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abstract

Ecotones are transition zones of plant species compositional turnover, with inherent fractal characteristics corresponding to 
the shape of boundaries between adjacent bioregions. We characterize present-day ecotones of vascular plants across mainland 
sub-Saharan Africa and investigate environmental factors associated with their shapes. Specifically, we explore, (1) whether a 
fractal dimension is appropriate for characterizing the spatial patterns of ecotones, and (2) how the fractal dimensions of present- 
day ecotones may vary along latitudes and reflect other environmental contrasts between adjacent bioregions. Distributions of 
23,189 vascular plant species were partitioned into bioregions across mainland sub-Saharan Africa according to the nonmetric 
multidimensional scaling (MDS) of Jaccard dissimilarity at 20 km resolution. The optimal number of clusters was determined 
using K-medoids and Clustering Large Applications (CLARA) algorithms, with the clustering validity evaluated using the sil-
houette coefficient. The present-day ecotones were then extracted as boundaries between adjacent bioregions, and their spatial 
patterns measured by the box-counting fractal dimension. Using generalized additive models (GAMs), we explained the varia-
tion of the fractal dimensions of present-day ecotones by the absolute differences in mean annual precipitation, mean annual 
temperature, bulk density, soil clay content, soil sand content, soil organic carbon, soil pH, topographic roughness, fire fre-
quency, human footprint, geographic extent, and latitude, separately, between two adjacent bioregions. The MDS performed 
reasonably well (stress = 0.057), while CLARA succeeded in partitioning seven geographically distinct clusters (0.49 silhouette 
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coefficient), from which 11 ecotones were identified, with eight characterized as true fractals but having low fractal dimensions 
(range: from 1.018 to 1.154). The GAM identified the difference in mean annual precipitation as significant (P = 0.02) for ex-
plaining the variation of the fractal dimensions of present-day ecotones with the difference in soil organic carbon near-significant 
(P = 0.07). The fractal dimensions also showed a moderate correlation with the difference in human footprint between adjacent 
bioregions (Spearman’s rho = 0.619), albeit not significant (P = 0.11). Overall, by spatially characterizing the present-day eco-
tones between different bioregions, we showed that the fractal dimension is an appropriate method for shape quantification and 
characterization of ecotones. We further highlighted key environmental factors that could explain the formation of present-day 
ecotones and thus the compositional turnover of vascular plant species across sub-Saharan Africa.

Key words: Bioregionalization, boundary detection, compositional turnover, ecotone, fractal dimension, vascular plant.

Ecotones are transition zones that manifest them-
selves as sharp or gradual boundaries between biore-
gions (Clements, 1905, 1916). Spatially, they represent 
the division of species compositional turnover, driven 
potentially by varying degrees of environmental dis-
continuities (Fagan et al., 2003; Liautaud et al., 2020). 
This spatial variability has been investigated across a 
spectrum of scales based on field observations, experi-
ments, and correlative modelling (Potts et al., 2015). 
Within these frameworks, researchers tended to focus 
on distinct plant community compositions, rather than 
ecotones as explicit boundaries in themselves. Further, 
such spatial variation of ecotones has rarely been ex-
plored for modelled bioregions, likely due to method-
ological and data limitations.

In recent years, advances in spatial analytics and 
tools have enhanced our ability to locate and quantify 
ecotones (Williams, 1996; Dale, 1999; Fortin et al., 
2000; Halley et al., 2004; Hufkens et al., 2009). Tradi-
tional methods have incorporated amongst others the 
moving split window analysis (Hennenberg et al., 2005; 
Pandita & Dutt, 2020), GIS-based imagery interpreta-
tions (Johnston & Bonde, 1989; Müllerová, 2004), 
wombling (Bowersox & Brown, 2001), and multivariate 
techniques (Batllori et al., 2009). While these methods 
have been shown to be effective in detecting the spa-
tial locations of ecotones, they inherently neglect other 
fundamental boundary characteristics including their 
shape dynamics.

