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SUMMARY
The muscle synergy concept suggests that the human motor system is organized into functional modules
composed of muscles ‘‘working together’’ toward common task goals. This study offers a nuanced compu-
tational perspective to muscle synergies, where muscles interacting across multiple scales have functionally
similar, complementary, and independent roles. Making this viewpoint implicit to amethodological approach
applying Partial Information Decomposition to large-scale muscle activations, we unveiled nested networks
of functionally diverse inter- and intramuscular interactions with distinct functional consequences on task
performance. The effectiveness of this approach is demonstrated using simulations and by extracting gener-
alizable muscle networks from benchmark datasets of muscle activity. Specific network components are
shown to correlate with (1) balance performance and (2) differences in motor variability between young
and older adults. By aligning muscle synergy analysis with leading theoretical insights on movement modu-
larity, themechanistic insights presented here suggest the proposedmethodology offers enhanced research
opportunities toward health and engineering applications.
INTRODUCTION

Hierarchical modularity is a ubiquitous characteristic of complex

living systems such as the human nervous system.1,2 The con-

stituent parts (i.e., individual neurons, muscles etc.) at each level

interact in a goal-directed manner,3 forming functionally special-

ized modules that cooperate toward common task goals. The

putative interactions within these modules include a common

selectivity (i.e., redundancy) for task information along with

unique contributions by individual parts to the processing of

task information. To exemplify this point in the context of motor

control, in seminal work Ivanenko and colleagues noted: ‘‘.We

can think of (electromyographic) EMG waveforms as being

dependent on two aspects. First, there are some underlying

common waveforms shared by the muscles. Second, each

muscle also captures a unique aspect of activation that is not

addressed by any other muscle.’’4 However, for a set of muscle

activity patterns to form an emergent whole (i.e., a coordinated

movement), the integration of redundant and unique muscle

constituents in the form of cross-module, synergistic muscle in-

teractions is necessary. Synergistic interactions combine infor-

mation across functionally heterogeneous modules, therefore

serving as important channels of communication for the integra-

tion of information in the nervous system.5,6 The complementary

information generated by these interactions is super-additive,

emerging from the union of lower-level constituents.7 Indeed,
iScience 28, 111613, Janu
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from a more coarse-grained view, these emergent functional

modules themselves, through hierarchies of complementary

interactions,8 form parts of greater wholes (i.e., submodules-

within-modules).9

Motor control research has focused primarily on deciphering

how the numerous degrees of freedom of the human body

are coordinated for everyday tasks.10,11 This avenue of

research uses the ‘‘muscle synergy’’ as a guiding concept,12,13

where the cohesive interactions between groups of muscles

(‘‘muscle synergies’’) map to common task goals, and in doing

so simplifies movement execution. This definition of synergy

hinges on covariations between muscles that represent their

functional cooperation (‘‘working together’’) and is distinct from

the information-theoretic-based description we have previously

provided here. To avoid confusion in the use of the synergy term,

here we refer tomuscle covariations as couplings or interactions,

and based on our framework presented below, we separate

these further into ‘‘redundant’’ (i.e., functionally similar) and

‘‘synergistic’’ (i.e., functionally complementary) types of interac-

tion. Thus, unlike the traditional definition of synergy in motor

control,12 here synergy is a specific type of muscle interaction

where muscles cooperate toward different, complementary as-

pects of task performance. This distinction in muscle interaction

types is inspired by recent influential works suggesting that a

more complex functional architecture underlies human motor

control.14–17 For instance, anatomically proximal musculature
ary 17, 2025 ª 2024 The Author(s). Published by Elsevier Inc. 1
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thought to have equivalent task efficacy have, in fact, demon-

strated a partial decoupling and sharing of common drive

with distal musculature.14,15 This distributed neural architecture

strongly suggests that muscle interactions contribute in

functionally diverse ways to task performance. Moreover, the

identification of independent functional modules indicates that

multiple sources of common drive are likely present in the mus-

cle space.17 Altogether, this recent perspective proposes that

functional modularity exists both between and within muscles,

simplifying the control of movement by enabling their flexible

compliance toward multiple task objectives.18 It also integrates

independent muscle control as a fine-grained control mecha-

nism into the conceptual perspectives on course-grained motor

control, importantly broadening the context of humanmovement

modularity for the research field. It is therefore prescient for the

field to develop analytical approaches to comprehensively un-

derstand human movement modularity from this nuanced

perspective. Hence, an objective of this study is to specifically

address this research gap by providing a bridge between theo-

retical and computational frameworks within the motor con-

trol field.

In Ref.,19 we addressed this research gap by proposing a

computational framework that dissects task information into

task-irrelevant (i.e., present across all tasks), -redundant, and

-synergistic muscular interactions. In doing so, we aligned cur-

rent analytical approacheswith this recent perspective to flexible

movement control. However, the separate quantification of the

task-relevant information that is not shared or complementary

between muscles (i.e., provided uniquely by individual muscles)

is not possible using current analytical approaches. Intuitively,

this task information encodes the functionally independent

muscle activations that contribute uniquely to task performance,

generated potentially by both central and peripheral sour-

ces.18,20,21 Although independent motor control mechanisms

are well established and can improve with training,22,23 the inclu-

sion of this attribute in recent theoretical workmarks a significant

departure from traditional perspectives.18 Thus, here we will

address this important current research gap by developing a

methodology for the comprehensive quantification of unique

task information in the muscle space.

A second consideration we address here concerns the

coverage given by the muscle synergy concept to the contribu-

tion of whole muscle groups, rather than individual muscles, to-

ward task objectives. Themotor redundancy problemmotivating

this concept describes how common neural inputs map to the

task space through intermuscular components.13 However, the

end-effectors of this mapping operation are in fact individual

muscles with their own unique anatomical attachments and acti-

vation timings16,24; thus, as recognized by several lines of recent

research,9,15,18,25 the muscle group may not be the smallest unit

of modular control. The current muscle synergy concept there-

fore does not comprehensively describe the hierarchical struc-

ture of functionally cooperative muscles. Only more recently

has the muscle synergy concept been formally applied at the

intramuscular level,25 revealing that intramuscular synergies

are independent of the muscles’ compartmentalized structure

and may be complementary to intermuscular analyses as a win-

dow into the neural control of movement.26,27 To incorporate this
2 iScience 28, 111613, January 17, 2025
shift in perspective into current analytical approaches, here we

aim to redefine the ‘‘working together’’ notion of the muscle syn-

ergy to more comprehensively encapsulate this hierarchical

characteristic of the human motor system.

In the current study, through a principled methodology, we

aimed to probe the hierarchically structured functional architec-

ture of the motor system, revealing salient features of movement

modularity at multiple scales. To this end, we built upon tradi-

tional approaches and our recent innovations by directly

including task parameters during muscle synergy extraction

but here, by employing a Partial Information Decomposition

(PID) (Figure 1A). With this proposed approach implemented in

an established pipeline, we redefine the ‘‘working together’’

idea underpinning muscle synergies to characterize the hierar-

chical decomposition of task performance (t) by functional mod-

ules (C1-C3 [Figure 1B]) that are composed of diverse types of

interactions (i.e., functionally similar (redundant [pink intersec-

tion]), complementary (synergistic [orange shading]), and

independent (unique [magenta and cyan intersections]) both be-

tween and within muscles (e.g., C2 and both C1 and C3 of Fig-

ure 1B, respectively). Intuitively, synergistic information is the in-

formation shared by a given muscle pair (½mx;my�) about t that

can only be gained by observing mx and my together. On the

other hand, redundant information is the task information shared

by mx and my that can be found in either alone. Finally, unique

information is the task information provided by either mx or my

that is not found in the other. Hence, our framework can quantify

any kind of functional relationship both inter- and intramuscularly

and align current muscle synergy analysis and its underlying

‘‘work together’’ concept with the forefront of understanding

on human movement modularity.

