then add 𝑡 (𝑖) = 1 to 𝐶′,

(2) if 𝑐 is 𝑡 = 0, then add 𝑡 (𝑖) = 0 for all 𝑖 ∈ {1, . . . , 𝑘} to 𝐶′, each of weight𝑤 (𝑐),

(3) if 𝑐 is (𝑢 = 𝑣), then add 𝑅𝑘 (𝑢
(1) , 𝑣 (1) , . . . , 𝑢 (𝑘) , 𝑣 (𝑘)) to 𝐶′, and

(4) if 𝑐 is (𝑠 ≠ 𝑖) ∨ (𝑡 ≠ 𝑗), then add (¬𝑠 (𝑖) ∨ ¬𝑡 (𝑗)) to 𝐶′.

This concludes the reduction.

Suppose 𝜙 is an assignment to (𝑉 ,𝐶). Define 𝜙 ′ by letting 𝜙 ′ (𝑣 (𝑖)) = 1 if 𝜙 (𝑣) = 𝑖 for some 𝑖 ∈ {1, . . . , 𝑘}, and

𝜙 (𝑣 (𝑖)) = 0 otherwise. By construction, 𝜙 and 𝜙 ′ break constraints of the same total weight. Hence, if the set of

constraints unsatisfied by 𝜙 is a solution to 𝐼 , then the set of constraints unsatisfied by 𝜙 ′ is a solution to 𝐼 ′. The same

argument works in the opposite direction: given an assignment 𝜌′ to (𝑉 ′,𝐶′), define assignment 𝜌 to (𝑉 ,𝐶) by letting

𝜌 (𝑣) = 𝑖 if 𝜌′ (𝑣 (𝑖)) = 1 for some 𝑖 ∈ {1, . . . , 𝑘}, and 𝜌 (𝑣) = 0 otherwise. Constraints of the type (¬𝑣 (𝑖) ∨ ¬𝑣 (𝑗)) ensure

that 𝜌 is well-defined. Moreover, the total weight of constraints unsatisfied by 𝜌 and 𝜌′ is the same. Thus, the reduction

is correct and the theorem follows. □

4 ALGORITHM FORMin-2-Lin

Our goal with this section is to present an fpt-algorithm forMin-2-Lin that is applicable to a broad class of rings. We

start by reviewing basic definitions and facts about rings and integral domains in Section 4.1. We introduce the Helly

dimension in Section 4.2 and we develop a polynomial-time algorithm for 2-Lin(D) when D is a commutative integral

domain with finite Helly dimension (and D is represented in a way that satisfies some mild technical assumptions). We

note that polynomial-time algorithms for 𝑟 -Lin(·) are known for arbitrary 𝑟 ∈ N and arbitrary finite rings [2, Section

6], the ring of integers [34] or the ring of univariate polynomials over Q [33]. However, we are unaware of more

general results of this kind, even when 𝑟 = 2. We continue by presenting the details of our algorithm forMin-2-Lin.

This algorithm is applicable to the class H2 of commutative domains with Helly dimension 2 (and satisfying the same

technical assumptions as required by our 2-Lin(·) algorithm). The next three sections follow the common steps of

compression, cleaning, and cutting: we simplify the problem by applying iterative compression in Section 4.3, then

simplify it even further by applying the important balanced subgraph machinery in Section 4.4, and finally reduce

the resulting problem to Pair Partition Cut in Section 4.5, giving an overview of the whole algorithm. We prove

correctness of the algorithm and analyze its time complexity in Section 4.6. Finally, we take a closer look at the rings in

H2 in Section 4.7, where we show that reasonably represented Prüfer domains are members of H2. This, in turn, shows

that a wide range of interesting rings are to be found in H2.

4.1 Rings and Integral Domains

A ring is an Abelian group (whose operation is called addition), with a second binary operation called multiplication

that is associative, is distributive over the addition operation, and has an identity element. We will exclusively consider

commutative rings where multiplication is a commutative operator. Let D = (𝐷, +, ·) denote such a ring. We let 0 denote

the additive identity element and 1 the multiplicative identity element. An element 𝑑 ∈ 𝐷 is a zero divisor if 𝑑 ≠ 0

and there exists an element 0 ≠ 𝑑′ ∈ 𝐷 such that 𝑑𝑑′ = 0. The ring D is an integral domain (or simply a domain) if it

contains at least two elements and it contains no zero divisors.

Manuscript submitted to ACM

Almost Consistent Systems of Linear Equations 27

Let us now fix a particular representation of the elements in D. Given an element 𝑑 ∈ 𝐷 , let ∥𝑑 ∥ denote the number

of bits required to represent 𝑑 . We say that D is effective if there are polynomial-time algorithms for the following

operations for any pair 𝑎, 𝑏 ∈ 𝐷 :

• computing the sum 𝑎 + 𝑏,

• computing the product 𝑎𝑏,

• computing additive inverses −𝑎,

• checking if 𝑏 divides 𝑎, i.e. checking whether there exists 𝑐 such that 𝑎 = 𝑏𝑐 , and if so, computing 𝑐 ,

• checking if 𝑎 is a unit, i.e. admits a multiplicative inverse, and if so, computing the inverse 𝑎−1, and

there is a polynomial function 𝑝 such that the result of evaluating any arithmetic expression with 𝑂 (𝑛) operations,

with arbitrary constants 𝑑1, . . . , 𝑑𝑛 ∈ D, operations + and ·, and brackets has bit-size at most 𝑝 (∥𝑑1∥ + · · · + ∥𝑑𝑛 ∥). The

final requirement is natural since otherwise we cannot compute (or even write down) satisfying assignments to simple

consistent instances of 2-Lin(D) like

{𝑥1 = 𝑑1𝑥2, 𝑥2 = 𝑑2𝑥3, . . . , 𝑥𝑛−1 = 𝑑𝑛𝑥𝑛} ∪ {𝑥𝑛 = 1}

in polynomial time, we cannot perform efficient Gaussian elimination etc. In many cases, 𝑝 is the identity polynomial

i.e. representing the sum or product of elements requires at most as many bits as representing them individually.

Consider a binary linear equation 𝑎𝑥 + 𝑏𝑦 = 𝑐 with 𝑎, 𝑏, 𝑐 ∈ D. The lack of zero divisors in D is equivalent to the

following: fixing the value of one variable (say, 𝑥) leaves at most one possible value for the other (say, 𝑦). To see this,

assume without loss of generality that 𝑏 ≠ 0 and that the equation is satisfied by two assignments (𝑥,𝑦) ↦→ (𝑒, 𝑓) and

(𝑥,𝑦) ↦→ (𝑒, 𝑓 ′) where 𝑓 ≠ 𝑓 ′. This implies that (𝑎𝑒 + 𝑏𝑓) − (𝑎𝑒 + 𝑏𝑓 ′) = 0 so 𝑏 (𝑓 − 𝑓 ′) = 0 and 𝑏 is a zero divisor. We

exploit this property to make basic observations towards solving 2-Lin(D). If the value of one variable in a connected

instance is fixed, this propagates to all variables; this propagation will either lead to a satisfying assignment for the

whole instance or to a contradiction (either implying two different values for a variable or falsifying an equation, e.g.

an equation 2𝑥 = 𝑦 over Z with propagation implying 𝑦 = 1).

Let 𝑆 be an instance of the problem, and recall that the primal graph of 𝑆 is an undirected graph with a vertex for

each variable and an edge for each equation. We may (without loss of generality) assume that the graph does not have

self-loops by introducing a zero variable 𝑧0 and an auxiliary variable 𝑧′0, adding equations 𝑧′0 + 𝑧0 = 0 and 𝑧′0 − 𝑧0 = 0,

and replacing single-variable equations 𝑎𝑥 = 𝑏 with 𝑎𝑥 − 𝑧0 = 𝑏. Thus, we assume that the zero variable 𝑧0 is available

in every instance of 2-Lin(D), and in Min-2-Lin(D) equations 𝑧′0 + 𝑧0 = 0 and 𝑧′0 − 𝑧0 = 0 are given weight 𝑘 + 1. We

use graph-related terminology (such as connectedness, paths, cycles etc.) to describe the structure of 𝑆 while having the

primal graph in mind. First, consider an instance 𝑃 of 2-Lin(D) whose primal graph is a path connecting variables 𝑥

and 𝑦. If |𝑉 (𝑃) | = 2, then 𝑃 contains a single equation. Otherwise, we can eliminate intermediate variables to obtain an

equation over 𝑥 and 𝑦 by recursively picking any two equations in 𝑃 , say, 𝑎𝑝1 +𝑏𝑝2 = 𝑐 and 𝑎
′𝑝2 +𝑏

′𝑝3 = 𝑐
′, and taking

their linear combination 𝑎′ (𝑎𝑝1 +𝑏𝑝2) −𝑏 (𝑎
′𝑝2 +𝑏

′𝑝3) = 𝑎
′𝑐 −𝑏𝑐′, which simplifies to (𝑎′𝑎)𝑝1− (𝑏′𝑏)𝑝3 = 𝑎

′𝑐 −𝑏𝑐′. We

say that 𝑃 implies the final equation 𝑒𝑃 over 𝑥 and 𝑦 obtained after eliminating all intermediate variables. For example,

suppose 𝑃 is a path instance of 2-Lin(Z) with two equations, 𝑥 − 2𝑧 = 2 and 𝑧 − 𝑦 = 1, then the equation 𝑥 − 2𝑦 = 4

implied by 𝑃 is obtained by eliminating 𝑧. Clearly, elimination is safe, i.e. any assignment that satisfies 𝑃 also satisfies

𝑒𝑃 . Moreover, the computation of 𝑒𝑃 boils down to evaluating arithmetic expressions with O(|𝑉 (𝑃) |) constants. Since

we are working over effective rings, we arrive at the following conclusion.

Manuscript submitted to ACM

28 Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, and Magnus Wahlström

Observation 14. Let D be an effective integral domain. For every instance 𝑃 of 2-Lin(D) whose primal graph is a path

connecting variables 𝑥 and 𝑦, there exists an equation 𝑒𝑃 over 𝑥 and 𝑦 computable in polynomial time such that any

assignment that satisfies 𝑃 also satisfies 𝑒𝑃 .

We say that an instance 𝑆 of 2-Lin(D) is flexible if for every pair of variables 𝑥,𝑦 ∈ 𝑉 (𝑆), every 𝑥𝑦-path in 𝑆 implies

equivalent equations on 𝑥 and 𝑦, i.e. equations with the same set of satisfying assignments. Otherwise, we say that 𝑆 is

rigid. If 𝑆 is flexible, we write 𝑒𝑥𝑦 (𝑆) to denote the equation implied by the 𝑥𝑦-paths in 𝑆 . For example, acyclic instances

are flexible. An instance of 2-Lin(D) is a star instance if there is exactly one variable shared by all equations. For a

flexible instance 𝑆 and any 𝑥 ∈ 𝑉 (𝑆), we define the corresponding star instance star(𝑆, 𝑥) = {𝑒𝑥𝑦 (𝑆) | 𝑦 ∈ 𝑉 (𝑆) \ {𝑥}}

of 2-Lin(D).

Lemma 15. Let 𝑆 be a connected, flexible instance of 2-Lin(D). For any 𝑥 ∈ 𝑉 (𝑆), instances 𝑆 and star(𝑆, 𝑥) have the

same set of satisfying assignments.

Proof. By Observation 14, an assignment that satisfies 𝑆 also satisfies the equations implied by the paths in 𝑆 .

Consequently, it satisfies star(𝑆, 𝑥) for any 𝑥 . Now, suppose 𝜑 is a satisfying assignment to star(𝑆, 𝑥) and consider an

equation 𝑒 ∈ 𝑆 over variables 𝑦 and 𝑧. It suffices to show that 𝜑 satisfies 𝑒 . Clearly, this holds if 𝑦 = 𝑥 or 𝑧 = 𝑥 since then

𝑒 ∈ star(𝑆, 𝑥). Otherwise, since 𝑆 is connected, in the primal graph we have a path that contains 𝑥 , 𝑦 and 𝑧 and uses the

edge corresponding to the equation 𝑒 . By the construction of equations implied by the paths, the equation 𝑒 can be

written as a linear combination of 𝑒𝑥𝑦 (𝑆) and 𝑒𝑥𝑧 (𝑆). Since these two equations are present in star(𝑆, 𝑥), 𝜑 satisfies

them, and hence also satisfies 𝑒 . □

Thus, checking consistency of a flexible instance is equivalent to checking consistency of a corresponding star

instance. We return to the question of solving star instances in the next section, while focusing on rigid instances in the

next lemma.

Lemma 16. There is a polynomial-time algorithm that takes a connected instance 𝑆 of 2-Lin(D) as input, checks whether

it is rigid and consistent, and if so, computes a satisfying assignment.

Proof. Let 𝑆 be an instance of 2-Lin(D). Compute a spanning tree 𝑇 of 𝑆 . To check whether 𝑆 is flexible or not, we

consider equations in 𝑆 −𝑇 . Assume that 𝑒 ∈ 𝑆 −𝑇 is 𝑎1𝑥 + 𝑏1𝑦 = 𝑐1 and let 𝑒𝑥𝑦 (𝑇) equal 𝑎2𝑥 + 𝑏2𝑦 = 𝑐2. To check

whether these two equations are equivalent, multiply the first one with 𝑎2, the second one with 𝑎1, compute their

difference and obtain (𝑏1𝑎2 − 𝑎1𝑏2)𝑦 = 𝑐1𝑎2 − 𝑎1𝑐2. For conciseness, let 𝐴 = 𝑏1𝑎2 − 𝑎1𝑏2, 𝐵 = 𝑐1𝑎2 − 𝑎1𝑐2. There are

four cases to consider:

• If 𝐴 = 0 and 𝐵 ≠ 0, then 𝐴𝑦 = 𝐵 is inconsistent.

• If 𝐴 = 0 and 𝐵 = 0, then 𝐴𝑦 = 𝐵 is satisfied by assigning any value to 𝑦.

• If 𝐴 ≠ 0 and 𝐴 does not divide 𝐵, then 𝐴𝑦 = 𝐵 is inconsistent.

• If 𝐴 ≠ 0 and 𝐴 divides 𝐵, then 𝐴𝑦 = 𝐵 is only satisfied by setting 𝑦 to 𝐵/𝐴 since D is an integral domain.

Manuscript submitted to ACM

Almost Consistent Systems of Linear Equations 29

If 𝐴𝑦 = 𝐵 is inconsistent, then no assignment can satisfy both 𝑒 and 𝑒𝑥𝑦 (𝑇), hence 𝑆 is inconsistent. If 𝐴 = 𝐵 = 0, we

claim that 𝑒 and 𝑒𝑥𝑦 (𝑇) are equivalent. Indeed, if 𝜑 : {𝑥,𝑦} → D satisfies 𝑒 , then

𝑎1𝜑 (𝑥) + 𝑏1𝜑 (𝑦) = 𝑐1 ⇐⇒

𝑎1𝑎2𝜑 (𝑥) + 𝑏1𝑎2𝜑 (𝑦) = 𝑐1𝑎2 ⇐⇒

𝑎2𝑎1𝜑 (𝑥) + 𝑏2𝑎1𝜑 (𝑦) = 𝑐2𝑎1 ⇐⇒

𝑎2𝜑 (𝑥) + 𝑏2𝜑 (𝑦) = 𝑐2 .

Note that we have used 𝑏1𝑎2 = 𝑎1𝑏2 and 𝑐1𝑎2 = 𝑎1𝑐2 for the second implication, and 𝑎1 ≠ 0 for the third implication,

yielding 𝑎1𝑎2𝜑 (𝑥) + 𝑎1𝑏2𝜑 (𝑦) = 𝑎1𝑐2. Since 𝑎1 ≠ 0, we can divide both sides by 𝑎1 and obtain that 𝜑 satisfies 𝑒𝑥𝑦 (𝑇).

Thus, if 𝐴 = 𝐵 = 0, then equations 𝑒 and 𝑒𝑥𝑦 (𝑇) are equivalent, and we proceed to the next equation in 𝑆 −𝑇 . Finally, if

𝐴𝑦 = 𝐵 has only one satisfying assignment (namely 𝑦 ↦→ 𝐵/𝐴), we assign this value to 𝑦 and propagate to the rest of

the instance, and then check whether the obtained assignment satisfies every equation. If the propagation does not

occur at any step, we conclude that the instance is flexible. □

4.2 Helly Dimension

We will now introduce our notion of Helly dimension for commutative rings. We begin by giving a brief background and

we refer the reader to the survey by Bárány and Kalai [3] for a more thorough introduction. A Helly family of order 𝑘 is

a pair (𝑋, 𝑆) where 𝑋 is a set and 𝑆 is a collection of subsets of 𝑋 , such that, for every finite 𝑆 ′ ⊆ 𝑆 with
⋂
𝑇 ∈𝑆 ′ 𝑇 = ∅,

one can find 𝑇 ′ ⊆ 𝑇 such that
⋂
𝑇 ′′∈𝑇 ′ 𝑇 ′′

= ∅ and |𝑇 ′ | ≤ 𝑘 . Helly’s theorem on convex sets is an important example: it

states that convex sets in Euclidean space of dimension 𝑛 are a Helly family of order 𝑛 + 1. Helly dimension is a value

that is often associated with a metric spaceM: this dimension is one less than the Helly number of the family of metric

balls inM; clearly, Helly’s theorem implies that the Helly dimension of a Euclidean space equals its dimension as a real

vector space. Naturally, Helly dimensions of various kinds have also been applied to many other mathematical objects.

We continue by introducing some terminology related to rings. An ideal in a commutative ring D is a set 𝐼 ⊆ 𝐷 such

that (1) (𝐼 , +) is a subgroup of (𝐷, +) and (2) for every 𝑑 ∈ 𝐷 and every 𝑥 ∈ 𝐼 , the product 𝑑𝑥 is in 𝐼 . If I is a (possibly

infinite) set of ideals in D, then
⋂

I is an ideal in D, too. Thus, given a set 𝐷′ ⊆ 𝐷 , we let (𝐷′) denote the smallest

ideal that contains the elements in 𝐷′Ðsuch an ideal always exists. Similarly, the sum
∑
I consists of all finite sums of

elements taken from the members of I. The sum of ideals is again an ideal. Note that for arbitrary 𝑎, 𝑏 ∈ 𝐷 , we say that

𝑏 divides 𝑎 if and only if 𝑎 ∈ (𝑏).

Let 𝐺 denote an Abelian group with a subgroup 𝐻 . The cosets of 𝐻 are 𝐻 + 𝑔 = {ℎ + 𝑔 | ℎ ∈ 𝐻 } where 𝑔 ∈ 𝐺 . Since

ideals in D are subgroups of the Abelian group (𝐷, +), it makes sense to speak about the cosets of an ideal. A principal

ideal 𝐼 in D is an ideal that is generated by a single element, i.e. 𝐼 = (𝑑) = {𝑑𝑟 | 𝑟 ∈ D} for some 𝑑 ∈ 𝐷 . If D is a field

such as Q, then D has only two ideals (0), (1) and both are principal. The principal ideals in Z are of the form (𝑛) = 𝑛Z.

Define the Helly dimension of D as the minimum number 𝜅 (D) in N ∪ {∞} with the following property: if a family

of principal ideal cosets in D has empty intersection, then it contains a subfamily of ≤ 𝜅 (D) cosets that have empty

intersection. Put differently, if 𝐹 is a family of principal ideal cosets in D, and the cosets of every subfamily of 𝐹 of size

at most 𝜅 (D) intersect, then all cosets in 𝐹 intersect as well. If D is finite, then computing 𝜅 (D) is clearly decidable

by exhaustive enumeration of all triples of principal ideal cosets. If D is infinite, then it is currently unknown how to

compute 𝜅 (D). We note that a similar notion of Helly dimension has been studied in the context of groups [20, 21] but

Manuscript submitted to ACM

30 Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, and Magnus Wahlström

most common dimension measures for rings (such as the Krull dimension or the weak global dimension) do not seem

to be closely related to the Helly dimension.

