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Significance

 Polar vortices are omnipresent in 
planetary atmospheres, however, 
not much is known about their 
existence and characteristics in 
the Sun due to the present lack of 
direct observations at the poles. 
Unlike planetary atmospheres, the 
subsurface layers of the Sun are 
highly influenced by the presence 
of magnetic fields. Here, we show 
that solar cycle magnetic fields 
provide a plausible mechanism for 
the formation of polar vortices in 
the Sun. Observing polar regions 
of the Sun could provide 
important clues for understanding 
the origin of solar magnetism 
as well as its cyclic behavior. 
Our results would provide 
observational targets for multi-
viewpoint polar missions, which 
can give a glimpse of flows and 
magnetic fields in polar regions.
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Polar vortices are ubiquitous features of planetary atmospheric flows, from the Earth- like 
rocky planets to Jupiter-  and Saturn- like gas giant planets. Very little is known about their 
existence or dynamics on the Sun. What should be expected near the Sun’s pole for the 
upcoming solar multi- viewpoint and polar missions? Here, we report the magnetohydrody-
namic (MHD) nonlinear simulations for the formation and evolution of solar polar vortices 
using a near- surface MHD shallow- water model. Our findings indicate that the rush to the 
poles, the migration of magnetic fields toward the pole following the Sun’s magnetic cycle, 
can positively contribute to the formation of polar vortices. The mechanism proposed here 
for the formation of polar vortices involves the role of magnetic fields and may be relevant 
to any star with a magnetic cycle. The Sun’s polar vortices resulting from this mechanism 
are predominantly MHD, consisting of a tight pair of cyclonic and anticyclonic swirls. 
This mechanism is likely to operate during all solar cycle phases except the peak, when 
the polar field reverses. Polar vortices can impact dynamical evolution of global flows and 
polar fields, which seed the next activity cycle, hence better knowledge of physics of polar 
regions may lead to improved solar cycle and space weather forecasts.

polar vortices | geophysical fluid dynamics | magnetohydrodynamics | solar flows | solar cycle

 Polar vortices have been observed in several planets, both rocky and Gas Giants. On 
Earth, the polar vortices play an important role in weather and have rich dynamics. In 
periods when they are strong and stable, they keep cold air confined to the poles; on the 
other hand, when they weaken, they may become more wavy, eventually advecting cold 
air from the poles to mid-latitudes causing cold spells ( 1 ). In Jupiter, the Juno mission 
observed both north and south poles and recently revealed a rich structure and dynamics, 
with the north-pole vortex surrounded by eight circumpolar cyclones/anticyclones, while 
the south-pole is surrounded by five circumpolar vortices ( 2 ). In Saturn, the Cassini 
spacecraft observed both poles, revealing a remarkable hexagonal shape that is evident in 
the northern hemisphere, while the southern vortex assumes a more circular shape ( 3 ). 
Polar vortices were also observed in Mars, Venus, Uranus, Neptune, and Titan ( 4 ).

 Although the aforementioned planets possess very different sizes, rotation rates, and 
atmospheric composition, polar vortices are a common feature of their atmospheric 
dynamics. In the Sun, no direct observation of polar vortices has been performed due to 
the lack of multi-viewpoint and/or polar missions. The only mission in the next decade 
targeting the Sun’s poles is the Solar Orbiter ( 5 ). Therefore, the important questions remain 
from both observational and theoretical points of view: Does the Sun have polar vortices? 
If so, what might they look like? Do they evolve with the solar cycle? Previous helioseismic 
observations provide evidence about the presence of dominant m = 1 mode at ~75°, 
although they lack polar observation ( 6 ,  7 ).

 While a definitive answer can only be confirmed by a mission that would directly 
observe the Sun’s poles, we can anticipate answers by using numerical simulations to infer 
the characteristics of polar vortices likely existent in the Sun. There are important differ-
ences between the dynamics of the flows in the Sun and planets. The most important is 
that the Sun contains strong magnetic fields, being composed of ionized plasma. Therefore, 
it is expected that the magnetic fields will, in some form, affect the existence/nonexistence, 
morphology, and evolution of polar vortices. Both large- and small-scale magnetic fields 
in the Sun are very dynamic and follow the well-known ~11-y sunspot cycle, while the 
polar fields (dominated by the dipole component) complete a cycle every ~22 y. Shorter 
periods’ magnetic variability, such as Rieger-Type ( 8 ), quasi-annual ( 9 ), and quasi-biennial 
( 10 ) periodicities also impact significantly the overall strength and morphology of the 
solar magnetic fields and influence the “seasons” of space weather ( 11 ).

 The presence of a polar vortex in the Sun would impact the understanding of the solar 
cycle. Different morphologies of the vortices would imply differences in the poleward 
advection of magnetic fields influencing the evolution of the magnetic cycle. Furthermore, 
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due to the prevailing concept in the community that the polar field 
is the precursor to the upcoming cycles, monitoring its evolution 
is an essential part of long-term space weather forecasting ( 12 ).