Characteristically, the shape of ecotones can range 
from simple to spatially complex (Strayer et al., 2003), 
and this degree of complexity may be quantified by a 
fractal dimension (Kenkel & Walker, 1993). As noted 
by Mandelbrot (1982), the fractal dimension summa-
rizes in a single value the spatial complexities of irreg-
ularly shaped features (termed fractals), including those 
observed in nature (e.g., coastlines and vegetation pat-
terns) (Gao, 2021). The quantification of the fractal 
dimension relies on the principle of self-similarity in 
spatial structures across grain sizes, which suggests that 
when magnified, fractals appear scale invariant (Man-
delbrot, 1967, 1982). Through this approach, fractals 
correspond to fractal dimensions that exceed their to-
pological dimensions. For instance, a jagged boundary 

would reflect an intermediate dimension (1 ≤ FD ≤ 2). 
The higher the fractal dimension, the greater the spatial 
complexity. 

In the context of ecotones, since their boundaries 
are rarely straight lines (Gastner et al., 2009), and draw-
ing from Mandelbrot (1982), the application of fractal 
dimension might thus hold promise in enhancing our 
understanding of ecotone spatial patterns. In that, their 
fractal dimensions can not only characterize their 
 spatial patterns but also reveal information on the rate 
of species compositional turnover (Loehle et al., 1996; 
McGlinn & Palmer, 2011). For instance, lower frac-
tal dimensions are indicative of sharp boundaries with 
characteristically smoother structures, reflecting sharp 
changes in species compositions. The shape dynam-
ics of ecotones can occur due to varied environmental 
discontinuities.

Possible explanations for these discontinuities have 
been ascribed to climate and topography (Holdridge, 
1947; Neilson, 1993; Danz et al., 2011; Hirota et al., 
2011; Körner, 2012), geology and soil properties (Muir, 
1929; Wiens et al., 1985; Cowling et al., 1997; Gold-
blatt & Manning, 2002; Rhoades et al., 2005; Esler et 
al., 2015; Theron et al., 2020), and disturbance fac-
tors (Kent et al., 1997; Foggo et al., 2001; Bond et al., 
2003; Staver et al., 2011; Pausas et al., 2016). These 
environmental factors can exert either separate or joint 
influences on ecotones. 

At a biogeographical scale, climate exerts varied 
temperature-precipitation controls leading to the for-
mation and maintenance of ecotonal boundaries (Will 
et al., 2013; Erdős et al., 2022). For instance, higher 
temperatures are a limiting factor to water-dependent 
plant community compositions, which have greater ther-
mal sensitivities (Toledo et al., 2012; Dulamsuren et 
al., 2013). By contrast, lower temperatures, particularly 
in alpine environments, shape the upper limits of eco-
tones influencing plant distributions in mountainous 
regions (Walsh et al., 1994; Moen et al., 2008). Precip-
itation, though spatially variable, is highly influential 
in shaping plant community compositions leading to 
ecotone boundaries that are either sharp or gradual 
(Bond et al., 2003; Sankaran et al., 2005). Given a 
precipitation gradient, at low and high precipitation 
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levels we can anticipate sharp boundaries, while grad-
ual boundaries can persist at intermediate levels (e.g., 
savanna- forest ecotone) (Lehmann et al., 2011; Staver 
et al., 2011).

Under edaphic conditions mediated by climate (Sles-
sarev et al., 2016; Zhang et al., 2019) sharp ecotonal 
boundaries can be expected (Marfo et al., 2019; Xue 
et al., 2019; Eibes et al., 2021). This is likely due to 
the fact that soils that are highly acidic or alkaline can 
restrict plant growth and consequently community dis-
tributions, through nutrient deficiencies (Kidd & Proc-
tor, 2001), and a reduced water supply to the roots 
(Lopes et al., 2021). 

Disturbances (natural and anthropogenic) impact the 
structural complexities of plant communities by shap-
ing the composition, density, and spatial distributions 
of plant species (Turner, 1989). Accentuated by climate 
and soil factors, the emergence of ecotones has also 
been attributed to differences in fire regimes (frequency 
and/or intensity) (Cramer et al., 2018) shaping and 
maintaining plant species composition and structure 
(Kruger & Bigalke, 1984; Lavorel & Garnier, 2002; 
Ónodi et al., 2021). In fire-prone environments, the 
degree of plant flammability imposes a distributional 
limit on fire-sensitive plant community composition 
(Fletcher et al., 2014). An example of this spatial vari-
ation is the forest-fynbos ecotone in South Africa 
(Manders, 1990; Manders & Richardson, 1992). 