Toward the overall aim of this study, we applied the proposed

framework to three human movement datasets (whole-body

reaching—dataset 1, balancing on a balance board—dataset

2, and an object-lifting task—dataset 3) (Figure 1C), revealing

generalizable patterns of diverse types of functional interactions

both between and within muscles that encode distinct features

of motor behavior. By redefining themuscle synergy idea as a hi-

erarchical task decomposition implicitly in a computational

approach, we provide crucial nuance and generalizability to mo-

tor control research to further biological insights and practical

applications in the field. To supplement the work presented

here, we have made available MATLAB codes for readers

to apply and simulate this framework: https://github.com/

DelisLab/Muscle_PID.

RESULTS

Principled mapping of muscle interactions to task
performance
Our primary aim here is to probe the functional architecture of the

motor systemby establishing a principledmethod for quantifying

task-redundant, -synergistic, and unique informational dy-

namics underlying motor behavior, thus redefining the ‘‘working

together’’ concept of muscle synergies as a hierarchical task

decomposition composed of diverse types of functional interac-

tion both between and within muscles (Figure 1B). To achieve

this, we firstly introduce our computational framework and apply

https://github.com/DelisLab/Muscle_PID
https://github.com/DelisLab/Muscle_PID


Figure 1. The proposed conceptual and methodological paradigm

(A) Top: building on traditional muscle synergy analysis based on dimensionality reduction and a recent computational framework introducing an information-

theoretic measure of net redundancy/synergy (pink-orange intersection) known as Co-Information,28 here we introduce Partial Information Decomposition

(PID),29 to more comprehensively quantify and functionally characterize muscle interactions. Bottom: the underlying premise of this framework builds on current

approaches that quantify muscle covariations as shared variability (white-yellow intersection) and our previous work that dissects the task-relevant information

from the task-irrelevant information (yellow intersection) and characterizes it as either functionally redundant (pink shading) or synergistic (orange shading).19 By

employing PID, here we incorporate the capability of separately quantifying redundant (pink intersection ½R�), synergistic (orange shaded area [S�), and unique

information (magenta ½U1] and cyan ½U2] intersections) from the shared information a givenmuscle pair ([mx;my]) shares with a task parameter (t) (see Equations 1

and 2 of STAR Methods section for further details).

(B) To align our approach with recent theoretical work in the field,18 we redefine the ‘‘working together’’ notion of muscle synergies to characterize a hierarchical

decomposition of t by functional modules composed of diverse types of interactions both between and within muscles (e.g., C2 and both C1 and C3,

respectively).

(C) An overview of the proposed framework. (A) EMG data along with corresponding task parameters are recorded from human participants performing

naturalistic movements. (B) PID is applied to all [mx;my] and t combinations, with the resulting information atoms then input into an established pipeline.19,30 (C)

The output of this framework is low-dimensional components consisting of pairwise dependencies between muscles and their task- and participant-specific

activations.
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it to pairs of electromyographic (EMG) signals across time ([mx;

my ]) and a corresponding, continuous task parameter (t) (e.g., ki-

nematics, dynamics etc.) (see ‘‘quantifying functionally diverse

muscular interactions’’ section in the STAR Methods).29 The

basic premise behind this approach is that the direct mapping

of muscle interactions to task performance is crucial for

understanding and principally quantifying their functional under-

pinnings. Unlike current approaches that first identify muscle

couplings and then relate them to task performance, our pro-

posedmethodology firstly quantifies the task information carried

by each muscle activation and then builds networks of common

task information across muscles. The proposed Partial Informa-

tion Decomposition (PID) approach parses the effects on t by a

pair of muscle activations ([mx;my ]) into four separate atoms of

information (i.e., task-redundant ½R], -synergistic ½S], and two

unique information components [Ux and Uy ]) by decomposing

their joint mutual information (JMI) (see Figure 2A for a toy

model). R is the predictive information between [mx;my ] about
t that can be found in either alone (e.g., mx of Figure 2A redun-

dant model alone fully predicts t), encapsulating the portion of

the [mx;my ] pairing that has a similar functional consequence.

S on the other hand, is the predictive information provided by

[mx; my ] about t that is produced only when mx and my are

observed together (e.g., to predict t in the synergistic system

of Figure 2A, both mx and my need to be observed together),

capturing the functional complementarity within the interaction.

Finally, Ux and Uy are the predictive information within [mx;my ]

about t that is only present in mx or my alone, capturing the

unique contributions of the individual muscles within the func-

tional interaction (e.g., mx predicts an ‘‘L’’ result in t irrespective

of the state of my and vice versa for predicting an ‘‘R’’ outcome

(Figure 2A). Thus, in contrast to the traditional conception of

muscle synergies as co-variations across muscles, here instead

we firstly extract shared task information between individual

muscles, decompose each muscle interaction into different

types of functional muscle covariation (see Figure 2A), and
iScience 28, 111613, January 17, 2025 3



Figure 2. Toy simulation of different types of functional muscular interaction

(A) A toymodel demonstrating how redundant, synergistic, and unique task information can be interpreted from the application of the PID approach to themuscle

space. Four observations of a givenmuscle pair (mx andmy ) that can fall into two equiprobable on and off activation states and a corresponding task parameter (t)

describing left (L) or right (R) movement direction. Observing eithermx ormy in the redundancy example gives 1 bit of information while observing bothmx andmy

together only in the synergy example gives 1 bit of information. Turning to the unique information example, when my is active in a specific way, it predicts an R

outcome irrespective of the state of mx and vice versa. Thus, both mx and my each provide task information that cannot be found in the other.

(B) To further demonstrate the intuition behind our approach in recovering functionalmuscle relationships, we have carried out a toy simulation (see https://github.

com/DelisLab/Muscle_PID) where we simulated two EMG signals (Mx ;My ) with a specified signal correlation (i.e., covariation in the average task-specific re-

sponses of the muscles) and noise correlation (i.e., covariations in the trial-to-trial responses of the muscles). The joint responses of Mx and My are plotted for

different combinations of positive, negative, and null signal and noise correlation where the ellipses illustrate the direction and overlap of the muscles responses.

(C) PID was applied toMx andMy at a range of positive and negative signal and noise correlations, describing how redundancy, synergy, and unique information

vary with respect to these task encoding mechanisms. The PID values presented are normalized with respect to the JMI, thus illustrating the proportional

contributions of each interaction type. For unique information, the average over Mx and My in each instance is displayed.

4 iScience 28, 111613, January 17, 2025
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then determine common patterns of functional interactions

across the muscle network (see Figure 3 for an overview of the

framework).

Simulating functionally diverse muscle interactions
reveal close associations with neural coding concepts
To provide further intuition on the use case of this approach in

recovering functional relationships between muscles, we also

implemented a toy simulation in MATLAB (see https://github.

com/DelisLab/Muscle_PID) (Figures 2B and 2C). To briefly sum-

marize, we simulated multiple trials (N = 100) of two EMG signals

(Mx;My ) by summing a combination of sinusoids of frequencies

commonly found in EMGs (i.e., 20–150 Hz). Additionally, we

included a shared encoding between the EMGs for a simulated

binary task parameter and then adjusted their relative tuning to-

ward this task parameter such that their average task-specific

responses could have positive (similar), negative (complemen-

tary), or null (independent) correlations (i.e., signal correlation).