 Although high-latitude m = 1 modes have been observed ( 13 ), 
it is not known whether a solar polar vortex with tight swirling 
flows would reach deep into the convection zone, or be a near 
surface phenomenon. Recent studies ( 14 ) have found evidence of 
polar latitude swirls of longitudinal wave number m = 1 in their 
linear hydrodynamic eigensystem for solar inertial oscillations in 
the whole convection zone going up to a rigid top, placed at 0.985 
 R⊙    , in their model. Here,  R⊙    represents one solar radius. It focuses 
on deep inertial and convective modes with deep structures and 
long time scales. We focus on mechanisms that have not yet been 
investigated, namely the global magnetohydrodynamic (MHD) 
effects in a thin shell located at the surface layers, extending from 
0.97  R⊙    −1  R⊙    , where there is evidence for quasi-Two-dimensional 
(2D) (latitude-longitude) Rossby wave modes ( 15 ).

 Planetary vortices have been simulated using hydrodynamic 
shallow-water models ( 16   – 18 ). Jupiter’s atmosphere, though thin, 
has underlying layers that are also fluid, extending for several scale 
heights and contains small-scale convection. Shallow-water models 
have the advantage of “filtering out” small-scale nonhydrostatic 
buoyant convection, to focus on more global quasihorizontal 
dynamics. For the Sun, we are at a much earlier stage in the devel-
opment of models and also in finding evidence of such polar vor-
tices. Hence, it is appropriate to consider a wider range of physical 
scenarios that could lead to solar polar vortices.

 We use a MHD shallow-water model to simulate the evolution 
and morphology of the solar polar vortices under different scenarios 
of surface magnetic field configurations. We are interested in the 
uppermost optically opaque part of the Sun where observations will 
eventually be available, the supergranule layer. Simulations are per-
formed with varying strengths of magnetic fields to mimic the 
conditions for different stages of the cycle: in the absence of a 
large-scale polar magnetic field, compatible with a peak phase sce-
nario, with a strong field of 16 G, representative of a strong sunspot 
cycle’s minimum scenario, and an intermediate case with a field of 
5 G that could represent a typical descending cycle scenario. 

Results

 We solve the MHD shallow-water equations in a thin Three-

dimensional (3D) spherical shell at the surface with an inner 
radius of 0.97  R⊙    and with a thickness of 0.03  R⊙    . A background 
mean flow is set to match the Sun’s surface differential rotation 
(i.e.,  Ω(�) = [451.1 − 63. sin2�     −66.7sin4� − 432. ]    ,  �    is the 
latitude). We select the radius of the shell and the inverse of 
core-rotation rate as unit length and unit time, respectively, in 
nondimensional units. Thus, 100 units of nondimensional time 
approximately corresponds to 1-y dimensional time (details are 
provided in the Methods  section).

 First, we describe the outcome of the hydrodynamic case. In each 
of the simulations, the initial conditions are set according to the most 
unstable linear eigenmodes from the (M)HD shallow-water model 
with the solar differential rotation profile. Initialization by the most 
unstable mode of the system for starting the nonlinear evolution is a 
usual practice and has been heavily used in oceanic and atmospheric 
shallow-water model simulations ( 19 ). In this particular (hydrody-
namic) case, m = 1 represents the most unstable mode; we accordingly 
start the nonlinear evolution of the system starting with initializing 
the system with an m = 1 mode.  Fig. 1  portrays the evolution of the 
corresponding vortices throughout a 20-mo integration. The solutions 
in this case are characterized by a pair of broad vortices extending from 

50° latitude up to the poles. Such a broad cyclone/anticyclone has not 
been identified as a polar vortex in general. Thus, the hydrodynamic 
simulations cannot really produce tight vortices clustered around the 
poles from mid-latitude perturbations; instead, the large-scale vortices 
remain broad throughout the entire simulation span and can be 
understood in terms of classical hydrodynamic Rossby waves ( 15 ).        

 The inclusion of magnetic fields, however, greatly modifies the 
dynamics of waves in a shallow-water model ( 20       – 24 ). Linear eigen-
modes from MHD instability of high-latitude bands provide 
important guidance suggesting the growth of eigenmodes with 
substantial energy at high relative to the low latitudes and their 
nonlinear dynamics must be considered in order to understand 
likely morphologies of solar polar vortices. Numerical experiments 
are set to represent the phenomenon called “rush to the poles” 
( 25         – 30 ), that consists of migration of polar magnetic fields to 
higher latitudes as solar cycles progress to their minima phases after 
the peaks, strengthening the polar fields until the solar minima. In 
order to represent the polar rush we include a horizontal magnetic 
field band in the zonal direction, initially at 60° latitude, and mov-
ing poleward. Two MHD scenarios are investigated to understand 
the impact of the magnetic field evolution on the formation of the 
polar vortices, namely a weak magnetic band of 5 G and a relatively 
stronger band of 16 G migrating toward the pole with polar rush.