Using a model-based distribution dataset of more 
than 23,000 vascular plant species in Africa, we char-
acterize present-day ecotones among vascular plants 
across mainland sub-Saharan Africa and investigate 
environmental factors associated with their shapes. 
Specifically, we explore, (1) whether a fractal dimension 
is appropriate for characterizing the spatial patterns of 
present-day ecotones, and (2) how the fractal dimen-
sions of present-day ecotones may vary along latitudes 
and other environmental contrasts between adjacent 
bioregions.

Materials and Methods

study systeM

Our study was confined to sub-Saharan Africa (Stuart 
et al., 1990). It extends all of mainland Africa (24 mil-
lion km2) (Fenta et al., 2020), south of 20°N latitude, 
and between 20°W and 55°E longitude. Because prox-
imate islands conform to unique ecological processes 
that differ with mainland (Whittaker et al., 2008), they 
were excluded. 

Sub-Saharan Africa has diverse characteristics of 
climate, topography, and geology (Wilson & Primack, 
2019). The climate is highly variable due to its latitu-
dinal expansion across the northern and southern hemi-

spheres, with the baseline mean annual temperature 
ranging from 6.22°C to 30.68°C, and the mean annual 
precipitation ranging from 3.21 to 4320.94 mm (Fick 
& Hijmans, 2017). Topographical complexities persist 
in this region (Lamptey, 2021), with prominent peaks 
recorded in the eastern (Kilimanjaro 5895 m), south-
ern (Thabana-Ntlenyana 3482 m) (Maxted et al., 2004), 
and western and central (Cameroon 4040 m) parts 
(Cheek et al., 2021). The soil of a third of the region 
is naturally acidic (pH < 5.5), owing to poor soil fertil-
ity (De Pauw, 1994), characterized by low soil organic 
matter (Zingore et al., 2015) and clay and silt contents 
(Bado & Bationo, 2018).

Tremendous plant diversity exists (Klopper et al., 
2007) as a result of the region’s geography (Catarino & 
Romeiras, 2020), which has been partitioned into eight 
major bioregions (Wilson & Primack, 2019), with much 
of the vegetation flammable (Goldammer & De Ronde, 
2004; Bond & Zaloumis, 2016) and getting burnt fre-
quently (Archibald et al., 2010). 

species dataset

Until recently, data on species distributions of vas-
cular plants in Africa were poorly captured, due to 
data deficiencies in occurrence records (Küper et al., 
2006). Consequently, we utilized a model-based data-
set on predicted distributions of 23,189 African vascu-
lar plant species of 3616 genera. Considering the re-
ported ~45,000 vascular plants known for sub-Saharan 
Africa (Klopper et al., 2007), an advantage of this data-
set is its comprehensive species list which exceeds ear-
lier studies often restricted to less than 6000 plant 
species (Linder, 2001; Küper et al., 2004; McClean et 
al., 2005). This dataset obtained from Conservation 
International was compiled by the Biodiversity In-
formatics and Modelling (BIEN) group (<http://www 
.biendata.org>) in the context of the Spatial Planning 
for Protected Areas in Response to Climate Change 
(SPARC) project, together with external partners. To 
produce this dataset, distribution models were fitted 
using maximum entropy modeling (MaxEnt) (Merow et 
al., 2019). This approach predicts occurrence proba-
bility and relative habitats suitable for species along 
ecologically relevant environmental gradients (Elith & 
Leathwick, 2009).