Let us consider the field Q of rationals. Since Q only contains the two ideals (0) and (1), it is easy to verify that the

intersection of principal ideal cosets𝐶1,𝐶2, . . . is empty if and only if there exist distinct indices 𝑖, 𝑗 such that𝐶𝑖 = (0) +𝑎,

𝐶 𝑗 = (0) + 𝑏, and 𝑎 ≠ 𝑏. It follows that 𝜅 (Q) = 2. Consider the ring Z instead and assume that C = {𝐶1,𝐶2, . . . } is a

family of principal ideal cosets. Each coset 𝐶𝑖 equals (𝑛𝑖) + 𝑎𝑖 with 𝑛𝑖 , 𝑎𝑖 ∈ Z. Each 𝐶𝑖 can be viewed as a congruence

𝑥 = 𝑎𝑖 mod 𝑛𝑖 , and the Chinese Remainder Theorem implies that
⋂

C ≠ ∅ if and only if the greatest common divisor

of 𝑛𝑖 and 𝑛 𝑗 divides 𝑎𝑖 − 𝑎 𝑗 for all distinct 𝑖 and 𝑗 . Thus, if
⋂

C = ∅, then there exists 𝐶𝑖 ,𝐶 𝑗 ∈ C such that 𝐶𝑖 ∩𝐶 𝑗 = ∅

so 𝜅 (Z) = 2.

We continue by demonstrating that even quite simple rings may have strictly higher Helly dimension than 2. Let

Z[𝑋] denote the ring whose elements are univariate polynomials with integer coefficients. This ring is a commutative

domain. Consider the following equations over Z[𝑋].

𝑣 = 2 ·𝑤1

𝑣 = 𝑋 ·𝑤2

𝑣 = (2 + 𝑋) · 𝑢 + 2

One may observe that this system of equations is indeed a star instance. The first two equations have the zero solution.

Equations 1 and 3 have a solution 𝑣 = 2,𝑤1 = 1, 𝑢 = 0. Equations 2 and 3 have a solution 𝑣 = −𝑋 , 𝑤2 = −1, 𝑢 = −1.

We show that the system as a whole has no solution. If there is a solution, then 𝑣 is a multiple of 2𝑋 , i.e. it has a zero

constant-coefficient and all coefficients even. Then the constant term of 𝑢 is −1. But this gives a contribution of a single

negative 𝑋 -term. There is no value 𝑎 such that (2 + 𝑋) (−1 + 𝑎𝑋) has an even 𝑋 -coefficient. It follows that the Helly

dimension of Z[𝑋] is at least 3.

We let the set H𝑚 ,𝑚 ∈ N ∪ {∞}, consist of the rings D that have the following four properties.

P1. D is a commutative integral domain,

P2. D has Helly dimension at most𝑚 ∈ N,

P3. D is effective, and

P4. there is a polynomial-time algorithm checking whether the intersection of at most𝑚 principal ideal cosets in D

is nonempty.

We show that these conditions allow us to solve 2-Lin(D) in polynomial time. We begin by exhibiting a connection

between Helly dimension and star instances.

Lemma 17. Let D be an integral domain. Then the Helly dimension of D is the minimum value 𝜅 (D) ∈ N ∪ {∞} with

the following property. For any star instance 𝑆 of 2-Lin(D), if every subinstance of 𝑆 of size ≤ 𝜅 (D) is consistent, then 𝑆 is

consistent.

Proof. Let 𝑠 (D) be the value described in the statement of the lemma, i.e. the minimum value in N ∪ {∞} with the

property: for any star instance 𝑆 of 2-Lin(D), if every subinstance of 𝑆 of size ≤ 𝜅 (D) is consistent, then 𝑆 is consistent.

We will show that 𝑠 (D) = 𝜅 (D).

Towards contradiction, assume 𝑠 (D) < 𝜅 (D). Then there exists a family of cosets C = {(𝑏𝑖) + 𝑐𝑖 : 𝑖 ∈ [𝑚]} such that

every subset of C of size ≤ 𝑠 (D) has an intersection, but
⋂

C = ∅. Construct a star instance 𝑆 = {𝑥 = 𝑏𝑖𝑦𝑖 +𝑐𝑖 : 𝑖 ∈ [𝑚]}.

Observe that an equation 𝑥 = 𝑏𝑖𝑦𝑖 + 𝑐𝑖 is consistent with a value 𝜑 (𝑥) for 𝑥 if and only if 𝜑 (𝑥) ∈ (𝑏𝑖) + 𝑐𝑖 . Thus, 𝑆
′ ⊆ 𝑆

Manuscript submitted to ACM

Almost Consistent Systems of Linear Equations 31

is consistent if the corresponding subset of cosets has an intersection. We conclude that 𝑆 ′ ⊆ 𝑆 is consistent whenever

|𝑆 ′ | ≤ 𝑠 (D). By definition of 𝑠 (D), this implies that 𝑆 is consistent, and contradicts that
⋂

C = ∅.

Now assume 𝑠 (D) > 𝜅 (D). Then there exists an inconsistent star instance 𝑆 = {𝑎𝑖𝑥 = 𝑏𝑖𝑦𝑖 + 𝑐𝑖 : 𝑖 ∈ [𝑚]} such that

every subinstance of 𝑆 of size ≤ 𝜅 (D) is consistent. Without loss of generality, assume that 𝑎𝑖 ≠ 0 for all 𝑖 ∈ [𝑚]. Define

a star instance 𝑇 as follows. Let 𝑎′ = 𝑎1 · · · · · 𝑎𝑚 , 𝑏′𝑖 = (𝑎′/𝑎𝑖) · 𝑏𝑖 and 𝑐
′
𝑖 = (𝑎′/𝑎𝑖) · 𝑐𝑖 . The equations of 𝑇 are 𝑥 ′ = 𝑎′𝑥

and 𝑥 ′ = 𝑏′𝑖𝑦𝑖 + 𝑐
′
𝑖 for all 𝑖 ∈ [𝑚].

Claim 17.1. If 𝑇 is consistent, then 𝑆 is consistent.

Proof of claim: Suppose assignment 𝜙 satisfies 𝑇 . Consider equation 𝑥 ′ = 𝑏′𝑖𝑦𝑖 + 𝑐
′
𝑖 . Since 𝜙 (𝑥

′) = 𝑎′𝜙 (𝑥), we have

𝑎′𝜙 (𝑥) = 𝑏′𝑖𝜙 (𝑦𝑖) +𝑐
′
𝑖 for all 𝑖 ∈ [𝑚]. Recall that 𝑎𝑖 ≠ 0 for all 𝑖 ∈ [𝑚], hence 𝑎′/𝑎𝑖 ≠ 0. Divide both sides of the equation

by 𝑎′/𝑎𝑖 , and obtain 𝑎𝑖𝜙 (𝑥) = 𝑏𝑖𝜙 (𝑦𝑖) + 𝑐𝑖 for all 𝑖 ∈ [𝑚]. ⋄

Since all coefficients in front of 𝑥 in 𝑇 equal 1, 𝑇 is consistent if and only if cosets C = {(𝑎′), (𝑏′𝑖) + 𝑐
′
𝑖 : 𝑖 ∈ [𝑚]}

have empty intersection. Assuming 𝑆 is inconsistent, the claim above implies that
⋂

C = ∅. By definition of 𝜅 (D), there

exists a subset C′ of C of size ≤ 𝜅 (D) with empty intersection. Without loss of generality, assume that C′ is a proper

subset of {(𝑎′), (𝑏′𝑖) + 𝑐
′
𝑖 : 𝑖 ∈ [𝜅 (D)]}. Let 𝑆 ′ = {𝑎𝑖𝑥 = 𝑏𝑖𝑦𝑖 + 𝑐𝑖 : 𝑖 ∈ [𝜅 (D)]} and note that |𝑆 ′ | ≤ 𝜅 (D) implies that

𝑆 ′ is consistent by assumption. Let 𝜑 be an assignment satisfying 𝑆 ′, and consider value 𝑑 = 𝑎′𝜑 (𝑥). Clearly, 𝑑 ∈ (𝑎′).

Moreover, we claim that 𝑑 ∈ (𝑏′𝑖) + 𝑐
′
𝑖 for all 𝑖 ∈ [𝜅 (D)]. To this end, consider an equation 𝑎𝑖𝑥 = 𝑏𝑖𝑦𝑖 + 𝑐𝑖 satisfied by

𝜑 , and multiply both sides by 𝑎′/𝑎𝑖 . We obtain 𝑎′𝜑 (𝑥) = 𝑏′𝑖𝜑 (𝑦𝑖) + 𝑐
′
𝑖 and 𝑎

′𝜑 (𝑥) ∈ (𝑏′𝑖) + 𝑐
′
𝑖 for all 𝑖 ∈ [𝜅 (D)]. Thus,

𝑑 ∈
⋂

C, contradicting that 𝑆 is inconsistent. □

Theorem 18. Let D be a ring in H𝑚 where𝑚 ∈ N. Then, 2-Lin(D) admits a polynomial-time algorithm.

Proof. Let 𝑆 be an instance of 2-Lin(D). Assume without loss of generality that 𝑆 is connected. By Lemma 16, if 𝑆 is

rigid, then we can decide whether it is consistent. Otherwise, we know that 𝑆 is a flexible instance. Apply Lemma 15

to obtain the corresponding star instance star(𝑆). By the proof of Lemma 17, we can rewrite 𝑆 as an equivalent star

instance 𝑇 with all coefficients before the common variable 𝑥 being 1. Checking whether this instance is consistent is

equivalent to checking whether every subset of corresponding cosets of size ≤ 𝜅 (𝐷) has an intersection. In total, this

requires 𝑛O(𝜅 (D)) calls to the polynomial-time coset-intersection algorithm. □

In Theorem 18 we showed that, under reasonable technical assumptions, 2-Lin(D) can be solved in polynomial time

whenever D is a commutative integral domain with finite Helly dimension. For the optimisation problemMin-2-Lin(D),

we will additionally require that the Helly dimension of D is at most 2. The intuition behind the bound on Helly

dimension comes from Lemma 15 which shows the reduction from a flexible instance 𝑆 to an equivalent star instance

star(𝑆). A pair of equations in star(𝑆) corresponds to a path in 𝑆 , so we obtain the following consequence.

Observation 19. If 𝜅 (D) = 2, then a flexible instance 𝑆 of Min-2-Lin(D) is consistent if and only if every path in 𝑆 is

consistent.

Using this observation, Min-2-Lin(D) on flexible instances can be solved by a simple reduction to Multicut [6, 47]

that creates an instance with the primal graph of 𝑆 as input, computes a spanning tree 𝑇 of 𝑆 and adds a cut request

{𝑥,𝑦} for every pair of variables 𝑥,𝑦 ∈ 𝑉 (𝑆) such that 𝑒𝑥,𝑦 (𝑇) is inconsistent. The algorithm for general instances

requires more work which is covered in the following sections.

Manuscript submitted to ACM

32 Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, and Magnus Wahlström

4.3 Iterative Compression

We let D denote an arbitrary member of H2 in this and the following sections. We reduceMin-2-Lin(D) to a simpler

problem by combining a trick called homogenisation with iterative compression. An equation 𝑎𝑥 + 𝑏𝑦 = 𝑐 is homogeneous

if 𝑐 = 0 and an instance of 2-Lin(D) is homogeneous if every equation in the instance is homogeneous. Note that

any such system is consistent since it is satisfied by the all-zero assignment. We show that by applying an invertible

affine transformation to the solution space, we can turn every consistent instance 𝑆 of 2-Lin(D) into a homogeneous

system with the same primal graph. Iterative compression is a common opening step of fpt-algorithms, see e.g. [14,

Chapter 4] for a thorough treatment. The basic idea is to solve the deletion problem by iteratively building up the

instance one equation at a time. While the instance size is at most 𝑘 , deleting all equations is an acceptable solution. For

larger instance sizes, we can assume access to a deletion set of size 𝑘 + 1, and design a compression routine that takes

the instance and the oversized solution as input, and either produces a smaller solution or concludes that no smaller

solution exists. If the routine runs in fpt-time, then the whole algorithm also runs in fpt-time.

Let 𝑆 be an instance of 2-Lin(D). Define a mapping Φ that acts on every variable 𝑥 ∈ 𝑉 (𝑆) by setting 𝑥 ↦→ 𝑎𝑥𝑥
′ + 𝑏𝑥

for some 𝑎𝑥 , 𝑏𝑥 ∈ D. We refer to Φ as a variable substitution for 𝑆 , and write Φ(𝑆) to denote the instance of 2-Lin(D)

obtained by substituting every variable 𝑥 with 𝑎𝑥𝑥
′ +𝑏𝑥 . A variable substitution is homogenising if Φ(𝑆) is homogeneous.

Lemma 20. Every consistent instance 𝑆 of 2-Lin(D) admits a homogenising variable substitution Φ such that 𝑆 and Φ(𝑆)

have the same primal graph, and there is a bijection between satisfying assignments to 𝑆 and to Φ(𝑆). Moreover, if we can

compute a solution to an instance of 2-Lin(D) in polynomial time, then Φ can be computed in polynomial time as well.

Proof. Let 𝑆 be an instance of 2-Lin(D) satisfied by assignment 𝜑 . Define Φ as 𝑥 ↦→ 𝑥 ′ + 𝜑 (𝑥) for all 𝑥 ∈ 𝑉 (𝑆). Note

that Φ is reversible by subtracting 𝜑 (𝑥). Consider an equation 𝑎𝑥 + 𝑏𝑦 = 𝑐 in 𝑆 . Note that 𝑎𝜑 (𝑥) + 𝑏𝜑 (𝑦) = 𝑐 since 𝜑

satisfies the equation. Its counterpart inΦ(𝑆) is 𝑎(𝑥 ′+𝜑 (𝑥))+𝑏 (𝑦′+𝜑 (𝑦)) = 𝑐 , which simplifies to 𝑎𝑥 ′+𝑏𝑦′ = 0. The right

hand side in the obtained equation is 0. Thus, the variable substitution Φ is homogenising, and computing a satisfying

assignment to 𝑆 is sufficient to obtain Φ. Moreover, Φ does not change the primal graph, and an assignment 𝛼 satisfies 𝑆

if and only if 𝛼 + 𝜑 satisfies Φ(𝑆), so satisfying assignments to 𝑆 and Φ(𝑆) are in one-to-one correspondence. □

We use iterative compression to reduce fromMin-2-Lin(D) to the following problem:

Disjoint Min-2-Lin(D) (DML(D))

Instance: An instance 𝑆 of 2-Lin(D) with positive integer equation weights𝑤𝑆 : 𝑆 → N+,

an inclusion-wise minimal set 𝑋 ⊆ 𝑆 such that 𝑆 − 𝑋 is homogeneous, and an

integer 𝑘 such that𝑤𝑆 (𝑋) ≤ 𝑘 + 1.

Parameter: 𝑘 .

Question: Is there a set 𝑍 ⊆ 𝑆 − 𝑋 of weight at most 𝑘 such that 𝑆 − 𝑍 is consistent?

Lemma 21. If DML(D) is solvable in O∗ (𝑓 (𝑘)) time, then Min-2-Lin(D) is solvable in O∗ (2𝑘 𝑓 (𝑘)) time.

Proof. Let 𝐼 = (𝑆,𝑤𝑆 , 𝑘) be an instance ofMin-2-Lin(D). In this context it is simpler to view equations as a multiset

𝑆 ′ where every equation 𝑒 ∈ 𝑆 is present with multiplicity𝑤𝑆 (𝑒). Then by iterative compression, we may assume that

apart from the input 𝐼 , we also have access to a multiset 𝑋 such that |𝑋 | = 𝑘 + 1 and 𝑆′ − 𝑋 is consistent.

Suppose 𝑍 is an optimal solution to 𝑆 ′. To reduce to DML(D), we branch on the possible intersections 𝑌 = 𝑋 ∩ 𝑍

of the incoming solution with the optimal solution. Since there are 2 |𝑋 |
= 2𝑘+1 options, the branching step requires

fpt-time. For every guess 𝑌 , consider the multisets 𝑆 ′ −𝑌 and 𝑋 −𝑌 , and convert them into sets 𝑆𝑌 and 𝑋𝑌 , respectively,

Manuscript submitted to ACM

Almost Consistent Systems of Linear Equations 33

defining the weight function𝑤𝑌 so that𝑤𝑌 (𝑒) for all equations 𝑒 is the multiplicity of 𝑒 in 𝑆𝑌 . Note that by definition

𝑆𝑌 − 𝑋𝑌 is consistent, so we can compute and apply a homogenising variable substitution to it by Lemma 20. Finally,

set the parameter to 𝑘𝑌 = 𝑘 − |𝑌 |. We obtain an instance (𝑆𝑌 ,𝑤𝑌 , 𝑘𝑌 , 𝑋𝑌) of DML(D). If this instance has a solution,

then combining that solution with 𝑌 yields a solution to the instance 𝐼 of Min-2-Lin(D). On the other hand, if there is

no solution for any option 𝑌 , then by exhaustion 𝐼 is a no-instance. Since we branch in 2𝑘+1 directions, and in each

branch we solve an instance of DML(D) with parameter bounded from above by 𝑘 , we obtain the total running time of

O∗ (2𝑘 𝑓 (𝑘)). □

4.4 Graph Cleaning

Observation 19 provides us with a good idea of how to solveMin-2-Lin(D) restricted to acyclic and flexible instances

by reduction to Multicut. To approach the general solution, we now need to consider cycles that make instances rigid.

Lemma 22. A consistent cycle in 2-Lin(D) is flexible if and only if it admits more than one satisfying assignment, while a

consistent cycle is rigid if and only if it admits a unique satisfying assignment.

Proof. Let 𝐶 be a consistent instance of 2-Lin(D) that is a cycle. By Lemma 20, we may assume without loss of

generality that 𝐶 is homogeneous because there is a homogenising variable substitution that preserves the number of

satisfying assignments. Assuming 𝐶 is homogeneous, it is satisfied by the all-zero assignment. Thus, it suffices to show

that 𝐶 admits a non-zero assignment if and only if it is flexible.

On the one hand, suppose that 𝐶 is a flexible cycle. Pick an arbitrary equation 𝑒 ∈ 𝐶 . Note that 𝑃 := 𝐶 \ {𝑒} is a

path. Let |𝑃 | =𝑚 and assume that the equations on 𝑃 are 𝑎𝑖𝑥𝑖 = 𝑏𝑖𝑥𝑖+1 for 𝑖 ∈ {1, . . . ,𝑚}, where 𝑎𝑖 , 𝑏𝑖 ∈ 𝐷 \ {0} and

𝑥𝑖 is a variable. We define the assignment 𝜑 using a particular product construction: set 𝜑 (𝑥1) = 𝑏1 · 𝑏2 · ... · 𝑏𝑚 , and

𝜑 (𝑥𝑖+1) = (𝜑 (𝑥𝑖)/𝑏𝑖) · 𝑎𝑖 for all 𝑖 ∈ {1, . . . ,𝑚}. In other words, the value 𝜑 (𝑥𝑖+1) is obtained from 𝜑 (𝑥𝑖) by replacing

the factor 𝑏𝑖 in the product by 𝑎𝑖 . Consequently, 𝜑 (𝑥𝑚+1) = 𝑎1 · 𝑎2 · ... · 𝑎𝑚 . Since all coefficients 𝑎𝑖 , 𝑏𝑖 are nonzero, 𝜑 is

a nonzero assignment and it is easy to verify that 𝜑 satisfies 𝑃 . By Observation 14, it also satisfies the implied equation

𝑒𝑃 . Since equations 𝑒 and 𝑒𝑃 are equivalent, assignment 𝜑 satisfies 𝑒 and, therefore, it satisfies 𝑃 ∪ {𝑒} = 𝐶 .