  Fig. 2 A  and B   depicts the rush to the poles of the filaments. We 
overlay in  Fig. 2B   the northern (red) and southern (blue) hemi-
spheric high-latitude filaments in the record to permit a superposed 
epoch analysis ( 26 ). Slanted black-dashed lines in  Fig. 2B   denote 
the average drift-speed of filaments, approximately 1°/mo. Filaments’ 
migration is a proxy for the migration of polar fields to the poles, 
starting from the latitudes ~55°, as the cycle progresses into its 
declining phase after the peak ( 26 ). We can see that the latitude-range 
of polar filaments at any given time is narrow, implying a narrow 
latitude-structure of polar fields. The polar rush phenomena is not 
yet well-understood theoretically. Some suggestions combine diffu-
sion of magnetic flux from decaying active regions and the transport 
by photospheric flows ( 31 ,  32 ). Notwithstanding occasional reverse 
flow cells, likely present in the global meridional circulation, the 
polar rush plays an important role in the dynamics there.        

  Fig. 2 C  and D   displays the latitude-structure of polar fields, from 
the proxy of faculae counts, in the north (C) and south (D). The Solar 
and Heliospheric Observatory Michelson Doppler Imager (SOHO/
MDI)–Debrecen Faculae Data Catalog (Helioseismic and Magnetic 
Imager Debrecen faculae Data catalogue (HMDD)) was employed 
from 1997 to 2008 ( 32 ). The differential rotation near the surface of 
the Sun will shear the polar(poloidal) field, generating a toroidal field 
component through the well-known “Ω-effect” ( 33 ). In contrast to 
 Fig. 2 A  and B  , since  Fig. 2 C  and D   are annual averages, the faculae 
count profiles are much broader in latitude. There exist various obser-
vations with shorter term averaging that indicate polar fields have a 
somewhat narrower latitudinal width ( 34   – 36 ) than  Fig. 2 C  and D   
but wider than  Fig. 2 A  and B  .

 Weak toroidal fields of latitudinal width intermediate between 
that in  Fig. 2 A –D  , drifting poleward following the global dipole 
field, have indeed been observed ( 37 ). We simulate the MHD 
shallow-water dynamics of such banded toroidal fields of magni-
tudes of a few Gauss, produced by this shearing process in a few 
weeks. As depicted in  Fig. 2 A  and B  , the polar rush phenomena 
is highly dependent on the strength of the cycle (and hence on 
the zonally averaged magnetic field strength). The representation 
of this phenomenon on the formation of polar vortices is investi-
gated by considering two scenarios, 5 G and 16 G.

 For the integration with the magnetic field strength of 5 G migrat-
ing poleward, the conditions mimic a situation of the descending 
phase of a typical solar cycle. In this case, the initial condition is chosen 
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to be a m = 4 mode, since it constitutes the most unstable mode with 
the solar differential rotation and this toroidal field configuration. 
The morphology of the toroidal magnetic field in latitude consists of 
a narrow band with a Gaussian decay away from the peak magnetic 

field as depicted in  Fig. 2E  . Throughout the 20-mo integration, as 
the magnetic field band moves poleward, the flow pattern undergoes 
nonlinear interactions and the dominant pattern changes from m = 
4 to a superposition of m = 1 and m = 2 modes, with the m = 1 being 

Fig. 1.   Simulations of global vortices generated hydrodynamically: 30° inclined view (Left) and polar view of the spherical shell (Right) for the hydrodynamic 
simulations showing that the perturbations remain in the form of broad large- scale vortices that propagate retrograde similar to hydrodynamic Rossby waves. 
Arrow vectors represent the vortical flows; color- maps show layer thickness variation in terms of bulging (red) and depression (blue) [or pressure departures 
from unperturbed pressure—high- pressure (red) and low- pressure (blue)]. The snapshots are taken at the times 1.50 months (panels A and D), 2.80 months 
(panels B and E) and 4.10 months (panels C and F) during the evolution vortices.
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the dominant one, occasionally exchanging energy with a weak m = 
2 mode. Specifically, the magnetic band is moved by ~0.0001° after 
every integration time step (i.e., after every 0.001 time-unit, which 
corresponds to ~5 min). This drifting is performed by extracting the 
m = 0 components of both the zonal and meridional magnetic fields. 
Although at time t = 0, the m = 0 component is purely zonal, the 

corresponding m = 0 meridional component develops through non-
linear evolution of the system. Hence, by performing this procedure, 
we implement the latitude drift of the axisymmetric fields following 
polar rush.