Notably, species occurrence records are typically 
assembled from various sources in time, space, and 
taxa, and as a result may be susceptible to biases (Isaac 
& Pocock, 2015). To mitigate possible spatial and taxo-
nomic biases, the BIEN group, prior to the modeling, 
spatially thinned the occurrences of each species to 20 
km resolution and assessed the validity of taxonomic 
and geographic locations through BIEN services (Boyle 
et al., 2013; Merow et al., 2019). The occurrence prob-

http://www.biendata.org
http://www.biendata.org
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ability of each plant species was determined by a suite 
of environmental predictors for cleaned presence-only 
records, which was then converted into a binary raster 
for the fifth percentile (for comprehensive details, see 
Merow et al., 2019).

cluster analyses

We mapped the binary raster of a species’ distribu-
tion onto a “fishnet” grid of 20 × 20-km cells, using 
Albers equal area conic projection (WGS1984) in Arc-
GIS version 10.8.1 with two standard parallels of 20°N 
and –23°S (ESRI, 2020), which was pruned to cover 
the entire mainland of sub-Saharan Africa. A site-by-
species matrix of presence-absence entries was gen-
erated for 55,815 sites using the “raster” R package 
(Hijmans, 2020; R Core Team, 2021). The species 
compositional turnover between site-pairs was mea-
sured by the Jaccard dissimilarity index (Jaccard, 1900; 
Podani, 2021) using the “stats” R package (R Core 
Team, 2021). A nonmetric multidimensional scaling 
(MDS) was applied based on rank orders (nonmetric) of 
the derived dissimilarities (Dexter et al., 2018), using 
the “vegan” R package (Oksanen et al., 2007; R Core 
Team, 2021). Specifically, species composition in sites 
were decomposed along three eigenvector dimensions 
(k = 3) to achieve a satisfactory stress value (Oksanen 
et al., 2007), with stress < 0.05 and < 0.10 considered 
excellent and good representations of the dissimilarity 
matrix (Clarke, 1993). Normalized scores of the ordi-
nation axes were extracted for mapping species com-
position in the RGB color scale, with red palette R rep-
resenting scores along axis 1, green palette G scores 
of axis 2, and blue palette B scores of axis 3, using 
the “raster” R package (Hijmans, 2020; R Core Team, 
2021). The RGB map was finalized in ArcGIS version 
10.8.1 (ESRI, 2020). 

The cluster analyses were performed using K-medoids 
and Clustering Large Applications (CLARA) (Kaufman 
& Rousseeuw, 1990), based on the site-pair dissimi-
larities. These algorithms are analogous to K-means, 
but medoid-based and more robust (less sensitive) to 
out liers (Kaufman & Rousseeuw, 1990). From these 
two clustering algorithms, each site was assigned to 
one cluster (Bishop, 1995). The validity of site parti-
tions was evaluated using the silhouette coefficient 
(MacQueen, 1967), ranging between –1 and +1, with 
higher values indicating well-supported clusters (Ba-
tool & Hennig, 2021). Specifically, the K-medoids and 
CLARA algorithms were performed 16 times to pro-
duce from two to 17 clusters. The partition with the 
highest silhouette coefficient was chosen for the final 
optimal number of clusters and best performing algo-
rithm. These analyses were performed using the “clus-
ter” R package (Maechler et al., 2019; R Core Team, 

2021). The final cluster results were then mapped using 
the “raster” R package (Hijmans, 2020; R Core Team, 
2021) and finalized in ArcGIS version 10.8.1 (ESRI, 
2020). 

spatial characterization of ecotones

We consider ecotones to be boundaries between ad-
jacent bioregions. We converted the map of clusters 
into vectors using the “rgdal” R package (R Core Team, 
2021; Bivand et al., 2022) and extracted the ecotone 
vectors in ArcGIS version 10.8.1 (ESRI, 2020). We then 
estimated the fractal dimensions of the present-day eco-
tone vectors using a custom R code that implements 
the box-counting fractal dimension method (Mandel-
brot,1982; Klinkenberg, 1994). 

Various methods exist to quantify fractal dimensions 
including the divider relation, power spectrum, and 
variogram (Kenkel & Walker, 1993; Klinkenberg, 1994; 
Gao, 2021). In this study, the box-counting fractal di-
mension method which relies on user-defined box sizes 
was selected because of its simplicity, computational 
efficiency, and versatility in analyzing various data types 
including irregular boundaries.