On the other hand, suppose that 𝐶 is a rigid cycle. By definition, there are variables 𝑥,𝑦 ∈ 𝑉 (𝐶) such that the

𝑥𝑦-paths 𝑃1 and 𝑃2 forming 𝐶 imply two non-equivalent equations 𝑎1𝑥 = 𝑏1𝑦 and 𝑎2𝑥 = 𝑏2𝑦, respectively. Multiplying

the first equation by 𝑎2 and the second by 𝑎1, we obtain the same coefficient in front of 𝑥 . Since the equations are not

equivalent, the coefficients in front of 𝑦 must differ i.e. 𝑏1𝑎2 ≠ 𝑎1𝑏2. Hence, any assignment satisfying 𝐶 also satisfies

(𝑏1𝑎2 − 𝑎1𝑏2) · 𝑦 = 0, which can only be satisfied by setting 𝑦 to 0. The zero value propagates to all remaining variables,

so 𝐶 is only satisfied by the all-zero assignment. □

The following result allows us to use the graph cleaning machinery to remove rigid cycles.

Lemma 23. Let 𝐺𝑆 be the primal graph of a consistent instance 𝑆 of 2-Lin(D) and B𝑆 be the set of flexible cycles in 𝑆 .

Then (𝐺𝑆 ,B𝑆) is a biased graph.

Proof. By Lemma 20, it suffices to consider a homogeneous instance 𝑆 because there is a homogenising variable

substitution that does not change the primal graph; moreover, it preserves flexible cycles by Lemma 22 and the fact

that it preserves the number of satisfying assignments. We want to verify that theta property holds for the family of

unbalanced cycles in (𝐺𝑆 ,B𝑆). To this end, let 𝑃 , 𝑄 , 𝑅 be three internally vertex-disjoint 𝑥𝑦-paths in 𝐺𝑆 , and assume

𝑃 ∪ 𝑅 is a rigid cycle. We claim that equations 𝑒𝑃 and 𝑒𝑅 are inequivalent. Then equation 𝑒𝑄 cannot be equivalent to

both 𝑒𝑃 and 𝑒𝑅 . This implies that either 𝑃 ∪𝑄 or 𝑄 ∪ 𝑅 is rigid, and the lemma follows.

Manuscript submitted to ACM

34 Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, and Magnus Wahlström

To prove the claim, assume towards contradiction that equations 𝑒𝑃 and 𝑒𝑅 are equivalent, and 𝑒𝑃 is 𝑎𝑥 = 𝑏𝑦. Using

the product construction from the proof of Lemma 22, define nonzero assignments 𝜑𝑃 and 𝜑𝑅 satisfying all equations

in 𝑃 and 𝑅, respectively. Note that by Observation 14, they also satisfy 𝑎𝑥 = 𝑏𝑦 i.e.

𝑎 · 𝜑𝑃 (𝑥) = 𝑏 · 𝜑𝑃 (𝑦), (1)

𝑎 · 𝜑𝑅 (𝑥) = 𝑏 · 𝜑𝑅 (𝑦). (2)

Therefore, after multiplying (1) by 𝜑𝑅 (𝑥) and (2) by 𝜑𝑃 (𝑥), we obtain:

𝑎 · 𝜑𝑃 (𝑥) · 𝜑𝑅 (𝑥) = 𝑏 · 𝜑𝑃 (𝑦) · 𝜑𝑅 (𝑥), (3)

𝑎 · 𝜑𝑅 (𝑥) · 𝜑𝑃 (𝑥) = 𝑏 · 𝜑𝑅 (𝑦) · 𝜑𝑃 (𝑥). (4)

Since the right hand sides of (3) and (4) are equal, we may equate the left hand sides and thus obtain

𝜑𝑃 (𝑦) · 𝜑𝑅 (𝑥) = 𝜑𝑅 (𝑦) · 𝜑𝑃 (𝑥) .

This equation allows us to define a nonzero assignment 𝜑𝑃𝑅 that satisfies 𝑃 ∪ 𝑅 by scaling 𝜑𝑃 and 𝜑𝑅 so that they agree

on the values of 𝑥 and 𝑦, namely let

𝜑𝑃𝑅 (𝑧) =

𝜑𝑃 (𝑧) · 𝜑𝑅 (𝑥) if 𝑧 ∈ 𝑃,

𝜑𝑅 (𝑧) · 𝜑𝑃 (𝑥) if 𝑧 ∈ 𝑅.

Since 𝑃∪𝑅 admits the nonzero satisfying assignment 𝜑𝑃𝑅 , it is flexible by Lemma 22 and we arrive at a contradiction. □

By Lemma 21,Min-2-Lin(D) reduces to DML(D) in fpt-time. Let 𝐼 = (𝑆,𝑤𝑆 , 𝑋, 𝑘) be an instance of the latter problem.

Note that 𝑆 −𝑋 is consistent, so all cycles in it are either flexible or rigid. To apply graph cleaning, we construct a rooted

graph for 𝐼 as follows.

Definition 24. Let 𝐼 = (𝑆,𝑤𝑆 , 𝑋, 𝑘) be an instance of DML(D). The rooted graph for 𝐼 is a pair (𝐺𝐼 ,B𝐼) defined as

follows. The vertex set of𝐺𝐼 is the set of the variables of 𝑆 −𝑋 extended with a fresh root vertex 𝑠 . The edge set contains

all edges in the primal graph of 𝑆 − 𝑋 (with the corresponding weights given by𝑤𝑆) together with an edge of weight 1

from 𝑠 to every vertex in 𝑉 (𝑋). The set B𝐼 ⊆ 2𝐸 (𝐺𝐼) consists of all flexible cycles in 𝑆 − 𝑋 .

Observe that the family of cycles B𝐼 above admits a polynomial-time oracle, e.g. by checking for every pair of vertices

whether the two paths connecting them on the cycle imply the same equation.

Lemma 25. For every instance 𝐼 of DML(D), the rooted graph (𝐺𝐼 ,B𝐼) is a biased graph.

Proof. Consider a cycle in𝐺𝐼 that is outside of B𝐼 . Such a cycle either contains the root vertex 𝑠 or is rigid in 𝑆 −𝑋 .

Adding a chordal path to a cycle of the first kind creates two cycles at least one of which also contains 𝑠 . For the cycles

of the second kind, invoke Lemma 23. □

The following is an immediate algorithmic consequence of Theorem 5 and Lemma 25.

Observation 26. Let 𝐼 be an instance of DML(D) and (𝐺𝐼 ,B𝐼) be the rooted graph for 𝐼 . Let 𝑞 be a positive integer and

let G := G(𝐺𝐼 ,B𝐼 , 𝑞, 𝑠) be the family of connected balanced subgraphs in (𝐺𝐼 ,B𝐼) rooted in 𝑠 with cost at most 𝑞. Then, in

time O∗ (4𝑞) we can compute a dominating familyH for G of size at most 4𝑞 .

Now we characterise yes-instances ofMin-2-Lin(D). For an assignment 𝜑 to an instance 𝑆 of 2-Lin(𝐷), let𝑉
𝜑
0 = {𝑣 ∈

𝑉 (𝑆) | 𝜑 (𝑣) = 0} and 𝑉
𝜑

∅
= {𝑣 ∈ 𝑉 (𝑆) | 𝜑 (𝑣) ≠ 0}.

Manuscript submitted to ACM

Almost Consistent Systems of Linear Equations 35

Lemma 27. Let (𝑆,𝑤𝑆 , 𝑋, 𝑘) be an instance of DML(D), and let 𝑍 be an optimal solution to 𝑆 disjoint from 𝑋 . Then there

exists a satisfying assignment 𝜑 to 𝑆 − 𝑍 such that for every connected component 𝐾 ⊆ 𝑉 (𝑆) of 𝑆 − (𝑋 ∪ 𝑍), the following

hold.

1. Either 𝐾 ⊆ 𝑉
𝜑
0 or 𝐾 ⊆ 𝑉

𝜑

∅
.

2. If 𝐾 ⊆ 𝑉
𝜑

∅
, then (𝑆 − (𝑋 ∪ 𝑍)) [𝐾] is flexible.

3. If 𝐾 ∩𝑉 (𝑋) = ∅, then 𝐾 ⊆ 𝑉
𝜑
0 .

Proof. First, note that 𝑆 − 𝑋 is homogeneous, and so is the subset of equations in 𝑆 − (𝑋 ∪ 𝑍) induced by 𝐾 .

Statement 1 follows by observing that if one variable is assigned zero in a two-variable homogeneous system, then

every connected variable must be assigned zero as well. For statement 2, note that if 𝐾 is rigid, it can only be satisfied

by the all-zero assignment. Finally, for statement 3, if 𝐾 ∩𝑉 (𝑋) = ∅, then 𝐾 also induces a homogeneous connected

component in 𝑆 − 𝑍 , which can be satisfies by the all-zero assignment independently of all other variables. □

We drop superscripts in 𝑉
𝜑
0 and 𝑉

𝜑

∅
when 𝜑 is clear from the context. Now we introduce zero-free subgraph 𝐻∅ of

the rooted graph (𝐺𝐼 ,B𝐼).

Definition 28. Let 𝐼 = (𝑆,𝑤𝑆 , 𝑋, 𝑘) be an instance of DML(D), 𝑍 be an optimal solution of 𝐼 , 𝜑 be a satisfying

assignment of 𝑆 − 𝑍 , and (𝐺𝐼 ,B𝐼) be the rooted graph for 𝐼 . Then, zero-free subgraph 𝐻∅ := 𝐻∅ (𝐼 , 𝑍, 𝜑) of 𝐺𝐼 (with

distinguished vertex 𝑠) is defined as follows. Let𝑉 (𝐻∅) = 𝑉∅ ∪ {𝑠}. Add every edge from (𝐺𝐼 −𝑍) [𝑉∅] to 𝐸 (𝐻∅). Finally,

for each zero-free component 𝐾 of 𝑆 − (𝑋 ∪ 𝑍), pick one vertex 𝑥 ∈ 𝐾 ∩𝑉 (𝑋) (which exists by Lemma 27) and add the

edge {𝑠, 𝑥} to 𝐸 (𝐻∅).

Lemma 29. For every instance 𝐼 = (𝑆,𝑤𝑆 , 𝑋, 𝑘) ofDML(D), every optimal solution𝑍 to 𝐼 and every assignment𝜑 satisfying

𝑆 − 𝑍 , the zero-free subgraph 𝐻∅ = 𝐻∅ (𝐼 , 𝑍, 𝜑) is a connected balanced subgraph of (𝐺𝐼 ,B𝐼), and 𝑐𝐺𝐼
(𝐻∅) ≤ 3𝑘 + 1.

Proof. Note that by construction, 𝐻∅ contains edges from 𝐺𝐼 − 𝑍 and edges connecting 𝑠 to 𝑉 (𝑋) which are also

present in 𝐺𝐼 , hence it is a subgraph of 𝐺𝐼 . 𝐻∅ is clearly connected through the vertex 𝑠 . To see that all cycles in 𝐻∅

are balanced, consider a zero-free component 𝐾 in 𝑆 − (𝑋 ∪ 𝑍). By Lemma 27, (𝑆 − (𝑋 ∪ 𝑍)) [𝐾] is flexible so 𝐻∅ [𝐾]

is a balanced subgraph of (𝐺𝐼 ,B𝐼) whenever 𝐾 is zero-free. Finally, the vertex 𝑠 has exactly one neighbour in each

component 𝐾 with 𝑉 (𝑋) ∩ 𝐾 = ∅, so 𝐻∅ does not contain any new cycle going through 𝑠 .

The cost of 𝐻∅ in𝐺𝐼 is 𝑐𝐺𝐼
(𝐻∅) = |𝑍 | + |𝑉 (𝑋) | −𝑘∅ , where 𝑘∅ is the number of zero-free components in 𝑆 − (𝑋 ∪𝑍).

Since 1 ≤ |𝑍 | ≤ 𝑘 , |𝑉 (𝑋) | = 2𝑘 + 2, and 𝑘∅ ≥ 1, we have that 𝑐𝐺𝐼
(𝐻∅) ≤ 3𝑘 + 1. □

4.5 The Algorithm

In the end of this section we will present our fpt-algorithm for Min-2-Lin(D) with D ∈ H2. By Lemma 21, it suffices to

prove that DML(D) is in FPT. To this end, let (𝑆,𝑤𝑆 , 𝑋, 𝑘) be an instance of DML(D), 𝑍 be a minimum solution, and

𝜑𝑍 be a satisfying assignment to 𝑆 − 𝑍 . Further, assume 𝐹 ⊆ 𝑆 − (𝑋 ∪ 𝑍) is a set of equations such that every rigid

component of 𝑆 ′ := 𝑆 − (𝑋 ∪ 𝐹) is zero under 𝜑𝑍 . Informally, 𝐹 takes care of all rigid components of 𝑆 − 𝑋 that are

connected to variables in 𝑉 (𝑋) assigned to a non-zero value by 𝜑𝑍 . These components are only satisfied by the all-zero

assignment because 𝑆 − 𝑋 is homogeneous, so the solution must either make them flexible or must disconnect them

from variables in 𝑉 (𝑋) that have non-zero value in 𝜑𝑍 ; please refer to Figure 6 for an illustration. We call vertices in

𝑉 (𝑋 ∪ 𝐹) terminals, and refer to 𝐹 as a cleaning set with respect to 𝜑𝑍 . We will later show how to obtain a cleaning set

using Observation 26.

Manuscript submitted to ACM

36 Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, and Magnus Wahlström

1

1

1

1

2

2

2

2

2

Fig. 6. An illustration of a cleaning set 𝐹 ⊆ 𝑆 − (𝑋 ∪ 𝑍) for an instance (𝑆, 𝑤𝑆 , 𝑋, 𝑘) of DML(F3) , where 𝑍 is an optimal solution.

The picture contains one component of the primal graph of 𝑆 − 𝑋 , and every edge 𝑢𝑣 corresponds to an equation 𝑢 = 2𝑣 (note that

the equation defines a symmetric relation over F3, namely { (0, 0), (1, 2), (2, 1) }). Note that all odd cycles are rigid and all even cycles

are flexible. The dashed red edges constitute the cleaning set 𝐹 . Let 𝜙𝑍 be an assignment satisfying 𝑆 − 𝑍 . The leftmost vertex is in

𝑉 (𝑋) and it is assigned 1 in 𝜙𝑍 . The yellow region contains all vertices assigned nonzero values in 𝜙𝑍 , and these values are given by

the corresponding labels. All vertices outside the yellow region (indicated by an empty circle) are assigned 0 in 𝜙𝑍 . Observe that the

yellow region contains a balanced subgraph with respect to the set of flexible cycles and its deletion edges are given by 𝐹 . This is not

a coincidence because we will use important balanced subgraphs to compute 𝐹 ; please also compare to Figure 3.

𝑉 (𝑋 ∪ 𝐹)

𝐶1 𝐶2 𝐶3 𝐶4

𝑧0

Fig. 7. An illustration of the auxiliary instance 𝐻P = 𝐻 (𝑆,𝑋, 𝐹, P) . Here,𝐶1, . . . ,𝐶4 are all components of 𝑆 ′ = 𝑆 − (𝑋 ∪ 𝐹) with𝐶3

and𝐶4 being the only rigid components. Black circular vertices represent the vertices of the primal graph of 𝐻P , i.e. the terminals in

𝑉 (𝑋 ∪ 𝐹) . Moreover, edges in light grey represent (possible) edges in𝑋 ∪ 𝐹 and black edges represent constraints added to𝐻P , more

specifically, black edges inside𝐶1 and𝐶2 represent the constraints 𝑒𝑥𝑦 (𝑆
′) and black edges incident with 𝑧 represent the constraints

𝑥 − 𝑧0 = 0 and 𝑥 + 𝑧0 = 0. The dotted vertical lines within the rectangle for𝑉 (𝑋 ∪ 𝐹) give the partition P of𝑉 (𝑋 ∪ 𝐹) , which is a

refinement of the partition P′ given by the components𝐶1 . . . ,𝐶4.

Let P′ be the partition of terminals into connected components of 𝑆 ′ i.e. P′ (𝑥) = P′ (𝑦) if and only if 𝑥 and 𝑦 are in

the same connected component of 𝑆 ′. For every partition P that refines P′, we describe the construction of an auxiliary

instance 𝐻P = 𝐻 (𝑆, 𝑋, 𝐹,P) of 2-Lin(D) that is used in the algorithm (see Figure 7 for an illustration). 𝐻P contains

all variables in 𝑉 (𝑋 ∪ 𝐹) plus an additional zero variable 𝑧0. Moreover, 𝐻P contains all equations in 𝑋 ∪ 𝐹 plus the

following additional equations:

• For every terminal 𝑥 that is in a rigid component of 𝑆 ′, the equations 𝑥 − 𝑧0 = 0 and 𝑥 + 𝑧0 = 0.

• For every pair of terminals 𝑥,𝑦 such that P(𝑥) = P(𝑦) and 𝑥,𝑦 appear in a flexible component of 𝑆 ′, the equation

𝑒𝑥𝑦 (𝑆
′).

Manuscript submitted to ACM

Almost Consistent Systems of Linear Equations 37

This completes the construction of 𝐻P . We distinguish between different kinds of terminals: terminals appearing in

rigid components of 𝐻P are called determined, while those appearing in flexible components are called undetermined.

Note that all terminals appearing in the connected component of zero variable 𝑧0 are determined since equations

connecting 𝑧0 and 𝑧
′
0 form a rigid cycle. We call them zero-determined terminals. Observe further that not all determined

terminals have to be zero-determined as 𝐻P may contain rigid components apart from the one including 𝑧0.

If 𝑍 is a solution to (𝑆,𝑤𝑆 , 𝑋, 𝑘) and P𝑍 is the partition of terminals into connected components of 𝑆 ′ − 𝑍 , then,

intuitively,𝐻P𝑍
serves as the “projectionž of 𝑆 −𝑍 onto the terminals i.e. it encapsulates all constraints in 𝑆 −𝑍 between

the pairs of terminals. This intuition is formalised below.

Lemma 30. Let (𝑆,𝑤𝑆 , 𝑋, 𝑘) be an instance of DML(D), 𝑍 be a solution, and 𝜑𝑍 be a satisfying assignment to 𝑆 − 𝑍 . Let

𝐹 ⊆ 𝑆 − (𝑋 ∪ 𝑍) be a cleaning set with respect to 𝜑𝑍 , and P𝑍 be the partition of 𝑉 (𝑋 ∪ 𝐹) into connected components of

𝑆 ′ − 𝑍 , where 𝑆′ := 𝑆 − (𝑋 ∪ 𝐹). Then the following statements hold:

1. 𝐻P𝑍
is consistent.

2. If a terminal 𝑥 ∈ 𝑉 (𝑋 ∪ 𝐹) is determined, then 𝜑 (𝑥) = 𝜑𝑍 (𝑥) for every satisfying assignment 𝜑 of 𝐻P𝑍
.

Proof. Statement 1.We show that the assignment 𝜑 obtained from 𝜑𝑍 after setting 𝜑 (𝑧0) = 0 for the zero variable

𝑧0 satisfies 𝐻P𝑍
. To this end, let 𝑒 be an equation of 𝐻P𝑍

. If 𝑒 ∈ 𝑋 ∪ 𝐹 , then 𝑒 ∈ 𝑆 − 𝑍 and 𝜑 satisfies 𝑒 . If 𝑒 contains 𝑧0,

then 𝑒 is equal to 𝑥 − 𝑧0 = 0 or 𝑥 + 𝑧0 = 0, where 𝑥 is contained in a rigid component of 𝑆 ′. Because 𝐹 is a cleaning set

with respect to 𝜑𝑍 , it holds that 𝜑 (𝑥) = 𝜑𝑍 (𝑥) = 0 and therefore 𝑒 is satisfied by 𝜑 . Otherwise, 𝑒 is equal to 𝑒𝑥𝑦 (𝑆
′)

for some terminals 𝑥 and 𝑦 with P𝑍 (𝑥) = P𝑍 (𝑦) that appear together in some flexible component 𝐾 of 𝑆 ′. Because

P𝑍 (𝑥) = P𝑍 (𝑦) and 𝐾 is flexible, it holds that 𝑒𝑥𝑦 (𝑆
′ − 𝑍) is equivalent to 𝑒𝑥𝑦 (𝑆

′) and 𝑒 , and therefore 𝜑 satisfies 𝑒 .