 The  Fig. 3  shows the evolution of the flow pattern in arrow vectors 
throughout the 20-mo integration and highlights the concentration 

Fig. 2.   Observational proxies of polar fields, and estimated accompanying toroidal magnetic fields: (A and B) Solar filament evolution from 1880 to 2017, recreated 
from data used in ref. 25. Panel A illustrates the density of filaments (red—north; blue—south) and panel B the latitude of the highest latitude filaments (hemispheric 
high- latitude filaments are overlaid). Slanted black- dashed lines in panel B denote their speed of the rush to the poles, approximately 1° per month. Reference to 
±55° latitude is drawn using a dot- dashed horizontal line, the equator using a dashed horizontal line, and the locations of the Hale Cycle “termination” events as 
vertical dashed lines. Panels C and D display the number of emerging faculae as a function of latitude from 60 to 90°. The counted number of faculae has been 
plotted on a log scale in the north (C) and south (D) during the declining phase of cycle 23. Each year’s data are represented by a different color, highlighted in 
the legend. (E) displays banded toroidal magnetic fields locally generated from polar fields that drift poleward with the rush to the poles (A and B).
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of energy near the poles as the rush to the poles process advances, as 
well as the establishment of the m = 1/m = 2 patterns toward the solar 
minima configuration of the magnetic field. The physics behind this 
concentration of energy near the poles lies in that Rossby wave energy 
is trapped near the magnetic field bands, i.e., the magnetic field band 
constitutes a waveguide for magnetized Rossby waves ( 20 ).        

 As the magnetic band moves toward the pole, waves’ energy 
follow the magnetic band’s drift. The vortical flows more or less 
maintain the magnetostrophic balance, except at the times of 
appearance of inertia-gravity waves.

 The strong field case, with a 16 G magnetic field band, is displayed 
in  Fig. 4 . The initial condition consists of a m = 3 mode. Similar to 

Fig. 3.   Simulations of magnetohydrodynamically governed polar vortices for typical solar cycles: Same as in Fig. 1, but for the weak field MHD simulations showing that 
the initial mid- latitude perturbations tend to drift and cluster around the poles following the rush to the poles. An initial m = 4 perturbation yields a final configuration 
consisting of a quasistable pattern with a dominant m = 1 mode (a pair of vortices) along with occasional appearances weak m = 2 and also sometimes m = 3 modes (Movie 
S1). The snapshots are taken at the times 11.10 months (panels A and D), 15.51 months (panels B and E) and 19.91 months (panels C and F) during the evolution vortices
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the weak field case, the vortices become progressively clustered near 
the poles. Here, the flow pattern develops two circumpolar rings of 
nonlinearly interacting vortices, each consisting of three cyclonic 
and three anticyclonic swirls, persisting for a significant timespan. 
As the simulation further progresses with the magnetic band drifting 
closer to the pole, eventually a dominant m = 1 mode forms like the 

weak field case, but with a significant m = 2 component arising from 
nonlinear mode–mode interaction.        

 For this last case (with 16 G field strength), we compute the 
total energy of the system following ( 20 ). In these experiments, 
the energy is primarily dominated by the kinetic energy, because 
potential and magnetic energies are a few orders of magnitude 

Fig. 4.   Simulations of magnetohydrodynamically governed polar vortices for strong cycles: 30° inclined view (Left) and polar view (Right) of the poles for the 
strong field MHD simulations showing that the initial mid- latitude perturbations tend to drift and cluster around the poles following the rush to the poles. An 
evolved configuration consisting of a dominant m = 1 pattern (a pair of vortices) is obtained from an initial m = 3 perturbation. The snapshots are taken at the 
times 12.55 months (panels A and D), 16.90 months (panels B and E) and 20.50 months (panels C and F) during the evolution vortices
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smaller. We display in  Fig. 5  the total energy evolution associated 
with each wavenumber up to 5 (m = 0 to 5). Nonlinear exchanges 
of energies among these modes can be seen in  Fig. 5 . The energy 
associated with even higher modes (m > 5) is significantly smaller; 
the total energy is conserved to a great accuracy. Note that the 
amplitudes of the corresponding modes can be obtained by 
approximately taking the square-root of energies associated with 
the respective modes.          

Discussions

 Polar vortices are observed in virtually all planets and satellites 
that possess an atmosphere ( 4 ). Stars, and in particular, the Sun, 
have the same ingredients present in planetary atmospheres, 
namely, a fluid in presence of Coriolis force, suggesting that they 
could also possess polar vortices. However, the presence of strong 
magnetic fields is known to significantly alter the dynamics of 
rotating fluids (plasmas). In particular, near the surface of the Sun, 
magnetic fields at higher latitudes are characterized by the rush to 
the poles phenomena.