The general principle of the box-counting fractal di-
mension method is defined as follows. Given a fractal 
on a plane (Supplementary Fig. S1), overlay boxes of 
various sizes and count the number of boxes tracing 
the fractal feature. The corresponding number of boxes 
covering the fractal feature declines with the increase 
of box sizes (Hall & Wood, 1993; Tripathi et al., 2015). 
The use of different box sizes captures the concept of 
self-similarity across spatial scales (Mandelbrot, 1967, 
1982; Hall & Wood, 1993). Here, since the ecotone 
vectors were extracted from the 20-km raster of clus-
ters, we considered a series of spatial scales of dou-
bling box sizes (r = 20, 40, 80, 160, 320, 640, 1280, 
2560 km). Following this procedure, the fractal dimen-
sion is then defined by the slope of the natural log-log 
relationship between the number of boxes covering a 
fractal feature (N[r]) and the linear dimension of the 
box (r). A strong fit of the log-log relationship corre-
sponds to a true fractal structure characterized by an 
intermediate dimension (Mandelbrot, 1982).

Using 12 ecologically relevant environmental predic-
tors (Cowling & Potts, 2015; Cramer et al., 2019), we 
calculated the Spearman’s rho correlation (McDonald, 
2014) to assess the associations between the fractal 
dimensions of present-day ecotones and corresponding 
differences in environmental factors, including differ-
ences in average latitude. These differences denoted 
by the delta symbol (Δ) (see Supplementary Table S1) 
were computed as the absolute difference in the aver-
age values of a particular environmental factor between 
two adjacent bioregions of an ecotone. This analysis 
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was performed using the base “stats” R package (R 
Core Team, 2021).

To assess the existence of any nonlinear relation-
ships (Hastie & Tibshirani, 1990), also because the 
number of measured ecotones is rather low, we fitted a 
generalized additive model (GAM) between the fractal 
dimensions of present-day ecotones and each predictor 
separately, using the “mgcv” R package with the re-
stricted maximum likelihood (REML) method (Wood, 
2011; R Core Team, 2021). 

results

The MDS ordination adequately captured sub- 
Saharan plant species compositional turnover (stress = 
0.057) (Fig. 1). The CLARA partitioning algorithm 
(silhouette coefficient = 0.49; Table 1) outperformed 
the K-medoids method. This then resulted in seven 
sub-Saharan bioregions (Fig. 2), which overlapped 
reasonably well with existing configurations (Olson & 
Dinerstein, 2002; Linder et al., 2012).

We identified 11 present-day ecotones from the 
mapped bioregion clusters (Fig. 3). These ecotones rep-
resent the optimal boundaries to differentiate within- 

Figure 1. Visual representation of the compositional turnover (measured as the Jaccard dissimilarity) of African vascular 
plants in mainland sub-Saharan Africa. The RGB color scale reflects normalized scores of the first three multidimensional 
scaling (MDS) axes; site-pairs sharing similar species composition are depicted by a similar color gradient.

Table 1. Clustering validity of two partitioning algorithms 
for different number of clusters. The silhouette coefficients of 
the K-medoids and Clustering Large Applications (CLARA) 
algorithms are shown for k = 2 to 17, with the bold value indi-
cating the optimal number of clusters based on the highest 
silhouette coefficient. 

Partitioning algorithms

Clusters (k) K-medoids CLARA

2 0.43 0.42
3 0.34 0.44
4 0.35 0.39
5 0.37 0.45
6 0.36 0.42
7 0.34 0.49

8 0.37 0.44
9 0.37 0.37
10 0.34 0.46
11 0.35 0.48
12 0.33 0.46
13 0.32 0.41
14 0.33 0.41
15 0.32 0.36
16 0.33 0.37
17 0.33 0.37
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versus between-cluster compositional dissimilarity, 
and their fractal dimensions were measured using the 
box- counting fractal dimension method (Fig. 4). We 
removed ecotones that exhibited fractal dimension val-
ues of less than one as they represent scattered bound-
ary segments between bioregions. The fractal dimen-
sions of the remaining eight ecotones ranged between 
1.018 and 1.154, characterizing relatively sharp bound-
aries representing clear transitions in plant community 
compositions.

The associations between the fractal dimensions of 
the present-day ecotones and the environmental con-
trasts of adjacent bioregions, including their differ-
ences in average latitude, were evaluated using the 
Spearman’s correlation (Table 2), with no statistically 
significant relationships found. Only the absolute dif-
ference in human footprint showed a notable correla-
tion with the fractal dimensions of the present-day eco-
tones (rho = 0.619, P = 0.115; Table 2). 