Statement 2. If 𝑥 is a zero-determined terminal, then 𝜑 (𝑥) = 0 for every satisfying assignment 𝜑 to 𝐻P𝑍
. Moreover,

𝜑𝑍 (𝑥) = 0 since 𝑥 is in a rigid component of 𝑆 ′ and 𝐹 is a cleaning set. On the other hand, if 𝑥 is not zero-determined,

then by construction of 𝐻P𝑍
, 𝑥 is contained in an equivalent rigid cycle in 𝑆 − 𝑍 , so 𝜑 and 𝜑𝑍 agree on all terminals in

these cycles. Therefore, in both cases we have 𝜑 (𝑥) = 𝜑𝑍 (𝑥). □

Lemma 30.1 suggests that the algorithm for DML(D) can start by guessing the partition P of the terminals and

checking whether 𝐻P is consistent. If yes, then a P-cut 𝑌 in 𝑆 ′ of size 𝑘 can be computed in fpt-time (or we can

correctly report that no such cut exists). However, 𝑆 − 𝑌 is not necessarily consistent. The reason is that some paths

of equations in 𝑆 − 𝑌 may be inconsistent. Thus, the cut needs to fulfil an additional set of requirements to ensure

that it is a solution. The key insight for computing these requirements is that all paths avoiding 𝑋 are homogeneous

(hence they imply consistent equations satisfied by setting all variables to zero), so it is sufficient to take care of the

paths containing a variable from 𝑉 (𝑋). Then there are two kinds of inconsistent paths: those confined to a component

connecting a terminal and a non-terminal and those connecting two non-terminals in different components using at

least one equation from 𝑋 . We show that these requirements can be handled using Pair Partition Cut. For this we will

construct the set FP = F (𝑆, 𝑋, 𝐹,P) of pair cut requests one needs to fulfil as follows. Let 𝜑𝐻 be a satisfying assignment

to 𝐻P . Then, the set FP = F (𝑆, 𝑋, 𝐹,P) of pair cut request contains the following pairs. For every determined terminal

𝑥 that is in a flexible component 𝐾 of 𝑆 ′, consider every non-terminal 𝑣 in 𝐾 and compute 𝑒𝑥𝑣 (𝑆
′). Plug in 𝜑𝐻 (𝑥) for 𝑥

into the equation 𝑒𝑥𝑣 (𝑆
′). If there is no value for 𝑣 that satisfies the equation, then add ({𝑥, 𝑣}, {𝑥, 𝑣}) to FP .

Now, for every flexible component 𝐾 of 𝐻P , consider every pair of terminals 𝑥,𝑦 ∈ 𝐾 such that P(𝑥) ≠ P(𝑦). Note

that 𝑥 and 𝑦 are undetermined. Let 𝐾 ′
1 and 𝐾

′
2 be the (not necessarily distinct) components of 𝑆 ′ that contain 𝑥 and

𝑦, respectively. Note that 𝑆 ′ [𝐾 ′
1] and 𝑆

′ [𝐾 ′
2] are flexible (otherwise, by construction of 𝐻P , variables 𝑥 and 𝑦 would

Manuscript submitted to ACM

38 Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, and Magnus Wahlström

form rigid cycles with 𝑧0). For every pair of non-terminals 𝑢 ∈ 𝐾 ′
1 and 𝑣 ∈ 𝐾 ′

2, compute 𝑒𝑢𝑥 (𝑆
′ [𝐾 ′

1]), 𝑒𝑥𝑦 (𝐻P [𝐾]),

𝑒𝑦𝑣 (𝑆
′ [𝐾 ′

2]), and let 𝑒𝑢𝑣 be the equation implied by composing them (i.e. treating them as parts of a path, and computing

the implied equation). If 𝑒𝑢𝑣 has no solution, then add ({𝑢, 𝑥}, {𝑦, 𝑣}) to FP . This concludes the definition of FP .

The algorithm for DML(D) can now be summarised as follows. Let 𝐼 = (𝑆,𝑤𝑆 , 𝑋, 𝑘) be an instance of DML(D).

(1) Construct the rooted graph (𝐺𝐼 ,B𝐼) for 𝐼 as described in Definition 24. Assume that 𝑠 is the root of (𝐺𝐼 ,B𝐼).

(2) Let G := G(𝐺𝐼 ,B𝐼 , 𝑘, 𝑠) be the family of connected balanced subgraphs in (𝐺𝐼 ,B𝐼) rooted in 𝑠 with cost at most

3𝑘 + 1. Compute a dominating family H for G using Observation 26.

(3) For every 𝐻 ∈ H , let 𝐹𝐻 be the set of deleted edges excluding those incident to 𝑠 . Guess the intersection 𝐹𝑍 with

a solution, i.e. for every 𝐹𝑍 ⊆ 𝐹𝐻 with 𝑤𝑆 (𝐹𝑍) ≤ 𝑘 , do the following. Let 𝐼 ′ = (𝑆 ′,𝑤𝑆 , 𝑋, 𝑘
′) be the instance

obtained from 𝐼 by removing all edges in 𝐹𝑍 from 𝑆 and decreasing 𝑘 by the weight of 𝐹𝑍 . Let 𝐹 = 𝐹𝐻 \ 𝐹𝑍 ,

𝑇 = 𝑉 (𝑋 ∪ 𝐹), 𝑆 ′′ = 𝑆 ′ − (𝑋 ∪ 𝐹), and P′ be the partition of𝑇 in 𝑆 ′′. Then, for every partition P that refines P′,

proceed as follows:

(a) Construct the auxiliary instance 𝐻P = 𝐻 (𝑆 ′, 𝑋, 𝐹,P) of 2-Lin(D) as described above.

(b) Use Theorem 18 to decide whether 𝐻P is consistent and if so to compute a satisfying assignment 𝜑𝐻 for 𝐻P .

If 𝐻P is inconsistent, then disregard the current partition P and continue with the next partition.

(c) Use 𝜑𝐻 to construct the set FP = F (𝑆 ′, 𝑋, 𝐹,P) of pair cut requests as described above. Let 𝐼P be the instance

(𝑆′′,𝑤𝑆 ,𝑇 ,P, FP , 𝑘) of Pair Partition Cut.

(d) Use Theorem 13 to solve 𝐼P . If 𝐼P has a solution 𝑌 , then use Theorem 18 to check whether 𝑆 ′ −𝑌 is consistent.

If so, output 𝑌 ∪ 𝐹𝑍 as the solution for DML(D), otherwise disregard the current partition P and continue

with the next partition.

(4) If no solution was output at Step 3d, then reject.

4.6 Correctness Proof and Complexity Analysis

We will now prove that the algorithm presented in Section 4.5 is correct and we will analyze its time complexity. The

correctness proof is based on an auxiliary result (Lemma 32) that shows the connection between the cleaned DML(D)

instance and the Pair Partition Cut instances that are computed in step 3 of the algorithm. The proof of Lemma 32 is

simplified with the aid of the following lemma.

Lemma 31. Let (𝑆,𝑤𝑆 , 𝑋, 𝑘) be an instance of DML(D) with solution 𝑍 and let 𝜑𝑍 be a satisfying assignment of 𝑆 − 𝑍 .

Let 𝐹 ⊆ 𝑆 − (𝑋 ∪ 𝑍) be a cleaning set with respect to 𝜑𝑍 , and P𝑍 be the partition of 𝑉 (𝑋 ∪ 𝐹) into connected components

of 𝑆 ′ − 𝑍 , where 𝑆 ′ = 𝑆 − (𝑋 ∪ 𝐹). Then 𝑍 is a P𝑍 -cut in 𝑆
′ that fulfils FP𝑍

.

Proof. Clearly, 𝑍 is a P𝑍 -cut. Suppose now for a contradiction that 𝑍 does not fulfil FP𝑍
. First consider the case

that 𝑍 does not fulfil a cut request ({𝑥, 𝑣}, {𝑥, 𝑣}) in FP𝑍
, where 𝑥 is a determined terminal. Because of Lemma 30.1, we

know that 𝐻P𝑍
is consistent. Let 𝜑𝐻 be a satisfying assignment to 𝐻P𝑍

and let 𝐾 contain the connected component of

𝑆 ′ that contains 𝑥 and 𝑣 . By Lemma 30.2, 𝜑𝐻 (𝑥) = 𝜑𝑍 (𝑥). Since 𝑍 does not separate 𝑥 and 𝑣 in 𝑆 ′, at least one path

implying the equation 𝑒𝑥𝑣 (𝑆
′ [𝐾]) persists in 𝑆 − 𝑍 . However, due to the construction of FP𝑍

this implies that 𝜑𝑍 does

not satisfy 𝑒𝑥𝑣 (𝑆
′ [𝐾]) and this contradicts our assumption that 𝑆 − 𝑍 is consistent.

Now consider the only remaining case that 𝑍 does not fulfil a cut request ({𝑢, 𝑥}, {𝑦, 𝑣}) in FP𝑍
, where 𝑥 and 𝑦

are undetermined terminals. Let 𝐾 ′
1 and 𝐾

′
2 be the connected components of 𝑆 ′ such that {𝑢, 𝑥} ⊆ 𝐾 ′

1 and {𝑦, 𝑣} ⊆ 𝐾 ′
2.

Further, let 𝐾 be the connected component of 𝐻P𝑍
that contains 𝑥 and 𝑦. Since 𝑍 does not disconnect 𝑢, 𝑥 or 𝑦, 𝑣 in 𝑆 ′,

a path implying 𝑒𝑢𝑥 (𝑆
′ [𝐾 ′

1]) and a path implying 𝑒𝑦𝑣 (𝑆
′ [𝐾 ′

2]) persist in 𝑆 −𝑍 . Moreover, by the construction of 𝐻P𝑍
, a

Manuscript submitted to ACM

Almost Consistent Systems of Linear Equations 39

path implying 𝑒𝑥𝑦 (𝐻P𝑍
[𝐾]) exists in 𝑆 − 𝑍 . Finally, the construction of FP𝑍

ensures that the composition of these

equations does not have a solution in D. We conclude that 𝑆 − 𝑍 is inconsistent and this leads to a contradiction. □

Lemma 32. Let 𝐼 = (𝑆,𝑤𝑆 , 𝑋, 𝑘) be an instance of DML(D) with solution 𝑍 and let 𝜑𝑍 be a satisfying assignment of

𝑆 − 𝑍 . Let 𝐹 ⊆ 𝑆 − (𝑋 ∪ 𝑍) be a cleaning set with respect to 𝜑𝑍 , and let P𝑍 be the partition of 𝑉 (𝑋 ∪ 𝐹) into connected

components of 𝑆′ − 𝑍 , where 𝑆 ′ = 𝑆 − (𝑋 ∪ 𝐹). Then every minimum P𝑍 -cut 𝑌 in 𝑆 ′ that fulfils FP𝑍
is a solution to 𝐼 .

Proof. We know that 𝐻P𝑍
is consistent by Lemma 30.1. We let 𝜑𝐻 denote a satisfying assignment. We construct an

assignment 𝜑𝑌 based on 𝜑𝐻 and prove that 𝜑𝑌 satisfies 𝑆 ′′ := 𝑆 ′ − 𝑌 , considering one connected component of 𝑆 ′′ at a

time. Then we show that 𝜑𝑌 also satisfies 𝑋 ∪ 𝐹 , and conclude that it satisfies 𝑆 − 𝑌 .

First note that every connected component of 𝑆 ′′ is a subset of a component of 𝑆 ′. If a variable 𝑣 appears in a rigid

component of 𝑆 ′, then let 𝜑𝑌 (𝑣) = 0. If 𝑣 appears in a component that does not contain any terminal, then let 𝜑𝑌 (𝑣) = 0.

Note that all equations in 𝑆 − 𝑋 are homogeneous so 𝜑𝑌 satisfies all equations inside the components of 𝑆 ′′ considered

so far.

Now consider a flexible component 𝐾 of 𝑆 ′′ that contains a determined terminal 𝑥 . Set 𝜑𝑌 (𝑥) = 𝜑𝐻 (𝑥). Since 𝑌

fulfils FP𝑍
, for every 𝑣 ∈ 𝐾 the equation 𝑒𝑥𝑣 (𝑆

′′) has a solution where 𝑥 ↦→ 𝜑𝐻 (𝑥). Therefore, we can extend 𝜑𝑌 , by

assigning every variable 𝑣 ∈ 𝐾 with 𝑣 ≠ 𝑥 to the unique value satisfying 𝑒𝑥𝑣 (𝑆
′′) if 𝑥 is set to 𝜑𝑌 (𝑥). It follows that 𝜑𝑌

satisfies star(𝐾, 𝑥). Combined with the fact that Helly dimension of D is 2, Lemma 17 implies that 𝜑𝑌 satisfies 𝑆 ′′ [𝐾].

All remaining variables appear in flexible components of 𝑆 ′′ that only contain undetermined terminals. Let𝑈 be the

set of all vertices appearing in these components.

Claim 32.1. (𝑆 − 𝑌) [𝑈] is flexible and consistent.

Proof of claim: Towards showing that (𝑆−𝑌) [𝑈] is flexible, first note that 𝑆 ′′ [𝑈] is flexible. Moreover,𝐻P𝑍
[𝑈 ∩𝑉 (𝑋∪𝐹)]

is also flexible, since all terminals in𝑈 are undetermined. Thus, (𝑆 − 𝑌) [𝑈] does not contain any rigid cycle avoiding

𝑋 ∪ 𝐹 . Furthermore, if there were a rigid cycle in (𝑆 − 𝑌) [𝑈] intersecting 𝑋 ∪ 𝐹 , then by construction there would also

be such a cycle in 𝐻P𝑍
[𝑈 ∩𝑉 (𝑋 ∪ 𝐹)], which would be a contradiction. Hence, (𝑆 −𝑌) [𝑈] cannot contain a rigid cycle

and it is indeed flexible.

We now show that (𝑆 − 𝑌) [𝑈] is consistent. Because (𝑆 − 𝑌) [𝑈] is flexible, Observation 19 implies that (𝑆 − 𝑌) [𝑈]

is consistent if it does not contain an inconsistent path. Suppose for a contradiction that (𝑆 − 𝑌) [𝑈] contains an

inconsistent path 𝑃 between say 𝑢 and 𝑣 . We know that 𝑆 − 𝑋 is consistent so we can assume that 𝑃 intersects 𝑋 . Let

𝑥 ∈ 𝑉 (𝑋 ∪ 𝐹) and 𝑦 ∈ 𝑉 (𝑋 ∪ 𝐹) be the closest terminals to 𝑢 and 𝑣 on 𝑃 , respectively. Then, the equation 𝑒𝑢𝑥 (𝑃) is

equivalent to 𝑒𝑢𝑥 (𝑆
′) and similarly the equation 𝑒𝑦𝑣 (𝑃) is equivalent to 𝑒𝑦𝑣 (𝑆

′). Moreover, an equation equivalent to

the equation 𝑒𝑥𝑦 (𝑃) is implied by the 𝑥𝑦-paths in 𝐻P𝑍
due to the construction of 𝐻P𝑍

. Therefore, if 𝑃 is inconsistent,

then so is the equation obtained by combining 𝑒𝑢𝑥 (𝑆
′), 𝑒𝑥𝑦 (𝑃), and 𝑒𝑦𝑣 (𝑆

′), which implies that ({𝑥,𝑢}, {𝑦, 𝑣}) is a

pair cut request in FP𝑍
. This contradicts our assumption that 𝑃 is in (𝑆 − 𝑌) [𝑈] because 𝑌 fulfils FP𝑍

and therefore

intersects 𝑃 . ⋄

Using the claim above, we can now extend 𝜑𝑌 to 𝑈 using any satisfying assignment 𝜑𝑈 of (𝑆 − 𝑌) [𝑈] by setting

𝜑𝑌 (𝑢) = 𝜑𝑈 (𝑢) for all 𝑢 ∈ 𝑈 . We show that 𝜑𝑌 obtained in this manner satisfies not only 𝑋 ∪ 𝐹 but also 𝐻P𝑍
.

Claim 32.2. The assignment 𝜑𝑌 satisfies 𝐻P𝑍
.

Proof of claim: Let 𝐾 be a connected component of 𝐻P𝑍
. If 𝑧0 ∈ 𝐾 , then 𝜑𝐻 (𝑣) = 0 for all 𝑣 ∈ 𝐾 . By the construction of

𝐻P𝑍
, 𝐾 \ {𝑧0} is a subset of a rigid component of 𝑆 ′ so 𝜑𝑌 (𝑣) = 0 for all 𝑣 ∈ 𝐾 . If 𝑧0 ∉ 𝐾 and 𝐾 is rigid, then 𝐾 only

Manuscript submitted to ACM

40 Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, and Magnus Wahlström

contains determined terminals and it follows that 𝜑𝑌 agrees with 𝜑𝐻 on 𝐾 by construction. Finally, if 𝐾 is flexible,

then consider arbitrary 𝑥,𝑦 ∈ 𝐾 . By the construction of 𝐻P𝑍
, there is a path in (𝑆 − 𝑌) [𝑈] that implies 𝑒𝑥𝑦 (𝐻P𝑍

[𝐾]).

Hence, 𝜑𝑌 satisfies 𝑒𝑥𝑦 (𝐻P𝑍
[𝐾]) for all 𝑥,𝑦 ∈ 𝐾 . We have thus exhausted all cases and the claim holds. ⋄

We have shown that 𝜑𝑌 satisfies both 𝑆 ′′ = 𝑆 ′ − 𝑌 and 𝑋 ∪ 𝐹 ⊆ 𝐻P𝑍
. Therefore, 𝑆 − 𝑌 is consistent and it only

remains to show that |𝑌 | ≤ 𝑘 . Lemma 31 implies that 𝑍 is a P𝑍 -cut in 𝑆
′ that fulfils FP𝑍

. Moreover, 𝑍 is a solution of 𝐼

so |𝑍 | ≤ 𝑘 . It follows that if 𝑌 is a minimum such P𝑍 -cut, then |𝑌 | ≤ 𝑘 and 𝑌 is a solution of 𝐼 . □

We are now ready to prove correctness and to provide the time complexity analysis of the algorithm. For the analysis

of the run-time, we will use 𝑄 (𝑘) to denote the run-time dependency on the parameter 𝑘 for the algorithm for Pair

Partition Cut, i.e. O∗ (𝑄 (𝑘)) is the run-time for the algorithm for Pair Partition Cut given in Theorem 13. The

running time of Pair Partition Cut is significant: The running time given by Kim et al. [38] forMinCSP(Γ) where Γ is

bijunctive and 2𝐾2-free is not stated explicitly, but if applied to instances with solution cost 𝑘 and maximum constraint

arity 𝑏, then it is 𝑂∗ (2𝑝 (𝑘,𝑏)) for a polynomial 𝑝 (𝑘,𝑏) of non-trivial degree (see also [38, Theorem 3.11] which implies

𝑝 (𝑘, 𝑏) = Ω(𝑘4𝑏8), and in our usage we have 𝑏 = Θ(𝑘)). This makes it clear that the main bottleneck for our algorithm

is the underlying algorithm for Pair Partition Cut.

Theorem 33. Min-2-Lin(D) is in FPT and can be solved in time O∗ (𝑘O(𝑘)𝑄 (𝑘)).

Proof. We start by analysing the algorithm for DML(D) presented in Section 4.5. Let 𝐼 = (𝑆,𝑤𝑠 , 𝑋, 𝑘) be an arbitrary

instance of DML(D). We show that the algorithm accepts if and only if 𝐼 is a yes-instance. The forward direction is

simple because if the algorithm returns a solution 𝑌 , then |𝑌 | ≤ 𝑘 and 𝑆 − 𝑌 is consistent because of Step 3d of the

algorithm.