 Here, we report results from simulations where we investigate 
the role of magnetic fields in the formation of polar vortices in 
the Sun from initial mid-latitude perturbations. Simulations are 
performed in order to represent three different scenarios i) a hydro-
dynamic case without the presence of magnetic fields, ii) a typical 
cycle’s magnetic field case where a 5 G band drifts poleward with 
the polar rush, and iii) a strong field case with an evolving toroidal 
field with the same configuration as in the weak field case, but 
with magnetic field strength of 16 G.

 Our results demonstrate that in the hydrodynamic case i), tight 
polar vortices, like that in Jupiter’s poles, are not formed from an 
initial mid-latitude perturbation; instead, broad large-scale 
cyclonic/anticyclonic flows nonlinearly evolve in a quasistable 
fashion throughout the several months’ integration period; these 
retrograde-propagating vortical patterns can be explained as a 
dominant m = 1 hydrodynamic Rossby/inertia-gravity mode. In 
a typical cycle, i.e., for the magnetic field case ii), the poleward 
drift of magnetic field is accompanied by a progressive clustering 
of the vortices around the poles, starting from a m = 4 initial 
perturbation and resulting in a quasistable state characterized by 
a dominant m = 1 mode. Finally, in the strong field case iii) the 

initial m = 3 perturbation also evolves to a configuration of clus-
tering of the vortices near the poles, with an eventually evolved 
state, consisting of mostly m = 1 mode.

 When comparing our results with the variability of the mag-
netic fields throughout different solar cycles, in particular, the 
variability of the polar rush phenomena, we may associate the 
different configurations in the simulations with weak or strong 
cycles. Our main conclusions are that the formation of polar vor-
tices on the solar surface from mid-latitude perturbation are 
strongly influenced by the presence of magnetic fields and that 
the final configuration of the polar vortex in the simulations pre-
sented here (compatible with all solar cycle phases, except the 
peak) crucially depends on the strength of the drifting background 
magnetic fields. Nevertheless, it remains to be explored the rele-
vance of three-dimensional dynamics on the formation of vortical 
structures and the role of the magnetic field on their evolution.

 Helioseismology has previously inferred the presence of inertial 
modes with dominant wavenumber m = 1 at high latitudes of 
about 75° ( 6 ). The frequency for the m = 1 we found here (of 
−86.8 nHz) is comparable with the linear speeds in previous stud-
ies ( 6 ). Recent theoretical models aimed at explaining these 
high-latitude inertial modes do not find Jupiter-like polar vortices 
and did not include polar magnetic fields ( 38 ). In contrast, our 
work indicates that the presence of polar magnetic fields favors 
the formation of tight vortices at the Sun’s poles.

 We note that different mechanisms may contribute to the for-
mation of planetary polar vortices, but often, they rely on the 
principle of conservation of vorticity allied with some form of 
meridional transport due to differential latitudinal atmospheric 
heating ( 4 ,  11 ,  22 ). The Jupiter simulations were initialized with 
finite amplitude vortices of specified potential vorticity, sometimes 
with one or more added small “seed” vortices, and simulates how 
the initial vortices rearrange via nonlinear dynamics into stable, 
regular patterns of vortices that circle the pole, with total potential 
vorticity conserved for all the vortices present. The resulting stable 
configurations strongly resemble the observed ones. By contrast, 
the mechanism proposed here for the formation of polar vortices 
on the Sun is governed by weak magnetic fields. In the MHD 
case, there are electromagnetic body forces which can impart vor-
ticity to the fluid by applying torques to fluid elements, causing 
both the local and the total potential vorticity of the fluid to 
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Fig. 5.   Evolution of energies among various longitudinal modes: Evolution of total energy (primarily dominated by kinetic energy) associated with each mode 
(m = 0 to 6) has been displayed. 100 units of nondimensional time corresponds to ~1 y. While modes interact nonlinearly among themselves, near the end of 
simulation, when the magnetic fields have reached a very high- latitude (~85°) with polar rush, m = 1 modes dominate over m = 2 and 3.
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change. These torques are periodic in longitude; so, adjacent vor-
tices are driven by corresponding oppositely directed torques about 
the local radial axis.

 However, in both cases, it is the Rossby waves’ dynamics that 
plays the central common role—in planets, they may be generated 
by baroclinic instability by differential heating, whereas in the Sun 
they are magnetically modified Rossby waves, generated by insta-
bility of differential rotation. The energy comes primarily from 
the kinetic energy of differential rotation and magnetic energy to 
drive the nonlinear evolution of vortices through exchanges of 
energy among these energy reservoirs and that of Rossby waves 
( 39 ). In the hydrodynamic case, the cyclonic/anticyclonic flows 
are wider, because the energy source is primarily kinetic, coming 
from the broad solar differential rotation. In the MHD case, rel-
atively more complicated nonlinear exchanges of energy among 
magnetic and kinetic energy reservoirs ( 39 ) as well as Rossby 
mode–mode interactions occur ( 40 ), resulting into tight swirls of 
cyclonic/anticyclonic vortices, evolving between dominant m = 1 
and weak m = 2 patterns.  