The GAMs were performed to determine any nonlin-
ear effects of each predictor separately, on the fractal 

dimensions of the present-day ecotones. According to 
the results, only the difference in mean annual precip-
itation and the fractal dimensions of the present-day 
ecotones reached significance (P = 0.02; Table 3). The 
deviance explained by this model was 91.2%. The 
shape of the fractal dimensions of the present-day eco-
tones follows a unimodal trend with the difference in 
mean annual precipitation, peaking at an intermediate 
level of ~25 mm and then declining (Fig. 5). This re-
sult suggests that with an intermediate difference in 
mean annual precipitation, higher fractal dimensions 
of present-day ecotones between bioregions may be ob-
served, contributing to the complexities in the pattern-
ing of ecotones. Whereas at > 25 mm in difference in 
mean annual precipitation, the shape of ecotones may 
be smoother with lower fractal dimensions. Addition-
ally, the differences between soil organic carbon (P = 
0.0782) and bulk density (P = 0.118) had a near-sig-
nificant result with the fractal dimensions of the 
present- day ecotones, with a substantial amount of de-
viance explained (> 40%; Table 3). A positive linear 

Figure 2. Seven bioregions of African vascular plants spatially distributed across mainland sub-Saharan Africa, based on 
the Clustering Large Applications (CLARA) partitioning algorithm (silhouette coefficient = 0.49).
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Figure 3. A delineation of present-day ecotones in mainland sub-Saharan Africa, according to boundaries identified be-
tween different bioregions.

Figure 4. Log-log plots of the box-counting fractal dimension (FD), demonstrating the relationships between the number 
of boxes covering an ecotone (N[r]) and the linear dimension of the box (r). Each slope indicates the fractal dimension of eight 
present-day ecotones, coinciding with sharp boundaries that reflect characteristically smoother spatial patterns and sharp 
changes in plant species composition in mainland sub-Saharan Africa.
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effect between the fractal dimensions of the pres-
ent-day ecotones and the difference in soil organic car-
bon can be discerned (see Supplementary Fig. S5).

discussion

Ecotone characterization has traditionally relied on 
adjacent plant compositions to locate and delineate 
boundaries along environmental discontinuities, ne-
glecting other fundamental boundary characteristics 

that reveal information on their structural complexi-
ties. Here, we estimated the fractal dimension of eco-
tones among adjacent African vascular plant bioregions 
and, in doing so, demonstrated its appropriateness in 
spatially characterizing ecotones. We further revealed 
possible explanations of their spatial patterning in 
present-day mainland sub-Saharan Africa.

bioreGionalization

In visualizing the species compositional turnover of 
23,189 vascular plants in mainland sub-Saharan Af-
rica for 55,815 sites at 20-km resolution (Fig. 1), we 
utilized a widely used method (Baldeck & Asner, 2013; 
Féret & Asner, 2014; Silva & Souza, 2018). From the 
RGB scale, sites with similar species compositions were 
indicated by a similar color gradient, leading to a spa-
tial patterning of African plant community composi-
tions with distinct geographic variations latitudinally. 
By clustering these sites across the entire extent, we 
found CLARA with seven optimal numbers of clusters 
to outperform K-medoids (Table 1), revealing its ro-
bustness for large datasets; Conradi et al. (2020) re-
ported a similar finding. 

The distributions of these compositional clusters ex-
hibited to a degree latitudinal alignments with existing 
configurations of sub-Saharan bioregions (Olson & Di-
nerstein, 2002; Linder et al., 2012; Dinerstein et al., 
2017). In particular, cluster 4 coincided with the Trop-
ical and Subtropical Moist Broadleaf Forests biore-
gion, extending slightly beyond the equatorial belt 
within about 7°N and 7°S (see Supplementary Fig. S2; 
Olson & Dinerstein, 2002; Dinerstein et al., 2017). 
The Tropical and Subtropical Grasslands, Savannas, 
and Shrublands bioregion was largely partitioned into 

Table 3. Statistics of single-predictor generalized addi-
tive models, explaining the variation of fractal dimensions 
among eight present-day ecotones. See Supplementary Table 
S1 for acronyms of the predictors. The estimated degrees of 
freedom (edf) indicate the nonlinearity of the smoothed re-
sponse, with greater values (than one) reflecting more nonlin-
ear relationships.