Further, we then injected separate Gaussian noise signals into

both EMGs with a specified level of trial-to-trial covariation

(i.e., noise correlation).

Figure 2B illustrates the average responses ofMx andMy with

respect to one another for different signs of signal and noise cor-

relation. The ellipses on each plot here indicate the distribution of

eachmuscles’ average responses, together illustrating their rela-

tive tuning direction and overlap.

To determine how these patterns of joint response are re-

flected within our framework, we applied PID to Mx and My at

various ranges of signal and noise correlation with respect to

the corresponding task parameter (Figure 2C). Corresponding

well with our previous insights here (Figure 2B), we found that

when signal and noise correlations have the same sign (see

top right and bottom left panels in Figure 2B), the information

provided by the muscle activation relationship is redundant. In

this case, e.g., a high value of Mx provides common task infor-

mation with e.g., a low value ofMy. On the contrary, when signal

and noise correlations have the opposite sign (see top left and

bottom right panels in Figure 2B), the information provided by

the activation relationship is synergistic. In this case, it is the rela-

tionship between the two muscles that increases the task infor-

mation. For example, knowing that the activation of Mx is high

while the activation of My is low provides more task information

(and consequently better task discrimination) than observing the

two muscle activations independently. Finally, when signal (or

noise) correlations are close to zero (see e.g., middle panel in

Figure 2B), task information is conveyed uniquely by each mus-

cle and not their relationship. In this example (middle panel), only

the activation of Mx conveys information about the task

performed.
Figure 3. A summarized overview of the NIF pipeline

(A) EMG data are captured from human participants performing naturalistic mov

(B) The joint mutual information (JMI) between all muscle pair and continuous

decomposition framework, resulting in separate networks of redundant (R), syne

(C) Each network is sparsified with respect to its percolation threshold, identifyin

(D) A hierarchical community detection essentially unravels and identifies overlap

(E) The optimal number of clusters identified serves as the input parameter int

components of muscular interactions along with task- and participant-specific a
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Altogether, the results of this toy simulation demonstrate how

our approach can capture functional muscle relationships of any

kind in a way that aligns closely with established research on the

mechanisms of neural coding.31–33

The Network-Information Framework pipeline
Continuing, following this decomposition, we then ran the sepa-

rate PID atoms through an established pipeline,19,30 referred to

as the Network-Information framework (NIF) (Figures 3A–3E)

(see STAR Methods for detailed breakdown). The purpose of

the NIF is to produce functionally and physiologically relevant

and interpretable low-dimensional components of muscular in-

teractions underlying coordinated movements. The following

briefly summarizes the main steps of the pipeline.

(1) To produce a comprehensive network of functional mus-

cle interactions, we applied the PID framework over all

unique [mx;my ] and t combinations for each participant

(Figure 3B). This iterative procedure results in a multiplex

network, with each layer consisting of all functional de-

pendencies between muscle pairs for a particular PID

atom, t and participant.

(2) To determine the statistically significant interactions at the

network level, we applied a modified percolation analysis

to each layer of the multiplex network (Figure 3C).6

(3) To determine the optimal number of clusters to extract

from structurally nested networks, we employed a link-

based community detection protocol based on a modu-

larity maximization cost-function (Figure 3D).34–36

(4) The optimal cluster count was then used as the input

parameter into dimensionality reduction, namely a projec-

tive non-negativematrix factorization (PNMF) algorithm,37

to extract patterns of muscle connectivity along with their

task- and participant-specific activations (Figure 3E).

Hierarchical and functionally diverse muscular
interactions underly motor behavior
To demonstrate the proposed PID approach, we present an

example output from an application to the EMG recordings of

a single participant (across all trials) from dataset 1 with respect

to the combination of the reaching finger kinematic coordinates

(i.e., X*Y*Z). This participant was instructed to perform a total of

72 different randomly selected whole-body point-to-point reach-

ing tasks for �2,160 trials (see Figure 4A) and ‘‘data acquisition

and experimental conditions’’ section of the STARMethods sec-

tion). In Figure 5, we illustrate the redundant (R, Figure 5B), syn-

ergistic (S, Figure 5C), and unique (Ux and Uy, Figure 5D) inter-

actions between muscles, as well as their sum total, which

they are all normalized by (i.e., JMI, Figure 5A). Human body
ements.

task parameter combinations is decomposed using the partial information

rgistic (S), and unique muscle interactions (U1, U2).

g statistically significant functional connections.

ping clusters of network dependencies.

o dimensionality reduction, where like current approaches, low-dimensional

ctivations are extracted.

https://github.com/DelisLab/Muscle_PID
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Figure 4. The datasets used in the applica-

tion of the proposed framework in the cur-

rent study

(A) Dataset 1: healthy adult participants performed

whole-body reaching tasks in various heights and

directions while EMG and kinematics were

captured across the body.41.

(B) Dataset 2: healthy adult participants performed

10 trials of balancing on a balance board while

EMGwas captured among the bilateral lower-limb

flexors and extensors simultaneously to the hori-

zontal angular displacement of the balance board.

(C) Dataset 3: healthy younger and older adults

performed a reach-grasp-lift-hold and replace

task of both light and heavy objects while

EMG from the arm musculature bilaterally were

captured along with load and grip forces on the

grasped object.42 For full details on the experi-

mental setup of these datasets, see ‘‘data acqui-

sition and experimental conditions’’ section of the

STAR Methods.
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models accompanying each of the JMI, R, and S muscle net-

works illustrate the strongest interactions between muscles

(indicated by edge-width),38 the muscle subnetworks (node co-

lor), and the network centrality (a measure of a muscle’s relative

importance indicated by node size) (see ‘‘subnetwork analysis’’

section of STAR Methods).34,39,40 The Ux and Uy terms are not

considered as a muscle coupling, as they encode the task infor-

mation present in one muscle that is not present in another and

vice versa, and so instead the average unique information (Uxy )

for each muscle is presented as a bar graph that is color coded

to illustrate specific bodily regions.

The JMI network is composed of a single submodule (red

nodes) with the greatest network centrality among the reach-

ing-side biceps brachii and lateral triceps (Figure 5A). These

prime-mover muscles are central, as basically all other muscles

are functionally coupled to them, whereas the contralateral bi-

ceps and triceps mirror this organization to some extent with

further interactions with the left biceps femoris and bilateral

rectus femoris. When these dependencies are decomposed

into their PID components (Figures 5B–5D), we reveal a more

complex functional architecture underlyingwhole-body reaching

movements. The functionally similar (redundant) and comple-

mentary (synergistic) networks consist of multiple overlapping

subnetworks widespread across the body (Figures 5B and 5C).
iS
Among the redundant subnetworks,

several muscles demonstrate a high level

of centrality (e.g., right pectoralis, trape-

zius, biceps femoris and vastus lateralis,

left tibial musculature, and bilateral

gluteus maximus) (Figure 5B), whereas

synergistic subnetworks demonstrate

a more even spread of functional

importance (Figure 5C). The synergistic

network consisted of functional muscle

couplings that were essentially counter-

factual to the connectivity of the redun-

dant network (i.e., all connections not
present within the redundant network were present within the

synergistic network and vice versa), thus illustrating the crucial

cross-module connectivities that functionally integrate comple-

mentary information across the muscle network. Interestingly,

the redundant prime-movers in Figure 5B did not contain much

unique task information (Figure 5D), whereas muscles displaying

considerable functional independence did not feature promi-

nently in the redundant networks (e.g., right triceps brachii, ante-

rior and posterior deltoid). This suggests that although different

types of interaction co-occur between muscles, their propor-

tional contributions map strongly to the muscles’ physiological

function in the context of the task demands (i.e., reaching-side

shoulder musculature requires more selective control to guide

the arm to specific targets [see Figure 4A]).