Concluding Remarks

 Previously proposed mechanisms for the formation of high-latitude 
vortices in the Sun are based on linear hydrodynamic eigenmodes 
in a model of the bulk of the convection zone with rigid top and 
bottom, taken respectively at 0.7  R⊙    and 0.985  R⊙    ( 14 ). Near the 
surface, however, the dynamics is affected by magnetic fields. 
Currently, it’s not known whether or how the dynamics of this thin 
subsurface layer as well as the Sun’s magnetic cycle influence the 
formation of vortices in the polar region of the Sun.

 Here, we used a nonlinear MHD shallow-water model to show 
that the magnetic cycle, and in particular, the rush-to-the-poles 
phenomena can favor the formation of polar vortices from 
mid-latitude perturbations. Our major finding is that as the sunspot 
cycle progresses, a ring of vortices will form near the latitude of 
highest polar fields, associated with the rush to the poles, and then, 
the ring of vortices will shrink toward the poles, shedding vortices 
as it moves, leading ultimately to a single pair of vortices very near 
the poles, which disappear during solar maximum, when the polar 
field is zero. Therefore, polar vortices are most likely to be observed 
during all phases of the solar cycle except perhaps the peak phase.

 The mechanism proposed here for the formation of polar vor-
tices fundamentally relies on the nonlinear interplay between 
magnetic fields and flows. Exploring other plausible physical 
mechanisms, such as baroclinic instabilities ( 41 ), and the effects 
of deeper layers of the Sun, such as the bulk of the convection 
zone ( 14 ), is beyond the scope of our present model. As such, our 
mechanism presented here and the previously suggested ones are 
by no means exclusive, since they concern different regions of the 
Sun, and if combined, they could reinforce the formation of polar 
vortices. Only comparison with observations from multi-viewpoint 
solar polar missions could provide further insights into the relative 
contributions of each of these mechanisms.

 The existence of the solar polar vortices would impact the polar 
latitudes’ differential rotation by wave-mean flow interactions, 

hence spinning-up and spinning-down the poles as the high-latitude 
vortices lose stability. This could affect the global meridional cir-
culation also. It is a widely accepted view in the community that 
the polar fields are precursors of the strength of the upcoming cycle 
( 12 ); furthermore, vortical flows near the photosphere could 
amplify the polar magnetic fields ( 42 ) before it becomes the seed 
to the next cycles. However, without better knowledge of the prop-
erties and dynamics of polar region’s flows and fields the physical 
foundation of this view may not be justified. How does the polar 
vortex actively interact and participate in the polar field evolution? 
Obviously, the answers to such questions lie in the multi-viewpoint 
observations of high-latitude regions, from about 60° to the poles. 
A promising direction for incorporating as many observations as 
possible into numerical models has begun, via data assimilation, 
machine learning, deep learning, and AI ( 43 ).

 While the Solar Orbiter will give the first glimpse of the high- 

latitude magnetic field and flow in 2025, it does not have sufficient 
viewing of the polar regions. The Polarimetric and Helioseismic 
Imager on Solar Orbiter could improve the measurements from a 30° 
out-of-ecliptic orbit but does not provide the temporal coverage 
required to fully trace the evolution of the magnetic concentrations 
through the cycle. This highlights the need for future multi-viewpoint 
polar missions that are able to observe the poles during times other 
than solar maximum.  

Methods

Model and Equations. The main starting point for our simulation is a shallow- 

water model, which is a quasi- three- dimensional thin shell system of fluid, the 
core foundation of which is that the horizontal scale and motions are very large 
compared to the vertical extent and motions in it. This renders the pressure per-
turbations to be hydrostatic. Such models have been widely used in studying 
global dynamics of planetary atmospheres and oceanic systems (see e.g., ref. 44, 
for details). Such a system has been employed for studying certain global dynam-
ics of the Sun over the past two decades with the generalization from a global 
hydrodynamic shallow- water system to a MHD one, because the Sun contains 
very strong magnetic fields, which govern the global solar dynamics. Complete 
foundation for a global MHD shallow- water system and the full set of equations 
are presented in vector invariant form in ref. 45 (see e.g., their equations 3, 5, 6, 
and 8) which have subsequently been employed by various authors in rectangular 
(46, 47) as well as in spherical systems (21, 23, 24, 48).