Predictor edf P value
Deviance 

explained (%)

s(ΔMAP) 3.112 0.0207* 91.2
s(ΔMAT) 1.00 0.894 0.321
s(ΔBD) 2.013 0.118 63.1
s(ΔSCC) 1.633 0.433 34.1
s(ΔSSC) 1.00 0.499 7.95
s(ΔSOC) 1.00 0.0782 42.8
s(ΔPH) 1.467 0.367 34.1
s(ΔTR) 1.00 0.786 1.33
s(ΔFF) 1.00 0.668 3.27
s(ΔHFP) 1.369 0.545 23
s(ΔEXT) 1.00 0.672 3.19
s(ΔLAT) 1.00 0.663 3.39

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 2. Spearman’s rank correlation between differences 
in environmental factors, including latitudes, and the fractal 
dimensions of present-day ecotones.

Δ Predictor Spearman’s rho P value

Δ Mean annual precipitation –0.5238 0.1966
Δ Mean annual temperature –0.0238 0.9768
Δ Bulk density 0.1190 0.7930
Δ Soil clay content 0.4048 0.3268
Δ Soil sand content –0.2619 0.5364
Δ Soil organic carbon 0.5952 0.1323
Δ Soil pH –0.4286 0.2992
Δ Topographic roughness –0.0476 0.9349
Δ Fire frequency –0.0952 0.8401
Δ Human footprint 0.6190 0.1150
Δ Geographic extent 0.1429 0.7520
Δ Latitude –0.3095 0.4618

Figure 5. Bivariate plot from the single-predictor gener-
alized additive model (GAM), depicting the response of the 
fractal dimensions of present-day ecotones to the smoothed 
absolute difference of mean annual precipitation between 
adjacent bioregions. Ticks above the horizontal axis indicate 
the data distribution; shaded areas represent the confidence 
interval. The asterisk indicates statistical significance.
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clusters 1, 2, 3, and 5, respectively, according to the 
CLARA algorithm. Further, cluster 5 spatially ex-
panded into higher latitudes in the Southern Hemis-
phere, overlapping with the Montane Grasslands and 
Shrublands (south-eastward of South Africa) and the 
Mediterranean Forests, Woodlands, and Scrub biore-
gions at the southernmost region of Africa. The Deserts 
and Xeric Shrublands bioregion was seemingly parti-
tioned into clusters 6 and 7, respectively (Supplemen-
tary Fig. S2; Olson & Dinerstein, 2002; Dinerstein et 
al., 2017).

Overall, these spatial congruencies give strength to 
the species dataset and the partitioning algorithm, re-
inforcing the robustness of both, respectively. This 
means that in the context of African conservation of 
plant diversity, this map product can offer spatial in-
formation that may enhance and strengthen existing 
strategies and plans. In addition, when we explored an 
alternative number of clusters (k = 11; see Table 1), 
more bioregions and ecotones were identified (Supple-
mentary Fig. S3). These had varied spatial overlaps 
with the eight existing sub-Saharan bioregions, albeit 
not maximizing the silhouette coefficient.

ecotone spatial characterization

Given data and methodological limitations, the spa-
tial characterization of ecotones tended to focus on the 
identification and delineation of boundaries between 
distinct plant community compositions (Fortin et al., 
2000; Morris & Kokhan, 2007). Within this context, a 
major challenge in traditional ecotone detection meth-
ods (see the comprehensive list in Hufkens et al., 2009) 
has been to consider ecotones as boundaries in them-
selves. Consequently, their emergence, maintenance 
factors, and dynamics have typically been understood 
from the perspective of their adjacent plant communi-
ties (e.g., Alados et al., 2003). Therefore, by making use 
of a fractal dimension, we spatially characterized the 
shapes of ecotones as explicit boundaries between ad-
jacent bioregions and reported possible explanations 
of their spatial patterns, corresponding to the rate of 
plant species compositional turnover in mainland sub- 
Saharan Africa. To the best of our knowledge, its use in 
ecotonal research has not yet been explicitly explored. 