Next, to elucidate the functional interactions within muscles

underlying whole-body reaching movements, we applied the

proposed methodology to pairwise combinations of amplitude

signals from six frequency bands (½fx;fy ]) (Delta [0.1–4 Hz], Theta

[4–8 Hz], Alpha [8–12 Hz], Beta [12–30 Hz], Low Gamma [Piper

rhythm] [30–60 Hz], High Gamma [Gamma] [60–80 Hz]) (see

‘‘quantifying functionally diverse muscular interactions’’ and

‘‘data pre-processing’’ sections of the STARMethods) extracted

from the right anterior deltoid muscle. This computation serves

as a nonlinear measure of coherence decomposed into its
cience 28, 111613, January 17, 2025 7



Figure 5. An example application of the proposed framework. Application of the proposed framework to the intermuscular space of a single

participant performing multiple trials of various whole-body reaching tasks (dataset 1)

The joint mutual information (JMI) (A) and its informational components, redundant (B), synergistic (C), and unique information (D) were determined with respect to

the combination of the reaching finger kinematic XYZ coordinates (i.e., X*Y*Z). Values for R, S, and Uxy were normalized with respect to the presented JMI

values.43 Human body models accompanying each representation in (A)–(C) illustrate the strongest connectivities (edge-width),38 the subnetwork community

structure (node color), and network centrality (relative node size).34,39,40 The Ux and Uy terms are not considered as a muscle coupling, as they encode the task

information present in onemuscle that is not present in another and vice versa, and so instead the average unique information (Uxy ) for eachmuscle (LLB = purple,

LUB = green, RLB = red, RUB = black) is presented as a bar graph. The accompanying human body model to the left illustrates the predominant muscles (color

coded to represent their bodily region) that encoded unique information about the right, reaching finger kinematic.
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task-relevant informational constituents, which we used here to

determine the multifarious effects of ½fx; fy ] on the right, reaching

finger anteroposterior kinematic (Figure 6). The intramuscular

JMI network composed of a mixture of dependencies between

distinct oscillations (Figure 6A), most prominently between the

Delta-Theta rhythms. When we decomposed their shared task
8 iScience 28, 111613, January 17, 2025
information, the rhythmic activities of the right anterior deltoid

presented amore distinguishable encoding of task performance.

Gamma amplitudes were functionally similar in their encoding of

the finger kinematic with respect to all other frequency bands

while a separate Delta-Theta coupling was also had functionally

similar consequences (Figure 6B). The Piper rhythm composed



Figure 6. Application of the proposed framework to frequency-specific amplitudes in the reaching side anterior deltoid muscle of a single

participant performing multiple trials of various whole-body reaching tasks (dataset 1)

The joint mutual information (JMI) (A) and its informational components, redundant (B), synergistic (C), and unique information (D) were determinedwith respect to

the reaching finger anterior-posterior kinematic coordinate. Values for R, S, and Uxy were normalized with respect to the presented JMI values.43 The Ux and Uy

terms are not considered as a coupling, as they encode the task information present in one oscillation that is not present in another and vice versa, and so instead

the average unique information (Uxy ) for each frequency band are presented together as a bar graph.
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of task-synergistic information in the anterior deltoid muscle

when coupled with the Theta and Alpha oscillations (Figure 6C).

Meanwhile, the amplitude of beta oscillations provided the most

functionally independent information about the reaching finger

kinematic on average, followed by Delta and Theta amplitudes

(Figure 6D).

These findings provide strong evidence toward the basic

premise of and motivation for this framework in redefining the

muscle synergy concept as a hierarchical decomposition of

motor behavior by functionally diverse muscle interactions,

evidence that links well with emerging findings in the field.14,15

Generalizable components of functionally diverse inter-
and intramuscular interactions
Having demonstrated the presence of the diverse types of func-

tional interactions both between and within muscles, we then

sought to extract motor components that are generalizable

beyond any individual participant and task.

Beginning with intermuscular components, we identified four

R and S (R1–R4 and S1–S4) and three Uxy (U1–U3) components

with respect to the XYZ (anterior-posterior, medio-lateral

vertical directions) coordinates of 21 kinematic markers (21 x 3

dimensions = 63 task parameters in total) across the body of

three participants performing whole-body reaching movements

(>2,000 trials each). For brevity here, we provide illustrations of

the output in the supplementary materials (Figures S1–S3). To

examine the generalizability of these components, in a leave-

one-out cross-validation procedure, we removed an individual

task parameter or participant from the input data and then re-ex-

tracted the same number of components and computed correla-

tions between these data subsets’ output and the full dataset’s

output (see ‘‘examining the generalizability of extracted motor

components’’ section of the STAR Methods). We found an

almost perfect concordance between the presented intermuscu-

lar components and those extracted from a subset of the data

(�0.99 average correlation). The robustness of these compo-

nents exceeds previous implementations of the NIF,19,30 where

a high level of concordance was also found.

Turning to the intramuscular space, applying the proposed

approach within all 30 muscles with respect to 63 kinematic co-
ordinates from the three participants of dataset 1 revealed four R

(R1–R4 [Figure S4]) and three S (S1–S3, [Figure S5]) andUxy (U1–

U3 [Figure S6]) components. The generalizability of these intra-

muscular components was proven at the intramuscular level

with�0.99 correlation typically for both individual tasks and par-

ticipants among R and S networks. A slightly lower concordance

amongUxy (r = 0.9) was found when an individual participant was

removed from the input data.

Hierarchies of functional muscle interactions encode
distinct motor features
Finally, having quantified diverse types of functional muscle

interaction at both inter- and intramuscular scales, we then

investigated the functional relevance of the extracted muscle

networks at each of these scales. Specifically, we asked if the

identified muscle interactions are reflective of motor perfor-

mance (balance—dataset 2) and motor decline with age (object

lifting—dataset 3).

Functionally diverse intermuscular interactions reflect

balance performance

To begin with dataset 2, we identified and extracted five R, four

S, and four Uxy intermuscular components. We then used the

trial-specific activations from the extracted components for

each participant (normalized with respect to their corresponding

JMI) to predict motor performance in each trial (i.e., the total bal-

ance board error calculated as the sum of absolute deviations

from 0� on the horizontal plane of the balance board) (
P

Error)

(see ‘‘salient features of motor performance’’ of the STAR

Methods section). As multiple observations for the same partic-

ipant were present within these vectors (n = 10 trials each), we

determined associations using repeatedmeasures correlation,44

a measure of linear correlation that models participant-specific

clustering in the data.

We found two intermuscular interactions (S2 with synergistic

couplings between both BF-R and MGN-R, and the left tibialis

anterior (TA-L), r = 0.64, p = 0.0003 and R2 with redundant cou-

plings between the right medial-gastrocnemius (MGN-R) and

biceps femoris (BF-R) and BF-R and left rectus femoris (RF-L),

r = 0.64, p = 0.0003) (Figure 7A). Interestingly, muscle couplings

representing redundant and synergistic interactions here did not
iScience 28, 111613, January 17, 2025 9
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appear prominently in the motor component U4 contributing

uniquely to task performance. In contrast, the unique task infor-

mation in the right rectus femoris (RF-R) and to a lesser extent

TA-L (together possibly representing their important roles in

crossed-extensor reflex actions) was related to a significant

reduction in
P

Error (r = �0.44, p = 0.02), i.e., predicting better

balance performance (Figure 7A).