Towards showing the reverse direction, suppose that 𝐼 is a yes-instance having a solution 𝑍 . Let 𝜑𝑍 be a satisfying

assignment of 𝑆−𝑍 and define𝑉0 and𝑉∅ accordingly. Let𝐻∅ denote the zero-free subgraph of𝐺𝐼 as given in Definition 28.

By Lemma 29, 𝐻∅ is balanced, connected, and 𝑐𝐺𝐼
(𝐻∅) ≤ 3𝑘 + 1. Because the familyH that is computed in Step 2 of the

algorithm is a dominating family for G, there is an (important) balanced subgraph 𝐻 ∈ H that dominates 𝐻∅ . Moreover,

because 𝐻 ∈ H , 𝐻 is considered by the algorithm in Step 3.

Let 𝐹𝐻 be the corresponding set of deleted edges in𝐺𝐼−{𝑠}, let 𝐹𝑍 = 𝐹𝐻∩𝑍 , and let 𝐹 = 𝐹𝐻 \𝐹𝑍 . Let 𝐼
′
= (𝑆 ′,𝑤𝑆 , 𝑋, 𝑘

′)

be the instance obtained from 𝐼 by removing all edges in 𝐹𝑍 from 𝑆 and decreasing 𝑘 by the weight of 𝐹𝑍 . Note that

𝐼 has a solution if and only if 𝐼 ′ has a solution. Moreover, note that 𝐹 is considered by the algorithm because the

algorithm considers all subsets of 𝐹𝑍 of 𝐹𝐻 of weight at most 𝑘 in Step 3. Let 𝑇 = 𝑉 (𝑋 ∪ 𝐹), 𝑆 ′′ = 𝑆 ′ − (𝑋 ∪ 𝐹) and

let P′ be the partition of 𝑇 in 𝑆 ′′. Let P𝑍 be the partition of 𝑇 in 𝑆 ′′ − 𝑍 . Then, because the algorithm considers all

refinements of P′, it also considers the partition P𝑍 . Finally, note that 𝐹 is a cleaning set with respect to 𝜑𝑍 in 𝑆 ′. This

is because 𝑉∅ ⊆ 𝑉 (𝐻∅) ⊆ 𝑉 (𝐻) and all components in 𝑆 ′′ [𝑉 (𝐺𝐼) \ {𝑠}] are flexible. Hence, all variables in the rigid

components of 𝑆 ′′ are assigned zero values by 𝜑𝑍 . Therefore, 𝑍 \ 𝐹𝑍 , 𝜑𝑍 , P𝑍 , and 𝐹 satisfy all conditions of Lemma 30.1

for the instance 𝐼 ′, which implies that 𝐻P𝑍
is consistent. Moreover, 𝑍 \ 𝐹𝑍 , 𝜑𝑍 , P𝑍 , and 𝐹 also satisfy all conditions of

Lemma 32 on the instance 𝐼 ′ and therefore every P𝑍 -cut 𝑌 in 𝑆 ′′ that fulfils FP𝑍
is a solution for 𝐼 ′. Therefore, the set

𝑌 ∪ 𝐹𝑍 returned by the algorithm in Step 3d is a solution for 𝐼 .

We continue by analysing the run-time of the algorithm. The algorithm starts by computing a dominating family

H of G := G(𝐺𝐼 ,B𝐼 , 𝑘, 𝑠) of size at most 43𝑘+1 in time O∗ (43𝑘+1) using Observation 26. Let 𝐻 ∈ H and let 𝐹𝐻 be

the set of deleted edges for 𝐻 excluding those incident with 𝑠 . Then, for every 𝐹𝐻 , the algorithm considers at most

2 |𝐹𝐻 | ≤ 23𝑘+1 (because 𝑐𝐺𝐼
(𝐻) ≤ 3𝑘 + 1) subsets 𝐹𝑍 and computes the updated instance 𝐼 ′ = (𝑆 ′,𝑤𝑆 , 𝑋, 𝑘

′) in Step 3 in

Manuscript submitted to ACM

Almost Consistent Systems of Linear Equations 41

polynomial-time. Let 𝐹 = 𝐹𝐻 \ 𝐹𝑍 , 𝑆
′′
= 𝑆 ′ − (𝑋 ∪ 𝐹), 𝑇 = 𝑉 (𝑋 ∪ 𝐹), and let P′ be the partition of 𝑇 = 𝑉 (𝑋 ∪ 𝐹) in

𝑆 ′′. The algorithm then enumerates all refinements P of P′. Because the number of such refinements P is at most

|𝑇 | |𝑇 | ≤ (4𝑘)4𝑘 , this can be achieved in time O((4𝑘)4𝑘). For each P, the algorithm then constructs 𝐻P = 𝐻 (𝑆 ′, 𝑋, 𝐹,P)

in polynomial-time and decides whether 𝐻P is consistent in polynomial time using Theorem 18. If 𝐻P is not consistent,

the algorithm stops, otherwise it constructs the set of pair-cut requests FP = F (𝑆 ′, 𝑋, 𝐹,P) and the instance 𝐼P of

Pair Partition Cut in polynomial-time. Finally, the algorithm solves 𝐼P = (𝑆 ′′,𝑤𝑆 ,𝑇 ,P, F , 𝑘) using Theorem 13 in

fpt-time with respect to 𝑘′ ≤ 𝑘 , i.e. in time O∗ (𝑄 (𝑘)). Therefore, the total time required by the algorithm is at most

O∗ (43𝑘+123𝑘+1 (4𝑘)4𝑘𝑄 (𝑘)) = O∗ (𝑘O(𝑘)𝑄 (𝑘))

which shows that DML(D) is fpt with respect to 𝑘 . By Lemma 21, there is another factor of 2𝑘 in the running time of

the algorithm for Min-2-Lin(D), which is dominated by 𝑘O(𝑘) , so asymptotically we obtain the same running time for

Min-2-Lin(D). □

4.7 Applicability of the Algorithm: Prüfer Domains

We will now consider a large class of commutative domains, known as Prüfer domains, that is known to contain many

interesting and well-studied rings. We show that every Prüfer domain has Helly dimension 2 so Theorem 33 implies

thatMin-2-Lin(D) is in FPT whenever D is a Prüfer domain that satisfies properties P3 and P4 from Theorem 18. Prüfer

domains can be defined in many equivalent ways. For instance, the survey by Bazzoni and Glaz lists 22 definitions [4,

Theorem 1.1]. The most suitable one for us is the following definition based on the ideals. The set of all ideals of a given

ring forms a lattice with sum as the join operation and intersection as the meet operation. Recall that a lattice 𝐿 is

distributive if

𝑥 ∧ (𝑦 ∨ 𝑧) = (𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧)

for all 𝑥,𝑦, 𝑧 ∈ 𝐿. The lattice of ideals is, in general, not a distributive lattice. Rings where this lattice is indeed distributive

are known as arithmetical rings; see [53] for a compact overview. A Prüfer domain is a commutative arithmetical ring

that is an integral domain. The relations between classes of rings that we discuss below are well-known and a nice

summary can be found in the survey by Bouvier [7]. Prüfer domains generalize many well-studied classes of integral

domains such as Bézout domains and Dedekind domains. A Bézout domain is an integral domain in which the sum of

two principal ideals (i.e. ideals generated by a single element) is again a principal ideal. It follows immediately that

Bézout domains include the principal ideal domains (where every ideal is principal) and thus Euclidean domains. All

fields, the ring of integers Z, Gaussian integers Z[𝑖], Eisenstein integers Z[𝜔] (where 𝜔 is a primitive non-real cubic

root of unity), the ring of polynomials F[𝑥] over a field F, and many more integral domains are Euclidean domains.

Furthermore, every valuation ring (where for every 𝑟, 𝑞 ∈ 𝑅, at least one of 𝑟/𝑞 and 𝑞/𝑟 is in 𝑅) is a Bézout domain. If a

Prüfer domain satisfies the ascending chain condition on ideals (i.e. it is Noetherian), then it is a Dedekind domain. This

implies, for instance, that the ring O𝐾 of algebraic integers in a number field 𝐾 is a Prüfer domain. We show that Prüfer

domains have Helly dimension 2.

Lemma 34. Prüfer domains have Helly dimension 2.

Proof. Let 𝐶1 = (𝑎1) + 𝑏1, 𝐶2 = (𝑎2) + 𝑏2, and 𝐶3 = (𝑎3) + 𝑏3 be a triple of principal ideal cosets that are pairwise

non-disjoint. We will show that there is a common element in all three. First, observe that we can assume without

loss of generality that 𝑏1 = 𝑏2 = 0: indeed, let 𝑑 ∈ 𝐶1 ∩ 𝐶2 (which exists because 𝐶1 ∩ 𝐶2 ≠ ∅); then 𝐶1 − 𝑑 = (𝑎1),

𝐶2 − 𝑑 = (𝑎2) and if 𝑝 ∈ (𝐶1 − 𝑑) ∩ (𝐶2 − 𝑑) ∩ (𝐶3 − 𝑑), then 𝑝 + 𝑑 ∈ 𝐶1 ∩𝐶2 ∩𝐶3.

Manuscript submitted to ACM

42 Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, and Magnus Wahlström

Since 𝐶1 and 𝐶3 intersect, we have (𝑎1) ∩ ((𝑎3) + 𝑏3) ≠ ∅, so 𝑏3 ∈ (𝑎1) + (𝑎3). By a similar argument, since 𝐶2 and

𝐶3 intersect, we have 𝑏3 ∈ (𝑎2) + (𝑎3). Recall that D is a Prüfer domain, so by distributivity we have

𝑏3 ∈ ((𝑎1) + (𝑎3)) ∩ ((𝑎2) + (𝑎3)) = ((𝑎1) ∩ (𝑎2)) + (𝑎3),

i.e. there exists 𝑞 ∈ (𝑎3) such that 𝑞 + 𝑏3 ∈ (𝑎1) ∩ (𝑎2). Clearly, 𝑞 + 𝑏3 ∈ 𝐶3, so 𝑞 + 𝑏3 is in the intersection of all three

cosets. □

5 FASTER ALGORITHM FOR FIELDS

Let F be an effective field. In this section we present improved fpt-algorithms forMin-2-Lin(F)Ðan O∗ (𝑘O(𝑘))-time

algorithm for arbitrary fields and an O∗ ((2𝑝)𝑘)-time algorithm for finite 𝑝-element fields. Section 5.1 demonstrates how

Min-2-Lin(F) differs from the more general Min-2-Lin over rings in H2 and several useful observations are derived

from this. In Section 5.2, we present the algorithm for fields and continue in Section 5.3 by proving its correctness and

analysing its running time. Finally, we present a faster algorithm forMin-2-Lin over finite fields in Section 5.4.

5.1 2-Lin over Fields

Since the quotient of any two nonzero elements is an element of the field F, instances of 2-Lin(F) enjoy rather pleasant

properties that do not necessarily hold for rings inH2. First, note that any single equation 𝑎𝑥 +𝑏𝑦 = 𝑐 over F is consistent

unless 𝑎 = 𝑏 = 0 and 𝑐 ≠ 0. By preprocessing, we may assume that such equations do not occur in our instances.

Hence, we may assume that all paths in our instances are consistent. This implies the following via Lemma 15 and

Observation 19.

Corollary 35. Every flexible instance 𝑆 of 2-Lin(F) is consistent. Moreover, for any variable 𝑧 ∈ 𝑉 (𝑆) and any element 𝑑

in F, there is an assignment that satisfies 𝑆 and sets 𝑧 to 𝑑 .

Flexible instances have another useful property. We call a variable substitution Φ equalising if every equation in

Φ(𝑆) is equality, i.e. it has the form 𝑥 = 𝑦.

Lemma 36. Every flexible instance of 2-Lin(F) admits an equalising variable substitution.

Proof. Let 𝑆 be a connected flexible instance of 2-Lin(F). The instance 𝑆 is consistent by Corollary 35 so Lemma 20

allows us to assume that 𝑆 is homogeneous. We may additionally assume (by division of field elements) that every

equation is of the form 𝑥 = 𝑎𝑦 for some 𝑎 ∈ F. Pick an arbitrary variable 𝑧 ∈ 𝑉 (𝑆) and construct a spanning tree 𝑇 ⊆ 𝑆

rooted in 𝑧. Define a variable substitution Φ by 𝑥 ↦→ 𝑎𝑥𝑥
′, where 𝑥 = 𝑎𝑥𝑧 is the equation 𝑒𝑥𝑧 (𝑆). Note that this map is

reversible since division is available in F. Clearly, Φ(𝑆) is homogeneous. Moreover, equation 𝑒𝑥 ′,𝑧′ (Φ(𝑆)) is 𝑎𝑥𝑥
′
= 𝑎𝑥𝑧

′

which simplifies 𝑥 ′ = 𝑧′. We conclude that every equation in Φ(𝑆) is equality. □

Yet another consequence of division in F is the following lemma that allows us to remove a factor of 2O(𝑘) from the

time complexity of iterative compression. We remark that the improvement is irrelevant for infinite fields like Q, for

which our algorithms are superexponential in 𝑘 , but will become pronounced in Section 5.4 where we are dealing with

finite fields and care about the base of the exponent.

Lemma 37. If DML(F) is solvable in O∗ (𝑓 (𝑘)) time, then Min-2-Lin(F) is solvable in O∗ (𝑓 (𝑘)) time.

Manuscript submitted to ACM

Almost Consistent Systems of Linear Equations 43

Proof. Given an instance (𝑆,𝑤𝑆 , 𝑘) ofMin-2-Lin(D), apply (equation) subdivision to it: for every equation 𝑒 of the

form 𝑎𝑥 + 𝑏𝑦 = 𝑐 in the instance, introduce a new variable 𝑧𝑒 and replace the original equation by a subdivided pair of

equations 𝑃𝑒 = {𝑥 = 𝑧𝑒 , 𝑎𝑧𝑒 + 𝑏𝑦 = 𝑐}. Both equations in the pair are assigned the same weight as the original one.

Clearly, any minimal solution only needs to contain one equation from each subdivided pair. Hence, the resulting

instance has a solution of weight 𝑘 if and only if the original instance has one. Moreover, when applying iterative

compression to (𝑆,𝑤𝑆 , 𝑘) and having a suboptimal but minimal solution 𝑋 at hand, we may safely assume that the

optimal solution 𝑍 to the instance is disjoint from 𝑋 (e.g. if 𝑋 and 𝑍 need to separate the same pair of original variables,

they may choose different equations from the subdivided pair). Hence, there is no need to branch on the intersection of

𝑋 and 𝑍 and the instance can be solved directly by passing it to the DML(F) algorithm. □

5.2 Algorithm forMin-2-Lin over Fields

Let 𝐼 = (𝑆,𝑤𝑠 , 𝑋, 𝑘) be an instance of DML(F). By Lemma 21, it suffices to construct an fpt-algorithm for the latter

problem. The opening of the algorithm is equation subdivision which allows for speeding up iterative compression by

Lemma 37. In fact, we apply subdivision twice to replace every equation with three new ones, i.e. two fresh variables

𝑧1 and 𝑧2 are introduced and 𝑎𝑥 + 𝑏𝑦 = 𝑐 is replaced by {𝑥 = 𝑧1, 𝑧1 = 𝑧2, 𝑎𝑧2 + 𝑏𝑦 = 𝑐}. This allows us to avoid

several branching stepsÐmore details are given after the algorithm description. Then we construct the rooted graph

(𝐺𝐼 ,B𝐼) and compute a dominating family of important balanced subgraphs to obtain a cleaning set 𝐹 . In contrast to

the algorithm for rings in H2, the following steps are simplified by the additional structure of fields. In the iterative

compression step, it is ensured that the solution is disjoint from 𝑋 ∪ 𝐹 simply by using subdivision as in Lemma 37. The

cutting step is simplified even more dramatically: it turns out that guessing the correct partition of the terminals P and

computing a minimum P-cut is sufficient since there are no inconsistent paths in the instances of 2-Lin(F). We claim

that the following algorithm solves the instance 𝐼 = (𝑆,𝑤𝑆 , 𝑘, 𝑋) of DML(F) in O∗ (2O(𝑘 log𝑘)) time.

(1) Apply equation subdivision (like in Lemma 37) twice to (𝑆,𝑤𝑆 , 𝑘) so that every equation is divided into three

equations.

(2) Construct the rooted graph (𝐺𝐼 ,B𝐼) for 𝐼 as described in Definition 24. Assume that 𝑠 is the root.

(3) Let G := G(𝐺𝐼 ,B𝐼 , 𝑘, 𝑠) be the family of connected balanced subgraphs in (𝐺𝐼 ,B𝐼) rooted in 𝑠 with cost at most

3𝑘 + 1. Compute a dominating familyH for G using Observation 26.

(4) For every 𝐻 ∈ H , let 𝐹𝐻 be the set of deleted edges excluding those incident to 𝑠 . For each partition P of

𝑉 (𝑋 ∪ 𝐹𝐻), check if there is a P-cut 𝑌 in 𝑆 − (𝑋 ∪ 𝐹𝐻) of size at most 𝑘 using Lemma 11. If 𝑌 exists and 𝑆 −𝑌 is

consistent, then output 𝑌 . Otherwise continue with the next partition.

(5) If no solution was output in the previous step, then reject 𝐼 .

The double subdivision in step 1 allows us to assume that an optimal solution 𝑍 , the set 𝑋 , and the current cleaning

set 𝐹𝐻 are pairwise disjoint. We can thus avoid branching on their intersections (analogously to how the iterative

compression algorithm for fields presented in Lemma 37 avoids the branching step in the general compression algorithm

from Lemma 21).

5.3 Correctness Proof and Complexity Analysis

We start with a lemma that will help us prove correctness of the algorithm. This lemma can be viewed as an analogue

of Lemma 32 but its proof is noticeably different.

Manuscript submitted to ACM

44 Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, and Magnus Wahlström

Lemma 38. Let 𝐼 = (𝑆,𝑤𝑆 , 𝑋, 𝑘) be an instance of DML(F) with solution 𝑍 and let 𝜑𝑍 be a satisfying assignment of

𝑆 − 𝑍 . Let 𝐹 ⊆ 𝑆 − (𝑋 ∪ 𝑍) be a cleaning set with respect to 𝜑𝑍 , and let P be the partition of 𝑉 (𝑋 ∪ 𝐹) into connected

components of 𝑆 ′ − 𝑍 , where 𝑆 ′ = 𝑆 − (𝑋 ∪ 𝐹). Then every minimum P-cut in 𝑆 ′ is a minimum solution for (𝑆,𝑤𝑆 , 𝑋, 𝑘).

Proof. Let 𝐾 be a component of 𝑆 ′ which does not contain any rigid cycles. Then 𝐾 is flexible, and by Lemma 36,

we can perform a substitution Φ(𝑆) on 𝑆 such that 𝐾 becomes equalised (i.e. all equations of Φ(𝑆) [𝐾] except those in

𝑋 ∪ 𝐹 are equalities). Perform this substitution for all flexible components 𝐾 of 𝑆 ′, and let 𝜑𝐹 be the updated satisfying

assignment to 𝑆 − 𝑍 . Observe that 𝜑−1 (0) = 𝜑−1
𝐹

(0) since 𝑆 − 𝑋 is homogeneous. As before, we refer to the vertices of

𝑉 (𝑋 ∪ 𝐹) as terminals. Consider a set 𝐵 ∈ P. Lemma 27 implies that if one variable in 𝐵 is assigned the zero value, then

all variables in 𝐵 are assigned the zero value by 𝜑𝐹 . On the other hand, if no variable in 𝐵 is assigned zero value, then,

by variable substitution, all paths connecting variables in 𝐵 imply equalities between all variables in 𝐵. Hence, 𝜑𝐹 is

constant on every 𝐵 ∈ P and every connected component of 𝑆 ′ − 𝑍 .

Now, let 𝑌 be a minimum P-cut. We show that 𝑌 is a solution by constructing an assignment 𝜑𝑌 that satisfies 𝑆 − 𝑌 .