Research utilizing the application of the fractal di-
mension has demonstrated its efficacy across various 
disciplines. Based on the commonly used box-counting 
fractal dimension method, numerous studies have used 
the fractal dimension to, for instance, estimate shape 
complexities of trabeculae (Majumdar et al., 1993), 
plant morphology (Corbit & Garbary, 1995), urbanized 
areas (Shen, 2002), and the digital elevation model 
(DEM) (Taud & Parrot, 2005). Findings from these 
studies reported high fractal dimensions indicating 

greater structural complexities. In contrast, eight of 
the 11 identified ecotones (Fig. 3) in this study had low 
fractal dimensions (1.018–1.154) (Fig. 4).

We should note that, to enhance the accuracy of the 
fractal dimension, a proper selection of the number of 
box sizes and the scaling factor is needed (Mandelbrot, 
1982). To illustrate, in a previous analysis, when only 
seven box sizes of a scaling factor of two were used, 
seven of the 11 ecotones were characterized as fractals 
ranging from 1.025 to 1.143 (Supplementary Fig. S4). 
This may suggest that the fractal dimension, in princi-
ple, may be sensitive to the range of box sizes. This 
sensitivity, particularly for the box-counting fractal di-
mension method, has been thoroughly discussed (Dubuc 
et al., 1989; Liebovitch & Toth, 1989).

When the relationship between fractal dimensions 
of the eight ecotones were assessed through the Spear-
man’s correlation and the GAMs, only the effect be-
tween the difference in mean annual precipitation and 
the fractal dimensions of the present day was signifi-
cant (P = 0.02, deviance explained = 91.2%; Fig. 5). 
We also found near-significant (thus weak) effects be-
tween the fractal dimensions and differences in human 
footprint (P = 0.11), soil organic carbon (P = 0.07), and 
bulk density (P = 0.11), respectively. Although soil pH 
is well reported as a major determinant of sharp eco-
tones (Schmiedel & Mucina, 2006; Jolokhava et al., 
2020; Theron et al., 2020; Eibes et al., 2021), the po-
tential influence of the organic matter might be worth 
considering, as it may contribute to our understanding 
of the emergence and maintenance of gradual transi-
tions of African plant community compositions (Supple-
mentary Fig. S5). All the other analyzed environmental 
factors including differences in average latitudes were 
not significant. 

The resulting significant unimodal effect of the dif-
ference in mean annual precipitation suggests that a 
moderate gradient of mean annual precipitation may 
geographically drive the compositional transition of vas-
cular plant communities, captured by the response of 
the fractal dimensions of present-day ecotones (Fig. 5). 
This result is consistent with the general prediction 
that given a moderate change in precipitation, gradual 
rather than sharp transitions may manifest, leading to 
a coexistence of water-limited and water-dependent 
community compositions (Lehmann et al., 2011; Staver 
et al., 2011; Ciemer et al., 2019). In contrast, with in-
creasing differences in mean annual precipitation be-
tween two adjacent bioregions, sharper boundaries with 
lower fractal dimensions may form (Fig. 5), potentially 
dividing temperature-driven species in regions with 
lower precipitation from water-dependent species in 
regions with higher precipitation (Sankaran et al., 2005; 
Moreno de las Heras et al., 2015; Bai et al., 2021; 
Bañares-de-Dios et al., 2022). 
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conclusion

In this study, we showed that most of the ecotones 
located between the seven partitioned bioregions across 
mainland sub-Saharan Africa possess fractal charac-
teristics coinciding with smoother spatial patterns. The 
fractal dimension can be regarded as an appropriate 
measure for characterizing the spatial patterns of eco-
tones. In exploring possible explanations of their shape 
dynamics, the spatial variation of ecotones is mainly 
attributed to the gradient of mean annual precipitation. 
At moderate precipitation, gradual rather than sharp 
boundaries reinforced by higher fractal dimensions 
may manifest, promoting coexistence of adjacent plant 
compositions. At the high end of this gradient, sharp 
boundaries may persist, corresponding to sharp com-
positional turnover.
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