Functionally similar intramuscular interactions reflect

balance performance

Turning to the intramuscular space, we identified and extracted

fiveR and three S andUxy from dataset 2 and found three of these

components significantly correlatedwith
P

Error across trials (see

‘‘salient features of motor performance’’ of the STAR Methods

section) (Figure 7B). These components all represented redun-

dant amplitude couplings (R2-R4), consisting exclusively of spe-

cific coherences between the gamma band and other lower fre-

quency amplitudes (Delta and Theta in R2, Beta and Piper in R3,

and Alpha in R4) and were negatively correlated with
P

Error

(i.e., increased involvement of intramuscular modules resulted

in improved balance performance: r = �0.45, p = 0.015 for R2;

r = �0.51, p = 0.006 for R3; and r = 0.42, p = 0.03 for R4).

The activation variability of a combination of bilateral

muscle networks predicts age differences in bimanual

object lifting

Next, we asked which muscle interactions may underpin differ-

ences in motor performance resulting from aging. In the motor

control literature, older adults have been shown to exhibit greater

motor variability compared to young cohorts,45 leading to behav-

ioral inconsistency. To answer this question, we applied our pro-

posed approach to dataset 3,42 consisting of EMG recordings

(eight upper-limb muscles bilaterally) from healthy young (N =

14) and older (N = 18) participants performing a bimanual

reach-grasp-hold task of both light and heavy objects (see

Figure 4C and ‘‘data acquisition and experimental conditions’’

section of the STAR Methods).

Applying PID to all pairs of EMG signals to predict the bilateral

grip and load forces (i.e., four taskparameters) theparticipants ex-

erted,we identified and extracted fiveR, sevenS, and threeUxy in-

termuscular components. To investigate how this variability would

manifest in the extracted functional muscle patterns, we defined a

measure of motor variability in the activation of muscle or fre-

quency couplings (
P

Error) and applied it to the extracted compo-

nents (see ‘‘salient features of motor performance’’ of the STAR

Methods section). These vectors were then employed as the pre-

dictors in a binary logistic regression model against participants’

age group (Young = 0 vs. Old = 1). This procedure indicated that

a combination of the 5th R (b = �2.12 ± 0.801, p < 0.01), 7th S

(b = 1.36 ± 0.704, p = 0.053), and 3rd Uxy (b = 0.964 ± 0.445,

p < 0.05) motor components were optimal in predicting age group

(Figure 8A), classifying 75% of participants correctly.
Figure 7. Application of the proposed framework to multiple trials on a

(A) The intermuscular components (R2, S2, and U4) determined to have a signifi

dataset 2. Top: each adjacency matrix, the human body models illustrate the n

connection strength, importance, and sub-modularity, respectively.34,39,40 Botto

with balance performance.

(B) Top: the intramuscular components (R2, R3, and R4) determined to have a sign

dataset 2. Bottom: scatterplot of the corresponding repeated measures correlat
The activation variability of a combination of functionally

diverse intramuscular rhythms predict age differences

in bimanual object lifting

When applied in the same way to the corresponding intramus-

cular level of dataset 3, we identified and extracted five R, four

S, and four Uxy rhythmic components. Participants’ age

group was optimally predicted by a combination of the 4th R

(b = �0.557 ± 0.313, p = 0.075), the 2nd S (b = �11.75 ± 4.6,

p = 0.011), and the 1st Uxy (b = 1.94 ± 0.982, p < 0.05), which

classified 84.4% of participants correctly (Figure 8B). Taken

together, these findings suggest that concomitant increases

and decreases in the variability of functionally diverse muscle in-

teractions across scales characterize aging-induced changes in

upper limb motor function.

DISCUSSION

In this study, we aimed to probe a recently proposed functional

architecture for the human motor system by redefining the mus-

cle synergy concept. To this end, we proposed a computational

approach to muscle synergy analysis that separately and

simultaneously quantifies the redundant, synergistic, and unique

contributions of muscle interactions to task performance at both

intermuscular (i.e., pairs of muscle activations) and intramus-

cular (i.e., pairs of rhythmic activities) levels. This approach

presents a nuanced perspective to the ‘‘work together’’ idea of

muscle synergies, conceptualizing it instead as the hierarchical

decomposition of motor behavior by functional modules

composed of diverse types of interactions both between and

within muscles. It also builds on a previously established pipeline

for the extraction of task-relevant muscle interaction patterns

whose basic premise is that muscle interactions should be

directly mapped to task performance to understand their spe-

cific functional underpinnings. Our innovation here goes further

by enabling the quantification of the independent contributions

of muscles (or intramuscular oscillations) to task performance,

thus integrating recent theoretical perspectives on motor modu-

larity into muscle synergy analysis. In firstly applying this frame-

work in a toy simulation, we found that our approach is capable

of recovering functional muscle relationships in an intuitive way.

From applying our framework to benchmark datasets, we then

demonstrated how the decomposition of task-relevant muscle

combinations reveals complex functional architectures underly-

ing everyday human movements. These functional architectures

displayed a highly nested network structure of functionally

similar and complementary information processing between

muscles along with their independent functional contributions.

We then investigated the functional interactions at the intramus-

cular level between frequency-specific oscillatory amplitudes,

revealing that functional modularity is a scale-invariant
balance board

cant (p < 0.05) correlation with balance performance (
P

Error) across trials in

etwork structure with relative edge thickness, node size, and color reflecting

m: scatterplots illustrating the corresponding repeated measures correlation

ificant (p < 0.05) correlation with balance performance (
P

Error) across trials in

ion outputs.
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Figure 8. Application of the proposed framework to young and older adults performing reach-and-grasp tasks

(A) The intermuscular components (R5, S7, U3) whose underlying recruitment variability (
P

Error) was significantly predictive of participants’ age group. All three

components formed part of a binary logistic regressionmodel (R5: [b =�2.12 ± 0.801, p < 0.01], S7: [b = 1.36 ± 0.704, p = 0.053], U3: [b = 0.964 ± 0.445, p < 0.05])

and classified 75% of participants correctly. Above the adjacency matrices, human body models illustrate the network connectivity, with relative edge width,

node size, and color representing the connection strength, muscle importance, and sub-modularity.34,39,40.

(B) The intramuscular components (R4, S2, U1) whose underlying recruitment variability (
P

Error) was significantly associated with participants’ age group. All

three components formed part of a binary logistic regression model (R4: [b = �0.557 ± 0.313, p = 0.075], S2: [b = �11.75 ± 4.6, p = 0.011], U1: [b = 1.94 ± 0.982,

p < 0.05]) and classified 84.4% of participants correctly.

iScience
Article

ll
OPEN ACCESS
characteristic fundamental tomovement construction. We found

that the extracted inter- and intramuscular components were

consistently generalizable beyond any data subset and across

disparate motor tasks such as whole-body reaching and

balancing tasks. Finally, we showed that these motor compo-

nents were differentially correlated with salient motor features

including motor adaptation and age group, suggesting they offer

complementary windows into movement control. Thus, we pre-

sent the proposed framework as a powerful tool for fundamental

mechanistic investigations from a neural coding perspective on

human action. As demonstrated here, this analytical tool can

be used to (1) characterize the functional outcomes of muscle in-
12 iScience 28, 111613, January 17, 2025
teractions and compare them across populations or conditions

and (2) identify physiological markers of motor performance,

learning, or impairment.