Let 𝜑𝑌 (𝑣) = 𝜑𝐹 (𝑣) for any terminal 𝑣 ∈ 𝑉 (𝑋 ∪ 𝐹), propagate values so that every connected component of 𝑆 ′ − 𝑌

takes the same value on every vertex, and set 𝜑𝑌 (𝑣) = 0 for any vertex 𝑣 in a connected component of 𝑆 ′ − 𝑌 without

terminals. We note that 𝜑𝑌 is well-defined. Indeed, if 𝑢 and 𝑣 are terminals such that 𝜑𝐹 (𝑢) ≠ 𝜑𝐹 (𝑣), then 𝑢 and 𝑣 are in

different parts of P. Since 𝑌 is a P-cut, no component of 𝑆 ′ − 𝑌 contains both 𝑢 and 𝑣 .

Consider an arbitrary equation 𝑒 ∈ 𝑆 − 𝑌 . If 𝑒 ∈ 𝑋 ∪ 𝐹 , then 𝜑𝑌 matches 𝜑𝐹 on 𝑒 . Since 𝑒 ∉ 𝑍 by assumption, this

implies that 𝜑𝑌 satisfies 𝑒 . Next, assume that 𝑒 is in a flexible connected component 𝐾 of 𝑆 ′. We know that 𝑒 ∉ 𝑋 ∪ 𝐹 and

𝑒 is equality so by construction both variables of 𝑒 take the same value in 𝜑𝑌 . Finally, assume that 𝑒 appears in a rigid

component 𝐾 of 𝑆 ′. By assumption, 𝜑𝐹 assigns zero to 𝐾 . Assume first that there exists a path 𝑃 in 𝑆 ′ − 𝑌 connecting 𝑒

to a terminal 𝑣 . Then necessarily 𝑃 is contained in 𝐾 and 𝜑𝑌 (𝑣) = 𝜑 (𝑣) = 0. If no such path exists, then the variables in

𝑒 take the value zero by default. In both cases, the variables in 𝑒 are assigned zero and 𝑒 is satisfied by 𝜑𝑌 . This exhausts

the cases and shows that 𝑌 is a solution.

Since 𝑌 is a minimum-weight P-cut and 𝑍 is a P-cut by definition, we conclude that 𝑌 is an optimal solution. □

Now we are ready to present the correctness proof and the analysis of the running time of the algorithm.

Theorem 39. Min-2-Lin(F) can be solved in O∗ (2O(𝑘 log𝑘)) time.

Proof. By Lemma 37, it suffices to analyze the algorithm for DML(D) that was presented at the end of Section 5.2.

Let 𝐼 = (𝑆,𝑤𝑠 , 𝑋, 𝑘) be an arbitrary instance of this problem. We show that the algorithm accepts if and only if 𝐼 is a

yes-instance. For the forward direction, note that if the algorithm finds a solution 𝑌 , then |𝑌 | ≤ 𝑘 and 𝑆 −𝑌 is consistent

because of Step 4 of the algorithm.

Towards showing the reverse direction, suppose that 𝐼 is a yes-instance and 𝑍 is an optimal solution. Let 𝜑 be an

assignment satisfying 𝑆 − 𝑍 , and define 𝑉0 and 𝑉∅ as in Section 4.4 i.e. 𝑉0 = {𝑣 ∈ 𝑉 (𝑆) | 𝜑 (𝑣) = 0} and 𝑉∅ = {𝑣 ∈

𝑉 (𝑆) | 𝜑 (𝑣) ≠ 0}. Let 𝐻∅ denote the zero-free subgraph of 𝐺𝐼 (see Definition 28). By Lemma 29, the subgraph 𝐻∅ is

balanced and connected, and 𝑐𝐺 (𝐻∅) ≤ 3𝑘 + 1. Hence, there is an important balanced subgraph 𝐻 ∈ H considered by

the algorithm in line 4 that dominates 𝐻∅ . Let 𝐹𝐻 be the corresponding set of deleted edges in 𝐺𝐼 − {𝑠} and let P𝑍 be

the partition of the terminals 𝑇 = 𝑉 (𝑋 ∪ 𝐹𝐻) into connected components of 𝑆 − (𝑋 ∪ 𝑍). The algorithm exhaustively

considers all possible partitions P of 𝑇 and tries to compute a minimum P-cut in 𝑆 ′ := 𝑆 − (𝑋 ∪ 𝐹𝐻). We wish to apply

Lemma 38 to prove that such a cut exists so we verify that the preconditions of the lemma are met. By subdividing

equations into three parts in the first step of the algorithm, we can assume without loss of generality that 𝑋 , 𝐹𝐻 and

Manuscript submitted to ACM

Almost Consistent Systems of Linear Equations 45

𝑍 are pairwise disjoint. Further, we note that 𝑉∅ ⊆ 𝑉 (𝐻∅) ⊆ 𝑉 (𝐻) and all components in 𝑆 ′ [𝑉 (𝐻) \ {𝑠}] are flexible.

Hence, all variables in the rigid components of 𝑆 ′ are assigned zero values by 𝜑 , the set 𝐹𝐻 is indeed a cleaning set with

respect to 𝜑𝑍 , and the lemma applies. We conclude that the algorithm accepts the instance 𝐼 .

We continue by analysing the time complexity of the algorithm. Using Observation 26, the algorithm computes

a dominating family H of G of size at most 43𝑘+1 in time O∗ (4O(𝑘)). Let 𝐻 ∈ H and let 𝐹𝐻 be corresponding set

of deleted edges excluding those incident to vertex 𝑠 . Note that 𝑐𝐺𝐼
(𝐻) ≤ 3𝑘 + 1. For each 𝐻 , every partition P of

𝑉 (𝑋 ∪ 𝐹𝐻) is computed in line 4. Recall that |𝑋 | = 𝑘 + 1 and |𝐹𝐻 | ≤ 3𝑘 + 1 by Lemma 29 so |𝑉 (𝑋 ∪ 𝐹𝐻) | ≤ 4𝑘 and

the enumeration of partitions requires O∗ ((4𝑘)O(4𝑘)) time. Computing the P-cut requires at most O∗ (24𝑘) time by

Lemma 11 and the total running time is

O∗ (4O(𝑘)) + O∗ (4O(𝑘)) · O∗ ((4𝑘)O(4𝑘)) · O∗ (24𝑘) ∈ O∗ (2O(𝑘 ·log𝑘)).

□

5.4 Even Faster Algorithm for Finite Fields

Let F𝑝 be a finite 𝑝-element field with 𝑝 ≥ 3. Every finite field obviously has an effective representation so we assume

without loss of generality that F𝑝 is effective. We recallWedderburn’s Little Theorem (see, for instance, [28]).

Theorem 40. Every finite domain is a field.

Hence, the results in this section cover Min-2-Lin for every finite domain. As mentioned in the introduction,

Min-2-Lin(F𝑝) is a special case of ULC with a finite alphabet, so it can be solved in O∗ (𝑝2𝑘) time by the currently best

algorithm for ULC [30]. In this section we present a faster algorithm forMin-2-Lin(F𝑝) that runs in O∗ ((2𝑝)𝑘) time.

Note, however, that a slightly faster O∗ (1.977𝑘)-time algorithm for Min-2-Lin(F2) can be obtained using the approach

of [49].

By equation subdivision and Lemma 37, the problem can be reduced to polynomially many instances of DML(F𝑝).

Let (𝑆,𝑤𝑠 , 𝑋, 𝑘) be an instance of the latter problem. The key to improved running time of our algorithm is the fact

that 𝑋 has at most 𝑝𝑘 satisfying assignments, and an optimal assignment to 𝑆 must extend one of these assignments.

Suppose 𝛼 : 𝑉 (𝑋) → F𝑝 is an assignment that satisfies 𝑋 . Then the problem can be solved by checking whether 𝑆 − 𝑋

admits an assignment that extends 𝛼 and leaves unsatisfied equations of total weight at most 𝑘 . A reduction to RBGCE

allows us to answer this question in O∗ (2𝑘) time. The reader should note that this approach avoids using the method of

important balanced subgraphs.

We continue with some definitions. Given an instance 𝑆 of 2-Lin(D), a subset of equations 𝑋 such that 𝑆 − 𝑋 is

consistent, and an assignment 𝛼 satisfying 𝑋 , we define 𝑆𝛼 as follows: start with all equations of 𝑆 − 𝑋 , introduce two

new variables 𝑠 and 𝑡 , and add equations 𝑥 = 𝑠 · 𝛼 (𝑥) of weight 𝑘 + 1 for all 𝑥 ∈ 𝑉 (𝑋) where 𝛼 (𝑥) ≠ 0, and 𝑥 = 𝑡 of

weight 𝑘 + 1 for all 𝑥 ∈ 𝑉 (𝑋) where 𝛼 (𝑥) = 0. Finally, add two more variables 𝑡 ′, 𝑡 ′′ and equations 𝑡 ′ = 𝛾𝑡 , 𝑡 ′′ = 𝑡 ′,

𝑡 = 𝑡 ′′ each of weight 𝑘 + 1, where 𝛾 is any element in F𝑝 \ {0, 1}. We refer to 𝑆𝛼 as the restriction of 𝑆 to 𝛼 . Note that 𝑆𝛼

is homogeneous by construction. Furthermore, setting 𝑠 to 1 and 𝑡 to 0 implies that the variables in 𝑉 (𝑋) are assigned

the values in accordance with 𝛼 . Let𝐺𝛼 be the primal graph of 𝑆𝛼 and define B𝛼 to be the family of flexible cycles in 𝑆𝛼 .

Since all equations in 𝑆𝛼 are homogeneous, we can view it as a group-labelled graph with the group being F∗𝑝 i.e. the

multiplicative group of the field. We recall a result of Zaslavsky [56] and immediately obtain the following corollary.

Manuscript submitted to ACM

46 Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, and Magnus Wahlström

Lemma 41 (Proposition 5.1 in [56]). Let 𝐺 be a graph with edges labelled by elements of a group Γ. Let B be the set of

flexible cycles in 𝐺 , i.e. cycles such that combining edge labels along the cycle using the group operation yields the identity

element of Γ. Then (𝐺,B) is a biased graph.

Corollary 42. The pair (𝐺𝛼 ,B𝛼) defined above is a biased graph.

Clearly, there is a polynomial time algorithm that checks whether a cycle is flexible since we can multiply all labels

along the cycle and check whether the result equals identity. Now we are ready to prove the theorem.

Theorem 43. Min-2-Lin(F𝑝), where F𝑝 is a finite 𝑝-element field with 𝑝 ≥ 3, is in FPT and solvable in O∗ ((2𝑝)𝑘) time.

Proof. By equation subdivision and Lemma 37, we can focus on DML(F𝑝). Let (𝑆,𝑤𝑆 , 𝑘, 𝑋) be an instance of this

problem. Pick one variable from each equation in 𝑋 and place them into a set𝑈 . Note that |𝑈 | ≤ |𝑋 | ≤ 𝑘 + 1. Enumerate

assignments 𝛼 : 𝑈 → F𝑝 . For each 𝛼 , propagate the values from the variables in 𝑈 to 𝑉 (𝑋) \ 𝑈 according to the

equations of 𝑋 . If no conflict arises, i.e. if 𝛼 satisfies 𝑋 , then construct the restriction 𝑆𝛼 of 𝑆 to 𝛼 . Recall that 𝐺𝛼 is the

primal graph of 𝑆𝛼 . In the following we identify the edges of 𝐺𝛼 and the equations of 𝑆𝛼 .

Claim 43.1. Suppose there exists 𝑍 ⊆ 𝑆𝛼 such that
∑
𝑒∈𝑍 𝑤𝑆 (𝑒) ≤ 𝑘 , and an assignment 𝜑 that satisfies 𝑆𝛼 − 𝑍 and sets

𝜑 (𝑠) = 1 and 𝜑 (𝑡) = 0. Then (𝐺𝛼 ,B𝛼 , 𝑠, 𝑘) is a yes-instance of RBGCE.

Proof of claim: We claim that 𝑍 is a solution for (𝐺𝛼 ,B𝛼 , 𝑠, 𝑘). Suppose for a contradiction that this is not the case,

i.e. there is a rigid cycle 𝐶 ∉ B𝛼 that is reachable from 𝑠 in 𝐺𝛼 − 𝑍 . There are two cases. If 𝑠 ∉ 𝑉 (𝐶), then since 𝑆𝛼

is homogeneous, 𝐶 is only satisfied by the all-zero assignment. But 𝜑 (𝑠) = 1 and the nonzero value propagates to 𝐶 ,

which contradicts 𝑆𝛼 − 𝑍 being satisfied by 𝜑 . Otherwise, let 𝑃 be the path resulting from deleting 𝑠 from 𝐶 . Let 𝑥1

and 𝑥2 be the endpoints of 𝑃 . Let 𝛽 be the result of multiplying the edge labels of 𝑃 from 𝑥1 to 𝑥2. Since 𝐶 is rigid,

𝛼 (𝑥1) · 𝛽 ≠ 𝛼 (𝑥2). Then, 𝑃 is a path in 𝑆𝛼 − 𝑍 incompatible with setting 𝜑 (𝑥1) = 𝛼 (𝑥1) and 𝜑 (𝑥2) = 𝛼 (𝑥2), which is

again a contradiction. ⋄

Claim 43.2. Suppose there exists a subset 𝑍 of edges of𝐺𝛼 such that the connected component of the vertex 𝑠 in𝐺𝛼 − 𝑍 is

balanced. Then 𝑆𝛼 − 𝑍 admits a satisfying assignment 𝜑 such that 𝜑 (𝑠) = 1 and 𝜑 (𝑡) = 0.

Proof of claim: Let 𝐻 be the connected component of 𝑠 in 𝐺𝛼 − 𝑍 . Since edges connecting 𝑡, 𝑡 ′, 𝑡 ′′ form a high-weight

rigid cycle, 𝑡 ∉ 𝑉 (𝐻). Since every cycle of 𝐻 is flexible, 𝐻 viewed as a subset of 𝑆𝛼 is flexible. Then in particular there is

a satisfying assignment 𝜑 to 𝐻 setting 𝜑 (𝑠) = 1 by Corollary 35. For every variable 𝑣 not in 𝐻 we can safely set 𝜑 (𝑣) = 0

since 𝑆𝛼 is homogeneous. Then 𝜑 satisfies 𝑆𝛼 − 𝑍 and sets 𝜑 (𝑠) = 1 and 𝜑 (𝑡) = 0. ⋄

Together, Claims 43.1 and 43.2 imply that the assignment 𝛼 can be extended to 𝑆 so that it leaves equations of total

weight at most 𝑘 unsatisfied if and only if (𝐺𝛼 ,B𝛼 , 𝑠, 𝑘) is a yes-instance of RBGCE. Note that the algorithm considers

all satisfying assignments to 𝑋 so by exhaustion (𝑆,𝑤𝑆 , 𝑘, 𝑋) is a yes-instance if and only if the algorithm finds a

suitable assignment 𝛼 . There are 𝑝𝑘+1 candidates for 𝛼 . Computing the instance (𝐺𝛼 ,B𝛼 , 𝑠, 𝑘) requires polynomial time

and RBGCE can be solved in O∗ (2𝑘)-time by Proposition 3 so the total running time is O∗ ((2𝑝)𝑘). □

6 HARDNESS RESULTS

Let D = (𝐷 ;+, ·) be a commutative ring. The reduction from Multicut presented in the introduction shows that

Min-𝑟 -Lin(D) is NP-hard (for 𝑟 ≥ 2). In Section 6.1, we showW[1]-hardness for 𝑟 ≥ 3 whenever (𝐷 ;+) is an Abelian

group with at least two elements. This result consequently covers all (commutative and non-commutative) rings except

Manuscript submitted to ACM

Almost Consistent Systems of Linear Equations 47

the trivial zero ring. We continue in Section 6.2 by studying Min-2-Lin(D) for commutative rings D that contain a zero

divisor (i.e. an element 𝛼 ≠ 0 such that there exists an element 𝛽 ≠ 0 and 𝛼 · 𝛽 = 0). We show that Min-2-Lin(D) is

W[1]-hard for many such structures. We note that hardness results for certain special cases have appeared earlier in the

literatureÐfor instance, Crowston et al. [13] proveW[1]-hardness forMin-3-Lin(F2).

For proving the hardness results, we use parameterized reductions (or fpt-reductions). Consider two parameterized

problems 𝐿1, 𝐿2 ⊆ Σ
∗ × N. A mapping 𝑃 : Σ∗ × N → Σ

∗ × N is a parameterized reduction from 𝐿1 to 𝐿2 if

(1) (𝑥, 𝑘) ∈ 𝐿1 if and only if 𝑃 ((𝑥, 𝑘)) ∈ 𝐿2,

(2) the mapping can be computed in 𝑓 (𝑘) · 𝑛O(1) -time for some computable function 𝑓 , and

(3) there is a computable function 𝑔 : N → N such that for all (𝑥, 𝑘) ∈ Σ
∗ ×N, if (𝑥 ′, 𝑘′) = 𝑃 ((𝑥, 𝑘)), then 𝑘′ ≤ 𝑔(𝑘).

The classW[1] consists of all problems that are fpt-reducible to Independent Set parameterized by the solution

size, i.e. the number of vertices in the independent set. ShowingW[1]-hardness (by an fpt-reduction) for a problem

rules out the existence of an fpt algorithm under the standard assumption that FPT ≠ W[1].

6.1 Three Variables per Equation

Let G = (𝐷 ;+) denote an arbitrary Abelian group. An expression 𝑥1 + · · · + 𝑥𝑟 = 𝑐 is an equation over G if 𝑐 ∈ 𝐷 and

𝑥1, . . . , 𝑥𝑟 are either variables or inverted variables with domain 𝐷 . We say that it is an 𝑟 -variable equation if it contains

at most 𝑟 distinct variables. We consider the following group-based variant of theMin-𝑟 -Lin(D) problem.

Min-𝑟 -Lin(G)

Instance: A system 𝑆 of equations over G, a weight function𝑤 : 𝑆 → N+, and an integer 𝑘 .

Parameter: 𝑘 .

Question: Is there a set 𝑍 ⊆ 𝑆 such that 𝑆 − 𝑍 is consistent and𝑤 (𝑍) ≤ 𝑘?

The crux of the proof is essentially the same as the W[1]-hardness proof for Odd Set presented in Theorem

13.31 of [14, Section 13.6.3], however many details are different. The reduction is based on the followingW[1]-hard

problem [23, Lemma 1].

Multicoloured Cliqe

Instance: A graph 𝐺 = (𝑉 , 𝐸) with vertices partitioned into 𝑘 colour classes 𝑉1, . . . ,𝑉𝑘 .

Parameter: 𝑘 .

Question: Does 𝐺 contain a clique with exactly one vertex from each 𝑉𝑖 , 1 ≤ 𝑖 ≤ 𝑘?

Theorem 44. Let G = (𝐷 ;+) denote a group with at least two elements. Then, Min-𝑟 -Lin(G) is W[1]-hard for any 𝑟 ≥ 3

even if all equations have weight 1.

Proof. The reduction is presented in two steps: given an arbitrary instance (𝐺,𝑘, (𝑉1, . . . ,𝑉𝑘)) of Multicoloured

Cliqe, we first compute an instance (𝑆,𝑤, 𝑘′) ofMin-𝑠-Lin(G) where 𝑠 = |𝑉 (𝐺) | + |𝐸 (𝐺) |, and then we transform this

instance into an instance ofMin-3-Lin(G) with unit weights. We let 0 denote the identity element in G and let 1 be any

non-identity element.

Step 1. Consider the arbitrarily chosen instance (𝐺,𝑘, (𝑉1, . . . ,𝑉𝑘)) ofMulticoloured Cliqe. We will now reduce

it to an instance ofMin-𝑠-Lin(G). We let 𝐸𝑖 𝑗 denote the set of edges in 𝐸 (𝐺) with one endpoint in 𝑉𝑖 and another in

𝑉𝑗 , and we let 𝐸𝑖 𝑗𝑣 be the subset of 𝐸𝑖 𝑗 containing all edges incident to a vertex 𝑣 . We define an instance (𝑆,𝑤, 𝑘′) of

Manuscript submitted to ACM

48 Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, and Magnus Wahlström

Min-𝑠-Lin(G) as follows. Introduce variables 𝑥𝑣 for all 𝑣 ∈ 𝑉 (𝐺) and 𝑦𝑒 for all 𝑒 ∈ 𝐸 (𝐺). Set the parameter 𝑘′ = 𝑘 +
(𝑘
2

)
.