Note that hydrostatic shallow- water models, which have been used to sim-
ulate Jupiter’s polar vortices (16), filter out small- scale buoyant convection, in 
order to focus on more global- scale nearly horizontal dynamics. The supergran-
ulation layer is a thin layer near the solar surface, in which the horizontal extent 
and motions are much larger than that in the radial direction (49). Thus, the 
dynamics occurring there can satisfy such foundation criteria of a shallow- water 
model. Considering a thin shell extending from 0.97 R

⊙
 to 1 R

⊙
 , a hydrody-

namic shallow- water model has recently been employed to simulate classical 
Rossby waves (15), which were detected there by helioseismology (50). Here, 
we generalize that model to include MHD for simulating the polar region’s 
MHD of the global flows, primarily focusing on whether cyclonic/anticyclonic 
tight swirls can form.

By denoting the latitude (ϕ) and longitude (λ) components of velocities and 
those components of magnetic fields, respectively as u, v, a, b, and the shell thick-
ness as 1+, we present the full set nonlinear MHD shallow- water equations in the 
nondimensional form in the rotating frame, rotating with the core- rotation rate ( �

c
):
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All variables (u, v, a, b, h) are functions of latitude (ϕ), longitude (λ) and time 
(t). Eqs. 1 and 2 comprise the evolution of two horizontal velocity components 
(u, v), and (Eq. 3) provides the evolution of top surface, from which radial com-
ponent of the velocity can be derived. Two horizontal magnetic field components 
evolve following Eqs. 4 and 5, and the modified zero- divergence of magnetic 
field condition is given by Eq. 6, which can be used to derive the vertical magnetic 
fields. G is a nondimensional parameter which represents the “effective gravity” 
of the model. Bringing the analogy of Jupiter’s polar vortex model (16), we recall 
that those models have been characterized by a nondimensional number, the 

so- called Burger number, Bu =
gjHj

(2Ωj sin�j L)
2
  , in which L is a horizontal length scale, 

characteristic of horizontal flow in the spherical shell, gj, Hj, Ωj  , �j  , respectively, 

represent Jupiter’s gravity at the shell location at its surface, shell thickness of the 
shallow- water model employed, Jupiter’s rotation rate, and latitude. The nondi-

mensional parameter in our case is G, 
(

G=
gH

(r0�c )
2

)

  , which is related to the actual 

gravity (g) at the radius of the bottom boundary, shell thickness (H), inner radius 
of the shell r0 = 0.97 R

⊙
  and the core- rotation rate ( �

c
  ) (48). Note that our G 

parameter is closely related to the Burger number but does not include any flow 
length scale; this is replaced by an external parameter, the solar radius ( R

⊙
  ). In a 

hydrostatic shallow- water model, G determines how much the upper boundary 
of the shallow layer is allowed to deform; for G > 1, this deformation is small 
compared to the shell thickness. For G < 1, the deformation allowed increases, 
with declining G, to the point the shell thickness vanishes at certain points that 
becomes unrealistic for Jupiter (16) and also will be for the Sun. Therefore, we 
focus on values G > 1, primarily G = 3, very much like the hydrodynamic shallow- 

water model implemented in the supergranulation layer for simulating Rossby 
waves via inverse cascade (15). This implies that the motions in this layer are 
primarily horizontal, i.e., in latitude- longitude, with small radial motions.

We also briefly mention how the length scale and the time scale are selected 
to nondimensionalize the system. We consider the radius of the inner boundary 
(0.97 R

⊙
 ) to be a unit length and the inverse of core- rotation rate a unit time. 

This means for the core- rotation rate of 432 nHz, �
c
= 2� × 432 , and a unit 

nondimensional time corresponds to 1/(2π × 432 × 10−9) s in dimensional 
form, which comes out to be ~0.01 y. Thus, 100 nondimensional units of time 
correspond to 1 y. Taking a typical supergranulation layer mass density, it is easy 
to compute the nondimensional field strength in this model; a dimensionless 
magnetic field of one unit corresponds to a field strength of about 100 G. We 
consider 0, 0.05, and 0.16 units of field strength for our simulation experiments. 
These correspond to zero, 5 G, and 16 G toroidal field strength at the surface.

Observations Invoked for Setting Up Simulation Experiments. Given the 
description of the model in the previous section, our next task is to describe the sim-

ulation experiments we perform here. We consider a solar- like surface differential 

rotation (Ω) of the form Ω(�) = [451.1 − 63. sin2� − 66.7sin4� − 432. ] nHz, 
in the frame rotating with the core- rotation rate of 432 nHz; here, ϕ represents lat-
itude. To estimate the structure and amplitude of high- latitude toroidal magnetic 

fields, as well as their poleward drift with rush to the poles, we take help from 
observational analysis of polar crown filaments data and faculae concentrations 
data. Fig. 2 A and B in the main text presents the drift- speed of the polar crown 
filaments during their rush to the poles (28).