The proposed methodology aligns with recent theoretical in-

novations in the field proposing functional modularity both within

and between muscles as a mechanism for simplified and flexible

movement control.18 Within this theoretical framework, moto-

neurons affiliated with overlapping functional groups may inner-

vate the same or different muscles, whereas individual muscles

can also be independently controlled concomitantly. This prop-

osition implies a diverse range of hierarchical muscular interac-

tions including muscles working together toward functionally
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similar (redundant), complementary (synergistic), and indepen-

dent (unique) task goals.14,15,17 Inspired by the neural coding

literature,31–33 by posing the degrees of freedom problem of co-

ordinated movement as the problem of information sharing

across muscle networks, our framework effectively reveals this

hierarchical and diverse functional architecture. To elaborate,

the extracted motor components captured multiple, co-occur-

ring subnetworks of muscles (or intramuscular rhythms) forming

overlapping functional groups. The functional nestedness un-

veiled here suggests that the motor system generates hierarchi-

cal task representations whose dimensions are folded into one

another to simplify movement control. In effect, and as concep-

tualized here as ‘‘working together,’’ this suggests that the motor

system adaptively decomposes the problem of task execution

into manageable sub-tasks addressed through hierarchical

recursion, interestingly mirroring dynamic programming archi-

tectures.46 Continuing, several of these patterns were shared

across interaction types (e.g., Figures S1–S3), indicating diverse

information processing indeed occurred concomitantly within

the same muscle networks. Many of these motor components

were centrally defined or were more widespread across the

body. These networks of functional muscle connectivity across

the body are underpinned by polysynaptic communication path-

ways involving feedforward and feedback processes.21 Among

these communication pathways, both the centralized and

peripherally sourced routing of task information globally inte-

grate muscle functionality across the body while diffusive

processes prevail more locally, promoting a segregation of func-

tional roles.20,47–49 Moreover, the unique adherence of top-down

and bottom-up motor processes to specific task features en-

hances the selectivity of sensorimotor representations and

consequently the adaptability of movement control.21,50 The re-

sults of our toy simulation suggest that the capacity for muscles

to be uniquely adherent to specific task objectives however

are constrained to specific ranges of noise correlation (see

Figure 2C), suggesting limits to the independent control of

muscles.51 Future work incorporating network communication

models with the capacity to integrate these mechanisms of

information transfer may be fruitful for understanding how motor

signals are broadcast throughout the nervous system.49

The separate quantification of unique, redundant, and syner-

gistic task information proposed here brought about interesting

insights into human motor control. For instance, we were able

to identify the functional underpinnings of increased motor

variability in older adults. We found variability in functionally

complementary intermuscular couplings increased with age

but decreased intramuscularly with age also (Figure 8), suggest-

ing aging has differential effects on functionally integrative

mechanisms across scales. Meanwhile, variability in functionally

redundant and independent networks reduced and increased,

respectively, across both scales in the older adults group. These

findings firstly contest the notion of increased motor variability

with aging being simply a manifestation of motor noise but

demonstrate in fact that this variability manifests in functionally

relevant channels of muscle interaction. These insights also sup-

port empirical work highlighting functional integration as a

compensatory mechanism in individuals with age-related neuro-

degeneration,52 going further in showing that this supplementary
integration is not present across all scales but, in fact, may come

at the expense of other scales. Finally, the fact that all three

interaction types each had unique explanatory information about

aging highlights the comprehensive characterization of motor

control our approach can provide about multifaceted health con-

ditions. Future work identifying the exact neural underpinnings of

these distinct types of muscle interaction will further bolster the

clinical insights of this approach. Continuing, we were also able

to show that diverse types of task information are not isolated to

specific muscle couplings or rhythms but are dynamically gener-

ated by various oscillatory signals tomeet task demands. Among

intramuscularR, gamma amplitudes were repeatedly associated

with improved balance performance across participants when

coupled in a functionally similar way with alpha- and beta-bands

(Figure 7B). The alpha- and beta-bands have been the subject of

focus in several studies showing their crucial role in muscle syn-

ergy generation and monitoring.53–55 Here, we add to this line of

research by uncovering a potentially crucial role of higher

gamma oscillations in movement control, showing that gamma

amplitudes alone can provide much of the functionally relevant

information provided by these lower-frequency bands. In sum,

the application of our approach brought about meaningful in-

sights into human motor control.

Despite the strong base of evidence demonstrating the capac-

ity of the individual muscle to augment whole movement pat-

terns,20,56,57 muscle synergy research has generally focused

on muscle clustering. Our nuanced definition and subsequent

findings here support recent formal applications of the muscle

synergy concept to the intramuscular level, where task-specific

modules have been identified.25–27 Of note, past research

suggested that intramuscular modules represent spinal-level cir-

cuitry, whereas the intermuscular space primarily captures

supraspinal mechanisms.27 Indeed, this observation is sup-

ported by work from several research groups using different

analytical techniques.58–60 Here, we consistently found that the

intramuscular level represented aspects of motor behavior indic-

ative of superior task performance and proficiency (Figures 7 and

8), whereas the intermuscular level mainly represented decre-

ments in performance andcompensatorymechanisms (Figures 7

and 8). This opposing pattern intuitively aligns with this recent

work, as erroneous performance requires more frequent

intervention by supraspinal mechanisms while more effective

movement can be coordinated automatously by spinal circuitry.

An exception to this pattern however lies in the independent con-

trol of muscles quantified here as unique task information, which

demonstrated a correlation with better task performance inter-

muscularly (Figure 7A) and of which increased fluctuations

were consistently related to older age across both scales

(Figure 8). This independent control mechanism is likely invoked

where coarse-grained control mechanisms are insufficient, al-

lowing for the necessary selectivity to maintain task perfor-

mance. This suggests that variability in independent control

mechanisms both between and within muscles plays a major

role in the manifestation of (and/or compensation for) behavioral

inconsistency among older adults. However, as other related

work also proposed,16,17,54,58 our findings here (Figures 7 and

8) suggest that there is not a clear distinction between the neural

substrates underlying inter- and intramuscular dynamics and
iScience 28, 111613, January 17, 2025 13
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that they likely reflect the contributions of multiple neural sub-

strates simultaneously albeit to different extents, together holis-

tically representing the motor system in this frameworks’ scale-

invariant outputs (i.e., modules-within-modules). Finally, our

findings also highlight the crucial role of the individual muscle

level in movement organization and promote further investiga-

tions on modular control that integrate scale.

The insights gained from applying the framework to bench-

mark datasets are summarized as follows:

(1) The highly nested functional architecture of the muscle

networks suggests human motor control is simplified

via mechanisms mirroring dynamic programming (i.e.,

recursive decomposition of task demands across hierar-

chically structured modules).

(2) Coarse-grained control mechanisms correlate with

poorer balance performance at the inter-muscular level

but with better balancing intramuscularly.

(3) The gamma frequency band can explainmuch of the task-

relevant information found among lower frequency bands

during balance control.

(4) Motor variability in older adults has a functional underpin-

ning characterized by concurrent increases and de-

creases in functional integration at inter- and intramus-

cular scales, respectively.

(5) Independent muscle control is related to better balance

performance but also with older age during a reach-

and-grasp task.