Let 𝑆 contain the following equations:

(1) 𝑥𝑣 = 0 for all 𝑣 ∈ 𝑉 (𝐺).

(2) 𝑦𝑒 = 0 for all 𝑒 ∈ 𝐸 (𝐺).

(3)
∑
𝑣∈𝑉𝑖 𝑥𝑣 = 1 for all 1 ≤ 𝑖 ≤ 𝑘 .

(4)
∑
𝑒∈𝐸𝑖 𝑗 𝑦𝑒 = 1 for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 .

(5)
∑
𝑒∈𝐸𝑖 𝑗𝑣 𝑦𝑒 = 𝑥𝑣 for all 𝑣 ∈ 𝑉 (𝐺) and 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 .

The equations in (3)ś(5) are assigned weight 𝑘′ + 1, while all others are given unit weight. Thus, only equations

in (1) and (2) may appear in a solution to (𝑆,𝑤, 𝑘′). Observe that the equations in (1)ś(4) imply that exactly one variable

in {𝑥𝑣 | 𝑣 ∈ 𝑉𝑖 } for each 1 ≤ 𝑖 ≤ 𝑘 and one variable in {𝑦𝑒 | 𝑒 ∈ 𝐸𝑖 𝑗 } for each pair 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 may be set to 1 since

the budget 𝑘 +
(𝑘
2

)
is tight.

Now consider the equations in (5). If 𝑥𝑣 is set to 1, then, for every 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 , there is an edge 𝑒 ∈ 𝐸𝑖 𝑗 incident

to 𝑣 such that 𝑦𝑒 is set to 1. Otherwise, if 𝑥𝑣 is set to 0, then 𝑦𝑒 is set to 0 for every edge 𝑒 incident to 𝑣 . Thus, if 𝜑 is

an assignment to 𝑆 that breaks constraints of total weight 𝑘′, then the set of vertices {𝑣 ∈ 𝑉 (𝐺) : 𝜑 (𝑥𝑣) = 1} forms a

clique in 𝐺 . In the opposite direction, if 𝑋 ⊆ 𝑉 (𝐺) forms a clique in 𝐺 , then an assignment that sets 𝑥𝑣 to 1 if 𝑣 ∈ 𝑋 , 𝑦𝑒

to 1 if both endpoints of 𝑒 are in 𝑋 , and all other variables to 0 breaks constraints of total weight 𝑘′. We conclude that

the reduction is correct and it can clearly be carried out in polynomial time.

Step 2. We continue by transforming the instance (𝑆,𝑤, 𝑘′) into an instance ofMin-3-Lin(G)with unit weights. Consider

an equation
∑𝑟
𝑖=1 𝑣𝑖 = 1 in 𝑆 . We first show how to make it undeletable without assigning it the weight 𝑘′ + 1. To this

end, introduce variables 𝑣
(𝑗)
𝑖 for all 1 ≤ 𝑖 ≤ 𝑟 and 1 ≤ 𝑗 ≤ 𝑘′ + 2. Create a system of equations 𝑆 ′ by adding equations

∑𝑟
𝑖=1 𝑣

(𝑗)
𝑖 = 1 for all 𝑗 and equations 𝑣

(𝑗)
𝑖 − 𝑣

(𝑗 ′)
𝑖 = 0 for all 𝑖 and all 𝑗 < 𝑗 ′. We claim that any assignment that does

not set 𝑣
(1)
𝑖 , . . . , 𝑣

(𝑘 ′+2)
𝑖 to the same value does not satisfy at least 𝑘′ + 1 constraints. Suppose an assignment sets ℓ

copies of the variable to one value and 𝑘′ + 2 − ℓ remaining copies to another. Then at least (𝑘′ + 2 − ℓ)ℓ equations

are not satisfied by the assignment. For 1 ≤ ℓ ≤ 𝑘′, this quantity is minimised by ℓ = 1 and it equals 𝑘′ + 1. Thus, any

assignment that does not satisfy at most 𝑘′ constraints also satisfies 𝑆 ′.

Finally, we show how to reduce the number of variables in each equation to at most three. Again, consider an

equation of the form
∑𝑟
𝑖=1 𝑣𝑖 = 1. Introduce auxiliary variables 𝑎𝑖 for 𝑖 ∈ {1, . . . , 𝑟 } and replace the equation with the

following system:

𝑣1 + (−𝑎1) = 0,

𝑎𝑖 + 𝑣𝑖+1 + (−𝑎𝑖+1) = 0 for 𝑖 ∈ {1, . . . , 𝑟 − 1}

𝑎𝑟 + 𝑣𝑟 = 1

where each equations is given weight 1. Observe that the sum of all equations above telescopes and the auxiliary

variables cancel out, leaving exactly the equation
∑𝑟
𝑖=1 𝑣𝑖 = 1. Hence, an assignment that satisfies all equations in the

system also satisfies the original equation. Moreover, any assignment 𝜑 that does not satisfy the original equation can be

extended to the auxiliary variables to satisfy all but one equation by setting 𝜑 (𝑣1) = 𝜑 (𝑎1) and 𝜑 (𝑣𝑖+1) = 𝜑 (𝑎𝑖) + 𝜑 (𝑣𝑖)

for all 𝑖 ∈ {1, . . . , 𝑟 − 1}. Hence, replacing every long equation in this way reduces the initial instance to an instance of

Min-3-Lin(G) with unit weights. □

Manuscript submitted to ACM

Almost Consistent Systems of Linear Equations 49

6.2 Rings with Zero Divisors

Recall that an integral domain does not contain zero divisors. Next, we give examples of commutative rings D with

zero divisors such thatMin-2-Lin(D) is W[1]-hard. Our starting point is the following problem.

Paired Min Cut

Instance: A graph 𝐺 , vertices 𝑠, 𝑡 ∈ 𝑉 (𝐺), an integer 𝑘 , and a set of disjoint edge pairs

𝐶 ⊆
(𝐸 (𝐺)

2

)

Parameter: 𝑘 .

Question: Is there an 𝑠𝑡-mincut 𝑋 ⊆ 𝐸 (𝐺) which is the union of 𝑘 pairs from 𝐶?

Paired Min Cut is commonly used as a source problem for proving W[1]-hardness (see e.g. [17, 37, 46, 48]). The

W[1]-hardness of this problem follows from work by Marx and Razgon [46, Theorem 7] but they formulate the problem

in logical terms. A graph-theoretic formulation, slightly different from the above, can be found in [38, Lemma 5.7]. In

particular, Kim et al. [38] assume the graph to be a DAG, however, W[1]-hardness of Paired Min Cut as defined above

follows easily from this.

We will consider a restricted variant of Paired Min Cut in the following. We say that an instance of Paired Min

Cut is split if the following statements hold.

(1) There are two induced subgraphs 𝐺1 = 𝐺 [𝑈1] and 𝐺2 = 𝐺 [𝑈2] of 𝐺 such that𝑈1 ∪𝑈2 = 𝑉 (𝐺),𝑈1 ∩𝑈2 = {𝑠, 𝑡}

and 𝐺 − {𝑠, 𝑡} is the disjoint union of 𝐺1 − {𝑠, 𝑡} and 𝐺2 − {𝑠, 𝑡}

(2) For every pair {𝑒1, 𝑒2} ∈ 𝐶 , one edge lies in 𝐺1 and the other lies in 𝐺2

Lemma 45. Paired Min Cut is W[1]-hard, even for split instances.

Proof. We established above that Paired Min Cut is W[1]-hard in its standard form. We show that we can also

impose the split property. Thus, let 𝐼 = (𝐺, 𝑠, 𝑡, 𝑘,𝐶) be an arbitrary instance of Paired Min Cut. We construct an

instance 𝐼 ′ = (𝐺 ′, 𝑠, 𝑡, 𝑘′,𝐶′) of Paired Min Cut where 𝐼 ′ is split and 𝑘′ = 4𝑘 .

Create two graphs 𝐺1 and 𝐺2 on disjoint vertex sets, each a copy of 𝐺 , and let 𝐺 ′ be their union. For every edge

𝑒 = {𝑢, 𝑣} in 𝐺 ′, introduce a new vertex 𝑥𝑒 and the two edges 𝑒′ = {𝑢, 𝑥𝑒 } and 𝑒
′′
= {𝑥𝑒 , 𝑣}. For an edge or vertex 𝑧

of 𝐺 and 𝑖 ∈ {1, 2}, let 𝑧𝑖 denote the copy of 𝑧 in 𝐺𝑖 . For every pair 𝑝 = {𝑒, 𝑓 } in 𝐶 , place the four pairs

{𝑒1, 𝑒2}, {𝑒
′
1, 𝑓2}, {𝑓1, 𝑒

′
2}, {𝑓

′
1 , 𝑓

′
2 }

in 𝐶′ (thereby keeping the pairs in 𝐶′ disjoint). Finally, identify 𝑠1 with 𝑠2 as 𝑠 and 𝑡1 with 𝑡2 as 𝑡 . This finishes the

description of our output 𝐼 ′ = (𝐺 ′, 𝑠, 𝑡, 𝑘′,𝐶′). Note that 𝐺 ′ is split, and that the 𝑠𝑡-max flow in 𝐺 ′ is 8𝑘 = 2𝑘′.

We show that 𝐼 is a yes-instance if and only if 𝐼 ′ is a yes-instance. First, let 𝑋 ⊆ 𝐸 (𝐺) be a solution to 𝐼 . Let

𝑋 ′
= {𝑒1, 𝑒

′
1, 𝑒2, 𝑒

′
2 | 𝑒 ∈ 𝑋 }. Then 𝑋 ′ is the union of precisely four pairs for every pair in 𝑋 , and it is clear that 𝑋 ′ is an

𝑠𝑡-cut.

On the other hand, assume that 𝐼 ′ has a solution 𝑋 ′
= 𝑋 ′

1 ∪ 𝑋
′
2 (where 𝑋

′
𝑖 ⊆ 𝐸 (𝐺𝑖), 𝑖 ∈ {1, 2}). We claim that 𝑋 ′

1 and

𝑋 ′
2 represent the same edge set 𝑋 in 𝐺 . By assumption, 𝑋 ′ partitions into edge pairs, and since the 𝑠𝑡-max flow in𝐺 is

2𝑘′, 𝑋 ′ must be an 𝑠𝑡-min cut. In particular, by the structure of the pairs, for every 𝑒 ∈ 𝐸 (𝐺), 𝑋 ′ contains 𝑒 if and only

if it contains 𝑒′, and therefore also the other endpoint of the pair 𝑝′ ∈ 𝐶′ containing the respective edge. Hence for

every edge 𝑒 represented in 𝑋 ′ there must be a pair {𝑒, 𝑓 } ∈ 𝐶 such that all four pairs {𝑒1, 𝑓1} × {𝑒2, 𝑓2} are represented

in 𝑋 ′. Hence

𝑋 = {𝑒 ∈ 𝐸 (𝐺) | {𝑒1, 𝑒
′
1, 𝑒2, 𝑒

′
2} ⊆ 𝑋

′}.

Manuscript submitted to ACM

50 Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, and Magnus Wahlström

𝑢1 𝑣1

𝑢2 𝑣2

𝑥𝑝 𝑦𝑝

𝑎

𝑏

=

𝑎

𝑏

Fig. 8. System of equations obtained from a pair of edges 𝑝 = {𝑒1, 𝑒2} where 𝑒𝑖 = {𝑢𝑖 , 𝑣𝑖 } in the fpt reduction from Paired Min Cut.

Edges 𝑒1 and 𝑒2 are illustrated by dashed lines, while the equations are illustrated by solid lines with labels describing equations

between connected variables.

defines a set of 2𝑘 edges in 𝐺 , which partitions into pairs from 𝐶 . Furthermore, 𝑋 is an 𝑠𝑡-cut, since 𝑋 ′
1 is an 𝑠𝑡-cut in

𝐺1 and 𝐺1 was created as a copy of 𝐺 . □

Let D denote a commutative ring. For 𝑎 ∈ D, let the annihilator of 𝑎 be the set Ann(𝑎) = Ann(𝑎) = {𝑥 ∈ D | 𝑎𝑥 = 0}.

Theorem 46. If a commutative ring D contains two elements 𝑎, 𝑏 such that Ann(𝑎) and Ann(𝑏) are incomparable under

set inclusion, then Min-2-Lin(D) is W[1]-hard.

Proof. Let 𝑓 ∈ Ann(𝑎) \Ann(𝑏) and 𝑔 ∈ Ann(𝑏) \Ann(𝑎). We present the reduction from Paired Min Cut on split

instances. Let (𝐺, 𝑠, 𝑡, 𝑘,𝐶) be an arbitrary split instance, and assume subsets𝑈1,𝑈2 ⊆ 𝑉 (𝐺) form the split. Construct

instance (𝑆, 𝑘) of Min-2-Lin(D) as follows. Start by adding one variable to 𝑆 for every vertex in 𝑉 (𝐺) \ {𝑠, 𝑡} with the

same name. Create variables 𝑠1, 𝑠2 for 𝑠 ∈ 𝑉 (𝐺) and 𝑡1, 𝑡2 for 𝑡 ∈ 𝑉 (𝐺). Add equations 𝑠1 = 𝑎𝑔, 𝑠2 = 𝑏𝑓 , 𝑡1 = 𝑡2 = 0 of

weight 𝑘 + 1 for the sources, and equations 𝑢 = 𝑣 of weight 𝑘 + 1 for all edges 𝑢𝑣 ∈ 𝐸 (𝐺) not present in any pair of 𝐶 .

For every pair 𝑝 = (𝑢1𝑣1, 𝑢2𝑣2) ∈ 𝐶 , we introduce two auxiliary vertices 𝑥𝑝 and 𝑦𝑝 , and create a gadget with equation

𝑥𝑝 = 𝑦𝑝 and equations

𝑢1 = 𝑎𝑥𝑝 𝑣1 = 𝑎𝑦𝑝 ,

𝑢2 = 𝑏𝑥𝑝 𝑣2 = 𝑏𝑦𝑝

of weight 𝑘 + 1. See Figure 8 for an illustration. This completes the construction.

For one direction, assume 𝑋 ⊆ 𝐶 is a solution to (𝐺, 𝑠, 𝑡, 𝑘,𝐶). Define the set of equations 𝑋 ′
= {𝑥𝑝 = 𝑦𝑝 | 𝑝 ∈ 𝑋 } of

the same size. We argue that 𝑆 − 𝑋 is consistent under assignment 𝛼 defined as follows. For the primary variables, let

𝛼 (𝑢) =

𝑎𝑔 if 𝑣 ∈ 𝑈1 and 𝑠 reaches 𝑣 in 𝐺 −
⋃
𝑋,

𝑏𝑓 if 𝑣 ∈ 𝑈2 and 𝑠 reaches 𝑣 in 𝐺 −
⋃
𝑋,

0 if 𝑣 ∈ 𝑈1 ∪𝑈2 and 𝑡 reaches 𝑣 in 𝐺 −
⋃
𝑋 .

Since
⋃
𝑋 is an 𝑠𝑡-cut, this assignment is well-defined. Now extend it to auxiliary variables as 𝛼 (𝑥𝑝) = 𝑓 (𝛼 (𝑢1), 𝛼 (𝑢2))

and 𝛼 (𝑦𝑝) = 𝑓 (𝛼 (𝑣1), 𝛼 (𝑣2)), where the function 𝑓 : D2 → D is defined as

Manuscript submitted to ACM

Almost Consistent Systems of Linear Equations 51

𝑤1 𝑤2 𝑓 (𝑤1,𝑤2)

0 0 0

0 𝑏𝑓 𝑓

𝑎𝑔 0 𝑔

𝑎𝑔 𝑏𝑓 𝑓 + 𝑔.

It is straightforward to verify that 𝛼 satisfies equations 𝑢1 = 𝑎𝑥𝑝 , 𝑣1 = 𝑎𝑦𝑝 , 𝑢2 = 𝑏𝑥𝑝 , and 𝑣2 = 𝑏𝑦𝑝 . Now suppose

𝑝 = (𝑢1𝑣1, 𝑢2𝑣2) ∉ 𝐶 . Then edges 𝑢1𝑣1 and 𝑢2𝑣2 are present in 𝐺 −
⋃
𝑋 , hence 𝛼 (𝑢1) = 𝛼 (𝑣1) and 𝛼 (𝑢2) = 𝛼 (𝑣2). By

definition, we obtain 𝛼 (𝑥𝑝) = 𝛼 (𝑦𝑝), therefore 𝛼 satisfies 𝑆 − 𝑋 ′.

For the other direction, suppose 𝑍 is a solution to (𝑆, 𝑘). Note that every equation except those in 𝑆𝐶 = {𝑥𝑝 = 𝑦𝑝 | 𝑝 ∈

𝐶} has weight𝑘+1. Hence, wemay assumewithout loss of generality that𝑍 ⊆ 𝑆𝐶 and define𝑍 ′
= {𝑝 ∈ 𝐶 | 𝑥𝑝 = 𝑦𝑝 ∈ 𝑍 }.

We claim that 𝑍 ′ is a solution to (𝐺, 𝑠, 𝑡, 𝑘,𝐶). By definition, 𝑍 ′ is a union of |𝑍 | ≤ 𝑘 pairs in 𝐶 so it remains to show

that 𝑍 ′ is an 𝑠𝑡-cut in𝐺 . Observe that if 𝑥𝑝 = 𝑦𝑝 is in 𝑆 −𝑍 for some 𝑝 = (𝑢1𝑣1, 𝑢2𝑣2), then the equations in 𝑆 −𝑍 imply

that 𝑢1 = 𝑎𝑥𝑝 = 𝑣1 and 𝑢2 = 𝑏𝑦𝑝 = 𝑣2. Hence, if there is an 𝑠𝑡-path in 𝐺 − 𝑍 ′, then the equations in 𝑆 − 𝑍 imply that

𝑠1 = 𝑡1 or 𝑠2 = 𝑡2, which contradicts the assignments 𝑠1 = 𝑎𝑔, 𝑠2 = 𝑏𝑓 and 𝑡1 = 𝑡2 = 0. □

This result implies that if D is a commutative ring, then the annihilators of D must be totally ordered under

set inclusion if Min-2-Lin(𝑅) is not W[1]-hard. Such rings are called lineal [44]. We illustrate Theorem 46 with an

example. The direct product of two rings D1 = (𝐷1;+1, ·1) and D2 = (𝐷2;+2, ·2) is denoted D1 × D2 = (𝐷 ;+, ·). Its

domain 𝐷 consists of the ordered pairs {(𝑑1, 𝑑2) | 𝑑1 ∈ 𝐷1, 𝑑2 ∈ 𝐷2} and the operations are defined coordinate-wise:

(𝑑1, 𝑑2)+ (𝑑
′
1, 𝑑

′
2) = (𝑑1+1𝑑

′
1, 𝑑2+2𝑑

′
2) and (𝑑1, 𝑑2) · (𝑑

′
1, 𝑑

′
2) = (𝑑1 ·1𝑑

′
1, 𝑑2 ·2𝑑

′
2). We claim that wheneverD = D1×D2 and

D1,D2 are commutative rings that are not zero rings, thenMin-2-Lin(D) isW[1]-hard. To see this, we first note that the

following: if 𝑎, 𝑏 in D satisfies 𝑎𝑏 = 0, 𝑎2 ≠ 0, and 𝑏2 ≠ 0, then Ann(𝑎) and Ann(𝑏) are incomparable since 𝑏 ∈ Ann(𝑎),

𝑎 ∉ Ann(𝑎), 𝑏 ∉ Ann(𝑏), and 𝑎 ∈ Ann(𝑏). Let 01 ∈ 𝐷1, 02 ∈ 𝐷2 denote the additive identities and 11 ∈ 𝐷1, 12 ∈ 𝐷2

denote the multiplicative identities. By setting 𝑎 = (01, 12) and 𝑏 = (11, 02), we see that 𝑎𝑏 = 0, 𝑎2 ≠ 0, and 𝑏2 ≠ 0

so Theorem 46 is applicable and Min-2-Lin(D) is W[1]-hard. This argument can easily be extended to products of

several commutative rings. As an example, note that the ring Z/𝑚Z (i.e. the ring based on standard arithmetic modulo

𝑚) is isomorphic to a direct product of non-trivial commutative rings whenever 𝑚 is not a prime power. This is a

direct consequence of the Chinese Remainder Theorem. Hence,Min-2-Lin(Z/6Z) = Min-2-Lin(Z/2Z × Z/3Z) and more

generallyMin-2-Lin(Z/𝑚Z) where𝑚 is not a prime power areW[1]-hard problems.