The Fig. 2 A and B show approximately 1° per month drift- speed of polar 
crown filaments, a proxy of the polar fields, during their rush to the poles. While 
the latitudinal width indicates the latitudinal width of the polar field at a particu-
lar time during their rush to the poles, Fig. 2 C and D in the main text (see also 
fig. 3 of ref. 34) reveals the observed latitudinal structure of the polar fields from 
different measures, namely the faculae count, which is another proxy for polar 
fields. From various observations, the polar fields have already been noted to 
have banded- type structures in latitude. For example, fig. 3 of ref. 34, derived 
from faculae concentration in latitude, shows polar (poloidal) fields drifting 
toward the pole in banded form during the declining phase of cycle 20. A simi-
lar observational analysis performed here using SOHO/MDI–Debrecen Faculae 
Data Catalog (HMIDD) reveals the drift of banded polar (poloidal) fields during 
the declining phase of cycle 23 (see the slanted vertical line in both panels of 
fig. 3 of ref. 34).

Thus, we can consider the existence of weak toroidal fields, which are the 
outcome of the shearing of polar (poloidal) fields by the surface radial differential 
rotation (e.g., B

r
�Ω∕�rΔt )—their amplitudes can easily be estimated to reach in a 

few weeks about 5 to 16 G. These weak, surface toroidal fields are not expected to 
produce spots, and/or be amplified by shearing for a much longer time, because 
their source, i.e., the polar/poloidal fields, is migrating to a new latitude, and also 
magnetorotational instabilities will stop their growth. But they will be present with 
a low amplitude along with the polar (poloidal) fields as long as the polar rush and 
poleward migration of polar fields continue. Perhaps some of the weak toroidal 
fields at the surface may be diffusively permeating from the bottom. Nonetheless, 
such weak toroidal fields should exist along with the polar fields. These weak, 
surface toroidal fields, of the order of global dipole fields, and reversing with the 
global dipole field has indeed been observed by ref. 37. As discussed in ref. 37, 
weak surface toroidal fields either may be locally generated from the shearing of 
polar (poloidal) fields there, or may permeate from the bottom.

The reversal of surface toroidal fields when the global dipole field reverses indi-
cates that these surface toroidal fields must be drifting toward the pole with the 
dipole poloidal fields. Without loss of generality in our simulation, the latitudinal 
width of the weak surface toroidal fields can be prescribed as a Gaussian; spatial 
structure of polar fields derived from observations also support this choice (see e.g., 
fig. 3 of ref. 34, also see refs. 35 and 36). If the polar (poloidal) fields are the sources 
for the observed, weak, surface toroidal fields, they should be present always except 
when the global dipole field is reversing, i.e., during solar maximum. Therefore, in 
our simulation setup, we consider three cases: i) no toroidal fields (representing 
the solar cycle’s maxima phase), ii) a weak toroidal field of 5 G peak- amplitude 
migrating with a speed of 1° per month from 60 to 85° latitudes (representing all 
phases of a typical solar cycle except its peak phase), and iii) a toroidal field of 16 G 
(representing the solar minima phase between two strong cycles).
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Numerical Scheme. Since detailed numerical schemes for solving global non-
linear (M)HD shallow- water equations have been discussed in refs. 20 and 51, we 
are presenting the algorithm briefly here. Following the pseudospectral imple-
mentation given in ref. 52, the scalar variable his decomposed in scalar spher-
ical harmonics and the vector variables, u, v, a, b in vector spherical harmonics, 
to deal with the pole problem. Nonlinear terms in the equations are computed 
in a pseudospectral implementation. Adams–Bashforth scheme, with a kick- start 
by fourth- order Runge–Kutta, is implemented for time evolution; semi- implicit 
dynamics is included following ref. 53 in order to integrate out high- frequency 
gravity waves. Momentum is checked and balanced in every few thousand steps, 
in which the model evolves for about a day. As discussed in the literature, in order 
to take care of aliasing error (Gibb’s phenomenon) in the pseudospectral formalism, 
a small numerical viscosity is added as a standard technique. Computer- intensive 
synthesis and analysis steps are run concurrently in multiple parallel threads on 
modern, many core processors. In a T42 model, to capture sharp variations of solar 
surface differential rotation and toroidal fields in latitude and longitude, about 0.2° 
latitudinal and 2.8° longitudinal resolution has been used.

Data, Materials, and Software Availability. Observational data for the polar 
faculae data used in this study are publicly available from the SOHO/MDI–
Debrecen Faculae Data Catalog (HMIDD) (http://fenyi.solarobs.epss.hun- ren.
hu/en/databases/SDO/) (54), and of polar rush filaments data from the Arcetri 

Astrophysical Observatory (for the time 1880 to 1929), Meudon Observatory 
(1919 to 1989), and the Kislovodsk Observatory (1980 to 2018). All simulation 
data and codes used to produce figures are deposited in GitHub (https://github.
com/mausumidikpati/SolarMHDPolarVortex) (55).
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