In conclusion, we have developed and successfully applied

a computational framework for the extraction of functionally

diverse muscular interactions across multiple scales. Our

approach provides a more detailed and precise account of the

functional organization of the motor system by introducing a

more nuanced and generalizable definition of muscles working

together, which, consequently, has direct benefits in the clinical

setting and in engineering applications (e.g., predicting motor

intention). We were able to comprehensively characterize the

functional underpinnings of several distinct motor tasks while

ensuring physiological relevance and generalizability. This prin-

ciple aligns current approaches to muscle synergy analysis

with the forefront of theoretical work on movement modularity,

offering improved flexibility and opportunities to future investiga-

tions through nuanced perspectives on movement control.
Limitations of the study
The interactions quantified here do not imply a causal relation-

ship to behavior, and so their direct effects on motor task perfor-

mance remains a current limitation of the framework, the outputs

of which should only be interpreted as different types of muscle-

task statistical relationships. This is important as established

research onmuscle synergies has provided causal links between

the summation of individual muscle activities within a synergy

and force outputs,61 hence specific efforts toward aligning the

presented framework with this work should be implemented. In

future work, we will use multilevel neural interactions to predict

motor intention and execution and perturb them using stimula-

tion techniques to reveal their causal roles in motor behavior.
14 iScience 28, 111613, January 17, 2025
Finally, as the exact neural substrates underpinning the different

types of functional muscle interaction are currently not known, in

future work we also aim to formally identify them by quantifying

corticomuscular interactions and motoneuron level modules

using this framework.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Data acquisition and experimental conditions
To illustrate our framework, we applied it to three datasets of EMG signals and corresponding continuous task parameters recorded

while human participants performed different motor tasks. In dataset 1 (Figure 4A),41 3 healthy, adult participants performed whole-

body, unimanual point-to-point reaching movements in various directions and to varying heights while EMG from 30muscles (tibialis

anterior, soleus, peroneus, gastrocnemius, vastus lateralis, rectus femoris, biceps femoris, gluteus maximus, erector spinae, pector-

alis major, trapezius, anterior deltoid, posterior deltoid, biceps and triceps brachii) across both hemibodies were captured (Fig.(a)).

Alongside these EMG recordings, 3D kinematic data from 18 body locations (elbow, wrist, mid-arm, index finger, shoulder, hip, knee,

ankle and foot) across both hemibodies were captured along with additional kinematics from the head, right eye, left ear, and the

center of pressure. Participants performed �2160 pseudo randomized trials each in structured blocks across two days to avoid fa-

tigue. Movement onsets and offsets were determined at the timepoints which the index finger kinematic was 5% above and below its

peak velocity in the trial respectively. Ethical approval was given as detailed in the parent paper.41

In dataset 2 (Figure 4B), 3 healthy participants performed 10 consecutive trials of balancing on a balance board (Model 16130 Sta-

bility Platform, Lafayette Instrument) while self-induced perturbations were experienced along the frontal plane. Each trial lasted 30 s

in which participants were instructed tomaintain a balance board position parallel to the floor as best they could while focusing ahead

at eye-level on a dot on the wall (<5 m distance). Between trials, participants had 1 min to rest. EMG recordings (Delsys Trigno wire-

less EMG, sampling frequency: 2000Hz) were taken from the bilateral medial gastrocnemius (MGN), tibialis anterior (TA), rectus fem-

oris (RF) and biceps femoris (BF) while the horizontal angular displacement of the balance board was simultaneously recorded.

Ethical approval was given by the Faculty of Biological Sciences Ethical Review Committee, University of Leeds.

For dataset 3 (Figure 4C),42 14 young adults (22.1 ± 2.4 years old, two left-handed, twomales) and 18 older adults (71.6 ± 6.9 years

old, two left-handed, 8 males) performed a bimanual grasp-lift-hold-replace task of both a light (0.2kg) and heavy (0.4kg) object (two

manipulandamade from carbon-filled nylon) while in a seated position in front of a table. The objects were placed on the Table 75%of

shoulder width and 70% of maximum reach for each participant who were instructed to grasp the object and lift it to a target height in

front of them (300mm height) and to hold the object as still as possible at this position for 10 s. Following this holding period, the

participant was instructed to replace the object(s) back on the starting position markers. Participants performed 10 consecutive rep-

etitions for each weight condition while EMG signals from the bilateral anterior deltoid (AD), extensor carpi radialis (ECR), flexor carpi

radialis (FCR) and abductor pollicis brevis (APB) were recorded (Delsys Trigno, sampling frequency: 2000Hz). Grip forces were re-

corded from 50N load cells (Omega, LCM201-50), acquired from a 16-bit data acquisition card (National Instruments, USB-6002)

and processed in Labview (v.1.4). For load forces, six degree of freedom models were created in Qualisys for each object and

were used to compute their 3D acceleration from which net load forces were calculated with respect to object mass. Trials

commenced from 100ms prior to first contact until 100ms after last point of contact of either hand with the object, determined via

recorded kinematic data of the objects position. This research was approved by the Research Ethics Committee of the Faculty of

Biological Sciences of University of Leeds and all methods conformed to the Declaration of Helsinki and were carried out in

accordance with the University’s regulations. Written informed consent was obtained by all participants following guidelines of

the University of Leeds.

Data pre-processing
Intermuscular analyses

The processing of EMG signals from dataset 1 and 2 for the purpose of analyses in the intermuscular space included the application

of a bidirectional low-pass Butterworth filter with zero-phase distortion (order: 4th, cut-off: 20Hz) to the rectified signals. Extrapolation

of the kinematic data for dataset 1 and 2 to align with the corresponding EMGsignals was carried out using a cubic splinemethod. For

dataset 3, the signals were processed as described in Ye et al.42 More specifically, the rectified EMG signals were low-pass filtered

(filter: 4th order Butterworth with zero-phase distortion, cut-off: 10Hz) and down-sampled to 200Hz to align with kinetic and kinematic

datapoints. The filtered EMG signals were then normalized against their peak amplitudes across trials. The grip and load forces were

smoothed using a low-pass filter (cut-off: 12Hz, filter: 4th order Butterworth).
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Intramuscular analyses

The processing of EMG signals for the purpose of intramuscular analyses in the intramuscular space were uniform across datasets

1-3. This processing firstly included the filtration of the raw, unrectified EMG signals into specific frequency bands (Delta [0.1–4 Hz],

Theta [4–8 Hz], Alpha [8–12 Hz], Beta [12–30 Hz], Low-Gamma (Piper rhythm) [30–60 Hz], High Gamma (Gamma) [60–80 Hz]) using a

low- and high-pass filter combination (bi-directional 4th order Butterworth filters with zero-phase distortion). Then the absolute values

from a Hilbert transform of the filtered signals representing their oscillatory amplitudes were extracted for further analysis. In the case

of dataset 3, no down-sampling of the EMG signals occurred as carried out for intermuscular analyses. The task parameters for data-

sets 1-3 were all extrapolated using a cubic spline method to temporally align with the corresponding, processed EMGs and no

further processing was carried out.

METHOD DETAILS

Quantifying functionally diverse muscular interactions
To decompose the information a pair of muscles ½mx;my� (or frequencies-specific amplitudes ½fx; fy�) carries about t into redundant,

synergistic and unique components, we implemented the PID framework.29,62,63 PID stems from a related information-theoretic

measure known as co-information (co-I) that, by contrasting the sum of shared task information in mx and my each alone

(Iðmx; tÞ+ Iðmy; tÞ) against their joint task information (Iðmx;my; tÞ), quantifies their multivariate mutual information (IIðmx;my ; tÞ)
(Equation 1).28 co-I results in a single value representing either a net redundancy (negative co-I values) or net synergy (positive

co-I values) across the system. PID builds on this by removing the conflation of redundancy and synergy evident in co-I through

the decomposition of Iðmx;my; tÞ (i.e., the JMI) into separate redundant (Rðmx : my; tÞ) and synergistic (Sðmx : my; tÞ) information

atoms and the unique task information provided by mx (Uðmx : t
��myÞ) and my (Uðmy : t

��mxÞ) (Equation 2).