7 CONCLUSIONS AND DISCUSSION

We have proved that Min-2-Lin(D) is fixed-parameter tractable (with parameter 𝑘 being the number of unsatisfied

equations) whenD is a commutative domain having Helly dimension at most 2 and the representation ofD satisfies some

mild computational restrictions. We have presented substantially faster algorithms when D is a field. We additionally

proved thatMin-𝑟 -Lin(D) isW[1]-hard when 𝑟 ≥ 3 and this result holds for all rings. Furthermore, we demonstrated

that there exist (even finite) commutative rings D such that Min-2-Lin(D) is W[1]-hard. We discuss a selection of

possible research directions below.

FPT/W[1]-hardness borderline. This boundary is not clear for Min-2-Lin problems, and this is true even for finite

commutative rings. Theorem 40 states that if D is a finite ring, then either (1) D is a field (and Min-2-Lin(D) is in FPT)

or (2) D contains zero divisors. We know that there are D with zero divisors (such as Z/6Z) where Min-2-Lin(D) is

Manuscript submitted to ACM

52 Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, and Magnus Wahlström

W[1]-hard, but it is an open question whether the problem is alwaysW[1]-hard when D contains zero divisors, even

in the finite case. A concrete question is the following: what is the parameterized complexity ofMin-2-Lin(Z/4Z) or

more generallyMin-2-Lin(Z/𝑝𝑛Z) where 𝑝 is a prime and 𝑛 ≥ 2? These rings are chain rings, i.e. rings where the ideals

are totally ordered under set inclusion. Since every annihilator is an ideal, it follows that these rings are lineal and

W[1]-hardness cannot be inferred from Theorem 46. Resolving these cases would give us a complete understanding of

Min-2-Lin(Z/𝑚Z) for every𝑚. However, there are still many open cases left, even for small commutative rings.

If we turn our attention to general commutative rings, then a natural next step would be to analyse the rings in

H3. To the best of our knowledge, there is no concrete example of a ring D ∈ H𝑚 with 𝑚 > 2 where it is known

if Min-2-Lin(D) is in FPT or if it is W[1]-hard. In particular, this holds true for the ring Z[𝑋] that we encountered

in Section 4.2. Rings of this kind have more complex minimal obstructions to satisfiability than paths and cycles, so

our method for graph cleaning is no longer applicable and a fundamentally different approach may be necessary. We

also note that the family of 𝑘-independence properties introduced in [12] is based on a concept that is similar to Helly

dimension. Several general NP-hardness results for CSPs based on constraint languages that do not exhibit certain

2-independence properties are proved in [8]. Even though the setting is quite different, the idea that Min-2-Lin(D) for

certain D ∈ H3 may be computationally hard seems conceivable. This points in the direction that it may be a too large

step to attack rings with higher Helly dimension directly. With this in mind, it is probably a better idea to first analyse

more well-behaved classes of commutative domains such as unique factorisation domains.

Faster algorithms. We suspect that our fixed-parameter tractable algorithm for Min-2-Lin can be improved with

respect to running time. The slowest part in it is solving the Pair Partition Cut problem. We solve this problem via

a reduction to a finite-domain MinCSP problem that is solved by flow augmentation, but there may be alternative

ways of doing this. However, as the problem is a strict generalization of (Edge) Multicut, a running time of, say,

O∗ (2O(𝑘 log𝑘)) or better would be a significant challenge. There is also room for improvements in the Min-2-Lin

algorithms for fields. Consider our O∗ (2O(𝑘 log𝑘))-time algorithm for arbitrary fields. After iterative compression and

cleaning, the problem reduces to the following:

2-Lin(F) Compatibility

Instance: Two instances 𝑆1, 𝑆2 of 2-Lin(F) and an integer 𝑘 such that 𝑉 (𝑆1) ⊆ 𝑉 (𝑆2),

|𝑆1 | ≤ 3𝑘 , and 𝑆2 only contains equalities.

Parameter: 𝑘 .

Question: Is there a set 𝑍 ⊆ 𝑆2 such that |𝑍 | ≤ 𝑘 and (𝑆1 ∪ 𝑆2) − 𝑍 is consistent?

This problem is the bottleneck for our Min-2-Lin(F) algorithm, since it is the only part that requires more than single-

exponential time. Can it be solved in single-exponential time in 𝑘? For the finite field F𝑝 with 𝑝 elements we show

that Min-2-Lin(F𝑝) can be solved in O∗ ((2𝑝)𝑘) time. Is there an O∗ (𝑐𝑘) algorithm for Min-2-Lin(F𝑝), where 𝑐 is a

universal constant that does not depend on 𝑝? Or is there at least a constant 𝑑 < 2 such that Min-2-Lin(F𝑝) is solvable

in O∗ ((𝑑𝑝)𝑘) time?

Important balanced subgraphs. A more general question concerns the utility of the method of important balanced

subgraphs. Important separators are a key component of many classical fpt-algorithms for graph separation problems,

and important balanced subgraphs appear to be a significant, and unexpected, generalization of them. It would be

interesting to see more applications of the method. We have used it to avoid random sampling of important separators,

speeding up our Min-2-Lin algorithm for fields from O∗ (2O(𝑘3)) to O∗ (2O(𝑘 log𝑘)), and simplifying the algorithm

Manuscript submitted to ACM

Almost Consistent Systems of Linear Equations 53

for rings in H2. What other problems can be solved using this method? Can we use it to obtain simpler algorithms

or improve upper bounds for other parameterized deletion problems? Other questions include generalizations or

improvements on the method of important balanced subgraphs itself. We have provided the result only for edge deletion

problems; is there an equivalent statement for vertex deletion? Furthermore, the polynomial factor in the running time

of the algorithm producing a dominating family is significant, since it comes from solving an LP given only oracle

access to the constraints. However, the optima computed by the LP are extremal half-integral solutions with an inherent

structure that can probably be exploited. A combinatorial method for computing such optima could substantially

improve the polynomial factor. Such a result was developed in the algorithm for 0/1/all CSPs by Iwata et al. [31], where

a previous method based on half-integral LP-relaxations was replaced by a linear-time combinatorial solver. Can a

similar method be developed for the Rooted Biased Graph Cleaning problem, perhaps for special cases such as

biased graphs coming from group-labelled graphs or the biased graphs used in theMin-2-Lin(D) algorithm?

ACKNOWLEDGEMENTS

A preliminary version of this article appeared in the proceedings of the 2023 ACM-SIAM Symposium on Discrete

Algorithms (SODA-2023) [18]. We thank the anonymous reviewers for suggestions and comments that helped simplify

some of our proofs. The second and the fourth authors were supported by the Wallenberg AI, Autonomous Systems

and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation. In addition, the second author

was partially supported by the Swedish Research Council (VR) under grants 2017-04112 and 2021-04371, and the

fourth author was supported by VR under grant 2024-00274. The first and third authors acknowledge support from the

Engineering and Physical Sciences Research Council (EPSRC, project EP/V00252X/1).

REFERENCES

[1] Michael Artin. 2011. Algebra. Pearson.

[2] Vikraman Arvind and T. C. Vijayaraghavan. 2010. Classifying Problems on Linear Congruences and Abelian Permutation Groups Using Logspace

Counting Classes. Computational Complexity 19, 1 (2010), 57ś98.

[3] Imre Bárány and Gil Kalai. 2022. Helly-type problems. Bulletin of the AMS 59, 4 (2022), 471ś502.

[4] Silvana Bazzoni and Sarah Glaz. 2006. Prüfer Rings. InMultiplicative Ideal Theory: a Tribute to the Work of Robert Gilmer. Springer, New York, 55ś72.

[5] Kristóf Bérczi, Alexander Göke, Lydia Mirabel Mendoza Cadena, andMatthias Mnich. 2022. Resolving Infeasibility of Linear Systems: A Parameterized

Approach. CoRR abs/2209.02017 (2022), 46 pages. https://doi.org/10.48550/ARXIV.2209.02017 arXiv:2209.02017

[6] Nicolas Bousquet, Jean Daligault, and Stéphan Thomassé. 2018. Multicut is FPT. SIAM J. Comput. 47, 1 (2018), 166ś207.

[7] Alain Bouvier. 1980. Survey on Locally Factorial Krull Domains. Technical Report. Département de Mathématiques Lyon.

[8] Mathias Broxvall, Peter Jonsson, and Jochen Renz. 2002. Disjunctions, independence, refinements. Artificial Intelligence 140, 1/2 (2002), 153ś173.

[9] Jianer Chen, Yang Liu, and Songjian Lu. 2009. An improved parameterized algorithm for the minimum node multiway cut problem. Algorithmica 55,

1 (2009), 1ś13.

[10] Rajesh Chitnis, Marek Cygan, MohammadTaghi Hajiaghayi, and Dániel Marx. 2015. Directed subset feedback vertex set is fixed-parameter tractable.

ACM Transactions on Algorithms 11, 4 (2015), 1ś28.

[11] Rajesh Chitnis, Marek Cygan, MohammadTaghi Hajiaghayi, Marcin Pilipczuk, and Michał Pilipczuk. 2016. Designing FPT Algorithms for Cut

Problems Using Randomized Contractions. SIAM J. Comput. 45, 4 (2016), 1171ś1229.

[12] David A. Cohen, Peter Jeavons, Peter Jonsson, and Manolis Koubarakis. 2000. Building tractable disjunctive constraints. Journal of the ACM 47, 5

(2000), 826ś853.

[13] Robert Crowston, Gregory Gutin, Mark Jones, and Anders Yeo. 2013. Parameterized Complexity of Satisfying Almost All Linear Equations over F2 .

Theory of Computing Systems 52, 4 (2013), 719ś728.

[14] Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. 2015.

Parameterized Algorithms. Springer.

[15] Marek Cygan, Marcin Pilipczuk, and Michał Pilipczuk. 2016. On group feedback vertex set parameterized by the size of the cutset. Algorithmica 74,

2 (2016), 630ś642.

[16] Marek Cygan, Marcin Pilipczuk, Michał Pilipczuk, and Jakub Onufry Wojtaszczyk. 2013. On multiway cut parameterized above lower bounds. ACM

Transactions on Computation Theory 5, 1 (2013), 1ś11.

Manuscript submitted to ACM

54 Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, and Magnus Wahlström

[17] Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, Marcin Pilipczuk, and Roohani Sharma. 2023. Parameterized Complexity

Classification for Interval Constraints. In Proc. 18th International Symposium on Parameterized and Exact Computation (IPEC-2023). 11:1ś11:19.

[18] Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, and Magnus Wahlström. 2023. Almost consistent systems of linear

equations. In Proc. 34th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA-2023). 3179ś3217.

[19] Reinhard Diestel. 2016. Graph Theory. Springer.

[20] Mátyás Domokos. 2007. Typical separating invariants. Transformation Groups 12, 11 (2007), 49ś63.

[21] Mátyás Domokos and Endre Szabó. 2011. Helly dimension of algebraic groups. Journal of the London Mathematical Society 84, 1 (2011), 19ś34.

[22] Jesse Elliott. 2019. Rings, Modules, and Closure Operations. Springer.

[23] Michael R. Fellows, Danny Hermelin, Frances A. Rosamond, and Stéphane Vialette. 2009. On the parameterized complexity of multiple-interval

graph problems. Theoretical Computer Science 410, 1 (2009), 53ś61.

[24] Alexander Göke, Lydia Mirabel Mendoza Cadena, and Matthias Mnich. 2019. Resolving infeasibility of linear systems: A parameterized approach. In

Proc. 14th International Symposium on Parameterized and Exact Computation (IPEC-2019). 17:1ś17:15.

[25] Joseph F. Grcar. 2011. How ordinary elimination became Gaussian elimination. Historia Mathematica 38, 2 (2011), 163ś218.

[26] Sylvain Guillemot. 2011. FPT algorithms for path-transversal and cycle-transversal problems. Discrete Optimization 8, 1 (2011), 61ś71.

[27] Johan Håstad. 2001. Some optimal inapproximability results. J. ACM 48, 4 (2001), 798ś859.

[28] Israel N. Herstein. 1961. Wedderburn’s Theorem and a theorem of Jacobson. The American Mathematical Monthly 68, 3 (1961), 249ś251.

[29] Semba Ichiro. 1984. An Efficient Algorithm for Generating all Partitions of the Set {1, 2, . . . , 𝑛}. Inform. Process. Lett. 7, 1 (1984), 41ś42.

[30] Yoichi Iwata, Magnus Wahlström, and Yuichi Yoshida. 2016. Half-integrality, LP-branching, and FPT algorithms. SIAM J. Comput. 45, 4 (2016),

1377ś1411.

[31] Yoichi Iwata, Yutaro Yamaguchi, and Yuichi Yoshida. 2018. 0/1/all CSPs, half-integral 𝐴-path packing, and linear-time FPT algorithms. In Proc. IEEE

59th Annual Symposium on Foundations of Computer Science (FOCS-2018). 462ś473.

[32] Bart M.P. Jansen, Jari J.H. de Kroon, and Michał Włodarczyk. 2025. Single-exponential FPT algorithms for enumerating secluded F-free subgraphs

and deleting to scattered graph classes. J. Comput. System Sci. 148 (2025), 103597.

[33] Ravindran Kannan. 1985. Solving systems of linear equations over polynomials. Theoretical Computer Science 39 (1985), 69ś88.

[34] Ravindran Kannan and Achim Bachem. 1979. Polynomial Algorithms for Computing the Smith and Hermite Normal Forms of an Integer Matrix.

SIAM J. Comput. 8, 4 (1979), 499ś507.

[35] Subhash Khot. 2002. On the power of unique 2-prover 1-round games. In Proc. 24th Annual ACM Symposium on Theory of Computing (STOC-2002).

767ś775.

[36] Subhash Khot and Dana Moshkovitz. 2016. Candidate hard unique game. In Proc. 48th Annual ACM Symposium on Theory of Computing (STOC-2016).

63ś76.

[37] Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, and Magnus Wahlström. 2021. Solving hard cut problems via flow-augmentation. In Proc. 32nd

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA-2021). 149ś168.

[38] Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, and Magnus Wahlström. 2022. Flow-augmentation III: Complexity dichotomy for Boolean CSPs

parameterized by the number of unsatisfied constraints. CoRR abs/2207.07422 (2022), 60 pages.

[39] Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, and Magnus Wahlström. 2023. Flow-augmentation III: Complexity dichotomy for Boolean CSPs

parameterized by the number of unsatisfied constraints. In Proc. 2023 ACM-SIAM Symposium on Discrete Algorithms (SODA-2023). 3218ś3228.

[40] Eun Jung Kim, Tomás Masarík, Marcin Pilipczuk, Roohani Sharma, and Magnus Wahlström. 2024. On Weighted Graph Separation Problems and

Flow Augmentation. SIAM Journal on Discrete Mathematics 38, 1 (2024), 170ś189.

[41] Euiwoong Lee and Magnus Wahlström. 2020. LP-branching algorithms based on biased graphs. CoRR abs/1610.06060v2 (2020), 22 pages. Updated

and extended version of (Wahlström, SODA-2017)..

[42] Daniel Lokshtanov, N. S. Narayanaswamy, Venkatesh Raman, M. S. Ramanujan, and Saket Saurabh. 2014. Faster Parameterized Algorithms Using

Linear Programming. ACM Transactions on Algorithms 11, 2 (2014), 15:1ś15:31.

[43] Daniel Lokshtanov and M. S. Ramanujan. 2012. Parameterized Tractability of Multiway Cut with Parity Constraints. In Proc. 39th International

Colloquium on Automata, Languages, and Programming (ICALP-2012). 750ś761.

[44] Greg Marks and Ryszard Mazurek. 2016. Rings with linearly ordered right annihilators. Israel Journal of Mathematics 216 (2016), 415ś440.

[45] Dániel Marx. 2006. Parameterized graph separation problems. Theoretical Computer Science 351, 3 (2006), 394ś406.

[46] Dániel Marx and Igor Razgon. 2009. Constant ratio fixed-parameter approximation of the edge multicut problem. Inform. Process. Lett. 109, 20 (2009),

1161ś1166.

[47] Dániel Marx and Igor Razgon. 2014. Fixed-parameter tractability of multicut parameterized by the size of the cutset. SIAM J. Comput. 43, 2 (2014),

355ś388.

[48] George Osipov and Magnus Wahlström. 2023. Parameterized Complexity of Equality MinCSP. In Proc. 31st Annual European Symposium on

Algorithms (ESA-2023). 86:1ś86:17.

[49] Marcin Pilipczuk, Michał Pilipczuk, and Marcin Wrochna. 2019. Edge Bipartization Faster than 2𝑘 . Algorithmica 81, 3 (2019), 917ś966.

[50] Heinz Prüfer. 1932. Untersuchungen über Teilbarkeitseigenschaften in Körpern. Journal für die Reine und Angewandte Mathematik 168 (1932), 1ś36.

[51] Bruce Reed, Kaleigh Smith, and Adrian Vetta. 2004. Finding odd cycle transversals. Operations Research Letters 32, 4 (2004), 299ś301.

[52] Alexander Schrijver. 2003. Combinatorial Optimization: Polyhedra and Efficiency. Springer.

Manuscript submitted to ACM

Almost Consistent Systems of Linear Equations 55

[53] Askar A. Tuganbaev. 2021. Arithmetical Rings. Journal of Mathematical Sciences 258, 2 (2021), 129ś198.

[54] Magnus Wahlström. 2017. LP-branching algorithms based on biased graphs. In Proc. 28th Annual ACM-SIAM Symposium on Discrete Algorithms

(SODA-2017). 1559ś1570.

[55] Mingyu Xiao. 2010. Simple and improved parameterized algorithms for multiterminal cuts. Theory of Computing Systems 46, 4 (2010), 723ś736.

[56] Thomas Zaslavsky. 1989. Biased graphs. I. Bias, balance, and gains. Journal of Combinatorial Theory, Ser. B 47, 1 (1989), 32ś52.

Manuscript submitted to ACM

	Abstract
	Contents
	1 Introduction
	1.1 Background
	1.2 Our Results

	2 Graph Cleaning
	2.1 LP-relaxation for Rooted Biased Graph Cleaning
	2.2 Biased Graph Cleaning
	2.3 Important Balanced Subgraphs

	3 Graph Partitioning
	3.1 Partition Cut
	3.2 Pair Partition Cut

	4 Algorithm for Min-2-Lin
	4.1 Rings and Integral Domains
	4.2 Helly Dimension
	4.3 Iterative Compression
	4.4 Graph Cleaning
	4.5 The Algorithm
	4.6 Correctness Proof and Complexity Analysis
	4.7 Applicability of the Algorithm: Prüfer Domains

	5 Faster Algorithm for Fields
	5.1 2-Lin over Fields
	5.2 Algorithm for Min-2-Lin over Fields
	5.3 Correctness Proof and Complexity Analysis
	5.4 Even Faster Algorithm for Finite Fields

	6 Hardness Results
	6.1 Three Variables per Equation
	6.2 Rings with Zero Divisors

	7 Conclusions and Discussion
	References