� II
�
mx;my; t

�
= Iðmx; tÞ + I

�
my; t

� � I
�
mx;my; t

�
(Equation 1)
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(Equation 2)

To perform PID here, we implemented a recent PID framework for Gaussian variables based on local information estimates that has

proven useful in neuroscientific applications.29,43,64–66 We generated a multiplexed view of the muscular interactions underlying hu-

manmovement by applying this method to all unique [mx;my ] (or ½fx;fy�) and t combinations for each participant. Tomake these sepa-

rate computations directly comparable, we normalized each PID component by their collective sum total which is equal to the JMI.43

The resulting redundancy, synergy and two unique information estimates collectively form four symmetric adjacency matrices (AÞ
(i.e., ATA = I) that represent the functionally similar, complementary or unique connectivities between muscles (frequencies) with

respect to t. When repeated across all available task variables t and participants, A is a multiplex network of dimension [No.of

½mx;my � x [No.of t x No.of participants]]. Thus, by applying network-theoretic statistical tools to A, we can identify functional modules

carrying the same type of task information (i.e., redundant, synergistic, unique) (Figure 2).

Identifying significant muscle interactions and their modular structure
The percolation threshold (Pc) (i.e., a critical value specifying the probability of node connectivities occurring and at which large clus-

ters and long-range connectivity begin to appear across a given network67) has proven to be a fundamental constraint in nervous

system organization.1,6,68 To identify the network connections in our framework that align with Pc, we employed a modified perco-

lation analysis.6 We applied this method to each layer of A, sparsifying the network with respect to the Pc expected from equivalently

sized random networks by thresholding connectivities iteratively until the largest cluster in the network (the ‘giant component’) begins

to be affected (Figure 3C).

Following this, in previous applications of the NIF,19,30 to determine the optimal number of clusters to extract with dimensionality

reduction, we have implemented community detection protocols suitable for multiplexed networks.34,69,70 In the current study how-

ever, due to the highly nested structure found in A, just a single cluster was identified using these established methods. Therefore, to

determine the optimal modular structure within a multiplexed network of muscles with overlapping functional affiliations, we em-

ployed a link-based community detection protocol.35 Specifically, we applied single-linkage hierarchical clustering to each layer

of A, building dendrograms for each network layer describing the clustering of dependencies that is cut at a threshold determined

by the maximal partition density (D) (Figure 3D), defined for a given partition of M links and N nodes into C subsets (Equation 3).35

Here, D is the average of the number of links in a subset (mc) normalized by the possible maximum and minimum number of nodes

with respect to the number of nodes those links touch (nc). This computation essentially unravels the nested network structure of

each layer in A, resulting in a set of binary adjacency matrices that represent whether a muscle belongs to an identified cluster or not.

D =
2

M

X
c

mc

mc � ðnc � 1Þ
ðnc � 2Þðnc � 1Þ (Equation 3)

We then sum across all of these computed matrices across all layers of A, resulting in a single aggregate graph. Finally, we then

apply the conventional community detection method based on a modularity maximization cost-function known as the Q-statistic (Q)
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(Equation 4).34,39 For a given partition of the network, the Q-statistic compares the number of edges between node i and j (Aij) and

what would be expected from an equivalent random network (Pij). In letting dðgi;gjÞ = 1 if nodes i and j belong to the same group (g)

and 0 otherwise, thus this measure penalises partitions with a low ratio of within vs. without cluster dependencies.34,71 The optimal

cluster count to extract was defined as the partition that maximises this Q-statistic.

Q =
1

4m

X
ij

ðAij � PijÞd
�
gi; gj

�
(Equation 4)
Extraction of low-dimensional motor components
Using the optimal cluster count derived a priori as the input parameter into dimensionality reduction, namely PNMF,37 we extracted

low-dimensional components of motor behavior from muscle interactions of a specific type (i.e., redundant, synergistic or unique)

across tasks and participants (Figure 3E). In the case of the intermuscular space, this input matrix (A) was of shape [No. of

½mx;my� x [No. of t x No. of Participants]], while for the intramuscular space, A had a dimensionality of [No. of ½fx; fy� x [No. of muscles

x No. of t x No. of Participants]]. As described in Equation 5 for the jthmodule and single participant and task case,A is factorized into

two components, v a vector of muscle weightings (m) of length equal to the number of unique muscle pairs (K) and corresponding

activation coefficients (s). The extraction of the modules identified during model-rank specification is verifiable as shown in previous

NIF applications.30 We note here that for the aim of extracting motor components associated with differences in the sampled

population (see ‘hierarchies of functional muscle interactions encode distinct motor features’ in the results section), we input the

normalized PID values into dimensionality reduction. However, for the aim of extracting generalizablemotor components (see ‘gener-

alizable components of functionally diverse inter- and intramuscular interactions’ of the results section), we input the non-normalized

version of A into dimensionality reduction.

A =

0
BBB@

vm1

j

«

vmK

j

1
CCCA :ð sj . sj Þ (Equation 5)
QUANTIFICATION AND STATISTICAL ANALYSIS

Examining the generalizability of extracted motor components
To determine the generalizability of the extracted motor components, using Pearson’s correlation we determined the similarity be-

tween the extractedmotor components and equivalent components extracted from a subset of the input data (i.e., when an individual

participant or task was removed). We carried out this procedure for all tasks and participants and then focused our analysis on the

correlation between functionally equivalent motor components (>0.5 correlation). To summarize this comparison, we converted the

remaining coefficients into Fisher’s Z values, computed averages and standard deviations, and then reverted these values back to

correlation coefficients.

Salient features of motor performance
To probe how functionally diverse inter- and intra-muscular interactions represent motor performance, we quantified

P
Error in spe-

cific ways for dataset 2 and 3 for use in separate statistical analyses.

For dataset 2,
P

Error was defined as the absolute cumulative error of the balance board parameter (jsj) across the nth trial

(Equation 6). s was any deviation from 0 degrees of the balance board along the horizontal plane. Using a repeated measures

correlation,44 associations between
P

Error and trial-specific activation coefficients from inter- and intra-muscular components

were determined. For the intramuscular activation coefficients specifically, we averaged them across muscles to get a [No. of trials

x No. of participants] size vector equivalent to the intermuscular coefficients.

For dataset 3, a binary variable representing participants’ age group (Young = 0 vs. Old = 1) was used as the dependent variable in a

binary logistic regression model.
P

Error, a measure of motor variability, was used as the predictors in this model.
P

Error was

defined as the absolute cumulative sum across trials of an inter- or intra-muscular activation coefficient s demeaned with respect

to their condition-specific average (i.e., light vs. heavy objects) (Equation 6).
X

Error =
X
n

jsj (Equation 6)

We calculated
P

Error of all inter- and intra-muscular components and input these as predictors of age group in the logistic regres-

sion model. An optimally parsimonious model, including the minimal number of predictors, was determined using forward selection

via the Wald’s test criterion (inclusion: p < 0.05, exclusion: p > 0.1).
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Subnetwork analysis
To illustrate the relative importance of individual muscles on the depicted human body models,38 we determined the total commu-

nicability (CðiÞ) of individual nodes (i).40 CðiÞ is defined as the row-wise sum of all matrix exponentials (e) in the adjacency matrix (A)

that consider the number of walks between each pair of nodes i and j (Equation 7).36,40

CðiÞ =
XN
j = 1

�
eA

�
ij

(Equation 7)

To emphasize salient functional connectivities present in the motor components, we further sparsified all dependencies with a

below average network communicability and illustrated the output on the accompanying human bodymodels.36,38 To uncover salient

subnetwork structures consisting of more closely functionally related muscles (indicated by node color on the human body model),

we applied the community detection algorithm described in Equation 2.3 to the extracted motor components.34,39
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